
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Weber, C., Lupo, C., Tse, T., & Jamet, F. (2021). Maximally Localized Dynamical Quantum Embedding for
Solving Many-Body Correlated Systems. Nature Computational Science.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 06. Oct. 2023

https://kclpure.kcl.ac.uk/portal/en/publications/5ae9c624-cb54-4a87-9f9b-3ff16c8e08d4


Maximally Localized Dynamical Quantum1

Embedding for Solving Many-Body Correlated2

Systems3

Carla Lupo1,2,*, François Jamet2,1,**, Terence Tse1, Ivan Rungger2,++, and Cedric Weber1,+
4

1King’s College London, Theory and Simulation of Condensed Matter, The Strand, WC2R 2LS London, UK5

2National Physical Laboratory, Teddington, TW11 0LW, United Kingdom6

*carla.lupo@kcl.ac.uk7

**francois.jamet@npl.co.uk8

++ivan.rungger@npl.co.uk9

+cedric.weber@kcl.ac.uk10

11

12

ABSTRACT13

Quantum computing opens new avenues for modelling correlated materials, notoriously challenging to solve due to the presence14

of large electronic correlations. Quantum embedding approaches, such as the dynamical mean-field theory, provide corrections15

to first-principles calculations for strongly correlated materials, which are poorly described at lower levels of theory. Such16

embedding approaches are computationally demanding on classical computing architectures, and hence remain restricted17

to small systems, which limits the scope of applicability. Hitherto, implementations on quantum computers are limited by18

hardware constraints. Here, we derive a compact representation, where the number of quantum states is reduced for a given19

system, while retaining a high level of accuracy. We benchmark our method for archetypal quantum states of matter that emerge20

due to electronic correlations, such as Kondo and Mott physics, both at equilibrium and for quenched systems. We implement21

this approach on a quantum emulator demonstrating a reduction of the required number of qubits.22

Introduction23

Correlated materials have attracted a widespread interest due to their broad range of complex properties and possible avenues24

for technological applications. Modelling correlated transition metal systems remains a challenge for standard approaches, such25

as first-principle based methods. With the discovery of high-temperature superconductivity, a large effort has been devoted26

to the study of archetypal theories for describing Mott insulators, leading to developments of theoretical tools for solving27

correlated materials accurately. An exact solution of the Hubbard model, which describes such correlated materials, is lacking28

in two or three dimensions. However, embedding approaches based on controllable approximations, such as the dynamical29

mean-field theory (DMFT)1, 2, have provided accurate predictions3–5. DMFT is a non-perturbative approach that allowed30

to obtain the phase diagram of the Mott-Hubbard transition. The marriage of density functional theory (DFT) and DMFT31

(DFT+DMFT) provides the work-horse for studying correlated materials.32

DMFT is based on a self-consistent mapping between local properties of a given material onto a so-called Anderson33

impurity model (AIM), a correlated impurity embedded in an infinite non-interacting bath. The AIM can be solved by high-level34

many-body methods, such as the continuous-time Monte Carlo approach (CTQMC). The latter provides an exact solution within35

statistical error bars, but is limited to the imaginary time representation. The evaluation of real-frequency spectral quantities36

requires the ill-defined analytical continuation6, 7. Cluster extensions of DMFT suffer from the fermionic sign-problem when37

inter-orbital hybridizations are present. Other solvers are based on the numerical renormalization group (NRG)8, which allow38

real axis calculations and access to Kondo physics, but remain challenging to extend for multi-orbital systems. Another method39

that provides solutions for real frequencies is the exact diagonalisation (ED) approach, where a finite size discretization of40

the AIM is used, through representation of the infinite bath in terms of a small number of effective bath-sites. In typical41

implementations, the bath size (Nb) is restricted because of the exponential growth of the Hilbert space with the total number of42

sites Ns (bath sites and impurity orbitals). Nonetheless, Lanczos-based algorithms allows to deal with large Hilbert spaces,43

where the discretization at low temperature9, 10 is fine enough to compute observables accurately. Some success has been44



achieved by ED for multi-orbital systems with three or five orbitals11–13, but in general the limitation in the bath size limits the45

scope of applicability for realistically describing transition metal oxides. Towards the achievement of the largest number of bath46

sites, ED calculations have been extended to handle the single impurity embedding problem, allowing up to O(100)14–17 and47

O(300)18 uncorrelated bath sites. Although the latter approaches allow the obtaining of approximations of the zero temperature48

Green’s function, the building of systematically high energy excited states remains challenging.49

Moreover, scaling the precision of the latter approach on classical computers is not feasible due to the exponential increase50

of the Hilbert space with the number of bath sites. In view of the recent progress in the implementation of ED on quantum51

computers19, the latter approach has gained interest due to the possibility of scaling linearly on quantum computers. However,52

due to current hardware limitations (noise and decoherence issues), such algorithms are limited to a small number of qubits and53

short quantum circuits on the currently available noisy intermediate-scale quantum (NISQ) computers. Hence it is important to54

develop an ED based solver that can obtain precise results with a reduced number of bath sites, since the required number of55

qubits is proportional to this.56

In this light, here we present the maximally localized dynamical embedding embedding (MLDE) methodology to solve57

the AIM for DMFT, which extends the ED method by adding electron-electron interactions also in the bath. Our method58

provides a maximally localized quantum impurity model, where the non-local self-energy component of the correlation due to59

interactions in the bath remains minimal, and hence the AIM minimally breaks locality (DMFT is a purely local theory). MLDE60

provides the benefit that the environment used in the quantum embedding approach is described by propagating correlated61

electrons (instead of free electrons in DMFT). This firstly improves the hybridization fitting procedure compared to ED due to62

the polynomial increase of the number of fitting parameters with number of bath sites. Secondly, the number of poles in the63

MLDE hybridization function increases exponentially with the number of bath sites, compared to a linear increase for ED. This64

allows to obtain converged system properties with a much smaller number of bath sites than the one required by ED. This is65

reminiscent of the representation of correlated electrons by a Green’s function embedding approach, where correlations are66

described by hidden fictitious additional fermionic degrees of freedom20, 21.67

This representation has hence the potential to improve the scope of applicability of the quantum embedding approach, whilst68

limiting the small number of bath sites. We report that quantum impurity models with as few as 3 bath sites can reproduce69

both the Kondo regime and the Mott transition and obtain good agreement for dynamical magnetic susceptibilities, poising70

this approach as a candidate to describe 2-particle excitations such as excitons in correlated systems, with applications for71

high-temperature superconductors22, 23. We also present a quantum computing algorithm for MLDE, and show that with a72

number of qubits, available on current hardware, one can achieve a fine description of correlations in materials.73

Results74

From the Anderson impurity model to maximally localized dynamical embedding75

Within DMFT, the lattice model is mapped to an effective Anderson impurity model (AIM) where a correlated atom is connected76

to a non-interacting bath with the hybridization function ∆(ω) as shown in Fig 1.a.77

In the ED approximation, the continuum bath is represented with a finite number of effective sites (Fig.1.b). Typically, for a78

fixed set of the Hamiltonian parameters (see Eq.1 Methods section), the AIM is solved (1) by using a Lanczos algorithm to79

converge the ground state and excited states9, 12 which contribute to the thermal average. Once the eigenstates are obtained, the80

dynamical and static observables are computed. As previously stated, the number of bath sites is severely limited because of81

the exponential scaling of the Hilbert space with the number of sites. To improve the performance of the algorithm, without82

increasing the number of bath sites, we introduced a two-body interaction between the bath electrons (Fig.1.c). The resulting83

approximation is represented by an extended ED solver where the non-local component of the correlation potential remain84

minimal. Thus the ED method has been extended to a maximally localized dynamical embedding (MLDE) model where the85

same accuracy is obtained with a reduced number of bath sites. (see Methods section for the formal mathematical definition of86

the model).87

Comparison between MLDE and CTQMC solver88

We now turn to a simple test of the MLDE equations for a typical AIM. The bath hybridization used as a test case is obtained89

from a typical correlated material (The hybridization function is available in Extended Data Figure 1), and the impurity90

energy is set to ε f = −U/2 to stay at half-filling. We perform a benchmark of the MLDE approach with respect to both a91

continuous-time Monte Carlo and Lanczos solver, which both provide in this case the same answer used as a reference. Both92

the imaginary part (Fig.2.a) and real part (Fig.2.b) obtained by MLDE with as few as Nb = 3 bath sites provide a very good93

agreement with the exact solution. We considered both the nearly free electron (NFE) limit (U < 10) and the atomic limit94

(U > 10), and in both cases the MLDE solution is consistently in agreement with the exact answer. Noteworthy, the strength95

of correlation and overall physical properties are also well captured by MLDE with Nb = 2, whereas the ED solver with the96

same number of bath sites largely overestimates the strength of correlation (see Extended Data Figure 2). MLDE captures well97
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the delocalization-localization transition (see Fig.2.b-c), where the MLDE with Nb = 2 only differs near the transition while98

MLDE with Nb = 3 is exact (Fig. 2.c).99

Kondo physics100

We extend further the application of MLDE to a realistic study case of the deposition of a correlated Kondo molecule on a gold101

surface (see Fig.3.a). Stable organic radical molecules exhibit a Kondo peak in the low-temperature experimental conductance,102

which is due to the presence of a single unpaired electron in the highest occupied molecular orbital24–26. In the gas phase103

these molecules are paramagnetic. Due to their low spin-orbit interaction and small hyperfine splitting, they are expected to104

exhibit long spin-coherence times, and therefore have potential as building blocks of molecular spintronics applications26.105

When brought in contact with a metal surface, the system corresponds to a single impurity Anderson model (SIAM) and has106

been modeled in the past using CTQMC or NRG as impurity solvers27, 28. To demonstrate the capability of MLDE to describe107

Kondo physics, we choose the 1,3,5-triphenyl-6-oxoverdazyl (TOV) organic radical molecule, which, when deposited on a108

Au substrate has been shown experimentally to exhibit a Kondo temperature of about ≈ 37K24. Compared to other radical109

molecules on surfaces, this molecule has the advantage to have a well-defined contact geometry, where the molecule lies110

flat on the surface. We use the same simulation setup and parameters as in a previous study27 so that also the hybridization111

function of the SIAM is the same (see Extended Data Figure 5). Describing Kondo physics at low temperature is a notoriously112

difficult problem for quantum impurity solvers. In particular, the collapse of energy scales in the Kondo limit prevents typical113

Lanczos or ED solvers from capturing the Kondo resonance, as the finite discretization tends to introduce fictitious gaped states114

at very low temperature. We performed calculation at T = 5K. In the Kondo regime (see Fig.3.b) the hybridization remains115

constant up to the lowest frequency. We note that ∆1(iωn) = ∆2(iωn), which confirms that the embedding source field δ∆(iωn)116

remains negligible. Furthermore, MLDE fares better with Nb = 4 than the best possible fit obtained by the usual discretized117

Lanczos approach (Nb = 12, triangles in Fig.3.b), as the hybridization vanishes at small frequencies (in the molecule, it remains118

constant). The imaginary part of the self-energy obtained by MLDE shows a Fermi liquid type behavior at small frequencies119

(see Fig.3.c), whereas the self-energy obtained by ED shows an artificial Mott singularity, due to the bath discretization. We120

note that this low temperature was beyond the reach of our CTQMC solver (β = 35000 Ryd−1). Below the Kondo temperature,121

we recover the Fermi liquid behavior of the self-energy (see Fig.3.d). As the MLDE representation is compact, it opens a large122

degree of possible manipulation once the AIM is established. In particular, we extended the calculation to the time dynamics of123

the Kondo molecule with the Keldysh formalism29 after a magnetic quench, where at time t0 = 0 the molecule is magnetically124

polarized along the ez axis, and the external magnetic field released for t > t0. The magnetic moment enters in a precession125

dynamics with the frequency equal to the Kondo temperature (see Fig.3.e). The estimated Kondo temperature(TK) which we126

achieved with different methods, e.g. from the time dynamics (TK ≈ 33.64) and from perturbation theory30, 31 (TK ≈ 33, see127

subsection MLDE for Kondo molecule in the Methods section), which provides a further check of the validity of the MLDE128

approach. The dynamics can also be resolved below TK , where we observe additional harmonics, reminiscent from the Kondo129

Zeeman splitting at t = t032.130

Mott transition131

We have so far focused on simple AIM systems in the absence of mean-field corrections to the hybridization. We now turn to132

the dynamical mean-field MLDE approach, applied to the Mott transition where the local Green’s function is defined with133

the density of state of the two-dimensional square-lattice Hubbard model (see Fig.4.a). Using the MLDE as a solver for134

DMFT, we recover the well-known metal-insulator transition (MIT) associated with the charge localization induced by the local135

Hubbard repulsion U . Here, the DMFT self-consistency is enforced in Matsubara frequency. We recover with a simple MLDE136

and Nb = 3 bath sites the spectral function of the Hubbard model, with the usual features (lower and upper Hubbard bands,137

quasi-particle peak below the transition Uc ≈ 9, Mott gap for U >Uc). We note that interestingly the spectral function obtained138

by MLDE also shows the satellite peaks at the gap edge for U >Uc. This feature is typically difficult to obtain with analytically139

continued spectral function from Matsubara quantity. Indeed the inner peak near the Mott gap edge are associated with the real140

part of the self-energy, and in particular, is derived from an actual quasi-particle solution33.141

The MLDE charge gap ∆ reproduces the known trend ∆ =U−W , which provides a further test of the theory. The benchmark142

with the converged solution obtained by CTQMC is accurate (see Fig.4.b), and the MLDE solution essentially within the error143

bars of the CTQMC for U/t = 12. Across the Mott transition, the agreement between the Green’s functions remains good (see144

Fig.4.c).145

Bethe-Salpeter Equation146

We extended the calculations to the Bethe-Salpeter Equation (BSE) formalism, applied to the MLDE solution. In particular we147

calculate the local irreducible vertex Γ (see Section Vertex calculation in MLDE in the Methods section), which enables the148

calculation of the non-local dynamical magnetic susceptibility χmag(ω) within MLDE. We performed calculations for U/t = 12149

at various temperatures, to explore the behavior of magnetic excitations across the Mott gap melting. Within the Mott gap150
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phase at temperature T/t = 0.025 (Fig.5.a), the Neel fluctuations are local in momentum at QNeel = (π,π). As expected, the151

spin fluctuations are largely located at QNeel in the Mott phase (T = 0.025t). We observe that the antiferromagnetic magnetic152

fluctuations become gradually more incoherent as the temperature is increased throughout (Fig.5.b). Interestingly, we observe a153

large degree of incoherence at all considered temperature, which is reminiscent of the large scattering rate of the archetypal154

Mott system La2CuO4. At very large temperature (Fig.5.c), the fluctuations are fully incoherent, and the spectrum uniform155

across the Brillouin zone.156

We note that a known challenge for the BSE approach is the extraction of the local irreducible vertex Γ, which is obtained157

by calculating the two-electron response function G(2). Such a quantity requires traditionally computationally demanding158

collection of statistics by CTQMC and few other alternatives exist. The vertex can be calculated in the Lehman representation159

(see Section Vertex calculation in MLDE in the Methods section), but requires sampling over the whole Hilbert space, which160

is not possible for AIM with more than few bath sites. In MLDE this task is largely simplified as the Hilbert space remains161

compact. We provide a benchmark of the local vertex Γ with CTQMC for both U/t = 6 and U/t = 12 (see respectively Figs.5.e162

and 5.g), in both cases the agreement is quantitative. This agreement is also obtained in the fermionic representation of the local163

magnetic susceptibility χiν ,iν (see Figs.5.d and 5.f). In conclusion, our MLDE solver can be integrated in ab-initio DFT+DMFT,164

where the irreducible vertex and the self-energy are the key quantities which are ultimately used to compute any observable.165

We ensure correctness of the approximation up to the two particle response function, while for higher order response functions166

the technique is limited as compared as ED.167

MLDE for multiorbital system168

So far, we have considered a single orbital case as a proof of concept of the formalism. To highlight the advantage of the169

MLDE solver, we now turn to the application to a multi-orbital case. The ED solver has been notoriously limited for the case of170

multi-orbital systems34 as it would require a large number of bath sites, whereas CTQMC solver would be affected by the sign171

problem triggered by the non-zero off-diagonal terms of the hybridization between the orbitals. Therefore, in this section, we172

demonstrate the ability to treat multi-orbital systems within MLDE framework. As a test system, we applied DFT+DMFT on173

LaNiO3, whose nontrivial contributions stemming from electronic correlations have been studied using CTQMC solver35. In174

particular, The crystal field splits the Ni d orbital into two maniforlds t2g (composed of dxy,dxz,dyz orbital) and eg (dz2 ,dx2−y2 );175

here, the eg are active orbitals and pose this compound as our ideal candidate of two orbitals system.176

Our main focus is the comparison between a standard DFT+DMFT implementation using CTQMC and ED impurity solver177

with our MLDE environment with 3 bath sites. As shown in Fig 6a, a good agreement is achieved between CTQMC and MLDE178

when considering the local self energy for the first iteration of the DMFT loop.179

We also show the local self energy obtained with ED using 3 bath sites. Notice that, differently from the results obtained by180

MLDE, the ED solver does not well capture the correct self energy behavior. A better agreement between the ED solver and the181

CTQMC would be achieved at the cost of adding more bath sites to increase the number of parameters and density of poles in182

the hybridization function required for the fit of the hybridization, as it is done in MLDE.183

Lastly, we consider the local Green’s function for the final iteration of the self-consistent DMFT loop. Notice that while we184

only include 3 sites in the bath, the MLDE Green’s function is in a good agreement compared to CTQMC results.185

MLDE on a quantum computer186

Since MLDE reduces the number of bath sites compare to ED, it opens the oportunity to run Hamiltonian simulation on Noisy187

Intermediate-Scale Quantum computer(NISQ) with a reduced number of qubits. Here we develop a quantum algorithm to188

run MLDE on NISQ devices and demonstrate it using a quantum simulator on the benchmark system considered in Fig. 2.189

To calculate the Green’s function on a quantum computer, we use the variational quantum eigensolver (VQE) based method190

presented by Rungger et al36, which was demonstrated to run on currently available hardware as it is rather resilient to noise.191

Details of the method are presented in the Sec. 5 of the method. Here we show results obtained with our implementation within192

the Quest quantum simulator37. To demonstrate that the quantum MLDE algorithm gives the same accuracy as the classical193

MLDE algorithm, we apply it on the same Anderson impurity model shown in Fig. 2. The system has one impurity site and194

two bath sites, which we map to a 6 qubit system using a Jordan-Wigner transform38. In Fig. 2.d we show that the self-energy195

for U = 6 computed with the quantum computing algorithm agrees very very well with the result obtained using the classical196

computing algorithm. We have verified that the same is true for all values of U . This, therefore, demonstrates the functionality197

of our quantum algorithm for MLDE.198

Discussion199

We now turn to the discussion of MLDE and its advantages and limitations with respect to either other methods or known limits.200

Indeed, the MLDE non-local self energy vanishes, as expected, when: the local impurity correlation is naught (Uimp = 0), the201

bath correlations are naught, or when the impurity-bath coupling is naught (V = 0). In between the latter limits, we note that202
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MLDE is an approximation of the exact AIM self-energy, on the same ground as the standard ED technique. Although MLDE203

mitigates to a large extent the bath discretisation error present in the standard ED approach, it introduces another error due to204

non-local components in the self-energy between the impurity and the bath orbitals. MLDE and ED converge to the same exact205

solution in the limit where the bath discretisation involves a large number of bath orbitals.206

In this regard, we showed in this work that MLDE also performs optimally in the intermediate regime, where typically207

emergent quantum state of matters occur, i.e. Kondo physics, Mott physics, and correlated Fermi liquids. MLDE always208

performs better than ED (for the same number of bath sites) when the non local components in the self-energy are minimised.209

The reason for the better performance are twofold: MLDE improves the hybridization fitting procedure compared to ED due to210

the polynomial increase of the number of fitting parameters with number of bath sites, and the number of poles in the MLDE211

hybridization function increases exponentially with the number of bath sites, compared to a linear increase for ED. This allows212

to obtain converged system properties with a much smaller number of bath sites than the one required by ED. In MLDE,213

the non-local self-energy provides a figure of merit of the obtained solution. A quantitative way to check that the MLDE is214

converged to a good set of parameters is to systematically evaluate the self-energy for increasing number of bath sites, in the215

same way as it is done for ED.216

A further advantage is that MLDE can be applied in the realm of quantum computing on NISQ devices, where, with a217

reduced number of required qubits, MLDE can allow the simulation of transition metal systems on a quantum computer, with218

minor errors induced by the bath discretization. Note that on classical computers the computational cost increases exponentially219

with system size, both for ED and MLDE, while quantum computers can potentially reduce this to a polynomial scaling39, 40.220

On near term quantum computers the noise limits the size of calculations that can be done in practice, so that only very small221

proof of concept DMFT systems have been demonstrated on hardware36. Since MLDE significantly reduces the number of222

sites needed to describe a given physical system, it allows to reduce the required number of qubits as well as the depth of the223

quantum circuits. Therefore, in the near term, it is a potential framework to run larger physical systems on NISQ devices, while224

in the long term, the reduction of the required number of sites will be beneficial also in the fault-tolerant quantum computing225

regime.226

Methods227

Overview of the MLDE method228

Within DMFT, the effective AIM is subject to a self-consistency condition which relates the Green’s function of the impurity
model G(iωn) to the so-called Weiss-field G−1

0 (iωn), which completely characterizes the AIM. For the single-band case, the
Hamiltonian of the AIM reads:

H = ∑
i jσ

εi jσ d̂†
iσ d̂ jσ +∑

iσ
Vi(d̂

†
iσ f̂σ +hc)+Un̂ f↑n̂ f↓+∑

σ

ε f f̂ †
σ f̂σ (1)

where d†
pσ (dpσ ) creates (destroys) a particle with spin σ in the d-orbitals of the uncorrelated bath (p ∈ [1,Nb]) and f †

σ ( fσ )229

creates (destroys) a spin σ particle on the impurity, U is the static Coulomb repulsion on the impurity and V is the tunneling230

amplitude between the impurity and the bath.231

232

In the MLDE approach we add an additional general two-electron interaction to the bath sites, and the interaction vertex
reads:

Hint = ∑
σ1,σ2

∑
i, j,k,l

U (2)
i, j,k,l d̂

†
iσ1

d̂†
jσ2

d̂kσ2 d̂lσ1 (2)

The U (2) tensor is a fictitious two-body interaction between bath electrons introduced to enlarge the number of fitting parameters
for a given number of bath sites, and also to enlarge the number of poles in the hybridization function. Although the free
electron propagator takes a simple polynomial form, e.g. G−1

0 = iωn− ε f −∑i V 2
i /(iωn− εi), a correlated Green’s function is

instead described by a mapping to an exponentially long one-dimensional chain within the Krylov space41. In particular, when
the bath is correlated, the Weiss field incorporates the dressed propagator of the bath electrons G̃(1)

d :

G−1
0 = iωn− ε f −VVV †G̃GG

(1)
d VVV︸ ︷︷ ︸

∆∆∆
(1)

, (3)

where the hybridization to the bath is denoted as ∆(1). We emphasize that at this level of the theory, the self energy of
the impurity Σ f remains naught, and hence we have a fully local theory from the perspective of the impurity. However, as
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we introduce a local correlation U on the impurity, two effects occur: i) the propagator of the bath G̃(1)
d is dependent on the

correlation on the impurity, and hence changes to G̃(2)
d and ii) a non-local part of the self-energy Σ f d between the impurity and

the bath emerges:

G−1
imp = iωn− ε f − (V+ΣΣΣ f d)

†G̃(2)
d (VVV +ΣΣΣ f d)︸ ︷︷ ︸

∆∆∆
(2)

−ΣΣΣ f (4)

We have now a set of embedding equations, which leads to a generalized Dyson equation

GGG−1−GGG−1
0 = δ∆∆∆−ΣΣΣ f , (5)

where the δ∆(z) is a source field that stems from the non-local correlations. Indeed, the latter term can be rationalized following
a simple argument via the Migdal energy functional, which in MLDE reads

U〈n̂↑n̂↓〉=
1
2

Tr
(
Σ f G f

)
+Tr

(
ΣΣΣ f dGGG f d

)︸ ︷︷ ︸
Z̄

 (6)

Part of the correlation energy spills effectively on the bath42, leading to a correlation leakage term Z̄.233

The DMFT equations can be recovered when the leakage potential and leakage correlation energy are small. Note that234

the obtained DMFT equations are for a self-energy with interactions in the bath, which differs from the one obtained without235

interactions in the bath, and which only becomes equal to the exact self-energy for an infinitely large number of bath sites. As236

the tuning of the bath propagator allows for a very large set of parameters, these constraints can be successfully enforced via237

Lagrange parameters (see the cost function defined in Eq. 19) in the fit of the DMFT hybridization, to maximize the locality238

of the embedding, with a concomitant exponential improvement of the bath discretization errors. It is known that in high239

dimension, or when a system is strongly correlated, the electron self-energy is well separable into a local dynamical part and a240

static non-local contribution43. In this respect, we reabsorb the embedding potential into a shift of the static part of the MLDE241

self energy, which ensures that the Migdal energy remains exact.242

Details of the MLDE derivation243

In this section, we provide an extended derivation of the MLDE formalism briefly introduced in the previous section. To this244

end, we start with reviewing the case of a non-correlated bath. We then proceed to introduce the quantities of interest in the245

MLDE formalism, where bath interactions are included. We also provide the pseudo-code where the algorithm is described in246

more detail.247

Case of non correlated bath248

In the case of the non correlated bath, shown in Fig.1.a, the AIM is described by the Hamiltonian of Eq. 1. Then the free-electron
propagator is

G−1
0 (iωn) = iωn− ε f −∆(iωn). (7)

In the ED approximation, the continuum bath is represented with a finite number of effective sites. Hereby, we consider and
AIM in a start geometry, where the hybridization ∆(iωn) is discretized as follows:

∆
ED(iωn) = ∑

d

V 2
d

iωn− εd
(8)

In the case of correlated impurity, U 6= 0, the problems acquire a many-body nature, and the electron propagation is affected by
the scattering events, therefore correlations between the electrons in the system. We then introduce the interacting propagator
of the impurity of the AIM in the function of the hopping terms Vd between impurity and bath sites and onsite energies εd of
the bath sites:

(GED)−1
imp(iωn) = iωn− ε f −∆

ED(iωn)−Σ
ED(iωn) (9)

The Dyson equation for the impurity reads:

(GED)−1
imp(z) = G−1

0 (z)−Σ
ED
f (z) (10)

For our convenience, we report the Green’s function and the self-energy Σ of the problem, in a matrix formalism Hence:

ΣΣΣ
ED =

(
ΣED

f 0
0 0

)
and (GGGED)−1 =

(
(iωn− ε f −ΣED

f ) −V
−V (iωn− εd)

)
(11)

Notice that their dimension is Nb +1, with Nb being the number of bath sites.249
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Case of correlated bath250

In the maximally localized dynamical embedding approach (MLDE), we extend the formalism of the ED approximation to
include correlations in the bath sites, adding a two-body interaction term of Eq. 2 in the Hamiltonian. Hence, the MLDE
Hamiltonian reads as:

H = ∑
i jσ

εi jσ d̂†
iσ d̂ jσ +∑

iσ
Vi(d̂

†
iσ f̂σ +hc)+Un̂ f↑n̂ f↓+∑

σ

ε f f̂ †
σ f̂σ + ∑

σ1,σ2
∑

i, j,k,l
U (2)

i, j,k,l d̂
†
iσ1

d̂†
jσ2

d̂kσ2 d̂lσ1 (12)

We emphasize that this formalism can be extended further by the addition of higher order terms (e.g. if a three-rank tensor is251

introduced, the number of parameters scales at most as N6
b ) being limited only by the dimension of the Hilbert space. Therefore252

our method introduces a great advantage over the ED solver, where the number of fitting parameters scales only as N2
b , and253

therefore a larger number of bath sites is needed for the increase of the accuracy.254

Consistent with the previous section, we start from the definition of the free-electron propagator in Eq. 3, where the255

hybridisation to the bath is denoted as ∆(1) and includes a Green’s function for the bath G̃(1)
d which is interacting rather then256

being a free-electron propagator as in Eq. 8 (more details in the pseudocode Algorithm 1). We emphasise that in case of257

non correlated bath the number of poles in the hybridization scales linearly with Nb, while the inclusion of a correlated bath258

introduces an exponential scaling of the number of poles in the hybridization function with Nb. Notice that at this level of the259

theory, the self-energy of the impurity Σ f remains nought, and hence we have a fully local theory from the perspective of the260

impurity.261

We now turn to the case of non-zero correlation on the impurity where the interacting propagator on the bath G(2)
d is affected by262

the correlation in the impurity and a non-local part of the self-energy Σ f d between the impurity and the bath emerges.263

To better clarify the formalism introduced in Eq.(4) so far, we recall the Green’s function and the self-energy in their matrix264

form. Hence:265

GGG(iωn) =

(
Gf(iωn) GGGfd(iωn)
GGGdf(iωn) GGGd(iωn)

)
and ΣΣΣ(iωn) =

(
Σf(iωn) ΣΣΣfd(iωn)
ΣΣΣdf(iωn) ΣΣΣd(iωn)

)
(13)

Notice that to simplify the notation, the repeated indices are dropped. Therefore GGGdd = GGGd . A comparison with the matrices
defined in the case of non-correlated bath, provides further clarification on the consequences of introducing interactions in the
bath sites. The block of the self-energy matrix related to the bath has now an non-zero contribution by definition of our model.
A less trivial observation concern the off-diagonal terms which are non zero, due to the interaction leaked in the bonds between
impurity and bath sites. Therefore we can distinguish different contribution to the correlation energy, and in terms of Migdal
energy functional, it reads:

Etot
U =

2
β

∑
iωn

Tr
[
GGG↑(iωn)

(
ΣΣΣ
↑(iωn)−ΣΣΣ

↑(∞)
)]

+
2
β

Tr
(

ρρρ
↑
ΣΣΣ
↑(∞)

)
(14)

Ebath
U =

2
β

∑
iωn

Tr
[
GGG↑d(iωn)

(
ΣΣΣ
↑(iωn)−ΣΣΣ

↑(∞)
)

d

]
+

2
β

Tr
(

ρρρ
↑
dΣΣΣ
↑
d(∞)

)
(15)

E imp
U =

2
β

∑
iωn

G↑f (iωn)
(

Σ
↑
f (iωn)−Σ

↑
f (∞)

)
+

2
β

ρ
↑
f Σ
↑
f (∞) (16)

where ρ is the density matrix. Part of the correlation energy spills effectively on the bath44, leading to a correlation leakage
term, which is defined dynamically

zint
U (iωn) =

(
ΣΣΣ f d(iωn) ·GGG f d(iωn)

)2

|iωn|
(17)

and statically as a result of the average over matsubara frequencies:

E leakage
U =

2
ρ f

(
Etot

U −Ebath
U −E imp

U

)
(18)

The locality principle behind the DMFT equations can be recovered when the leakage potential δ∆(z) and leakage correlation
energy are small. We clarify that the leakage field Z̄ defined in Eq. 6 is Z̄ = E leakage

U R f /2. As the tuning of the bath propagator
allows for a very large set of parameters, these constraints can be successfully enforced via Lagrange parameters in the fit of the
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DMFT hybridization, to maximize the locality of the embedding, with a concomitant exponential improvement of the bath
discretization errors. To that end, the cost function of the minimization procedure is defined as:

d = ∑
iωn

|∆(1)−∆target |2 + |∆(2)−∆target |2 +α3|∆(1)−∆(2)|2

|iωn|α1
+λs|E leakage

U |+λd ∑
iωn

zint
U (iωn) (19)

where the parameters α1,α3,λd ,λs are properly tuned according to the case of study to improve the minimisation procedure266

and ∆target is the hybridisation of the continuous bath. We noticed that in most of the cases, the leakage field E leakage
U turns out267

to be naturally small. Indeed this follows from the constraint that |∆(1)−∆(2)| has to be minimal. Therefore the fitting process268

tries to reduce the leakage by construction. It is worth it to notice, however, that all the terms in the cost function are important269

to give more flexibility to the minimisation process and avoid it to get stuck into local minima. Moreover, the first and the270

last term allow to have a better control on the low frequencies contributions and increase the precision of the description of271

phenomena occurring at a low energy scale, e.g. Kondo physics.272

To ensures that the Migdal energy remains exact, we reabsorb the leakage field into a shift of the static part of the MLDE273

self-energy. This is an allowed procedure as it is known that in high dimension, or when a system is strongly correlated, the274

electron self-energy is well separable into a local dynamical part and a static non-local contribution43.275

To summarise, in the MLDE formalism, non-local correlations are introduced to enlarge the parameters for the fitting of276

the parameters. This represents an improvement over existent ED formalism , as the increased number of fitting parameters277

allow the use of less bath sites. The non-locality is kept small through a Lagrange parameter in the cost function. To recover278

consistency with MLDE, the leaked (non-local) correlated energy is reabsorbed in the impurity self-energy. More details on the279

different steps of the algorithm are shown in the pseudo-code (Algorithm 1) reported below.280

Algorithm 1 MLDE solver

inputs: ∆target ,ε f ,α,α3,λs,λd , U , Nb

Require: Uimp = 0
call solver: input: ∆target , output εεε(1),VVV (1),GGG(1)

ΣΣΣ
(1)← iωnIII− εεε(1)−

(
GGG(1)

)−1
(Dyson Equation)

G̃GG
(1)
d ← (iωnIII)−1− εεε

(1)
d −ΣΣΣ

(1)
d

∆∆∆
(1)←VVV (1)†G̃GG

(1)
d VVV (1)

d1← ∑n
|∆(1)−∆target |2
|iωn|α

Require: Uimp 6= 0
call solver: input: ∆target , output εεε(2),VVV (2),GGG(2)

ΣΣΣ
(2)← iωnIII− εεε(2)−

(
GGG(2)

)−1
(Dyson Equation)

ΣΣΣ
(2)
int ←−VVV (2)−ΣΣΣ

(2)
f d

G̃GG
(2)
d ←

(
−εεε

(2)
d −ΣΣΣ

(2)
d + iωnIII

)−1

∆∆∆
(2)← ΣΣΣ

(2)†
int G̃GG

(2)
d ΣΣΣ

(2)
int

compute Etot
U ,Ebath

U ,E imp
U and E leakage

U

d2← ∑n
|∆(2)−∆target |2
|iωn|α

d3← ∑n
|∆(2)−∆(1)|2
|iωn|α

d4← |E leakage
U |

d5← ∑iωn |z
int
U (iωn)|

d← d1 +d2 +α3d3 +d4λs +d5λd
Σ f ← Σ f +E leakage

U

MLDE error scaling281

As we stated previously, we find that in our calculations the non-local self energy contribution remains small. Additionally,282

we note that the non-local self energy vanishes in known limits of the theory: when the local impurity correlation is naught283
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(Uimp = 0), when the bath correlations are naught (Ub = 0)(Here for simplicity we denote as Ub the bath fictitious interactions),284

or when the impurity-bath coupling is naught (V = 0). In any of these limits, the non-local self energy vanishes and the MLDE285

distance measure is optimal. The first two cases are identical in nature, as they are mirror of each others, and both corresponds286

to the usual DMFT implementation where a correlated sub-system is embedded within a non-correlated one. We now turn the287

discussion to the case of small V coupling within MLDE. To address this scenario, we consider the smallest possible example288

system, where the local density of states of the impurity is identical in a free electron bath and in a correlated bath:289

• First system (with bath interactions): the impurity is connected to a single interacting bath orbital with local interaction290

Ub. The green’s function of the interacting bath has poles at −Ub/2 and Ub/2 (we stay at half-filling).291

• Second system (no bath interactions): the impurity is coupled to two non-interacting bath orbitals with energies292

−Ub/2, Ub/2293

In both cases, the local density of states of the bath is set to half-filling (see Extended Data Figure 3.a). In Fig. S1b, we294

report the MLDE scaling error as a function of leakage for different impurity to bath coupling V . As mentioned above and295

expected, for V = 0 MLDE is exact and the self energies of both approaches identical. Upon increasing V , we compare the296

self energies obtained by both methods, as MLDE is an approximation in this limit, and compare the error obtained in the self297

energy with the leakage spilling. As shown in Extended Data Figure 3.b, in this simple limit the MLDE error obtained in the298

self energy correlates with the leakage. This is an illustration of the scaling of the MLDE error in a simple known limit, near299

the limit where MLDE is exact (weak bath correlations or weak impurity-bath coupling).300

Benchmark in real frequency301

Previously, we preferred to benchmark the MLDE with ED and CTQMC, in the Matsubara formalism, rather than in real302

frequency. Indeed, the spectral functions are notoriously known for being a poor benchmark when using the continuous fraction303

method, used for the benchmark ED solver (as the number of bath sites is large, Lehmann representation of the GF is not304

achievable). In particular, reliable benchmarks can be obtained via the Keldysh formalism and Fourier transforming the time305

evolution to real frequency45, but require extensive computing resources for the large systems used as the benchmark. In this306

regard, we compared the spectral functions obtained by the MLDE for the Mott transitions with the one obtained by ED (see307

Extended Data Figure 4). However, a comparison in the real axis is less reliable due to the continuous fraction. Moreover, the308

ill-conditioned maxent approach prevents us from detailed comparison on the real axis between CTQMC and MLDE. Therefore,309

we have benchmarked the different solvers in the Matsubara formalism.310

Vertex calculations in MLDE311

In this section, we provide further insights on the application of MLDE to the calculation of two particle Green’s function
quantities. In particular, the dynamical susceptibility fermionic matrix is computed by inverting the Bethe-Salpeter Equation
(BSE)

χ(q, iΩn)(iνσ)(iν ′σ ′) = [(χ0(q, iΩn)
−1 +Γ

imp(iΩn)]
−1
(iνσ)(iν ′σ ′), (20)

where :

χ(q, iΩ)0
(iνσ)(iν ′σ ′) =−δiν iν ′δσσ ′∑

k
gkσ (iν)gk+q,σ ′(iν + iΩ), (21)

and Γimp is the impurity vertex obtained by inverting the BSE for the MLDE impurity problem. The impurity susceptibility
reads:

G(2)imp
(iνσ)(iν ′σ ′)(iΩ) =

∫
β

0
dτ1dτ2dτ3dτ4eiν(τ1−τ2)+iν ′(τ3−τ4)+iΩ(τ1−τ4)

〈
Tτ c†

σ (τ1)cσ (τ2)c
†
σ ′(τ3)cσ ′(τ4)

〉
(22)

χ
imp
(iνσ)(iν ′σ ′)(iΩ) = G(2)imp

(iνσ)(iν ′σ ′)(iΩ)−βδ0ΩG(iν)G(iν ′). (23)

In our work, we compute the two-particle response function G2 via the Lehman representation46, 47:

G(2)imp
iν iν ′ (iΩ) =

1
Z ∑

i jkl
∑
Π

Φ(Ei,E j,Ek,El ;ωΠ1 ,ωΠ2 ,ωΠ3)sign(Π)〈i|OΠ1 | j〉〈 j|OΠ2 |k〉
〈
k|OΠ3 |l

〉
〈l|cσ |i〉

(24)

Φ(Ei,E j,Ek,El ;ω1,ω2,ω3) =
∫

β

0
dτ1

∫
τ1

0
dτ2

∫
τ2

0
dτ3e−βEi+τ1(E j−Ei)+τ2(Ek−E j)+τ3(El−Ek)ei(ω1τ1+ω2τ2+ω3τ3), (25)
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where we have introduced the closure relation, and define O1 = cσ , O2 = c†
σ and O3 = cσ ′ . Ei are the eigenvalues of the MLDE312

hamiltonian, Π are the triplet permutations, and the summation holds over all states of the Hilbert space.313

The magnetic susceptibility is obtained as

χ
mag(q, iΩn) =

1
2 ∑

σ

χ(q, iΩn)(iν ,σ)(iν ′,σ)−χ(q, iΩn)(iν ,σ)(iν ′,−σ). (26)

In principle, the minimization of the single particle leakage does not guarantee the minimization of the leakage for the two314

particle irreducible vertex. For the case we have studied, even without imposing a constraint on the two particle leakage, the315

agreement with CTQMC is good. We propose here a diagrammatic argument to support our findings, in particular, that MLDE316

also provides a good estimate of higher order response functions.317

Firstly, the lowest order diagram contributing to the irreducible vertex is given by (see Ref.48):

Γ
(1)
abcd =Uabcd . (27)

Since in MLDE, there are no direct many-body interaction terms in the Hamiltonian between the impurity and the bath,
this diagram is equal to zero by construction for the cross term contribution. Furthermore, the MLDE non-local self-energy
connecting the bath and the impurity can be expressed in term of the reducible vertex49:

Σ(14) =−U(12′3′1′)G(1′4′)G(23′)G(2′3)F(4′234) (28)

where F is the reducible vertex, which is related to the irreducible vertex by the Bethe-Salpeter equation

F(1234) = Γ(1234)+Γ(122′3′)χ0(3′2′4′3′)F(3′4′34). (29)

Here we use the usual short-handed notations 1 = (τ1, l1,σ1) and assume sum over repeated indices. We now consider the318

case of Σ(14) corresponding to the non-local self-energy that connects the impurity to the bath degrees of freedom. When the319

left-hand side of Eq. 28 is minimized in MLDE (reduction of the one-particle leakage), it naturally imposes that F remains320

small (for non-local contributions). Moreover, we see from Eq. 29 that minimizing F also imposes a minimization of the321

non-local terms in Γ, that connects the impurity to the bath. In summary, when the non-local self-energy is minimal, MLDE322

provides a good approximation of the irreducible vertex used throughout to calculate the dynamical magnetic susceptibility.323

Finally, we emphasize that it is usually difficult to provide energy cutoffs on the low energy converged states of the324

Hamiltonian (typically in Lanczos or other iterative approaches), as the Boltzmann statistics only truncates one of the sums (on325

index i), whereas all eigenstates are required for the other summation. MLDE provides an ideal candidate for such calculations,326

as the number of bath sites can be kept small with very little cost in accuracy. We note indeed that the previous equation can327

be arranged to show a computational complexity growing with the cube of the number of eigenstates n, where n itself grows328

exponentially with the number of bath sites.329

MLDE for Kondo molecule330

The density of states (DOS) for different temperatures is shown in Extended Data Figure 6a. The fingerprint Kondo peak around
zero energy can be seen at low temperatures. We emphasize that this feature is notoriously hard to obtain when using an ED
solver as the formalism is affected by the small broadening factor needed to correctly capture this Kondo physics fingerprint.
The Kondo temperature can be obtained from the relation30, 31 obtained from perturbation theory, which reads

TK =−πZ
4

ℑ∆(iωn)|ωn→0 (30)

With the computed quasi-particle weight (Z = 0.026) and value of the hybridization in the limit of zero frequency (see Extended331

Data Figure 6.b), we obtain a Kondo temperature of T = 33.8 K, which is comparable with the experimental one at ≈ 37K24.332

We notice that temperature effect corrections to the Fermi liquid regime can be more easily studied in the Matsubara self-energy333

(see Extended Data Figure 6.b). In this representation, the quadratic behavior of the self-energy is apparent at low energy scales.334

DFT+DMFT for LaNiO2 : Extension of MLDE to multiorbital335

DFT+DMFT calculation is performed within Questaal package50. We used the local density approximation (LDA) functional336

with a k-mesh 10x10x10 points. The DMFT subspace is defined by the projection on Ni-d orbitals. The filled t2g manifold is337

treated at the Hartree Fock level, and the eg is treated using DMFT. In order to solve the Anderson impurity model composed338

of eg orbital, we use MLDE with 2 impurity sites and 3 sites in the bath. The comparison with an exact solver is done using339
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CTQMC solver in TRIQS Package51. The interaction between the 2 eg orbitals is given by the rotationally invariant Slater340

Hamiltonian341

Hint =
1
2 ∑

i jlk,σσ ′
Ui jklc

†
iσ c†

jσ ′ckσ ′clσ (31)

The tensor Ui jkl is given in term of Slater integral

Ui jkl =
2

∑
k=0

α
i jlk
k F2k (32)

Where α
i jlk
k are the Racah-Wigner numbers and Fk are the Slater integrals.342

In the literature, we often use the parameter corresponding to the Hubbard interaction U and Hund’s coupling J to express343

Fk with the relations344

U = F0 (33)

J =
F2 +F4

14
(34)

F4

F2 = 10/16 (35)

In this letter, we use the parameters U = 7 and J = 1 as suggested in35.345

MLDE quantum computing algorithm346

In this section, we present a quantum algorithm to run MLDE on noisy intermediate-scale quantum (NISQ) computers. We347

perform a Jordan-Wigner (JW) transformation38 to map the MLDE Hamiltionian (Eq. 12) to a qubit representation. After348

the transformation, the Hamiltonian is in the form of a linear combination of Pauli tensors. With the JW transformation, the349

required number of qubits is two times the number of sites in the system, the factor two being due to spin.350

To compute the Green’s function, we use a variational quantum eigensolver (VQE) based approach as presented in36 since
it is rather resilient to noise. The quality of the quantum computing solution corresponds largely to the ability of the quantum
circuit to represent the eigenstates of H, and hence obtain accurate energies and amplitudes of the peaks in the Green’s function.
One, therefore, needs a state preparation ansatz able to accurately represent the ground state as well as the excited states with
one electron added or removed36. For the results presented in the Results section, we use a so-called Hamiltonian variational
ansatz (HVA)52 to represent the eigenstates of H. Note that we obtain a similar accuracy also with different types of circuit
ansatz, such as a so-called hardware efficient ansatz53. A general quantum state |ψ(θθθ)〉 is prepared with a circuit ansatz as
|ψθθθ〉= Û(θθθ) |0〉, where |0〉 is the initial state corresponding to all qubits set to the zero state, and Û(θθθ) is the unitary generated
by the state preparation quantum circuit. Here θθθ is a vector of parameters, which determine the specific state generated by the
unitary. For the HVA U(θθθ) has the form

Û(θθθ) =

nlayers

∏
k

∏
j

e−iθ k
j P̂j (36)

where Pj is a Pauli tensor in H after JW transformation and θ k
j a real-valued parameter. The multiplication over j goes over351

all Pauli terms in the Hamiltonian. The ansatz corresponds to nlayers repetitions of individual blocks. In a given block, each352

Pauli tensor term in H, Pj, is included in the ansatz as imaginary exponentiation with the parameter θ k
j , which can be readily353

implemented on a quantum computer52. The accuracy of the ansatz generally improves with increasing nlayers. We verified that354

for the system considered in the section MLDE on a quantum computer, nlayesr = 2 gives good accuracy.355

To obtain the state preparation circuit parameters for the ground state, we minimize the cost function corresponding to the
ground state energy

EGS = minθθθ E(θθθ) = minθθθ 〈ψ(θθθ)|H|ψ(θθθ)〉 . (37)

To obtain the state preparation circuit parameters for the excited states there are several possibilities54–56. Here we use the
method proposed in55, where a penalty term is added to the Hamiltonian to impose orthogonality of each excited state to the
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lower energy states. To calculate the lth excited state, |ψl〉= |ψ(θθθ l)〉, with energy El , one therefore minimises

El = minθθθ

[
〈ψ(θθθ)|H|ψ(θθθ)〉+

l−1

∑
j=0

α j
〈
ψ j|ψ(θθθ)

〉2

]
. (38)

Here the positive-valued α j are arbitrary parameters, set in a way to optimize the convergence of the algorithm. Once all356

required state preparation parameters θθθ l are computed, the Green’s function is obtained using the Lehman representation, and357

with it, the self-energy36.358
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Figure 1. From AIM to MLDE. (a) Mapping of the lattice model (with inter-site hopping parameter t and on-site correlation
U) onto a local impurity model, with a correlated atom (pink sphere) embedded in a non-interacting bath (blue shaded area)
with energy ε as for the Anderson impurity model (AIM). The four possible configurations describe the quantum evolution of
the atom. Electrons may hop from the atom to the bath via the frequency dependent hybridization function ∆(ω), which plays
the role of a dynamical mean field. b) Discretization of the continuum bath in non-interacting bath sites coupled to the
interacting impurity through the hopping function Vi. This is the picture related to the ED impurity solver. c) Cartoon related to
the Maximally Localised Dynamical Embedding (MLDE) solver where an interacting impurity is coupled to interacting bath
sites.
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Figure 2. MLDE benchmark and application on quantum computer. (a) Imaginary and (b) real part of the MLDE with
Nb = 3 self-energy (dashed lines) obtained from on-site correlation U in range 2−15 for a test hybridisation function for a
half-filled impurity (units are arbitrary) and compared with continuous time Monte Carlo (continuous line). The scales are in
arbitrary units. c) Quasi-particle weight obtained by MLDE with Nb = 2 and Nb = 3 compared to the continuous time Monte
Carlo. The scales are in arbitrary units. d) Imaginary part of the self-energy as function of the Matsubara frequencies for the
MLDE system presented in panel (b) and U = 6 (Nb = 2), computed using the quantum computing algorithm (“MLDE-VQE”,
blue solid curve), and compared to the results obtained with the conventional computing algorithm (“MLDE-exact”, red dashed
curves). ℑm and ℜe stand respectively for the imaginary and real part of the complex functions. The latter notations are used
throughout the manuscript.

Figure 3. Kondo physics. (a) TOV organic molecule deposited on a gold substrate at T = 5K. (b) Imaginary parts of the
molecule’s hybridisation function (AIM), represented by MLDE ∆1,2(iωn), and as obtained by the ED solver with Nb = 12. (c)
Imaginary part of the self-energy obtained by MLDE (squares) and ED (triangles). (d) Imaginary part of the self-energy in real
axis frequencies obtained with MLDE and ED. (e) The inset shows the time dynamics of the magnetically quenched system, at
a temperature T = 100K (T = 20K) above (below) the Kondo temperature (TK ≈ 37K). The main panel outlines the Fourier
transform of the dynamics at T = 100K showing a peak at ω = 0.0029eV (= 33.64 K).

Figure 4. Mott transition. (a) Spectral function obtained for the square lattice Hubbard model solved by MLDE (Nb = 3 for
all calculations) with increasing values of the on-site dimensionless correlation ratio U/t. (b) Imaginary part of the self-energy
obtained for U/t = 12 at different MLDE iteration of the self-consistent cycle compared with CQMC solutions. (c) Converged
imaginary part of the MLDE Green’s function for different values of U/t (symbols) compared with the DMFT CTQMC
solution (dashed lines).

Figure 5. Dynamical susceptibility. Momentum resolved spin susceptibility obtained by Bethe Salpeter with the vertex
calculated with MLDE in the Hubbard model with U/t = 12, at increasing temperature T/t = 0.025 (a), T/t = 1 (b), T/t = 10
(c). d) Magnetic susceptibility χ and e) irreducible vertex Γ resolved in fermionic frequency iν obtained by MLDE (continuous
line) and compared with the exact vertex (dashed line) at temperature T/t = 0.025 and U/t = 6.

Figure 6. MLDE multiorbital correlated LaNiO3: Self energy of the first iteration of the self-consistent DMFT loop (panel
a) and the Green’s function for the final iteration (panel b) for the eg orbitals of the Ni ion in the LaNiO3 (dz2 in red and dx2−y2

in blue). In both case, we compare the quantities obtained with MLDE with 3 sites in the bath (solid line) with the quantities
obtained with CTQMC (dashed line).
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