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Joint Source-Channel Coding for Semantics-Aware
Grant-Free Radio Access in IoT Fog Networks

Johannes Dommel, Zoran Utkovski, Osvaldo Simeone and Sławomir Stańczak

Abstract—A fog-radio access network (F-RAN) architecture is
studied for an Internet-of-Things (IoT) system in which wireless
sensors monitor a number of multi-valued events and transmit
in the uplink using grant-free random access to multiple edge
nodes (ENs). Each EN is connected to a central processor (CP)
via a finite-capacity fronthaul link. In contrast to conventional
information-agnostic protocols based on separate source-channel
(SSC) coding, where each device uses a separate codebook, this
paper considers an information-centric approach based on joint
source-channel (JSC) coding via a non-orthogonal generalization
of type-based multiple access (TBMA). By leveraging the seman-
tics of the observed signals, all sensors measuring the same event
share the same codebook (with non-orthogonal codewords), and
all such sensors making the same local estimate of the event
transmit the same codeword. The F-RAN architecture directly
detects the events’ values without first performing individual
decoding for each device. Cloud and edge detection schemes
based on Bayesian message passing are designed and trade-offs
between cloud and edge processing are assessed.

Index Terms—approximate message passing, fog-radio access
network, random access, type-based multiple access, semantic
communications.

I. INTRODUCTION

DUE to the growing interest in Internet-of-Things (IoT)
applications, there has been an intense research effort

on massive machine-type communications (mMTC) for 5G
networks and beyond [1]–[3]. In these networks, standard
medium access control protocols that recover the individual
messages of participating devices require spectral resources
that scale at least linearly with the number of active users
[4]–[7]. This paper proposes the integration of two distinct
mechanisms that aim at reducing the communication overhead,
namely (i) the use of cloud and edge processing in fog-radio
access networks (F-RANs) [8]; and (ii) the application of
semantics-aware medium access protocols that are designed
to recover the aggregated information of interest rather than
the individual messages (see, e.g., [9], [10]). To elaborate, we
consider a multi-cell F-RAN architecture [8], as illustrated
in Fig. 1, where IoT devices are connected to edge nodes
(ENs) in a cell-free fashion. Each EN is connected via a
finite-capacity fronthaul link to a central processor (CP). In
the system under study, multiple IoT sensor devices measure
correlated events and transmit messages in a grant-free fashion
via wireless channels to the ENs. The events may be inactive,
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Fig. 1. A wireless fog-radio access network (F-RAN) for event driven random
access: a set of sensors K monitors jointly M independent events, with each
event m being either inactive (ξm = 0) or active with an associated scalar
state value ξm ∈ {1, ..., R}. Each sensor k ∈ Km ⊂ K measuring an active
event m ∈ Mk transmits a message to L edge nodes (ENs) over a wireless
fading channel. The ENs are connected via capacity-limited fronthaul links
of capacity B1, . . . , BL to a central processor (CP) for joint decoding and
estimation of the events values ξ̂ = [ξ̂1 . . . ξ̂M ].

and functions of multiple IoT sensors’ measurements, rather
than individual measurements, are of interest to the receiver.
In information-theoretic terms, the problem is thus not one
of channel coding in a multiple-access channel (MAC) for
reliable communication of individual messages, but rather that
of joint source-channel (JSC) coding for effective inference of
correlated quantities of interest (QoIs).

Related work: A notable instance of information-centric MAC
protocols is type-based multiple access (TBMA) [11]. With
TBMA, each measurement value for a given QoI is assigned
an orthogonal codeword, and the receiver infers the desired
QoI from a histogram at the outputs of a filter-bank matched to
the codewords [11]–[13]. A potentially more efficient solution
based on a non-orthogonal generalization of TBMA has been
proposed in [14]. Accordingly, all sensors measuring the same
event share the same codebook with non-orthogonal code-
words, and the base station directly detects the events’ values
using a Bayesian message passing technique. Recently, TBMA
has been extended to multi-cell F-RANs for IoT applications
under centralized or decentralized decoding in [15].

Contribution: In this paper, we study the integration of cloud
detection in F-RAN with grant-free transmission based on
the semantics-aware non-orthogonal TBMA protocol [14]. In
the proposed approach, detection is performed in a central-
ized fashion in the cloud based on either detect-and-forward
(DtF) [16] or quantize-and-forward (QF) utilizing capacity
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limited fronthaul links. We design DtF and QF schemes based
on Bayesian message passing by leveraging the hybrid general-
ized approximate message passing (H-GAMP) algorithm [17].
Finally, we numerically evaluate the relative performance of
the proposed DtF and QF schemes under capacity-constrained
fronthaul.

II. EVENT-BASED RANDOM ACCESS FOR FOG-IOT:
SYSTEM MODEL AND CODING SCHEME

Scenario: We consider an F-RAN IoT architecture consisting
of a set L of L ENs, each connected to a CP unit via a
capacity constrained fronthaul link, as illustrated in Fig. 1.
In this scenario, a set K of K devices jointly monitor a set
M of M multi-valued events. Each event m is characterized
by an independent scalar random variable ξm ∈ {0, 1, . . . , R},
with Pξ(ξm = 0) = 1 − ρ for some 0 ≤ ρ ≤ 1 representing
the probability that event m is inactive. When the event is
active, the event variable ξm takes one of the values in the
set {1, . . . , R}, so that parameter R (or, more properly, its
logarithm) measures the amount of information attached to
the occurrence of an event. Each device k can simultaneously
monitor a subset of events Mk ⊆ {1, ...,M}. Therefore,
the devices can be partitioned into M , generally overlapping,
groups Km = {k ∈ {1, ...,K} :Mk 3 m}.
Coding scheme: Each device k performs a local (real-
valued) measurement uk, which is, in general, correlated
with all the variables ξm for m ∈ Mk. For each event
m ∈ Mk, the local measurement uk is mapped to a
value φm(uk) ∈ {0, 1, . . . , R}, which is the local estimate
of event m. For transmission, each local estimate φm(uk)
is mapped by device k into a codeword smφm(uk)

∈ CN×1,
subject to a power constraint ‖smφm(uk)

‖22 ≤ 1. The code-
words for each event m are selected from a shared code-
book Sm = [sm0 . . . smR ] ∈ CN×(R+1) of R+1 generally non-
orthogonal codewords (columns). For future reference, we
define S = [S1 . . .SM ] ∈ CN×M(R+1) to be a matrix that
collects all codebooks.

Channel model: We assume time synchronization and trans-
mission over a block-fading channel model with coherence
time–frequency span no smaller than that occupied by the
codewords’ duration. The signal received at EN c can be
written as

yc =
∑
k∈K

hck
∑

m∈Mk

smφm(uk)
+ vc, (1)

where hck denote the fading coefficient for the link between
device k and EN c, which is assumed to be identical and
independent distributed (i.i.d.) ∼ CN (0, σ2

h), and vc ∈ CN×1

the additive noise vector with elements i.i.d. ∼ CN (0, σ2
v).

To obtain a matrix notation, we define for each device k the
binary measurement vector

ck = [(c1k)
T . . . (cMk )T ]T ∈ {0, 1}M(R+1)×1, (2)

with

cmk =

{
eφm(uk) if m ∈Mk

e0 otherwise,
(3)

where er is an R+1-dimensional binary vector with a single
non-zero-entry at the (r + 1)-th position.1

With this definition, the received signal (1) at EN c can be
described in matrix-notation as Sxc + vc with

xc =
(
hc ⊗ IM(R+1)

)T
c, (4)

where hc = [hc1 . . . h
c
K ]T is the vector of channel coefficients;

⊗ the Kronnecker product; IM(R+1) the identity matrix of
size M(R + 1) and c = [cT1 . . . c

T
K ]T the stacked vector of

measurements. Note, that xc is a (sparse) Bernoulli-Gaussian
vector, where each non-zero element constitutes the superpo-
sition of complex-normal fading coefficients.

Fronhthaul constraint: We assume a packetized fronthaul
transmission, e.g., via Ethernet, by considering a limited
overall number of bits Bc that each EN c can communicate
error-free to the CP per fronthaul use.

Error probability: The CP aims at estimating the state of
each event ξ̂ = [ξ̂1 . . . ξ̂M ], where the average (per event) error
probability is defined as

Pe
.
=

1

M

∑
m∈M

Pr
{
ξm 6= ξ̂m

}
. (5)

We note that the outlined MAC protocol can be considered as
a generalization of TBMA [11], given that the latter assumes
a single event, i.e. M .

= 1, and the use of R + 1 orthogonal
codewords of length N ≥ R+ 1.

III. F-RAN PROCESSING WITH LIMITED FRONTHAUL
CAPACITY

In this section, we introduce a Bayesian decoder based
on generalized approximate message passing (GAMP). The
proposed approach extends the decoder introduced in [14]
from single EN-detection to the F-RAN architecture discussed
in Section II. We derive a graphical model and develop
two fronthaul processing schemes: (i) DtF, whereby each
EN produces local estimates and forwards quantized soft-
information to the CP; and (ii) QF, whereby each EN directly
forwards a quantized version of the received signal to the CP.

Graphical Model: The relation between the involved random
variables, i.e. the (input) x = [(x1)T . . . (xL)T ]T , the (output)
observations y = [(y1)T . . . (yL)T ]T and the (hidden) vari-
ables ξ can be described at the CP via a graphical model,
where the input x depends on ξ ∼ Pξ via the mapping (2)-(3),
which we denote as pxc|ξ. The output y is generated subject
to the conditional probability distribution function (pdf) py|z
capturing the effect of the additive white Gaussian noise,
where z = [(z1)T . . . (zL)T ]T is the output of a (dense) linear
mixing Ax with A = IL⊗S. According to our transmission
scheme, the i-th element of zc is defined as zci = (aci )

Txc with
aci being the i-th row of Ac = S, which is the c-th block of
A. In the following, we adopt the graphical model for QF and
DtF considering a limited fronthaul capacity.

1ck can be interpreted as a one-hot encoding of all estimates at device k.
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A. Quantize-and-Forward

With QF, each EN c ∈ L forwards a quantized version
of the received symbols ỹc = Qc(yc) via the fronthaul link,
and the CP uses ỹ = [(ỹ1)T . . . (ỹL)T ]T to carry out joint
decoding. The impact of the fronthaul quantization can be
modeled as Gaussian test channel [18], such that (1) received
via the c-th fronthaul link from EN c at the CP can be written
as ỹc = yc + qc where qc ∈ CN×1 represents the quantization
noise vector with elements being i.i.d. CN (0, σ2

qc) [19]. Fol-
lowing rate-distortion arguments [20], σ2

qc is upper bounded
as P

2Cc−1 , with P being the signal power and Cc = Bc/N the
fronthaul rate in bit per complex sample.

ξ1

Pξ(ξ1)

...

ξM

Pξ(ξM )

px1|ξ(x
1|ξ)

x1

x2

px2|ξ(x
2|ξ)

x3

px3|ξ(x
3|ξ)

...

xL

pxL|ξ(x
L|ξ)

ỹ1

pỹ|z(ỹ
1|z1)

z1

ỹ2

pỹ|z(ỹ
2|z2)

z2

ỹ3

pỹ|z(ỹ
3|z3)

z3

...

ỹL

pỹ|z(ỹ
L|zL)

zL

A

Fig. 2. Factor graph representation of the fog-radio access network (F-RAN)
system under study with quantize-and-forward (QF).

By the factor graph representation, see Fig. 2, the joint pdf
pξ,x,ỹ of the triple (ξ,x, ỹ) factorizes as

M∏
m=1

Pξ(ξm)

LM(R+1)∏
j=1

px|ξ(xj |ξm)

LN∏
i=1

pỹ|z(ỹi|zi), (6)

where the conditional pdf pỹ|z captures the effect of the
receiver- and quantization noise.
Given the factorization (6), the detector at the CP aims at
computing the posterior distribution pξ|ỹ(ξ|ỹ) of the events’
state vector ξ given the quantized observation vector ỹ. With
QF, the relation between the structured sparsity introduced
by the hidden variables ξ on the input variables x, can be
exploited using the H-GAMP algorithm [17], which provides
an efficient solution with desirable empirical performance for
group sparsity problems with overlapping groups. H-GAMP
operates by iteratively exchanging soft information between
two modules: the first carries out standard GAMP by treating
the entries of the vector x as independent, while the second
refines the output of the first by leveraging the correlation
structure of the entries of vector x. With the posterior dis-
tribution, the CP calculates for each event the log-likelihood
ratios (LLRs)

lm,r = ln

(
pξ|ỹ(ξm = r|ỹ)
pξ|ỹ(ξm = 0|ỹ)

)
, (7)

associated with the belief that event m is active with value
r ∈ [R]. The estimator then selects the decisions for ξ̂m as

ξ̂m =

0 if lm,r < lthm,r, ∀r ∈ [R]

arg max
r∈[R]

lm,r otherwise. (8)

The thresholds lthm,r can be selected, e.g., to minimize the
Bayesian risk [21] that included individual costs for false-
alarm (false positive) and missed-detection (false negative).

B. Detect-and-Forward

With DtF, each EN c ∈ L performs local detection and
forwards quantized soft-information to the CP. The CP then
fuses the local decisions to obtain the final estimates for each
event. For detection at each EN c, the joint pdf pξ,xc,yc(·, ·, ·)
of the triple (ξ,xc,yc) factorizes as

M∏
m=1

Pξ(ξm)

M(R+1)∏
j=1

pxc|ξ(x
c
j |ξm)

N∏
i=1

pyc|z(y
c
i |zci ). (9)

Using (9), the local detector at EN c aims at computing the
posterior distribution pξ|yc(ξ|yc) of the events’ state vector ξ
given the local observation yc. This can be done by applying
the standard GAMP operating on Ac = S.
Given the posterior distribution, each EN c ∈ L computes the
local LLRs for all r ∈ [R] and m ∈M as

lcm,r = ln

(
pξ|yc(ξm = r|yc)
pξ|yc(ξm = 0|yc)

)
, (10)

associated with the (local) belief at EN c, that the event
variable ξm is active with value r. For transmission over the
capacity-constraint fronthaul, each EN c applies a quantization
function x̃ = Uc(x), to the LLRs (10) according to the
fronthaul bit-budget of Bc/M bit per event for all m ∈ M.
At the CP, the beliefs are reconstructed and merged to obtain

l̃m,r =
∑
c∈L

l̃cm,r, r ∈ [R], (11)

which is associated with the (global) belief that the event
variable ξm is active with value r ∈ [R]. Finally, the CP
estimates the event activity variable by comparing (11) against
thresholds, c.f. (8). We note that in the case of DtF, an optimal
compression performance can be achieved by using an entropy
quantizer operating on the MR-dimensional vector of LLRs.

IV. NUMERICAL RESULTS

We assume a dense network with K = 80 devices observing
in total M = 8 events with R = 4 values in an F-RAN
deployment with L = 4 ENs and fronthaul bit budget Bc = B,
for all fronthaul links between the ENs c ∈ L and the
CP. Each event has an activation probability ρ = 0.1 and
the devices are configured such that each individual device
observes only one of the events and that the total number
of devices is partitioned into M non-overlapping sets {Km},
each of cardinality 10. The variance of the channel coefficients,
which we recall are unknown to the transmitter devices and
the receiver, is set to σ2

h = 1. To increase the energy efficiency,
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each device k is configured for transmission, only if the locally
observed event m ∈ Mk is active, i.e., if φm(uk) > 0. The
signatures of the shared codebook S of length N are generated
randomly with entries being i.i.d. ∼ CN (0, 1/N). We note that
the convergence of approximate message passing (AMP) for
this codebook has been studied rigorously in the asymptotic
limit [17]. The average signal-to-noise ratio (SNR) is defined
per user as SNR .

= 1/σ2
v . For DtF, only the LLRs associated

with the non-zero entries of the estimated event activity pattern
are quantized and forwarded to the CP. The threshold for
DtF and QF is chosen to minimize the error probability Pe,
according to (5).
The impact of fronthaul quantization on the error rate Pe is
plotted in Fig. 3 as a function of the SNR for both fronthaul
processing schemes under different fronthaul bit budgets. DtF
is seen to outperform QF in the regime of high SNR, with
crossing point occurring at lower SNR levels for a small
fronthaul budget. This is because, with a sufficiently large SNR
and small enough fronthaul capacity, the potential advantages
of centralized detection at the CP are offset by the fronthaul
quantization noise, and local detection is preferable.

0 1 2 3 4 5 6 7 8 9
SNR [dB]

10−5

10−4

10−3

10−2

10−1

P e

DtF: B = 32 bit
DtF: B = 64 bit
QF: B = 32 bit
QF: B = 64 bit
QF: B→ ∞

Fig. 3. Error rate versus SNR for F-RAN deployment with L = 4 ENs,
signature length N = 16, and limited fronthaul capacity B.

The comparison depends also on the length N of the signature.
To elaborate on this point, Fig. 4 plots the SNR required to
meet a predefined reliability target Pe ≤ 10−3 as a function
of the fronthaul bit budget B and the signature length N . As
discussed, QF is preferable only at sufficiently large fronthaul
capacity levels, and the required fronthaul capacity increases
with the signature length N . In fact, for QF, in the presence of
stringent fronthaul constraints, it is beneficial to trade signature
length for quantization precision.

Finally, in Fig. 5 we analyze the trade-off between false
positive rate, PFP

.
= 1

M

∑M
m=1 Pr{ξ̂m 6= 0|ξm = 0}, and

false negative rate, PFN
.
= 1

M

∑M
m=1 Pr{ξ̂m = 0|ξm 6= 0},

obtained by varying the decision threshold. In line with the
discussion so far, QF is seen to provide significant advantages
when the fronthaul capacity B is sufficiently large. In contrast,
the fronthaul requirement of DtF are more modest, but the
performance of DtF is constrained by the limitations of local
detection.

32 48 64 80
B [bit]

2

4

6

8

10

12

SN
R

[d
B]

DtF: N = 16
QF: N = 16
DtF: N = 32
QF: N = 32
QF: N = 16, B→ ∞
QF: N = 32, B→ ∞

Fig. 4. Required SNR to achieve a target reliability Pe ≤ 10−3 as a function
of the fronthaul link budget B and signature length N .

10−3 10−2 10−1 100

False Negative Rate (PFN)

10−3
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10−1

Fa
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si
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ve
R

at
e

(P
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)

QF

DtF
B = 48 bit
B = 800 bit

Fig. 5. Trade-off between false positive and false negative rates for different
decision thresholds for N = 32 and SNR = 0 dB.

V. CONCLUSIONS

This paper has introduced a semantics-aware protocol for
event-driven grant-free access in IoT F-RANs with fronthaul
capacity constraints. The protocol adopts a joint source-
channel coding scheme, based on a non-orthogonal generaliza-
tion of TBMA, that directly detects the quantities of interest
and yields spectral requirements that scale with the number of
events to be monitored rather than with the number of devices.
The power and spectral requirements are further improved
through integration with cloud- and edge detection based on
Bayesian message passing. We have evaluated numerically the
relative performances of edge-cloud processing based on DtF
and QF, and assessed the trade-offs between the codeword
length, the fronthaul capacity and the required SNR, given a
predefined reliability target. A general observation is that DtF
outperforms QF in the presence of stringent fronthaul con-
straints, with the effect being more pronounced for higher SNR
values. In this operational regime, the potential advantages
of centralized detection at the CP are offset by the fronthaul
quantization noise, and local detection is preferable. Further,
in line with [14] we conclude that the proposed scheme
offers a significantly higher spectral efficiency as compared
to conventional TBMA by exploiting (i) sparse activation and
(ii) structural dependencies between the variables for L > 1.
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