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Abstract

A communication link aided by a reconfigurable intelligent surface (RIS) is studied in which the

transmitter can control the state of the RIS via a finite-rate control link. Channel state information

(CSI) is acquired at the receiver based on pilot-assisted channel estimation, and it may or may

not be shared with the transmitter. Considering quasi-static fading channels with imperfect CSI,

capacity-achieving signalling is shown to implement joint encoding of the transmitted signal and

of the response of the RIS. This demonstrates the information-theoretic optimality of RIS-based

modulation, or “single-RF MIMO” systems. In addition, a novel signalling strategy based on separate

layered encoding that enables practical successive cancellation-type decoding at the receiver is

proposed. Numerical experiments show that the conventional scheme that fixes the reflection pattern

of the RIS, irrespective of the transmitted information, as to maximize the achievable rate is strictly

suboptimal, and is outperformed by the proposed adaptive coding strategies at all practical signal-

to-noise ratio (SNR) levels.
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I. INTRODUCTION

In the context of wireless communications, a reconfigurable intelligent surface (RIS) usually

acts as an “anomalous mirror” or a “focusing lens” that can be configured to reflect or refract

impinging radio waves towards arbitrary angles by applying appropriate phase shifts to the

incident signals [1], [2]. Due to these desirable properties, RISs are being considered for

future wireless networks as means to shape the wireless propagation channel for signal,

interference, security, and scattering engineering [3]–[7].

Most prior work, to be reviewed below, proposed to use the RIS as a fixed passive

beamformer in order to control the SNR levels at the receivers. However, by altering the

amplitude or phase of the incident signal, the RIS reflection pattern can also be jointly encoded

with the transmitted signals as a function of the information message, thus enlarging the

modulation space. One instantiation of this idea is the “single-RF MIMO” system introduced

in [8] that encodes multiple information streams using the RIS reflection pattern and a single

radio frequency (RF) chain [9].

While practical RIS-based modulation schemes exist [8]–[13], their information-theoretic

properties have not been studied. This paper addresses this knowledge gap by studying the

capacity of RIS-aided communication links in which a single-RF transmitter can control the

state of an RIS via a finite-rate control link (see Fig. 1). The optimal configuration of the RIS

requires knowledge of the CSI. The acquisition of CSI is made complicated by the fact that

the RIS is a nearly-passive device, and hence it cannot process and transmit pilot signals. To

account for this practical constraint, in this paper, the information-theoretic analysis is based

on a model in which the CSI is estimated at the receiver via pilot-assisted transmission [14],

and it may or may not be shared with the transmitter.

Related Work: The optimization of a fixed RIS reflection pattern has been studied in

various scenarios. A comprehensive survey of the state-of-the-art is available in [1], and

we mention here some representative examples. Algorithms for jointly optimizing precoding

at the transmitter and beamforming at the RIS were proposed for a point-to-point Multiple-

Input Single-Output (MISO) systems in [15], and for Multiple-Input Multiple-Output (MIMO)

systems in [16], [17]. RIS-based passive beamforming was compared to conventional relaying

methods such as amplify-and-forward and decode-and-forward in [2].

Acquiring CSI is crucial for RIS-aided communication. Channel estimation schemes were

proposed in [14], [18], in which RIS training patterns are designed under the constraint of

discrete phase shifts. The overhead required for channel estimation was studied in [19], and
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Fig. 1. Illustration of the network under study consisting of a single-RF transmitter (TX), a receiver (RX) with # antennas,

and an RIS with  elements (in the figure, # = 2 and  = 16). The transmitter jointly encodes a message F into a codeword

of = symbols, sent on the wireless link, and into a control action, sent on the control link to the RIS at a rate of one action

every < channel symbols. There is a strong line-of-sight between the transmitter and the RIS, whereas the reflected signal

undergoes a multi-path channel.

an overhead-aware resource allocation framework was developed. Channel estimation based

on statistical CSI is used in [20] to reduce the channel training overhead.

Schemes for encoding information in the configuration of the RIS have been recently

presented. In [10]–[12], information is encoded in the reflection patterns of the RIS by setting

the amplitude of each reflecting element to be 0 or 1. In [13], the receiver antenna for

which the SNR is maximized encodes the information bits using index modulation [21]. The

strategies above are extended in [8] by implementing phase-shift keying (PSK) and quadrature

amplitude modulation (QAM) at each element, and by using two independent data streams

to control the RIS.

Main Contributions: This work provides an information-theoretic analysis of the RIS-aided

system illustrated in Fig. 1, which consists of a single-RF transmitter and a receiver with #

antennas. CSI is assumed to be acquired at the receiver via pilot-based transmission, and it

may or may not be shared with the transmitter. We first derive the capacity for any RIS control

rate, and prove that jointly encoding data onto the transmitted signals and RIS reflection

pattern is generally necessary to achieve the maximum information rate. We explicitly char-

acterize the performance gain of joint encoding in the high-SNR regime. Then, we propose

an achievable scheme based on layered encoding and successive cancellation decoding (SCD)

that enables RIS-based modulation, while supporting standard separate encoding and decoding

strategies. Numerical experiments demonstrate that, for SNR levels of practical interest and

for a sufficiently fast RIS control link, capacity-achieving joint encoding provides significant

gain over the max-SNR approach, which fixes the reflection pattern. However, joint encoding
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is shown to require a more accurate channel estimation compared to the max-SNR scheme,

and is hence mostly desirable for long channel coherence blocks. The results in this paper were

partially presented in [22], which only considers perfect CSI at the transmitter and receiver.

Organization: The rest of the paper is organized as follows. In Section II, we present an

information-theoretic model for an RIS-aided quasi-static fading channel with imperfect CSI

obtained via channel estimation. In Section III, we derive the capacity and we compare it

to the rates achieved by two standard suboptimal signalling schemes: a max-SNR scheme

that does not encode information in the RIS reflection pattern, and an RIS-based signalling

scheme that modulates the reflection pattern uniformly and has no beamforming gain. In

Section IV, we describe an achievable strategy based on layered encoding and successive

cancellation decoding with basic separate encoding and decoding procedures. In Section V,

lower bounds on the capacity and achievable rates are derived. In Section VI, we present

numerical results in order to compare the capacity with the rates achieved by the suboptimal

strategies, and to asses the impact of imperfect CSI on performance. Finally, in Section VII,

we conclude the paper and highlight some open problems.

Notation: Random variables, vectors, and matrices are denoted by lowercase, boldface

lowercase, and boldface uppercase Roman-font letters, respectively. Realizations of random

variables, vectors, and matrices are denoted by lowercase, boldface lowercase, and boldface

uppercase italic-font letters, respectively. For example, G is a realization of random variable

x, x is a realization of random vector x, and ^ is a realization of random matrix X. For

any positive integer  , we define the set [ ] , {1, 2, . . . ,  }. The cardinality of a set A is

denoted as |A|. The Mahalanobis norm of vector v with positive semi-definite matrix Y is

defined as ‖v‖Y ,
√
v∗Y−1v, where v∗ denotes the conjugate transpose of vector v, and the

ℓ2-norm of a vector v is denoted as ‖v‖. diag(x) represents a diagonal matrix with diagonal

given by the vector x. The trace of a matrix ^ is denote as tr(^). The vectorization of

matrix N, i.e., the operator that stacks the columns of N on top of one another, is denoted

by vec(N). The Kronecker product of matrices G and H is denoted by G ⊗ H.

II. SYSTEM MODEL

We consider the system depicted in Fig. 1 in which a single-RF transmitter communicates

with a receiver equipped with # antennas over a quasi-static fading channel in the presence

of an RIS that comprises  nearly-passive reconfigurable elements. The  reconfigurable

elements are spaced half of the wavelength apart, so that the mutual coupling or channel

correlation effects can be ignored as a first-order approximation [23]. We explore the potential
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improvement in capacity that can be obtained when the transmitter can encode its message

F ∈ [2='] of rate ' [bits/symbol] not only into a codeword of = symbols sent on the wireless

link to the receiver, but also in the reflection pattern of the RIS. The reflection pattern is

controlled through a rate-limited control link, and is defined by the phase shifts that each of

the  RIS elements applies to the impinging wireless signal.

As illustrated in Fig. 2, the fading coefficients are assumed to remain constant for a

coherence interval of ) symbol periods, after which they change to new independent values.

The coding slot of = symbols hence contains =/) coherence blocks, which is taken to be an

integer. The codeword transmitted in a coding slot has = symbols from a constellation S of

( = |S| points. The constellation S is assumed to have an average power of one, i.e.,

1

(

∑
B∈S

|B |2 = 1. (1)

The phase shift applied by each element of the RIS is chosen from a finite set A of

� = 20 = |A| distinct hardware-determined values. The RIS is controlled by the transmitter

by selecting the  phases of the elements as a function of the message F. Due to practical

limitations on the RIS configuration rate, we assume that the phase shifts can only be modified

once for each sub-block that comprises < consecutive transmitted symbols. As illustrated in

Fig. 2, we assume that each coherence block contains ℓ = )/< sub-blocks for some integer

ℓ ≥ 1, i.e., the RIS can be configured at the beginning of each sub-block 8 ∈ [ℓ] of <

transmitted symbols. Note that if ℓ = 1, i.e., if < = ) , the reflection pattern of the RIS is

fixed for the entire coherence block.

The channel from the transmitter to the RIS in the Cth coherence block, C ∈ [=/)], is

denoted by the vector g(C) ∈ ℂ ×1, and the channel from the RIS to the # receiving antennas

is denoted by the matrix H(C) ∈ ℂ#× . In order to support multiple information streams with

a single RF chain, the transmitter and RIS are expected to be placed such that there is a

strong line-of-sight between them [9], [13]. Therefore, we assume that the elements of the

channel vector g(C) have random phases and unit amplitude, as illustrated in Fig. 1. In contrast,

the reflected signal is assumed to undergo a multi-path channel before being received, and

hence the elements of the matrix H(C) are independent and identically distributed (i.i.d.) as

CN(0, 1). Moreover, as in, e.g., [8], [13], we assume that the direct link between transmitter

and receiver is blocked, so that the propagation from transmitter to receiver occurs solely

through the reflected signal from the RIS. During the Cth coherence block, the fraction of

the codeword consisting of < symbols transmitted in the 8th sub-block, 8 ∈ [ℓ], is denoted
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g(1), H(1) . . . g(C), H(C) . . . g(=/)), H(=/))

s8 (C), θθθ8 (C). . . . . .s1 (C), θθθ1 (C) sℓ (C), θθθℓ (C)

. . .s8,1 (C) s8,< (C)

coherence block () symbols)

sub-block (< symbols)

symbol

coding slot (= symbols)

Fig. 2. Illustration of a coding slot. Each slot consists of =/) coherence blocks, which, due to the RIS control link rate,

contain ℓ sub-blocks of < symbols each.

by s8 (C) = (s8,1(C), . . . , s8,< (C))⊺ ∈ S<×1, and is assumed to satisfy

1

<
�[s∗8 (C)s8 (C)] ≤ 1. (2)

The phase shifts applied by the RIS in the 8th sub-block are denoted by the vector

4 9θθθ8 (C) , (4 9θ8,1 (C) , . . . , 4 9θ8, (C))⊺ (3)

with θ8,: (C) ∈ A being the phase shift applied by the :th RIS element, : ∈ [ ]. Finally, we

denote the signal received by the # antennas for the @th transmitted symbol by y8,@ (C) ∈ ℂ
#×1,

@ ∈ [<]. The overall received signal matrix Y8 (C) = (y8,1(C), . . . , y8,< (C)) ∈ ℂ#×< in the 8th

sub-block can hence be written as

Y8 (C) = H(C) diag
(
4 9θθθ8 (C)

)
g(C)W8 (C)s⊺8 (C) + Z8 (C)

= H̄(C)4 9θθθ8 (C)W8 (C)s⊺8 (C) + Z8 (C), (4)

where the matrix H̄(C) , H(C) diag(g(C)), whose elements are i.i.d. CN(0, 1), combines the

channels g(C) and H(C); the scalar W8 (C) > 0 denotes the power gain applied to the transmitted

signal s8 (C), which is subject to the power constraint

1

ℓ

ℓ∑
8=1

W2
8 (C) = % (5)

for some % > 0; and the matrix Z8 (C) ∈ ℂ
#×<, whose elements are i.i.d. as CN(0, 1), denotes

the additive white Gaussian noise at the receiving antennas. It is worth noting that the product

H̄(C)4 9θθθ8 (C) in (4) can be viewed as an augmented channel, shaped by the RIS for increasing

the capacity.
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Since the message F is encoded onto both transmitted symbols s8 (C) and phase shifts θθθ8 (C),
8 ∈ [ℓ], C ∈ [=/)], we denote the effective channel input as

X̄8 (C) , exp{ 9θθθ8 (C)}s⊺8 (C). (6)

With this notation, the channel (4) can be restated as

Y8 (C) = W8 (C)H̄(C)X̄8 (C) + Z8 (C). (7)

At first glance, the channel (7) resembles a standard multiple-antenna wireless communi-

cation link [24]. In (7), however, the input matrix X̄8 (C) is rank-one and is chosen from the

finite set

C ,
{

˜̂ : ˜̂ =

(
4 9\1 , . . . , 4 9\ 

)⊺
s⊺, s ∈ S

<×1, \\\ ∈ A
 ×1

}
. (8)

As a special case, for a fixed RIS reflection pattern θθθ8 = θθθ for all 8 ∈ [ℓ], i.e., when the same

phase shift vector is used for the entire coherence block, the channel input is chosen from

the subset

C(\\\) ,
{

˜̂ : ˜̂ =

(
4 9\1 , . . . , 4 9\ 

)⊺
s⊺, s ∈ S

<×1
}
. (9)

In the present paper, we study the impact of imperfect CSI on the achievable rates. In order

to characterize the joint distribution of channel estimation and output signal, we vectorize

the channel matrix H̄(C) and output Y8 (C) in (7) as

h̄(C) , vec(H̄(C)) (10)

and

y8 (C) , vec(Y8 (C)) = W8 (C)X̄⊗
8 (C)h̄(C) + z8 (C), (11)

respectively, where we have defined the vector z8 (C) , vec(Z8 (C)) ∈ ℂ#<×1, and, for any

matrix X̄, the matrix X̄⊗ is defined as the Kronecker product

X̄⊗ , X̄⊺ ⊗ O# . (12)

A. Training and Channel Estimation

As illustrated in Fig. 3, we focus our attention on transmission schemes in which, for each

coherence block C ∈ [=/)], the first g ≥ 0 sub-blocks are used to transmit pilot symbols

known to the receiver. That is, we have

X̄8 (C) = ¯̂
8 , ∀ 8 ∈ [g], C ∈ [=/)], (13)
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¯̂
1

. . . ¯̂
g X̄g+1(C) . . . X̄ℓ (C)

pilot sub-blocks data sub-blocks

coherence block C

Fig. 3. Structure of a coherence block. The first g sub-blocks in each coherence block are used for channel estimation.

where ¯̂
1, . . . , ¯̂

g denote the pilot symbols. The pilot symbols satisfy the power constraint

tr(^1:g^
∗
1:g) ≤  <g, (14)

where we have defined matrix

^1:g , ( ¯̂
1, . . . , ¯̂

g) ∈ C
1×g . (15)

As for the transmitter, we assume that either it has no access to the CSI or that it has access

to the receiver’s CSI via a feedback channel.

The transmission power can vary between the training and information transmission phases.

Accordingly, the power gain W8 (C) in (4) has two levels

W8 (C) =


Wg for 1 ≤ 8 ≤ g,
W3 for g + 1 ≤ 8 ≤ ℓ.

(16)

The power constraint (5) can hence be restated as

g

ℓ
W2
g +

ℓ − g
ℓ

W2
3 = %. (17)

Therefore, the vectorized channel output during the training phase is

y1:g (C) , (y⊺
1
(C), . . . , y⊺g (C))⊺ = Wg^

⊗
1:g

h̄(C) + z1:g (C), (18)

with z1:g (C) , (z⊺
1
(C), . . . , z⊺g (C))⊺ ∈ ℂ#<g×1.

Based on the pilot symbols ^1:g, the receiver estimates the channel vector h̄(C) using

the minimum mean-square error (MMSE) estimator, which yields ĥ(C) = �
[
h̄(C) |y1:g (C)

]
as

the estimate of h̄(C) from the observations y1:g (C). Since vectors h̄(C) and y1:g (C) are jointly

Gaussian distributed, the MMSE estimator can be computed as the linear MMSE estimator

[25], i.e.,

ĥ(C) = Wg (^⊗
1:g

)∗
(
W2
g^

⊗
1:g

(^⊗
1:g

)∗ + O#<g

)−1

y1:g (C), (19)

and the estimation error is a Gaussian random vector whose covariance matrix is

�MMSE , �
[
(h̄(C) − ĥ(C))(h̄(C) − ĥ(C))∗

]
= O# − W2

g (^⊗
1:g

)∗
(
W2
g^

⊗
1:g

(^⊗
1:g

)∗ + O#<g

)−1

^⊗
1:g
. (20)
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In order to asses how channel estimation affects the achievable performance, we shall

also consider as a benchmark the case of perfect CSI, which corresponds to the case study

in which the vector ĥ(C) = h̄(C) is available to both the transmitter and receiver as side

information without any training (g = 0).

B. Channel Encoding

As discussed, in each coherence block, the transmitter selects the ℓ − g data sub-blocks

X(C) , (X̄g+1(C), . . . , X̄ℓ (C)) ∈ C
1×(ℓ−g) (21)

based on the information message F and the channel estimate ĥ(C), if available. The vectorized

channel output in (11), received over the ℓ − g data sub-blocks, can be expressed as

y(C) , (y⊺
g+1

(C), . . . , y⊺
ℓ
(C))⊺ = W3X

⊗ (C)h̄(C) + z(C), (22)

with z(C) , (z⊺
g+1

(C), . . . , z⊺
ℓ
(C))⊺ ∈ ℂ

#<(ℓ−g)×1. Having received the vector y(C) in (22) for

C ∈ [=/)], the decoder produces the estimate F̂ = F̂(y(1), . . . , y(=/)),H) based on the

channel estimates H , {ĥ(1), . . . , ĥ(=/))} in (19).

For a specific choice of training parameters g, Wg, and ^1:g, a rate '(g, Wg, ^1:g) is said to

be achievable if the probability of error satisfies the limit Pr(F̂ ≠ F) → 0 when the codeword

length grows large, i.e., = → ∞. The corresponding ergodic capacity � (g, Wg, ^1:g) is defined

as the maximum over all achievable rates, i.e.,

� (g, Wg, ^1:g) , sup{'(g, Wg, ^1:g) : '(g, Wg, ^1:g) is achievable}, (23)

where the supremum is taken over all joint encoding and decoding schemes. The number of

sub-blocks used for training 0 ≤ g ≤ ℓ, pilot symbols ^1:g, and power-amplifier gain Wg > 0

can all be optimized to increase the achievable rate.

III. CHANNEL CAPACITY

In this section, we derive the capacity � (g, Wg, ^1:g) defined in (23) and we prove that the

conventional scheme that does not encode information in the RIS reflection pattern is strictly

suboptimal. More specifically, this result is proved in the high-SNR regime by characterizing

the gain of the proposed joint encoding. For finite values of the SNR, on the other hand, the

performance gain is evaluated in Section VI via numerical experiments.

Most works on RIS-aided systems consider Gaussian codebooks for the transmitted signal

s8 (C). This implies that the resulting achievable rates are formulated in the standard form

log2(1 + SNR), even in the presence of imperfect CSI by using standard bounds [26]. In
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contrast, as described in Section II, we focus our attention on the more practical model

in which the transmitted symbols and the RIS elements’ phase response take values from

finite sets. As a result, standard capacity expressions of the form log2(1 + SNR) are not

applicable, and standard techniques for bounding the capacity under imperfect CSI cannot be

used. Specifically, lower bounding the capacity by modeling the residual channel estimation

noise as Gaussian [27], [28] does not hold for finite input constellations [29]. Therefore, the

expressions for the capacity and achievable rates that we present in this section are more

complex, and require the following definitions.

Definition 1: The cumulant-generating function (CGF) of a random variable u is defined

as

^A (u) , log2 (� [4Au]) , A ∈ ℝ. (24)

The value of the CGF for A = 1 is denoted by ^(u) , ^1(u).
Definition 2: The CGF of a random variable u conditioned on a random vector x is defined

as

^A (u|x) , �
[
log2 (� [4Au |x])

]
, A ∈ ℝ. (25)

The value of the conditional CGF for A = 1 is denoted by ^(u|x) , ^1(u|x).
We now derive the capacity for the general case with imperfect CSI available at both the

transmitter and receiver. In particular, the capacity is formulated in the form of an optimization

problem with respect to the encoding distribution ?X|ĥ(^ | ĥ) of the effective inputs in (21)

given the channel estimate ĥ. To this end, we define the covariance matrix of the received

signal y(C) in (22) conditioned on the channel estimate ĥ(C) and the input X(C) as

�
[
y(C)y(C)∗|ĥ(C),X(C)

]
= O#<(ℓ−g) + W2

3X
⊗ (C)�MMSE(X⊗ (C))∗ = ΓΓΓ(X(C)), (26)

where, for any matrix X, we have defined the positive semidefinite matrix ΓΓΓ(X) as

ΓΓΓ(X) , O#<(ℓ−g) + W2
3X

⊗
�MMSE(X⊗)∗. (27)

We also define the decomposition

ΓΓΓ(X) = \ (X)\ (X)∗, (28)

where \ (X) is a square root matrix of ΓΓΓ(X).
Proposition 1: When the MMSE estimate ĥ(C) in (19) is available at both the receiver

and transmitter, the capacity of the channel (22) is given as

� (g, Wg, ^1:g) = −# (ℓ − g)
ℓ

log2(4) − min
?X |ĥ (^ | ĥ):

�[tr(XX∗)]≤ <(ℓ−g),
X∈C1×(ℓ−g)

1

<ℓ
^(u|X1, z, ĥ), (29)
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where random variable u is defined as

u , ln

(
|ΓΓΓ(X1) |
|ΓΓΓ(X2) |

)
−
\ (X1)z + W3

(
X⊗

1
− X⊗

2

)
ĥ
2

ΓΓΓ(X2) (30)

with independent random vectors z ∼ CN(0, O#<(ℓ−g)) and ĥ ∼ CN(0, O# − �MMSE), and

random matrices X1,X2 ∼ ?X|ĥ(^ | ĥ) that are conditionally independent given ĥ. Furthermore,

for g ≥  , we have the high-SNR limit

lim
%→∞

� (g, Wg, ^1:g) =
(ℓ − g) log2 ( |C|)

<ℓ
, (31)

which, for a given cardinality ( = |S| of the signal constellation, is maximized if the amplitude

shift keying (ASK) modulation is used, i.e.,

S = {f, 3f, . . . , (2( − 1)f}, (32)

where the factor f ,
√

3/[3 + 4((2 − 1)] ensures a unit average power constraint. In this

case, the high-SNR limit is

lim
%→∞

� (g, Wg, ^1:g) =
ℓ − g
<ℓ

[
< log2(() +  log2(�)

]
. (33)

Proof: See Appendix A.

Achieving the capacity in (29) generally requires joint encoding over the codeword symbols

s8 (C) and RIS reflection variables θθθ8 (C), for all data sub-blocks 8 = g + 1, . . . , ℓ, C ∈ [=/)], as

well as joint decoding of the message F at the receiver based on the information encoded

over both s8 (C) and θθθ8 (C). In (29), this is specified in the optimization over the distribution

?X|ĥ(^ | ĥ) of the input X(C) = (X̄g+1(C), . . . , X̄ℓ (C)) in (21), which, by (6), is a function

of both s8 (C) and θθθ8 (C). However, the high-SNR asymptotic limit in (31) implies that, in

the high-SNR regime, capacity is achieved by using independent random codebooks with

uniform distribution for the codeword symbols s and the RIS reflection pattern θθθ, and perfect

channel estimation can be obtained by using g ≥  pilot sub-blocks.

At a computational level, problem (29) is convex (see Appendix A), and hence it can

be solved by using convex optimization tools. Moreover, calculating ^(u|X1, z, ĥ) in (29)

involves evaluating the expectation over the random vectors z and ĥ, and over the random

matrices X1 and X2. Since z and ĥ are continuous random vectors, the former expectation

may be estimated via an empirical average, while the second requires summing over |C|ℓ−g

terms.

The following two corollaries formulate the capacity under the assumption of imperfect

CSI available only at the receiver, and under the assumption of perfect CSI available at both

the transmitter and receiver, respectively.
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Corollary 1: When the MMSE estimate ĥ(C) in (19) is available only at the receiver, the

capacity of the channel (22) is given as

�CSIR(g, Wg, ^1:g) = −# (ℓ − g)
ℓ

log2(4) −
1

<ℓ
^(u|X1, z, ĥ), (34)

where the random variable u is defined as in (30) with independent random vectors z ∼
CN(0, O#<(ℓ−g)) and ĥ ∼ CN(0, O# − �MMSE), and independent random matrices X1,X2 ∼
?X(^) = 1/|C|ℓ−g for all ^ ∈ C1×(ℓ−g). Furthermore, for g ≥  , we have the high-SNR limit

lim
%→∞

�CSIR (g, Wg, ^1:g) =
(ℓ − g) log2 (|C|)

<ℓ
. (35)

Proof: It follows from the proof of Proposition 1 with the caveat that, since the channel

estimate ĥ is available only at the receiver, the optimal input distribution ?X(^) is uniform.

This is because the channel coefficients in vector h̄ (10) have uniformly distributed phases

(see [30, Sec. VII]).

Prior works [8]–[13] have considered RIS-based modulation schemes that modulate the

RIS reflection pattern independently from the transmitted symbols. By Corollary 1, an RIS-

based modulation scheme with independent and uniformly generated random codebooks for

the transmitted symbols and reflection pattern is optimal when the transmitter has no access

to CSI, and hence it cannot use the RIS for beamforming. Furthermore, since the high-SNR

limits in Proposition 1 and Corollary 1 are equal, the availability of the CSI at the transmitter

does not increase the capacity in the high-SNR regime.

Corollary 2 ([22, Proposition 1]): When perfect CSI is available at both the receiver and

transmitter, the capacity of the channel (22) is given as

�perfect = −# log2(4) − min
?X |h̄ (^ | h̄):

�[tr(XX∗)]≤ <ℓ,
X∈C1×ℓ

1

<ℓ
^(ũ|X1, z, h̄), (36)

where the random variable ũ is defined as

ũ , −
z + W3 (X⊗

1
− X⊗

2

)
h̄
2

(37)

with independent random vectors z ∼ CN(0, O#<ℓ), h̄ ∼ CN(0, O# ), and random matrices

X1,X2 ∼ ?X|h̄(^ | h̄) that are conditionally independent given h̄. Furthermore, we have the

high-SNR limit lim%→∞�perfect = log2(|C|)/<.

Proof: It follows from the proof of Proposition 1 by setting g = 0 and ΓΓΓMMSE = 0, since

the channel vector h̄ is known to both the receiver and transmitter without requiring any

training.
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A. Max-SNR Approach

Having observed that achieving the capacity generally requires joint encoding of data over

the codeword symbols and the RIS reflection pattern, we now consider the standard approach

in which the reflection pattern of the RIS is fixed for all data sub-blocks 8 = g + 1, . . . , ℓ, of

the fading block C, irrespective of the message F, i.e., θθθ8 (C) = θθθ(C). We denote the fixed RIS

reflection pattern by \\\ ( ĥ) to emphasize that it is chosen based on the channel estimate ĥ to

maximize the achievable rate, and we have the following result.

Proposition 2: When the MMSE estimate ĥ in (19) is available at both the receiver and

transmitter, an encoding scheme that selects the phase shift vector \\\ ( ĥ) as a function of ĥ

achieves the rate

'max-SNR(g, Wg, ^1:g) = −# (ℓ − g)
ℓ

log2(4) − min
\\\ ( ĥ):

\\\ ( ĥ)∈A ×1

min
?X |ĥ (^ | ĥ):

�[tr(XX∗)]≤ <(ℓ−g),
X∈C(\\\ ( ĥ))1×(ℓ−g)

1

<ℓ
^(u|X1, z, ĥ), (38)

where the random variable u is defined as in (30) with independent random vectors z ∼
CN(0, O#<(ℓ−g)), ĥ ∼ CN(0, O# − �MMSE), and random matrices X1,X2 ∼ ?X|ĥ(^ | ĥ) that

are conditionally independent given ĥ. Furthermore, for g ≥ 1, we have the high-SNR limit

lim
%→∞

'max-SNR(g, Wg, ^1:g) =
(ℓ − g) log2(()

ℓ
. (39)

Proof: For a fixed RIS reflection pattern θθθ8 (C) = \\\ ( ĥ(C)) with 8 = g + 1, . . . , ℓ, the

channel input X(C) in (22) is restricted to the finite set C(\\\ ( ĥ(C)))1×(ℓ−g) in (9). Therefore,

the result follows from Proposition 1 by restricting the input such that only the codeword

symbols vary over the data sub-blocks. In (38), this is reflected in the optimization over the

distribution ?X|ĥ(^ | ĥ) with X ∈ C(\\\ ( ĥ))1×(ℓ−g) , where the RIS reflection pattern \\\ ( ĥ) is

fixed. In addition, the limit (39) follows from (31) since, for any fixed RIS reflection pattern

\\\ ( ĥ), we have |C(\\\ ( ĥ)) | = (<.

The limit in (39) implies that, in the high-SNR regime, the rate of the max-SNR scheme is

limited to (ℓ−g) log2(()/ℓ. This is because, in each coherence block, the information data is

modulated solely onto the <(ℓ−g) codeword symbols, which are selected from a constellation

S of ( points. By comparing (39) with (31), we evince that, for any phase response set A of �

distinct phases, modulating the RIS reflection pattern can be used to increase the achievable

rate by additional  (ℓ − g) log2(�)/(<ℓ) bits per symbol as compared to the max-SNR

scheme. However, note that the max-SNR scheme can achieve the high-SNR rate (39) by

fixing the RIS reflection pattern irrespective of CSI and estimating only the effective channel

from the transmitter to the receiver. Therefore, the max-SNR approach requires only g ≥ 1
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pilot symbols to achieve the high-SNR limit in (39), whereas joint encoding achieves the limit

in (31) with g ≥  pilot symbols. For finite values of the SNR, the achievable rate in (38)

can be computed by combining convex optimization tools for the inner minimization problem

and global optimization tools for the minimization over the set of discrete phase shifts. The

corresponding performance loss is evaluated in Section VI via numerical experiments.

The rates achieved for imperfect CSI available only at the receiver and for perfect CSI

available at both the transmitter and receiver are given in the following two corollaries,

respectively.

Corollary 3: When the MMSE estimate ĥ in (19) is available only at the receiver, a

transmission scheme in which the phase shift vector \\\ is kept fixed achieves the rate

'CSIR
max-SNR(g, Wg, ^1:g) = −# (ℓ − g)

ℓ
log2(4) − min

\\\:\\\∈A ×1

1

<ℓ
^(u|X1, z, ĥ), (40)

where the random variable u is defined as in (30) with independent random vectors z ∼
CN(0, O#<(ℓ−g)) and ĥ ∼ CN(0, O# − �MMSE), and independent random matrices X1,X2 ∼
?X(^) = 1/|C(\\\) |ℓ−g for all ^ ∈ C(\\\)1×(ℓ−g) . Furthermore, for g ≥ 1, we have the high-SNR

limit

lim
%→∞

'CSIR
max-SNR(g, Wg, ^1:g) =

(ℓ − g) log2(()
ℓ

. (41)

Proof: It follows from the proof of Proposition 2 with the caveat that, since the channel

estimate ĥ is available only at the receiver, the optimal input distribution ?X(^) is uniform.

This is because the channel coefficients in vector h̄ (10) have uniformly distributed phases

(see [30, Sec. VII]).

Corollary 4 ([22, Proposition 2]): When the CSI is perfectly available at both the receiver

and transmitter, a transmission scheme that selects the phase shift vector \\\ ( h̄) as a function

of h̄ achieves the rate

'
perfect

max-SNR
= −# log2(4) − min

\\\ ( h̄):
\\\ ( h̄)∈A ×1

min
?X |h̄ (^ | h̄):

�[tr(XX∗)]≤ <ℓ,
X∈C(\\\ ( h̄))1×ℓ

1

<ℓ
^(ũ|X1, z, h̄), (42)

where the random variable ũ is defined as in (37) with independent random vectors z ∼
CN(0, O#<ℓ), h̄ ∼ CN(0, O# ), and random matrices X1,X2 ∼ ?X|h̄(^ | h̄) that are condi-

tionally independent given h̄. Furthermore, we have the high-SNR limit lim%→∞ '
perfect

max-SNR
=

log2(().
Proof: It follows from the proof of Proposition 2 by setting g = 0 and ΓΓΓMMSE = 0, since

the channel vector h̄ is known to both receiver and transmitter without requiring any training.
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IV. LAYERED ENCODING

As discussed, achieving the capacity in (29) requires jointly encoding the message over

the phase shift vector θθθ8 (C) and the transmitted signal s8 (C), while performing optimal, i.e.,

maximum-likelihood joint decoding at the receiver. This may be infeasible in some communi-

cation networks. Therefore, in this section, we propose a strategy based on layered encoding

and successive cancellation decoding (SCD) that uses only standard separate encoding and

decoding procedures, while still benefiting from the modulation of information onto the state

of the RIS so as to enhance the achievable rate compared with the max-SNR scheme.

To this end, the message F is split into two sub-messages, or layers, F1 and F2, such that

F1, of rate '1, is encoded onto the phase shift vectors θθθ8 (C) ∈ A , whereas F2, of rate '2,

is encoded onto the transmitted signals s8 (C) = (s8,1(C), . . . , s8,< (C))⊺, for 8 = g + 1, . . . , ℓ and

C ∈ [=/)]. In order to enable decoding using standard SCD, the first ` ≥ 1 symbols in the

vectors s8 (C) are fixed and used as additional pilot symbols. In particular, we have

s8,@ (C) ≡ 1, 8 = g + 1, . . . , ℓ, @ ∈ [`], C ∈ [=/)] . (43)

It is worth clarifying that the pilot symbols discussed in Section II-A are employed for

channel estimation, while the additional pilot symbols introduced in this section facilitate

the separate decoding of the two layers, as detailed next. The pilot symbols in (43) are

necessary because the channel estimation pilot symbols cannot be used for SCD since both

the transmitted symbols and RIS reflection pattern are fixed during the channel estimation

phase.

By averaging the first ` columns of the received signal matrix Y8 (C) in (7), we obtain

ȳ8 (C) ,
1
√
`

∑̀
@=1

y8,@ (C) =
√
`W3H(C)4 9θθθ8 (C) + z̄8 (C), (44)

where we have defined random vector z̄8 (C) ∼ CN(0, O# ). The receiver decodes layer F1 based

on the received matrix Ȳ(C) , (ȳg+1(C), . . . , ȳℓ (C)), which, from (44), can be expressed as

Ȳ(C) = W3H(C)Q(C) + Z̄(C), (45)

where we have defined the matrix Z̄(C) , (z̄g+1(C), . . . , z̄ℓ (C)) ∈ ℂ#×(ℓ−g) , whose elements

are i.i.d. with distribution CN(0, 1), and the phase shift matrix

Q(C) ,
©«

√
`4 9θg+1,1 (C) · · · √

`4 9θℓ,1 (C)

...
. . .

...

√
`4 9θg+1, (C) · · · √

`4 9θℓ, (C)

ª®®®®
¬
, (46)
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which is selected from the set

Q(ℓ − g) ,
{
W ∈ ℂ

 ×(ℓ−g) : &:,8 =
√
`4 9\8,: , \8,: ∈ A, : ∈ [ ], 8 = g + 1, . . . , ℓ

}
. (47)

By direct inspection of (45), we evince that it depends only of the RIS phase shifts, and hence

layer F1 can be separately decoded. Once layer F1 is decoded, the receiver reconstructs the

phase shift vectors θθθ8 (C), which are then used to decode layer F2. This strategy achieves the

rate detailed in Proposition 3.

Proposition 3: A strategy based on layered encoding and SCD achieves the rate

'layered (g, Wg, ^1:g, `) = '1(g, Wg, ^1:g, `) + '2(g, Wg, ^1:g, `), (48)

where the rate '1(g, Wg, ^1:g, `) is defined as

'1(g, Wg, ^1:g, `) = −# (ℓ − g)
<ℓ

log2(4) −
1

<ℓ
^(u1 |Q1, z̄, ĥ) (49)

with random variable u1

u1 , ln

(
|ΓΓΓ(Q1) |
|ΓΓΓ(Q2) |

)
−
\ (Q1)z̄ + W3

(
Q⊗

1
− Q⊗

2

)
ĥ
2

ΓΓΓ(Q2) (50)

defined by independent random vectors z̄ ∼ CN(0, O# (ℓ−g)) and ĥ ∼ CN(0, O# − �MMSE),
and independent random matrices Q1,Q2 ∼ ?Q(W) = 1/� (ℓ−g) for all W ∈ Q(ℓ − g); and

where the rate '2(g, Wg, ^1:g, `) is defined as

'2(g, Wg, ^1:g, `) = −# (< − `)(ℓ − g)
<ℓ

log2(4) −
1

<ℓ
^(u2 |X̌1, ž, ĥ,θθθg+1, . . . ,θθθℓ) (51)

with random variable u2

u2 , ln

(
|ΓΓΓ(X̌1) |
|ΓΓΓ(X̌2) |

)
−
\ (X̌1)ž + W3

(
X̌⊗

1
− X̌⊗

2

)
ĥ

2

ΓΓΓ(X̌2)
(52)

defined by independent random vectors ž ∼ CN(0, O# (<−`)(ℓ−g)), ĥ ∼ CN(0, O# − �MMSE),
θθθg+1, . . . ,θθθℓ ∼ ?θθθ(\\\) = 1/� for all \\\ ∈ A , and independent random matrices X̌1, X̌2 ∼
?X̌|θθθg+1,...,θθθℓ

( ˇ̂ |\\\g+1, . . . , \\\ℓ) = 1/( (<−`)(ℓ−g) for all ˇ̂ ∈ C(\\\g+1, . . . , \\\ℓ; `) with

C(\\\g+1, . . . , \\\ℓ; `) ,
{

ˇ̂ : ˇ̂ = (4 9\\\ g+1 š
⊺
g+1
, . . . , 4 9\\\ℓ š

⊺
ℓ
), š8 ∈ S

(<−`)×1, 8 = g + 1, . . . , ℓ
}
. (53)

Furthermore, for g ≥  , we obtain the high-SNR limit

lim
%→∞

'layered (g, Wg, ^1:g, `) =
ℓ − g
<ℓ

[
(< − `) log2 (() +  log2 (�)

]
. (54)

Proof: See Appendix B.

Note that the layered encoding scheme does not require CSI at the transmitter (CSIT) since

both layers are encoded independently from the channel estimate ĥ. The rate achieved by the

proposed layered strategy in the case of perfect CSI is derived in the following corollary.
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Corollary 5 ([22, Proposition 4]): Under the assumption that perfect CSI is available at

the receiver, a strategy based on layered encoding and SCD achieves the rate

'
perfect

layered
(`) = 'perfect

1
(`) + 'perfect

2
(`), (55)

where the rate '
perfect

1
(`) is defined as

'
perfect

1
(`) = −#

<
log2(4) −

1

<ℓ
^(ũ1 |Q1, z̄, h̄) (56)

with random variable u1

ũ1 , −
z̄ + W3 (Q⊗

1
− Q⊗

2

)
h̄
2

(57)

defined by independent random vectors z̄ ∼ CN(0, O#ℓ) and h̄ ∼ CN(0, O# ), and independent

random matrices Q1,Q2 ∼ ?Q(W) = 1/� ℓ for all W ∈ Q(ℓ) (47); and where the rate

'
perfect

2
(`) is defined as

'
perfect

2
(`) = −# (< − `)

<
log2(4) −

1

<ℓ
^(ũ2 |X̌1, ž, h̄,θθθg+1, . . . ,θθθℓ) (58)

with random variable u2

ũ2 , −
ž + W3 (X̌⊗

1
− X̌⊗

2

)
h̄

2

(59)

defined by independent random vectors ž ∼ CN(0, O# (<−`)ℓ), h̄ ∼ CN(0, O# ), θθθ1, . . . ,θθθℓ ∼
?θθθ(\\\) = 1/� for all \\\ ∈ A , and independent random matrices X̌1, X̌2 ∼ ?X̌|θθθ1,...,θθθℓ

( ˇ̂ |\\\1, . . . , \\\ℓ) =
1/( (<−`)ℓ for all ˇ̂ ∈ C(\\\1, . . . , \\\ℓ; `) (53).

Proof: It follows from the proof of Proposition 3 by setting g = 0 and ΓΓΓMMSE = 0 since

the channel vector h̄ is known to both the receiver and transmitter without requiring any

training.

V. LOWER BOUNDS

As discussed in the previous sections, calculating the capacity and achievable rates typically

requires the evaluation of expectations over Gaussian random vectors and over discrete

random matrices whose size increases exponentially with ℓ − g. This makes the evaluation

numerically difficult for long coherence blocks. Furthermore, unlike the Gaussian vectors

that have a known distribution, the input distribution of the random matrices needs to be

numerically optimized. This implies that the standard method for estimating the expectations

via empirical averages cannot be applied to the discrete random matrices, and hence estimating

the expectations from a small number of samples requires methods such as the Monte Carlo

gradient estimation [31]. In this section, we take a different approach and present lower
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bounds on the capacity and achievable rates that require summing over a fixed number of

terms that does not increase with the number of sub-blocks ℓ, which simplifies the exact

calculation of the bounds.

A. Lower Bounds for Optimal Signalling and Max-SNR

Proposition 4: When the MMSE estimate ĥ in (19) is available at both the receiver and

transmitter, the capacity in Proposition 1 and the rate achieved by the max-SNR scheme in

Proposition 2 are lower bounded as � (g, Wg, ^1:g) ≥ � (g, Wg, ^1:g) and 'max-SNR(g, Wg, ^1:g) ≥
'max-SNR(g, Wg, ^1:g), respectively, where

� (g, Wg, ^1:g) , −# (ℓ − g)
ℓ

log2(4) − min
?X |ĥ (^ | ĥ):

�[tr(XX∗)]≤ <,
X∈C

ℓ − g
<ℓ

^(u|X1, z, ĥ), (60)

and

'max-SNR(g, Wg, ^1:g) , −# (ℓ − g)
ℓ

log2(4) − min
\\\ ( ĥ):

\\\ ( ĥ)∈A ×1

min
?X |ĥ (^ | ĥ):

�[tr(XX∗)]≤ <,
X∈C(\\\ ( ĥ))

ℓ − g
<ℓ

^(u|X1, z, ĥ). (61)

The random variable u in (60) and (61) is defined as in (30) with independent random vectors

z ∼ CN(0, O#<), ĥ ∼ CN(0, O# − �MMSE), and random matrices X1,X2 ∼ ?X|ĥ(^ | ĥ) that

are conditionally independent given ĥ.

Proof: See Appendix C.

As detailed in Appendix C, the lower bounds in Proposition 4 correspond to rates achievable

when the sub-blocks X̄8 ∈ C, 8 = g + 1, . . . , ℓ, are decoded separately. This is in contrast

to the optimal strategy presented in Proposition 1 that jointly decodes all data sub-blocks

inputs (X̄g+1, . . . , X̄ℓ) ∈ Cℓ−g from the channel outputs yg+1, . . . , yℓ. The key computational

advantage of the lower bounds is that evaluating the expectations over the discrete random

matrices X1 and X2 defined in Proposition 1 requires summing over |C|ℓ−g terms, whereas

evaluating the expectations in the lower bound (60) requires summing over |C| terms, which

is exponentially smaller.

The corresponding lower bounds on capacity and rate achieved by the max-SNR scheme un-

der the assumptions of imperfect CSI available only at the receiver and perfect CSI available at

both the transmitter and receiver, are formulated, respectively, in the following two corollaries.

Corollary 6: When the MMSE estimate ĥ in (19) is available only at the receiver, the

capacity in Corollary 1 and the rate achieved by the max-SNR scheme in Corollary 3
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are lower bounded as �CSIR (g, Wg, ^1:g) ≥ �CSIR(g, Wg, ^1:g) and 'CSIR
max-SNR

(g, Wg, ^1:g) ≥
'CSIR

max-SNR
(g, Wg, ^1:g), respectively, where

�
CSIR

(g, Wg, ^1:g) , −# (ℓ − g)
ℓ

log2(4) −
ℓ − g
<ℓ

^(u|X1, z, ĥ) (62)

and

'CSIR
max-SNR(g, Wg, ^1:g) , −# (ℓ − g)

ℓ
log2(4) − min

\\\:\\\∈A ×1

ℓ − g
<ℓ

^(u|X1, z, ĥ). (63)

The random variable u in (62) and (63) is defined as in (30) with independent random

vectors z ∼ CN(0, O#<) and ĥ ∼ CN(0, O# − �MMSE), and independent random matrices

X1,X2 ∼ ?X(^), where ?X(^) = 1/|C| in (62) and ?X(^) = 1/|C(\\\) | in (63).

Proof: It follows from the proof of Proposition 4 with the caveat that, since the channel

estimate ĥ is available only at the receiver, the optimal input distribution ?X(^) is uniform.

This is because the channel coefficients in vector h̄ (10) have uniformly distributed phases

(see [30, Sec. VII]).

Corollary 7: When perfect CSI is available at both the receiver and transmitter, the capacity

in Corollary 2 and the rate achieved by the max-SNR scheme in Corollary 4 are lower bounded

as �perfect ≥ �perfect
and '

perfect

max-SNR
≥ '

perfect

max-SNR
, respectively, where

�perfect , −# log2(4) − min
?X |h̄ (^ | h̄):

�[tr(XX∗)]≤ <,
X∈C

1

<
^(ũ|X1, z, h̄) (64)

and

'
perfect

max-SNR
, −# log2(4) − min

\\\ ( h̄):
\\\ ( h̄)∈A ×1

min
?X |h̄ (^ | h̄):

�[tr(XX∗)]≤ <,
X∈C(\\\ ( h̄))

1

<
^(ũ|X1, z, h̄). (65)

The random variable ũ is defined as in (37) with independent random vectors z ∼ CN(0, O#<),
h̄ ∼ CN(0, O# ), and random matrices X1,X2 ∼ ?X|h̄(^ | h̄) that are conditionally independent

given h̄.

Proof: It follows from the proof of Proposition 4 by setting g = 0 and ΓΓΓMMSE = 0, since

the channel vector h̄ is known to both the receiver and transmitter without requiring any

training.

B. Lower Bounds for Layered Encoding

Similar to Proposition 4, we derive a lower bound on the rate achieved by the layered-

encoding scheme introduced in Section IV.
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Proposition 5: The achievable rate of the layered encoding scheme introduced in Sec-

tion IV is lower bounded as 'layered (g, Wg, ^1:g , `) ≥ 'layered (g, Wg, ^1:g, `) with

'layered (g, Wg, ^1:g, `) , −ℓ − g
<ℓ

[
# (< + 1 − `) log2(4) + ^(u1 |Q1, z̄, ĥ) + ^(u2 |X̌1, ž, ĥ,θθθ)

]
, (66)

where the random variable D1 is defined as in (50) with independent random vectors z̄ ∼
CN(0, O# ) and ĥ ∼ CN(0, O# − �MMSE), and independent random matrices Q1,Q2 ∼
?Q(W) = 1/� for all W ∈ Q(1); and where the random variable D2 is defined as in (52)

with independent random vectors ž ∼ CN(0, O# (<−`)), ĥ ∼ CN(0, O# −�MMSE), θθθ ∼ ?θθθ(\\\) =
1/� for all \\\ ∈ A , and independent random matrices X̌1, X̌2 ∼ ?X̌|θθθ( ˇ̂ |\\\) = 1/( (<−`) for

all ˇ̂ ∈
{

ˇ̂ : ˇ̂ = 4 9\\\ š⊺, š ∈ S(<−`)×1
}
.

Proof: See Appendix D.

The lower bound on the rate achieved by layered encoding under the assumption of perfect

CSI available at the receiver is formulated in the following corollary.

Corollary 8: When perfect CSI is available at the receiver, the achievable rate of the layered

encoding scheme introduced in Section IV is lower bounded as '
perfect

layered
(`) ≥ '

perfect

layered
(`) with

'
perfect

layered
(`) , − 1

<

[
# (< + 1 − `) log2(4) + ^(u1 |Q1, z̄, h̄) + ^(u2 |X̌1, ž, h̄,θθθ)

]
, (67)

where the random variable D1 is defined as in (50) with independent random vectors z̄ ∼
CN(0, O# ) and h̄ ∼ CN(0, O# ), and independent random matrices Q1,Q2 ∼ ?Q(W) = 1/� 

for all W ∈ Q(1); and where the random variable D2 is defined as in (52) with inde-

pendent random vectors ž ∼ CN(0, O# (<−`)), h̄ ∼ CN(0, O# ), θθθ ∼ ?θθθ(\\\) = 1/� for

all \\\ ∈ A , and independent random matrices X̌1, X̌2 ∼ ?X̌|θθθ( ˇ̂ |\\\) = 1/( (<−`) for all

ˇ̂ ∈
{

ˇ̂ : ˇ̂ = 4 9\\\ š⊺, š ∈ S(<−`)×1
}
.

Proof: It follows from the proof of Proposition 5 by setting g = 0 and ΓΓΓMMSE = 0, since

the channel vector h̄ is known to both the receiver and transmitter without requiring any

training.

VI. NUMERICAL RESULTS

In this section, we illustrate and discuss numerical examples with the main aims of (i)

comparing the capacity achieved by the proposed joint encoding scheme with the achievable

rates attained by the max-SNR and the layered encoding schemes, and (ii) assessing the

impact of imperfect CSI. For the phase response set, we consider � uniformly spaced phases

in the set A , {0, 2c/�, . . . , 2c(�−1)/�}, whereas, for the input constellation, we consider

ASK, which was shown to maximize capacity in the high-SNR regime (Proposition 1), and
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PSK modulations. In addition, we set an equal power for training and data sub-blocks, i.e.,

Wg = W3 =
√
%, and optimize the channel estimation by testing all pilot symbols ^1:g ∈ C1×g

that satisfy the power constraint in (14). Moreover, the empirical average over Gaussian

random vectors, e.g., ĥ and z in Proposition 1, is evaluated via a Monte Carlo method, and

the optimal input distributions, e.g., ?X|ĥ(^ | ĥ) in Proposition 1, are numerically calculated

using the fmincon function in MATLAB. We limit our investigation to small number of RIS

elements  in order to perform numerical optimization without requiring excessive computing

power. Based on the high-SNR analysis in Proposition 1, we can conclude that the capacity

increases linearly with the number of elements  for sufficiently high SNR and a sufficiently

long coherence block. We postpone the numerical analysis with larger  to future work.

On the role of the SNR level. In Fig. 4, we plot the rate as a function of the average

power %, with ℓ = 4 sub-blocks of which g = 2 sub-blocks are used for channel estimation,

# = 2 receive antennas,  = 2 RIS elements, � = 2 available phase shifts, a symbol-to-RIS

control rate < = 1, and input constellation given by the 4-ASK S = {f, 3f, 5f, 7f} with

f = 1/
√

21. For very low SNR, i.e., less than −20dB, it is observed that the max-SNR

approach is close to being optimal, and hence, in this regime, encoding information in the

RIS reflection pattern does not increase the rate. For larger SNR levels of practical interest,

however, joint encoding provides significant gain over the max-SNR scheme.

It is also observed that CSIT is unnecessary for very low or very high SNR levels. This is

because, at low SNR, the channel estimate is poor and cannot be applied for beamforming,

whereas, at high SNR, beamforming, which is used to increase SNR, is unnecessary. In

addition, the lower bounds presented in Section V are shown to be close to the achievable

rates. Note that the gap to the lower bounds increases for small number of pilot symbols

g <  , i.e., when channel estimation is poor, even for high-SNR.

Optimal number of pilot symbols. In Fig. 5, we plot the lower bounds on the rate as a

function of the number of training sub-blocks g with ℓ = 20 sub-blocks in each coherence

block, # = 2 receive antennas,  = 4 RIS elements, � = 2 available phase shifts, a

symbol-to-RIS control rate < = 1, an average power constraint of % = 40 dB, and an input

constellation given by 4-ASK. Note that we plot the lower bounds and not exact expressions

since evaluating the capacity requires summing over the set of channel inputs X whose size

is |C|ℓ−g = (� · (<)ℓ−g = 2120−6g, which is not feasible. It is observed that the lower bound

on the capacity increases with g up to g = 4, and then decreases. This is because increasing

the number of pilot symbols improves channel estimation accuracy on the one hand, but

on the other hand leaves fewer sub-blocks for transmitting data. In addition, joint encoding
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is shown to require a more accurate channel estimation compared to the max-SNR scheme

with CSIT, for which allocating g = 1 pilot is optimal. Comparing the penalty of channel

estimation between the joint encoding strategy and the max-SNR scheme, in addition, we

observe that the gap is larger for joint encoding since a higher percentage of the coherence

block is used to obtain a sufficient channel estimation accuracy.

As seen in Fig. 5, the capacity-achieving joint encoding strategy requires a better channel

estimation compared to the max-SNR scheme. However, for short coherence blocks, acquiring

sufficiently good channel estimation might not be feasible and the gain of joint encoding is

expected to decrease. This is illustrated in Fig. 6, where we plot the lower bounds on the rate

as a function of the number of sub-blocks ℓ with # = 2 receive antennas,  = 4 RIS elements,
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� = 2 available phase shifts, a symbol-to-RIS control rate < = 1, an average power constraint

of % = 10 dB, and an input constellation given by 4-ASK. For each value of ℓ, the lower

bounds are optimized over g = 0, . . . , ℓ−1. For fast-changing channels, the gain of joint encod-

ing is shown to be low. Moreover, without CSIT, the max-SNR scheme is optimal for ℓ ≤ 2.

On the number of receive antennas. In Fig. 7, we plot the lower bounds on the rate as

a function of the number of receive antennas # with ℓ = 30 sub-blocks of which g = 6

sub-blocks are used for channel estimation,  = 6 RIS elements, � = 2 available phase

shifts, a symbol-to-RIS control rate < = 1, an average power constraint of % = 10 dB, and

an input constellation given by 2-ASK S = {f, 3f} with f = 1/
√

5. While both capacity

and rate achieved by the max-SNR scheme increase with the number of receive antennas,

the effect is more prominent for joint encoding since, for the max-SNR scheme, spatial

multiplexing is restricted by the number of transmit antennas, whereas, for joint encoding,

spatial multiplexing is restricted by the number of RIS elements.

Layered Encoding. In Fig. 8, we compare the rate achieved by layered encoding to that

of the max-SNR method and to the capacity by plotting the lower bounds on the rate as

a function of the average power %, with ℓ = 50 sub-blocks of which g = 3 sub-blocks

are used for channel estimation, # = 2 receive antennas,  = 3 RIS elements, � = 2

available phase shifts, a symbol-to-RIS control rate < = 2, and input constellation given by

4-ASK or QPSK S = {±1, ±8}. For layered encoding, we set ` = 1 pilot, which was seen

to maximize the rate in this experiment. It is observed that, for sufficiently high SNR, the

layered-encoding scheme improves over the max-SNR approach. Note that, in the high-SNR

regime, as apparent from the limits in (39) and (54), layered encoding achieves a higher

rate when  log2(�) > ` log2((). In addition, while PSK outperforms ASK when used with

the max-SNR and layered-encoding schemes, the opposite is true with joint encoding in the

high-SNR regime. In fact, as discussed in Proposition 1, in the high-SNR regime, out of all

finite input sets S with the same size, ASK achieves the maximum capacity.

On the RIS control rate. The gain of using the state of the RIS as a medium for conveying

information is expected to decrease as the rate of the control link from the transmitter to the

RIS decreases. This is illustrated in Fig. 9, where we plot the rate with perfect CSI at both

transmitter and receiver as a function of the RIS control rate factor <, with # = 2 receive

antennas,  = 2 RIS elements, � = 2 available phase shifts, an average power constraint

of % = 40 dB, and an input constellation 2-ASK. Note that the performance of the layered-

encoding scheme improves from < = 1 to < = 2 since, for < = 1, the transmitted symbol

in each sub-block is used as a pilot, and hence only the first layer carries information. It is
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observed that, while, for < = 1, joint encoding achieves three times the rate of max-SNR,

the gain reduces to a factor of 1.3 for < = 7.

VII. CONCLUSIONS

In this work, we have studied the capacity of an RIS-aided system. We focused on a

fundamental model with one transmitter and one receiver, where the CSI is acquired through

pilot-assisted channel estimation. The common approach of using the RIS as a passive

beamformer to maximize the achievable rate was shown to be generally suboptimal in terms

of the achievable rate for finite input constellations, especially for slow-changing channels.

Instead, the capacity-achieving scheme was proved to jointly encode information in the RIS
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reflection pattern as well as in the transmitted signal. While the scheme was shown to require a

more accurate channel estimation compared to the max-SNR approach, the gain of encoding

information in the reflection pattern of the RIS was demonstrated to be significant for a

sufficiently high RIS control rate. In addition, a suboptimal, yet practical, strategy based

on separate layered encoding and successive cancellation decoding was demonstrated to

outperform passive beamforming for sufficiently high SNR levels, and motivates RIS-based

modulation design [8]–[13] for single-RF MIMO communication.

Among related problems left open by this study, we mention the design of low-complexity

joint encoding and decoding strategies that approach capacity, the derivation of the capacity

for noisy RIS [32] and for RIS with mutual coupling [23], and extensions to RIS systems

with multiple users/surfaces [33] or with security constraints [34]. Another related problem
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is finding the optimal input distribution for a slowly fading channel with CSI only at the

receiver [35].

APPENDIX

A. Proof of Proposition 1

The model in (22) can be viewed as a standard channel with input X, output y, and known

CSI ĥ. This is because the transmitter directly controls the states of the RIS θθθ8 (C) and the

transmitted symbols s8 (C) for 8 ∈ [ℓ] and C ∈ [=/<]. Therefore, it follows from the channel

coding theorem [36, Ch. 7], [37, Ch. 7.4.1], that the ergodic capacity can be expressed as

� (g, Wg, ^1:g) = max
?X |ĥ (^ | ĥ):

�[tr(XX∗)]≤ <(ℓ−g),
X∈C1×(ℓ−g)

1

<ℓ
� (X; y|ĥ). (68)

The mutual information � (X; y|ĥ) in (68) can be written as � (X; y|ĥ) = ℎ(y|ĥ) − ℎ(y|ĥ,X).
In addition, the conditional probability density function of the output y given the estimate ĥ

and input X is

?y|ĥ,X(y | ĥ, ^) =
1

c#<(ℓ−g) |ΓΓΓ(^) |
exp

{
−
y − W3^⊗ ĥ

2

ΓΓΓ(^)

}
, (69)

where the covariance matrix ΓΓΓ(^) is defined in (27). Therefore, the conditional differential

entropy ℎ(y|ĥ,X) is given as

ℎ(y|ĥ,X) = #<(ℓ − g) log2(c4) +
∫
ℂ# ×1

?ĥ( ĥ)
∑

^∈C1×(ℓ−g)

?X|ĥ(^ | ĥ) log2 det (ΓΓΓ(^)) dĥ, (70)

and the conditional differential entropy ℎ(y|ĥ) can be expressed as (see, e.g., [38, Eq. (3)]

and [39, Eq. (4)])

ℎ(y|ĥ) = #<(ℓ − g) log2(c) (71)

−
∫
ℂ# ×1

?ĥ( ĥ)
∫
ℂ#<(ℓ−g)×1

?z(z)
∑

^1∈C1×(ℓ−g)

?X|ĥ(^1 | ĥ) log2

©«
∑

^2∈C1×(ℓ−g)

?X|ĥ(^2 | ĥ)
|ΓΓΓ(^1) |

4D
ª®
¬

dz dĥ

with z ∼ CN(0, O#<(ℓ−g)) and where we have defined the scalar

D , ln

(
|ΓΓΓ(^1) |
|ΓΓΓ(^2) |

)
−
\ (^1)z + W3

(
^⊗

1
− ^⊗

2

)
ĥ

2

ΓΓΓ(^2)
. (72)

Overall, by subtracting (70) from (71) and applying the conditional CGF definition in (25),

we get (29). Note that the mutual information � (X; y|ĥ) is a concave function of ?X|ĥ(^ | ĥ)
for fixed ?y|ĥ,X(y | ĥ, ^) [36, Theorem 2.7.4], Therefore, problem (68) can be solved using

convex optimization tools.
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In the high-SNR regime, the channel can be perfectly estimated if g ≥  , and hence we

have the limit

lim
%→∞

� (X; y|ĥ) = � (X|ĥ) ≤ � (X) ≤ (ℓ − g) log2(|C|), (73)

where equality is achieved for a uniform distribution ?X|ĥ(^ | ĥ) = 1/|C|ℓ−g. Furthermore, the

cardinality of the set C in (8) is upper bounded as |C| ≤ (< · � , where equality is achieved

for the ASK input constellation.

B. Proof of Proposition 3

The channel in (45) is equivalent to a point-to-point Gaussian multiple-input multiple-

output (MIMO) channel with PSK input Q. Therefore, for layer F1, the following rate is

achievable

'1(g, Wg, ^1:g, `) =
1

<ℓ
� (Q; Ȳ|Ĥ) = 1

<ℓ
� (Q; ȳ|ĥ), (74)

where we have defined

ȳ , vec (Ȳ) = W3Q⊗h̄ + z̄ (75)

with z̄ ∼ CN(0, O# (ℓ−g)), and where the phase shifts matrix Q (46) is uniformly distributed,

i.e., ?Q(W) = 1/� (ℓ−g) for all W ∈ Q(ℓ − g) (47). It hence follows from the proof of

Proposition 1 (Appendix A) that we have

� (Q; ȳ|ĥ) = −# (ℓ − g) log2(4) (76)

−
∫
ℂ# ×1

?ĥ( ĥ)
∫
ℂ# (ℓ−g)×1

?z̄( z̄)
∑

W1∈Q(ℓ−g)

1

� (ℓ−g) log2

©
«

∑
W2∈Q(ℓ−g)

exp{D1}
� (ℓ−g)

ª®¬
dz̄ dĥ,

where we have defined the scalar

D1 , ln

(
|ΓΓΓ(W1) |
|ΓΓΓ(W2) |

)
−
\ (W1) z̄ + W3

(
W⊗

1
− W⊗

2

)
ĥ

2

ΓΓΓ(W2)
. (77)

By applying the conditional CGF definition in (25) to the achievable rate in (74) with the

aid of (76), we get (49).

For layer F2, let Y̌8 (C) denote the last (< − `) column of Y8 (C) (7), i.e.,

Y̌8 (C) , (y8,`+1(C), . . . , y8,< (C)) = W3H(C)4 9θθθ8 (C) š⊺
8
(C) + Ž8 (C), (78)

where we have defined š8 (C) , (s8,`+1, . . . , s8,<)⊺ ∈ S(<−`)×1 and Ž8 (C) ∈ ℂ#×(<−`) whose

elements are i.i.d. as CN(0, 1). After layer F1 is decoded, the receiver reconstructs the phase

shifts {\\\8 (C)}8, 8 = g + 1, . . . , ℓ, C ∈ [=/)], and decodes layer F2 from the received signals

Y̌(C) , (Y̌g+1(C), . . . , Y̌ℓ (C)) = W3H(C)X̌(C) + Ž(C), (79)
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where we have defined Ž(C) , (Žg+1(C), . . . , Žℓ (C)) and

X̌(C) , (4 9\\\ g+1(C) š⊺
g+1

(C), . . . , 4 9\\\ℓ (C) š⊺
ℓ
(C)) ∈ C(ΘΘΘ; `) (80)

with ΘΘΘ , (\\\g+1, . . . , \\\g+1). Therefore, the following rate is achievable for layer F2

'2(g, Wg, ^1:g, `) =
1

<ℓ
� (X̌; Y̌|ĥ,θθθg+1, . . . ,θθθℓ) =

1

<ℓ
� (X̌; y̌|ĥ,θθθg+1, . . . ,θθθℓ), (81)

where we have defined

y̌ , vec (Y̌) = W3X̌⊗h̄ + ž (82)

with ž ∼ CN(0, O# (<−`)(ℓ−g)), and where the input X̌ is uniformly distributed, i.e., ?X̌( ˇ̂ ) =
1/( (<−`)(ℓ−g) for all ˇ̂ ∈ C(ΘΘΘ; `) (53). Similar to layer F1, we have

� (X̌; y̌|ĥ,θθθg+1, . . . ,θθθℓ) (83)

= −# (< − `)(ℓ − g) log2(4)

−
∫
ℂ# ×1

?ĥ( ĥ)
∫
ℂ# (ℓ−g)×1

?ž( ž)
[ ∑
ΘΘΘ∈A ×(ℓ−g)

1

� (ℓ−g)

∑
ˇ̂
1∈� (ΘΘΘ)

1

( (<−`)(ℓ−g)
log2

©
«

∑
ˇ̂
2∈� (ΘΘΘ)

exp{D2}
( (<−`)(ℓ−g)

ª®
¬
]

dž dĥ,

where we have defined the scalar

D2 , ln

(
|ΓΓΓ( ˇ̂

1) |
|ΓΓΓ( ˇ̂

2) |

)
−
\ ( ˇ̂

1) ž + W3
(

ˇ̂⊗
1
− ˇ̂⊗

2

)
ĥ

2

ΓΓΓ( ˇ̂
2)
. (84)

By applying the conditional CGF definition in (25) to the achievable rate in (81) with the

aid of (83), we get (51).

As in the proof of Proposition 1, for g ≥  , we have the high-SNR limits

lim
%→∞

� (Q; ȳ|ĥ) = � (Q) = (ℓ − g) log2(�) (85)

and

lim
%→∞

� (X̌; y̌|ĥ,θθθg+1, . . . ,θθθℓ) = � (X̌|θθθg+1, . . . ,θθθℓ) = (ℓ − g)(< − `) log2((). (86)

C. Proof of Proposition 4

The mutual information � (X; y|ĥ) in (68) can be lower bounded as

� (X; y|ĥ) = � (X̄g+1, . . . , X̄ℓ |ĥ) − � (X̄g+1, . . . , X̄ℓ |ĥ, yg+1, . . . , yℓ)

(a)
=

ℓ∑
8=g+1

[
� (X̄8 |ĥ) − � (X̄8 |ĥ, yg+1, . . . , yℓ, X̄g+1, . . . , X̄8−1)

]
(b)
≥

ℓ∑
8=g+1

[
� (X̄8 |ĥ) − � (X̄8 |ĥ, y8)

]
= (ℓ − g)� (X̄g+1; yg+1 |ĥ), (87)
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where the equality (a) follows from the entropy chain rule [36, Thm. 2.5.1] and since, given

the channel estimate ĥ, the inputs at different sub-blocks are independent; and inequality (b)

is due to the conditioning reduces entropy property [36, Thm. 2.6.5]. Proposition 4 is then

proved by repeating the proof in Appendix A with the caveat that the mutual information

� (X; y|ĥ) is replaced with the lower bound (87).

D. Proof of Proposition 5

Similar to the proof of Proposition 4 (Appendix C), the mutual information � (Q; ȳ|ĥ) in

(74) can be lower bounded as

� (Q; ȳ|ĥ) (a)
= � (θθθg+1, . . . ,θθθℓ; ȳg+1, . . . , ȳℓ |ĥ) ≥ (ℓ − g)� (θθθg+1; ȳg+1 |ĥ), (88)

where the equality (a) follows from the definitions in (44), (46), and (75). Furthermore, the

mutual information � (X̌; y̌|ĥ,θθθg+1, . . . ,θθθℓ) in (81) can be lower bounded as

� (X̌; y̌|ĥ,θθθg+1, . . . ,θθθℓ)
(a)
= � (šg+1, . . . , šℓ; Y̌g+1, . . . , Y̌ℓ |ĥ,θθθg+1, . . . ,θθθℓ)

≥ (ℓ − g)� (šg+1; Y̌g+1 |ĥ,θθθg+1), (89)

where the equality (a) follows from the definitions in (79), (80), and (82). Proposition 5

is then proved by repeating the proof in Appendix B with the caveat that the mutual in-

formation � (Q; ȳ|ĥ) is replaced with the lower bound in (88), and the mutual information

� (X̌; y̌|ĥ,θθθg+1, . . . ,θθθℓ) is replaced with the lower bound in (89).
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