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Memory-Efficient Training for Fully Unrolled Deep
Learned PET Image Reconstruction with

Iteration-Dependent Targets
Guillaume Corda-D’Incan, Julia A. Schnabel, Fellow, IEEE, and Andrew J. Reader

Abstract—We propose a new version of the forward-backward
splitting expectation-maximisation network (FBSEM-Net) along
with a new memory-efficient training method enabling the
training of fully unrolled implementations of 3D FBSEM-Net.
FBSEM-Net unfolds the maximum a posteriori expectation-
maximisation algorithm and replaces the regularisation step by
a residual convolutional neural network. Both the gradient of the
prior and the regularisation strength are learned from training
data. In this new implementation, three modifications of the orig-
inal framework are included. First, iteration-dependent networks
are used to have a customised regularisation at each iteration.
Second, iteration-dependent targets and losses are introduced so
that the regularised reconstruction matches the reconstruction
of noise-free data at every iteration. Third, sequential training
is performed, making training of large unrolled networks far
more memory efficient and feasible. Since sequential training
permits unrolling a high number of iterations, there is no need
for artificial use of the regularisation step as a leapfrogging
acceleration. The results obtained on 2D and 3D simulated
data show that FBSEM-Net using iteration-dependent targets
and losses improves the consistency in the optimisation of the
network parameters over different training runs. We also found
that using iteration-dependent targets increases the generalisation
capabilities of the network. Furthermore, unrolled networks us-
ing iteration-dependent regularisation allowed a slight reduction
in reconstruction error compared to using a fixed regularisation
network at each iteration. Finally, we demonstrate that sequential
training successfully addresses potentially serious memory issues
during the training of deep unrolled networks. In particular,
it enables the training of 3D fully unrolled FBSEM-Net, not
previously feasible, by reducing the memory usage by up to 98%
compared to a conventional end-to-end training. We also note
that the truncation of the backpropagation (due to sequential
training) does not notably impact the network’s performance
compared to conventional training with a full backpropagation
through the entire network.

Index Terms—PET reconstruction, deep learning, model-based
image reconstruction

I. INTRODUCTION

POSITRON emission tomography (PET) provides crucial
functional information allowing to detect abnormalities

undetectable by other imaging modalities. However, PET
measured data often suffers from high noise levels due to
detector sensitivities or numerous physical processes limiting
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the number of back-to-back photon pairs collected by the
scanner. Besides, high injected radiotracer dose can expose
patients as well as technicians to health risks, leading to
the need for dose reductions further degrading the measured
data quality. The classic maximum likelihood expectation-
maximisation (MLEM) algorithm [1] or its variant, the
ordered-subsets expectation-maximisation (OSEM) algorithm
[2] used for reconstructing PET images in routine scans tend
to fit the noise contained in the data. They deliver ’night sky’
reconstructions, hence the need for regularisation. The latter is
currently realised by terminating the MLEM algorithm before
it reaches convergence or by applying post-smoothing on the
reconstructed images. Regularisation can also be achieved by
introducing prior information in the reconstruction process.
Recovering an unknown image is therefore done by estimating
the maximum a posteriori (MAP) using the expectation-
maximisation algorithm. Some priors only use the PET image
such as the quadratic prior or total variation (TV). Nonethe-
less, depending on the data and/or the regularisation strength
chosen, these priors show their limitations as they can provide
very unnatural looking images (over-smoothing or staircase
artifacts). Other priors have been designed based on the idea
that neighbouring voxels should have similar intensity values
whereas distant voxels should not. Local, initially, then non-
local edge-preserving priors [5], [6] have successfully provided
robust regularisers. In case of extreme levels of noise, the risk
of missing boundaries remains present. An other approach to
improve PET image quality is to use anatomical information
obtained from magnetic resonance imaging (MRI) [7], [8], [9]
or computed tomography (CT). These high resolution images
can help in guiding the PET reconstruction to recover lost
boundary information. In spite of years of research, all the
proposed regularisation methods remained hand-crafted and
designed to match some desirable mathematical properties or
impose beliefs that we have.
Recently, deep learning methods opened a new area of research
for image computing, demonstrating improved performance
compared to state-of-the-art conventional algorithms [18].
Deep neural networks can roughly be used in four ways for
medical image reconstruction: i) for pre-processing of the
measured data [16], ii) for post-processing of the reconstructed
images [17], iii) to learn the entire reconstruction process
[10], [11], iv) to complement conventional reconstruction
algorithms. The focus here will be on the latter category,
namely physics-informed deep learning. In this framework,
the strengths of robust statistical noise models are combined
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with neural networks. Conventional iterative reconstruction
algorithms are unrolled and neural networks are incorporated
to learn the parts of the reconstruction that we are not certain
of, such as the prior form or the regularisation strength. Three
main frameworks have been proposed for PET reconstruction.
The method from Gong et al. [12] named EM-Net and later
updated in MAPEM-Net is a method based on the alternating
direction method of multipliers (ADMM) algorithm. They
alternatively perform two MAP-EM updates followed by a
denoising step using a neural network. The resulting denoised
image is thereafter used as a prior image for the following
two MAP-EM updates. In MAPEM-Net, a U-Net structure is
selected for the neural networks and eight unrolled modules
are used. The networks are trained end-to-end which might
lead to potential memory issues.
Lim et al. [13] proposed unrolling a block coordinate descent
(BCD) algorithm. They adapted the so-called BCD-Net [21],
first proposed for MR reconstruction, to PET reconstruction.
In this framework, similarly to MAPEM-Net, they alternate
between a given number of reconstruction steps and denoising
steps. The architecture of the network for their iterative
NN (INN) is a simple 2-layer convolutional encoder-decoder
(CED) whose activations (soft-thresholding operations) are
learned during the training process. The network is initialised
with an image obtained after a few EM updates before
alternating between a pass through a convolutional image
denoising (CID) module and an image reconstruction module.
The framework is designed such that it is possible to conduct
multiple passes through the image reconstruction module (or
conduct an entire reconstruction) before to pass once into
the CID module. Because the CID modules do not contain
any time-consuming forward or back projectors, the INN
training is considerably sped up compared to other unrolled
methods. Additionally, the memory requirements are lower as
the intermediate reconstruction results do not have to be stored
in memory. Nonetheless, just like MAPEM-Net, a reduced
number of unrolled modules is used compared to the number
of iterations used for the reconstruction of the targets, which
introduces what we call leapfrogging. The problem with such
techniques is that regularisers can learn object details and thus
become more than simple learned regularisers, putting at risk
their generalisation abilities. These networks can precipitate
the convergence of the conventional algorithm.
The third framework is the forward-backward splitting
expectation-maximisation (FBSEM) network [4]. FBSEM-Net
unfolds the MAP-EM algorithm and replaces the regularisation
step by a residual convolutional neural network to learn
both the gradient of the prior and the regularisation strength.
However, some issues arise from its original implementation
that we improve upon in this work to make it more practical
and offer a slight gain in performance. Specifically, we propose
using iteration-dependent networks and iteration-dependent
targets/losses such as in [20]. We will be referring to this
new version as FBSEM-IS-Net (FBSEM iteration-specific).
To address potential memory issues occurring during the
training of deep unrolled networks such as FBSEM-Net, we
also investigate the impact of training all the modules of
the unrolled network independently rather than training the

network in an end-to-end fashion. FBSEM-IS-Net has 60 times
more trainable parameters than in the original version. Its
generalisation abilities are assessed on piece-wise constant
phantoms. This method, while applied to the FBSEM frame-
work, can be extended to enable or facilitate the training of
any deep unrolled network. The main contributions of this
work are first to increase the generalisation capabilities of
deep unrolled networks using iteration-dependent targets and
losses by constraining the regularisers to be pure denoisers.
Second, this work enables training of unrolled networks for
higher numbers of iterations, hence avoiding any artificial
acceleration of the reconstruction algorithm by leapfrogging.
The sequential training proposed allows the training of a fully
unrolled version of 3D FBSEM-Net for the typical numbers
of iterations that would be normally chosen for MAP-EM
methods.
The structure of this article is as follows. Section II reviews
the basic principles of model-based PET image reconstruction,
describes the FBSEM framework and develops the new version
proposed. Section III provides information on the data used
along with the process to generate it, gives implementation
details and describes the various reference methods compared
with our proposed FBSEM-IS-Net. Section IV presents how
the different methods perform on 2D and 3D simulated test
data. Finally, Section V and VI conclude and discuss on
potential improvements of the proposed method.

II. THEORY AND METHODS

A. Model-based PET reconstruction

Model-based image reconstruction (MBIR) methods seek
to iteratively estimate an image x ∈ RN from noisy measure-
ments y ∈ RM , N being the number of voxels and M the
number of sinogram bins. In PET reconstruction, the yi are
assumed to be drawn from a Poisson distribution and their
mean is modelled by

y = Px + r + s (1)

with P ∈ RM×N the system matrix and r + s ∈ RM×1

the mean randoms and scatters. The image x is estimated by
solving the following ML problem:

x̂ = argmax
x

L(x|y) (2)

where L is defined as the Poisson log-likelihood

L(x|y) =
∑
i

yi log(yi)− (yi + log(yi!)) (3)

However, the MLEM algorithm tends to fit the noise contained
in the measured data to produce noisy estimates. A solution
to circumvent this problem is to add a constraint into the
objective function imposing prior knowledge we have about
x. We are no longer seeking to estimate the ML but the MAP
using the EM algorithm:

x̂ = argmax
x

L(x|y)− βR(x) (4)

where R is a penalty term that enforces x to be in the
set of realistic images and β is the regularisation strength.
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Notwithstanding the quantity and diversity of priors proposed
in the literature, the majority are designed to match specific
requirements or introduce beliefs that we have about x but are
unlikely to be optimal. A recent trend has been to use learned
priors.

B. FBSEM-Net

The optimisation transfer technique can be used to solve
Eq. (4) under the condition that a differentiable, separable
and convex surrogate is used for the prior R. In the FBSEM-
Net framework, the forward-backward splitting (FBS) algo-
rithm [14] is used. By replacing the projection operator by a
proximal mapping, the FBS algorithm offers a generalisation
of the projected gradient descent algorithm. The optimisation
problem can therefore be rewritten as follows:

x(n) = argmax
x

L(x|y)− 1

2γ

∥∥∥x− x(n)
Reg

∥∥∥2

(5)

x(n)
Reg = x(n−1) − γβ∇R(x(n−1)) (6)

In Eq. (5) a proximal mapping is performed, while in Eq.
(6) a gradient descent update is performed with a step size of

γ. The trade-off between data consistency with the likelihood
L and the discrepancy between x and x(n)

Reg is controlled by
1

2γ
. A surrogate can be defined for L [15] and Eq. (5) can be

reformulated:

x(n) = argmax
x

∑
j

x
(n)
j,EM ln(xj)− xj −

1

2γsj
(xj − x(n)

j,Reg)
2

(7)
with

x
(n,m)
j,EM =

x
(n−1,m)
j

sj

∑
i

pij
yi∑

k pikx
(n−1,m)
k + ri + si

(8)

and sj =
∑
i pij .

Setting the derivative of Eq. (7) to zero gives the following
closed-form solution:

x
(n,m)
j =

2x
(n,m)
j,EM

1−
x

(n,m)
j,Reg

γsj
+

√
(1−

x
(n,m)
j,Reg

γsj
)2 + 4

x
(n,m)
j,EM

γsj

(9)



4

In FBSEM-Net, a convolutional neural network (CNN) is
incorporated in the regularisation step Eq. (6) to learn the
gradient of the prior and the regularisaton strength. Therefore,
no hyperparameter has to be set by the user. The resulting
algorithm is composed of 3 steps: i) data consistency update,
ii) regularisation update, iii) fusion of the two resulting images
(see Algorithm 1). We refer to one iteration of the unrolled
algorithm (the completion of these three steps) as a module.
The same set of parameters θ for the CNN is shared across all
the modules. FBSEM-Net has shown improved results for PET
reconstruction compared to state-of-the-art methods. Nonethe-
less, some issues arise from its original implementation. First,
the training of FBSEM-Net has massive memory requirements.
Unrolling 60 modules becomes challenging if not impossible
when working with 3D data as all the intermediate images
have to be stored in memory. Second, the use of a single
final loss does neither limit the residual CNN to act as a
pure regulariser nor control the output of the intermediate
modules. The network could learn object details and artificially
accelerate the convergence of the algorithm. It is based on
these concerns that we proposed FBSEM-IS-Net along with
the sequential training method.

Algorithm 1: FBSEM-Net

Initialize: x(0) = 1, γ ∈ [0, 1], Niters = 10,
Nsubsets = 6
for n = 1 ... Niters do

for m = 1 ... Nsubsets do

x
(n,m)
j,OSEM =

x
(n−1,m)
j

sj

∑
i

pij
yi∑

k

pikx
(n−1,m)
k + ri + si

with sj =
∑
i

pij

x
(n,m)
j,Reg = x

(n−1,m)
j − γβFPET (x(n−1,m),θ)

x
(n,m)
j =

2x
(n,m)
j,OSEM

1− x
(n,m)
j,Reg

γsj
+

√
(1− x

(n,m)
j,Reg

γsj
)2 + 4

x
(n,m)
j,OSEM

γsj

end
end

C. FBSEM-IS-Net

Using the same residual CNN architecture composed by
5 convolutional layers with batch normalisation and ReLU
activations for the regularisation step, we explored the impact
of using iteration-dependent networks. As the noise level
varies when the number of iteration increases, using iteration-
dependent networks allows having a customised regularisation
for every iteration. Moreover, in order to ensure that the output
of every module throughout the reconstruction of low-count
data matches the output of the corresponding iteration of
high-count data reconstruction using the OSEM algorithm, we
introduce iteration-dependent targets and losses. Consequently,
when 60 modules are unrolled, 60 different MSE loss terms
monitor the training of the network. For FBSEM-Net and
FBSEM-IS-Net, 10 iterations and 6 subsets (i.e. 60 modules)
were used in order to have a similar number of iterations

used as the one used to reconstruct images in routine scans.
The global architecture of FBSEM-IS-Net is shown in Fig. 1.
Furthermore, because the training of deep unrolled networks
has massive memory requirements (especially for 3D data), we
investigated the impact of training every module independently
(or sequentially) rather than all at once (end-to-end).

III. EXPERIMENTAL SET-UP

A. 2D datasets

FBSEM-Net is trained to map low-count sinograms to high-
count reference PET images (Fig. 1). Twenty brain phantoms
from BrainWeb were used to simulate 2D [18F]FDG PET im-
ages acquired with a Siemens Biograph mMR with a resolution
of 2.08×2.08 mm2. Circular hot lesions with random radii in
2-8 mm and random locations were introduced in the PET
phantoms. Attenuation, normalisation and image-space point-
spread-function (PSF) modelling have been performed, al-
though for simplicity randoms and scatters were not modelled.
Five non-contiguous slices were selected from each phantom.
For each sample, high quality PET images were reconstructed
from the simulated measured data using the OSEM algorithm
(Niterations = 10, Nsubsets = 6 and PSF with 2.5 mm full-
width-at-half-maximum (FWHM) Gaussian kernels). These
high-count (100M) reconstructions were used as targets. Low-
count PET measured data (500k) were simulated from the
original phantoms by introducing Poisson noise. For training,
80 samples were used while 10 samples were used for both
validation and testing.

B. 3D datasets

T1-weighted MPRAGE MR images of 11 epilepsy and
dementia patients collected at St Thomas’ Hospital in London
were used to generate realistic brain PET-MR phantoms. The
process to simulate PET 3D images from real MR volumes
was the following: i) segmentation into grey matter (GM),
white matter (WM), cerebrospinal fluid (CSF), skull and skin
using the SPM12 software, ii) assignment of random uptake
values of 96.0 ± 5.0 and 32.0 ± 5.0 (arbitrary units) to GM and
WM regions with a ratio of 3:1 between GM and WM and iii)
insertion of spherical lesions with random radii in-between 2-8
mm and random locations. An attenuation map was generated
by assigning attenuation values of 0.13, 0.0975 and 0 cm−1

to skull, tissues and air. The shape and voxel sizes from the
original MR images were 230×230×254 and 1.04×1.04×1.01
mm3. The PET and attenuation maps were resized and re-
sampled into the shape and voxel sizes of the standard PET
images from a Siemens mMR scanner i.e. 344×344×127 and
2.08×2.08×2.03 mm3. All the images obtained were then
rotated in the axial direction by 5 random angles within [0, 10]
degrees, leading to 55 3D volumes. Once the phantoms were
ready, noisy sinograms were generated, using PSF modelling
in the forward model, attenuation, normalisation and Poisson
noise, while again random and scatter coincidences were not
modelled. Each sinogram had a matrix size of 344×252×837,
identical to the standard sinogram format of the Siemens mMR
scanner. The training set was composed of 45 samples, both
the validation and testing set were composed of 5 samples.



5

Fig. 1. Overview of FBSEM-IS-Net. In this framework the regularisation network parameters θn are iteration-dependent. The output of every module is
compared to the corresponding output of the OSEM reconstruction of high-count data. In the original FBSEM-Net, only one final loss is used and the
parameters of the regularisation networks are shared across all the modules. The blank squares represent the initial uniform image. CONV = Convolutional
layer with 32 kernels of size 3× 3, BN = batch normalisation, MSE = mean square error.

C. Implementation

The network has been implemented in PyTorch and the
training accelerated using a Nvidia Quadro k6000 12GB GPU.
The data-consistency modules were implemented in Python
using APIRL GPU-enabled PET projectors. The optimiser
selected was the Adam optimiser with a learning rate of 0.01
for 50 epochs and a mini-batch size of 5 for 2D data and with
a learning rate of 0.005 for 100 epochs with a mini-batch size
of 1 for 3D data. The training was supervised using mean
square error (MSE) losses.

D. Reference methods

To compare the different methods’ performance, the net-
works have been trained 3 times. Their performance was
assessed with the MSE and the normalized root mean square
error (NRMSE) defined as follows: NRMSE = RMSE

y , with
y the mean of the target dataset. In the original paper, FBSEM-
Net has been compared to state-of-the-art reconstruction and
post-reconstruction methods to demonstrate its performance.
We compared here FBSEM-IS-Net trained with and without
sequential training with various versions of FBSEM-Net. First,
the original version from [4], then the original FBSEM-
Net using iteration-dependent networks. We also trained a
variant that we call FBSEM-Net leapfrogging, where the only
difference with the original version is the target used for
training. Rather than using the same number of modules as
iterations to reconstruct the target, we trained FBSEM-Net

leapfrogging to match the 60th iteration of the reconstruction
of noise free data independently of the number of unrolled
modules used. Therefore, FBSEM-Net leapfrogging matches
the original FBSEM-Net only when 60 modules are used.
We also compared the variants of FBSEM-Net with two
conventional methods, the OSEM algorithm (Niterations =
10, Nsubsets = 6 with no PSF modelling and PSF with
4mm FWHM kernels), and the MAP-EM algorithm with a
Tikhonov prior. The regularisation strength was optimised
based on the MSE criterion. Finally, we compared our method
with an unrolled method based on the INN from Lim et al.
The main differences with the version proposed in [13] are
that the input and output of the CED modules are neither
normalised nor rescaled. Moreover, rather than using a ground
truth image as target to train the networks (which does not
exist for real data), high-count data reconstructions were used.
We compared two different regulariser architectures. First,
the CED proposed in the original paper consisting of an
encoding convolutional layer with 78 kernels of size 3×3
(3×3×3 for 3D data), followed by a soft-thresholding operator
T (xj , αj) = sign(xj) max(|xj |− e−αj , 0) with αj initialised
at 15 and learned during the training and a decoding convo-
lutional layer with 78 kernels each of size 3×3 (3×3×3 for
3D data). Then, the same residual CNN used in FBSEM-Net
consisting of 5 convolutional layers with ReLU activations and
batch normalisation. The two methods are hereafter referred
to as INN CED and INN ResCNN. In this framework, an
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adaptive learning rate is used, nonetheless the user still has to
set its strength (c = 0.05 here). Based on our observations,
setting a wrong value for c is not compensated for by the
adaptive learning rate β, it can therefore significantly impact
the reconstructions. The pseudo-code of the INN used can be
found in Algorithm 2. Table II clarifies the main differences
between the reference methods and FBSEM-IS-Net.

Algorithm 2: INN CED based on [13]
Initialize:
{c(n)
k ,d

(n)
k , α

(n)
k : n = 1...Niters}, c = 0.05,K = 78

x0 obtained using 10 iterations of EM algorithm
for n = 1 ... Niters do

x
(n+1)
Reg =

K∑
k=1

d
(n+1)
k ∗ T (c

(n+1)
k ∗ x(n), α

(n)
k )

β(n+1) = c.

∥∥∥∥s−PT
y

Px(n) + r + s

∥∥∥∥
2∥∥∥x(n) − x

(n+1)
Reg

∥∥∥
2

with sj =
∑
i

pij

λj =
1

2
(sj − β(n+1)x

(n+1)
j,Reg )

νj = x
(n)
j

M∑
i=1

pij
yi

N∑
j=1

pijx
(n)
j +ri+si

x
(n+1)
j =


√
λ2
j+β(n+1)νj−λj

β(n+1) if λj < 0
νj√

λ2
j+β(n+1)ν+λj

if λj ≥ 0

end

IV. RESULTS

A. 2D datasets

1) Impact of iteration-dependent networks and iteration-
dependent targets:

The MSE between the output of every module and the
target (Fig. 2, 3 and 4 top row) show that the use of
iteration-dependent networks only or combined with iteration-
dependent targets allows reduction of the MSE compared
to the original FBSEM-Net. Quantitatively, FBSEM-IS-Net
outperforms all the other methods both globally and locally.
Qualitatively, the new versions offer sharper images compared
to the original FBSEM-Net or the two INNs. While for the
original FBSEM-Net the shape of both lesions is affected,
with FBSEM-Net with iteration-dependent networks only the
smallest lesion is not accurately reconstructed. In the case of
FBSEM-IS-Net the correct shapes are preserved. Although,
it can be noticed that the version with sequential training
slightly underestimates the uptake in the right area of the
lesion. This observation has been recurrent while using un-
rolled methods, the shape and/or the uptake of the lesions
are often altered during the reconstruction. Fig. 4 shows that
using iteration-dependent targets notably reduces the variance
across multiple training runs. The shaded areas designating the
standard deviation of the loss across multiple training runs, it
can be noted that FBSEM-IS-Net is steady for each iteration
as opposed to the other networks. Training at the module-level

improves the consistency in the optimisation of the network
parameters. The MSE between the output of every module
and the corresponding OSEM iteration (Fig. 4 bottom row)
may indicate that using iteration-dependent targets limits the
network to only compensate for noise so that the entire MAP-
EM reconstruction of noisy data matches the reconstruction of
noise free data. The original FBSEM-Net and the version with
iteration-dependent networks only exhibit an erratic behavior
for intermediate modules (from module 1 to 30 for the original
version and 1 to 55 for the original version with iteration-
dependent networks). These networks solely learn to match
the last module output to the final target. Therefore, one
would not be able to use a lower number of modules at test
time compared to what was used for training. In contrast,
with FBSEM-IS-Net being trained iteration-wise, it becomes
possible to train it once for a large number of iterations and use
it for any lower or equal number of iterations. Using iteration-
dependent targets imposes more control over the network
training. In Fig. 4 and 5, the MSE increases with the number
of iterations as high frequency noise amplification occurs at
higher iterations and images with fine details become harder to
reconstruct for the network. The output of neural networks, in
particular when optimised with an MSE loss tend to produce
smooth outputs. The use of this loss might as well explain
the resulting affected lesion shapes. Adding a term to the
loss function controlling the structure of the image, such as
the structural similarity (SSIM), could potentially improve the
shape of the lesions reconstructed.

2) Impact of sequential training:

Going from 2D to 3D real data with iteration-dependent
networks and targets might raise memory issues during the
training of such deep unrolled networks (Table I). A solution is
to train the network sequentially i.e. one module at a time. As
Fig. 2, 3 and 5 (bottom row) show, the impact of the sequential
training is negligible both qualitatively and quantitatively.
However, the reduced variability of the optimised network
parameters from independent training runs is retained. The
use of the sequential method compared to the conventional
implementation allowed a reduction in memory usage from
224GB to 3.7GB resulting in a cut of about 98%. Nonetheless,
time-consuming forward and back projectors are present in all
the modules. Therefore, there is no computational time saving
in the training process, as opposed to the INN framework,
where the regularisers only are trained sequentially. Using
the sequential training method proposed allows the training
of deep unrolled networks that was not possible before due
to hardware limitations. The memory requirements growing
linearly with the number of modules, the original FBSEM-
Net for 3D data cannot be trained using 60 modules. In the
original paper, the authors set the number of modules to 12
(Niterations = 3, Nsubsets = 4) which uses the full capacity
of a 12GB GPU. The sequential training enables the training
of a fully unrolled FBSEM-IS-Net (60 modules) on any GPU.
The possibility of using a higher number of unrolled modules
thanks to sequential training also permits use of the typical
number of iterations used for MAP-EM methods.
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Fig. 2. Comparison of the reconstructed images obtained using conventional methods (OSEM and MAP-EM with Tikhonov prior) and the various versions
of FBSEM-Net and the INN on test data. Qualitatively, new versions of FBSEM-Net produced sharper reconstructions, quantitatively FBSEM-IS-Net is the
best method in terms of NRMSE.
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Fig. 3. Zoom on the occipital lobe where two lesions are present. Deep learned methods often struggle to reconstruct smaller lesions. INN ResCNN and
FBSEM-IS-Net are the two methods capable of correctly reconstructing the shape of lesions.

Fig. 4. Top row: MSE computed between every module (i.e. iteration) output of the network and the final target (the final iteration from the high quality
dataset). As expected, the loss decreases when the number of modules becomes closer to the number of iterations used to reconstruct the targets. The shaded
area show the standard deviation of the loss across multiple training runs. Bottom row: MSE computed between every module (i.e. iteration) output and its
own iteration-dependent target. The loss increases with the number of iterations as it becomes harder for the network to match more detailed images. The
shaded area show the standard deviation of the loss across multiple training runs.
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Fig. 5. Top row: MSE computed between every module output of the network and the final target (the final iteration from the high quality dataset). Bottom
row: MSE computed between every module output and its own iteration-dependent target. The shaded area show the standard deviation of the loss across
multiple training runs.

3) Robustness to various distributions:

To demonstrate FBSEM-IS-Net generalisation abilities, two
datasets with different radiotracer distributions than the data
used for the network training have been simulated. The phan-
toms being piece-wise constant, we only varied the intensities
for the grey matter, the white matter and the skin to generate
new distributions. The various modifications can be found in
Table III. For the first dataset, the white and grey matter
intensity values were set to be more similar. This led to
very noisy reconstructed images, the mean of the noise in the
white matter being higher. For the second dataset, the opposite
approach is considered by setting the white matter values
low so as to increase the contrast between white and grey
matter. The results obtained (Fig. 6 & 7) show that although
the results are impacted by a change in distribution between
training and testing, FBSEM-IS-Net is still outperforming the
conventional methods. FBSEM performs better than MAP-
EM with a Tikhonov prior, even though the regularisation
parameter β has been fine-tuned specifically for the different
distributions (β = 0.0650 for dataset 1, β = 0.0055 for
dataset 2). For FBSEM-Net, no hyperparameter has to be
set by the user, all were learned during the training phase.
FBSEM-IS-Net also offers a reduction of the reconstruction
error compared to the original version of FBSEM-Net in
spite of having 60 times more trainable parameters. Using
iteration-dependent targets appears to be enforcing the residual

CNNs to remain regularisers only, without learning image
details. Indeed, the output of every module only differ with
its respective target due to noise therefore the network learns
to account only for noise.

4) Robustness to various noise levels:

The original FBSEM-Net and the proposed version were
tested for various noise levels. We used test data containing
higher (1M) or lower counts (0.1M and 0.3M) compared
to the measured data the networks were trained on (0.5M).
While FBSEM-IS-Net performs better for 0.3M, 0.5M and 1M
counts, the original FBSEM-Net is the best method for very
low-count level. This might be justified by the low number
of trainable parameters in this formulation (30k compared
to 1.8M for the proposed version), which makes it more
adaptive to very different noise levels at test time, but also
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Fig. 6. Reconstruction results for test dataset 1. The white matter intensity
is higher than in the training set leading to higher noise levels in the white
matter areas.

Fig. 7. Reconstruction results for test dataset 2. The white matter intensity is
lower than in the training dataset therefore noise is only present in the grey
matter areas.

by the limited number of training samples (80) in the dataset.
Moreover, because the same regulariser is used for all the
modules in the original FBSEM-Net and noise amplification is
observed when the number of iterations increases, the residual
CNN implicitly learns to deal with different reconstruction
noises. With the proposed version, regularisation networks
are iteration-dependent, trained for the reconstruction noise
encountered at that iteration.

5) Robustness to multiple noise realisations:

The various networks have been compared for 50 indepen-
dent noise realisations using 0.5M counts. Here, for the sake
of simplicity, all the networks have been trained twice only,
however the uncertainties are not reported in Fig. 9 as their
amplitudes were too low. To ensure a fair comparison, because
no subsets are used in the INN, no subsets were used for
the two FBSEM-Net versions and FBSEM-IS-Net to conduct
the bias-standard deviation analysis. The reconstructed images
were evaluated using the root mean square error (RMSE):

RMSE =
√
bias2 + SD2 (10)

with the bias defined by:

Fig. 8. Reconstruction results for various noise levels. FBSEM-Net and
FBSEM-IS-Net were trained using 0.5M count measured data.

bias =

√√√√√√
∑
j∈Ω

(x̄j − xRefj )2

∑
j∈Ω

xRefj
2

(11)

and the standard deviation by:

SD =

√√√√√√√ 1

S

S∑
s=1

∑
j∈Ω

(x̄j − xRefj )2

∑
j∈Ω

(xRefj )2
(12)

x̄j being the mean reconstructed value for voxel j, obtained
by averaging the S = 50 realisations, xRef the ground truth
image (different to the target obtained by reconstruction of
high-count data used to train the networks) and Ω the set of
the image voxels. Various numbers of modules ranging from
10 to 60 for the unrolled methods without sequential training,
10 to 120 for the unrolled methods with sequential training and
10 to 180 for the OSEM and MAPEM algorithms were used.
For every number of modules selected, a different network
was trained, therefore each marker in figure 9 corresponds
to the performance of a network trained independently. The
results obtained show that FBSEM-IS-Net with sequential
training achieved the lowest bias when using 60 modules or
more. This trend becomes more significant as the number
of modules increases. The performance of FBSEM-IS-Net
without sequential training has not been reported in Fig. 9
as its curve and the one from FBSEM-IS-Net with sequential
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Fig. 9. Bias-standard deviation trade-off curves. FBSEM-IS-Net is the method achieving the lowest bias when 60 modules or more are used. The markers
designates the number of modules used. OSEM (100M) corresponds to the reconstruction of 50 noise realisations of high-count data and shows what ideally
regularisation should achieve when used to reconstruct low-count data.

training were indistinguishable. As expected, when the number
of modules increases, the bias decreases while the standard
deviation increases. The gap between the original FBSEM-Net
and FBSEM-IS-Net sequential training becomes wider with
higher numbers of modules. The use of iteration-dependent
targets and losses helps to reduce the variance of the network
by constraining it to remain purely a denoiser. The two INNs
along with FBSEM-Net leapfrogging are the methods the least
impacted by a change in the number of modules. It appears
that training all the regularisers with the same target allows
for the performance to be more independent of the number
of modules used. This effect has benefits if the number of
modules were to be limited to conduct fast reconstructions for
instance.

B. 3D datasets

Reconstruction results for 3D data show that FBSEM-IS-
Net is the best method in terms of NRMSE. The INN using
the residual CNN architecture has a similar performance to
FBSEM-IS-Net, although the shape of the reconstructed lesion
seems altered (Fig. 10). FBSEM-IS-Net offers sharper recon-
struction. The output of the INN with the CED architecture
is noisier than the ones from the INN ResCNN and FBSEM-
IS-Net. The original FBSEM-Net has not been compared here
with the other methods as it is not possible to train it for 3D
data using 60 modules.

V. CONCLUSION

We have proposed a new version of the forward-backward
splitting expectation-maximisation network [4] as well as a
memory-efficient training method for deep unrolled networks.
We demonstrated that using iteration-dependent networks per-
mits a reduction of the reconstruction error compared to the
original formulation of FBSEM-Net. We also showed that
using iteration-dependent targets in FBSEM-IS-Net, intended
to ensure that the network remains a regulariser only and
does not learn object details, stabilises the training of the
network by improving the consistency in the optimisation

of the network parameters. FBSEM-IS-Net has been demon-
strated to be stable when tested with test data with a different
radiotracer distribution than the training data, with multiple
noise realisations as well as various noise levels, attesting to
good generalisation abilities in spite of having a high number
of trainable parameters. Lastly, we showed that training all
the modules sequentially rather than in an end-to-end fashion
drastically reduces the memory requirements. It gives the
possibility to train deeper unrolled networks with 2D but es-
pecially 3D data, without notably affecting the performance of
the network. The proposed method allows a correct iteration by
iteration unrolling of the MAP-EM algorithm, which was not
previously feasible when end-to-end training was performed.
While only demonstrated for FBSEM-Net, the use of iteration-
dependent targets/losses and sequential training can be applied
to any unrolled method.

VI. DISCUSSION

FBSEM-IS-Net has been shown to be robust for different
piece-wise constant distributions despite having 60 times more
trainable parameters than FBSEM-Net. Nonetheless, a more
comprehensive assessment of the proposed network’s gener-
alisation abilities is still needed. Future work will focus on
further demonstrating the abilities of unrolled networks trained
with iteration-dependent networks and targets to generalise
better to different distributions than unrolled methods with
only iteration-dependent networks or with one regularisation
network whose parameters are shared across all the modules.
Ideally, the impact of removing some of the backpropagation
of the errors by training the modules sequentially should be
theoretically investigated. When all the modules are trained
together, the errors are backpropagated from the last module
to the first one, whereas in the sequential training framework,
the final modules regularisers errors do not impact the training
of the previous ones. Ultimately, various loss functions should
be explored in order to assess their capabilities for accurate
reconstruction of lesions shapes and uptake.
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Fig. 10. Reconstruction of 3D simulated data (from top to bottom: axial, coronal and sagittal views). The lesion in the image reconstructed using the iterative
NN with the residual CNN regulariser seems bigger than in the target (right arrow). It can also be noticed that the two INNs add grey matter where there
should be only white matter (left arrow).
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