

King’s Research Portal

DOI:
10.1007/978-3-319-31447-1_3

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Herd, B. C., Miles, S., McBurney, P. J., & Luck, M. M. (2016). MC2MABS: A Monte Carlo Model Checker for
Multiagent-based Simulations. In Multi-Agent-Based Simulation XVI: Proceedings of the Sixteenth International
Workshop on Multi-Agent-Based Simulation (MABS 2015) (Vol. 9586, pp. 37-54). (Lecture Notes in Computer
Science). Springer. https://doi.org/10.1007/978-3-319-31447-1_3

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 14. Oct. 2023

https://doi.org/10.1007/978-3-319-31447-1_3
https://kclpure.kcl.ac.uk/portal/en/publications/0e4d6264-ffcc-4b34-bad5-307420d7610d
https://doi.org/10.1007/978-3-319-31447-1_3

MC2MABS: A Monte Carlo Model Checker for
Multiagent-based Simulations

Benjamin Herd, Simon Miles, Peter McBurney, and Michael Luck

Department of Informatics, King’s College London, United Kingdom

Abstract. Agent-based simulation has shown great success for the study of com-
plex adaptive systems and could in many areas show advantages over traditional
analytical methods. Due to their internal complexity, however, agent-based sim-
ulations are notoriously difficult to verify and validate.
This paper presents MC2MABS, a Monte Carlo Model Checker for Multiagent-
Based Simulations. It incorporates the idea of statistical runtime verification, a
combination of statistical model checking and runtime verification, and is tailored
to the approximate verification of complex agent-based simulations. We provide
a description of the underlying theory together with design decisions, an archi-
tectural overview, and implementation details. The performance of MC2MABS in
terms of both runtime consumption and memory allocation is evaluated against a
set of example properties.

Keywords: agent-based simulation, verification, formal methods, testing

1 Introduction

Agent-based simulation (ABS) is rapidly emerging as a popular paradigm for the simu-
lation of complex systems that exhibit a significant amount of non-linear and emergent
behaviour [28]. It uses populations of interacting, heterogeneous and often adaptive
agents to model and simulate various phenomena that arise from the dynamics of the
underlying complex systems. Although social science has been its traditional domain,
ABS is also increasingly being used for the analysis of complex (socio-)technical, of-
ten also safety-critical systems in areas such as avionics [5], the design and analysis of
robot and UAV swarms [30], and increasingly also the Internet of Things [17].

In that context, and similar to other software systems, correctness plays a central
role and questions of quality assurance become increasingly important. It is common to
distinguish between verification and validation. Whereas the former is targeted towards
a system’s correctness with respect to its specification (i.e. its correct implementation),
the latter ensures a sufficient level of accuracy with respect to the intended application
domain. In the context of modelling and simulation, the distinction between verification
and validation becomes more complicated; it can thus be more useful to talk about
internal and external validation instead [34, 4].

With their ability to produce complex, emergent behaviour from the action and inter-
action of its components, ABSs are notoriously difficult to understand and to engineer.
In the multiagent systems community, formal and semi-formal verification approaches
(both qualitative and quantitative) have shown great power. Methods and tools for the

2 MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations

verification of ABS in particular, however, are still largely missing. With potentially
large populations, different observational levels, heterogeneity, a strong focus on emer-
gent behaviours, and a significant amount of randomness, ABSs possess a range of
characteristics which, in their combination, represent a great challenge for verification.

In this paper, we present our research efforts on the ABS verification problem and
introduce MC2MABS— the Monte-Carlo Model Checker for Multiagent-Based Simu-
lations — a prototypical statistical runtime verification approach and framework for
complex agent-based simulation models. We start with a motivational example from
the area of swarm robotics in Section 2. An overview of related work and some the-
oretical background on statistical model checking and runtime verification is given in
Sections 3 and 4. The framework itself is described in Section 5, followed by a brief
performance evaluation w.r.t. both runtime and memory consumption in Section 5.3.
The paper concludes with a summary and ideas for future work.

2 Motivational example: collective behaviour in swarm robotics

In order to motivate the usefulness of verification for the analysis of agent-based simu-
lation models, we introduce a small scenario from the area of swarm robotics. Although
purely formal approaches for the analysis of swarm robotic models have shown to be
useful [19, 23], they are not always applicable. For example, in order to be analytically
tractable, purely formal approaches typically pose strong homogeneity assumptions
upon the individual agents. This is appropriate as long as details of the environment,
particular interactions, and individual differences (e.g. w.r.t. faulty behaviour) are ir-
relevant for the analysis. However, many emergent phenomena only become apparent
if interaction, heterogeneity, and locality are taken into account. In this case, formal
analysis may become intractable and the only way to investigate the dynamics of the
scenario is simulation.

We focus here on swarm foraging, a problem which has been widely discussed in
the literature on cooperative robotics [7]. Foraging describes the process of a group
of robots searching for food items, each of which delivers energy. Individual robots
strive to minimise their energy consumption whilst searching in order to maximise the
overall energy intake. The study of foraging is important because it represents a general
metaphor to describe a broad range of (often critical) collaborative tasks such as waste
retrieval, harvesting or search-and-rescue. A good overview of multirobot foraging has
been given by Cao et al. [7]. In a foraging scenario, robots move through the space and
search for food items. Once an item has been detected within the robot’s field of vision,
it is brought back to the nest and deposited which delivers a certain amount of energy
to the robot. Each action that the robot performs also consumes a certain amount of
energy. The overall swarm energy is the sum of the individual energy levels.

A designer’s main challenge is to tune the parameters of the individual agents such
that the swarm as a whole is able to self-organise efficiently, i.e. to adapt to environmen-
tal circumstances such as food density. Since there is no central control, adaptation has
to emerge from the agents’ local actions and interactions. Due to the irreducibility of
emergent phenomena, designing a distributed algorithm with a particular emergent be-
haviour in mind can be highly non-trivial. Interesting mechanisms have been presented

MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations 3

by Liu et al. [24]. Here, agents adapt their behaviour according to three cues: (i) inter-
nal cues (personal success in retrieving food), (ii) environmental cues (collisions with
teammates while searching for food), and (iii) social cues (teammate success in food
retrieval). Depending on those influences, agents increase or decrease their searching
and resting times with the goal of achieving an optimal collective division of labour.

ABS represents a powerful approach to study the dynamics of a distributed swarm
algorithm. However, tuning the individual parameters such that the overall emergent
behaviour is optimal can be hard. Verification — both qualitative and quantitative —
can be of great help during the design process. As a starting point, one could, for exam-
ple, formulate and verify the following qualitative safety property upon the simulation
model: “the swarm must never run out of energy” (formally: ¬ F(energy ≤ 0)). Al-
though useful, such a pure macro-level criterion is rarely sufficient since, despite the
whole swarm always having enough energy, individual agents may still run out. In or-
der to solve this problem, a more fine-grained, quantified criterion may be formulated.
Rather than stating that the swarm as a whole must never run out of energy, one may,
for example, stipulate that “no individual agent must ever run out of energy” (formally:
∀ a • ¬ F(energya ≤ 0)). Checking this criterion would catch those cases in which
individual agents run out of energy, but one would still not know (i) how many of them
do, and (ii) why this is the case.

In addition to conventional qualitative safety and liveness checking which provides
clear yes/no answers but little explanatory insights, quantitative analysis may help to
shed further light on the dynamics of the system. In addition to the two safety criteria
above, it may, for example, be useful to answer the following questions.

– What is the avg./min./max. probability of an agent running out of energy?
– What fraction of time does an agent spend homing/resting/etc.?
– What fraction of time does an agent spend transitioning, e.g. from depositing to

resting? (= overall probability of recharging)
– How likely is an agent to transition
• from searching to grabbing? (= probability of finding food)
• from grabbing to depositing? (= probability of losing out on food)

– What is the correlation between an agent’s type and its probability of doing sth.?

Summarising the example above, we believe that a verification approach for ABS
needs to satisfy the following requirements.

Efficiency: the approach should allow for the verification of complex simulation mod-
els in a timely manner. Due to the highly iterative nature of the modelling process,
a user should be able to choose between a high level of accuracy at the expense of
verification time and a lower level of accuracy but quicker results.

Expressivity: properties need to be formulable in a formal, unambiguous way and ver-
ifiable on different levels of observation: individual agents, groups of agents, as
well as the whole population. Furthermore, the approach should allow for the veri-
fication of both qualitative and quantitative properties.

Flexibility: due to the sensitivity of complex systems to local differences and environ-
mental conditions, a verification approach should not impose any unrealistically
strict limitations on the simulation models that are verifiable, e.g. by assuming that
agents are entirely homogeneous, by abstracting away the environment, etc.

4 MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations

Immediacy: in order to ensure the relevance of the verification results, the gap between
the model to be verified and the actual simulation model should be as small as
possible. Ideally, verification is performed upon the original simulation model.

As described in the following section, existing approaches do not currently satisfy
those requirements in their combination. With the framework presented in this work,
we aim to close this gap.

3 Related work

Model checking multiagent systems: Since its beginnings around 30 years ago, model
checking has gained huge significance in computer science and software engineering
in particular and has been successfully applied to many real-world problems. Model
checking has also gained increasing importance in the multiagent community and nu-
merous approaches have been presented in literature [9]. In alignment with the classical
problems studied in the community, multiagent verification typically focusses on qual-
itative properties involving notions such as time, knowledge, strategic abilities, permis-
sions, obligations, etc. In order to allow for the verification of larger agent populations,
model checking algorithms for temporal-epistemic properties have also been combined
successfully with ideas such as bounded model checking [26], partial order reduction
[25] and parallelisation [20]. Despite impressive advances, however, verification still
remains limited to either relatively small populations or scenarios with strong homo-
geneity assumptions [33].

In recent years, probabilistic approaches to model checking have also gained in-
creasing importance in the multiagent community. Examples include the verification
of systems with uncertainty w.r.t. communication channels and actions [11], qualitative
and quantitative analysis of agent populations with uncertain knowledge [37], verifi-
cation of probabilistic swarm models [18], or automated game analysis [3]. Similar to
their non-probabilistic counterparts, these approaches also suffer from the state space
explosion and are thus either limited to relatively small systems or dependent upon
strong homogeneity or symmetry assumptions which increase their scalability but also
limit their applicability to the verification of complex simulation models.

Verification of agent-based simulations: In the simulation community, most work on
quality assurance focusses on validation, in particular statistical analysis of simulation
output [35, 29]. Albeit related, those approaches possess a different flavour than the one
described in this work since they focus on the external validity of the model, i.e. the
link between the model world and the real world1. Verification (or internal validation),
on the other hand, focusses on the link between the model and the theory. If mentioned
at all in the simulation literature, verification is mostly equated with conventional code
verification, e.g. through testing, reviews, or static analysis.

In the ABS community, a number of testing and monitoring approaches have been
presented [6, 39, 32]. Most of these approaches are based on top of existing modelling
frameworks such as Repast or Mason; consequently, correctness properties (in the form

1 McKelvey refers to this link as the model’s ontological adequacy [31].

MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations 5

of test cases) are formulated in the target language, typically in Java. An approach that
combines ABS with numeric analysis has been presented by Wolf et al. [10]. The main
motivation of the work is to determine if an individual-based system exhibits certain
macroscopic emergent behaviour. To that end, repeated simulation is paired with nu-
meric analysis from the system dynamics domain in order to detect deviations or to ap-
proximate the steady-state behaviour of the simulation. An advantage of the approach is
its ability to speed up simulation by steering it into the direction required by the analy-
sis algorithm. Due to its global focus, the approach is restricted to macro-level analysis;
nevertheless, the power lies in the fact that it allows for the analysis of properties which
conventional testing is not able to deal with.

Semi-formal and formal verification approaches similar to those for MAS described
above but particularly tailored to ABS are still largely missing. The work closest related
to ours is that of Sebastio and Vandin [36]. They present MultiVeStA, a statistical anal-
ysis tool which pairs discrete event simulation with statistical model checking. Similar
to MC2MABS, MultiVeStA can be coupled with existing simulators and allows for the
verification of properties about expected values of observations. Properties are propo-
sitional in nature, i.e. more complex calculations or aggregations have to be ‘wrapped’
into propositions. Since MultiVeStA is not tailored to ABS, no internal structure is
imposed on the simulation traces. As a consequence, there is no direct notion of obser-
vational levels in the property specification language.

It is important to note that, although useful in its own right, (semi-)formal verifica-
tion will be even more powerful if it is embedded in a proper experimental environment.
It has been argued that, if the systematic design of experiments was fully realised, the
transparency of a simulation model could be increased significantly [27]. We believe
that, rather than serving as an alternative, (semi-)formal verification may well become
an integral part of this process.

4 Background

Statistical model checking: Conventional model checking aims to find an accurate so-
lution to a given property by exhaustively searching the underlying state space which
is, in general, only possible if the space is of manageable size [2]. One solution that
works for probabilistic systems is to use a sampling approach and employ statistical
techniques in order to generalise the results to the overall state space. In this case, n
paths or traces are sampled from the underlying state space and the property is checked
on each of them; statistical inference, e.g. hypothesis testing, can then be used to deter-
mine the significance of the results. Approaches of this kind are summarised under the
umbrella of statistical model checking; a good overview is given by Legay et al. [21].
Due to its independence of the underlying state space, statistical model checking allows
for the verification of large-scale systems in a timely, yet approximate manner.

One particular approach, Approximate Probabilistic Model Checking, provides a
probabilistic guarantee on the accuracy of the approximate value generated by using
Hoeffding bounds on the tail of the underlying distribution [12]. According to this
idea, ln

(
2
δ

)
/2ε2 samples need to be obtained in order for the estimated probability

Y to deviate from the real probability X by at most ε with probability 1 − δ, i.e.

6 MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations

Pr(|X −Y | ≤ ε) ≥ 1 − δ. In this case, the number of traces grows logarithmically
with δ and quadratically with ε. It is, however, interesting to note that the sample size is
completely independent from the size of the underlying system.

Runtime verification: Runtime verification attempts to circumvent the combinatorial
problems of conventional model checking by focussing on the execution trace of a sys-
tem rather than on its universal behaviour and performing correctness checks on-the-fly
[22]. Due to its focus on the execution trace of a running system, it avoids most of
the complexity problems that are inherent to static techniques; in that respect, runtime
verification bears a strong similarity to testing. However, in contrast to conventional
testing, runtime verification typically allows for the formulation of the system’s desired
behaviour in a more rigorous way, e.g. using temporal logic, and can thus be considered
more formal. In general, runtime verification provides a nice balance between rigor-
ous and strong but complex formal verification one one hand, and efficient but signifi-
cantly weaker conventional software testing on the other hand. It can thus be seen as a
lightweight alternative for systems that are not amenable to formal verification.

Due to its focus on individual execution traces, runtime verification views time as a
linear flow and properties are thus often formulated in a variant of linear temporal logic
(LTL). Those properties are then translated into a monitor which is used to observe the
execution of the system and report any satisfaction or violation that may occur. In order
for a monitoring approach to be efficient, it necessarily needs to be forward-oriented;
having to rewind the execution of a system in order to determine the truth of a property
is generally not an option. In terms of monitor construction, two different approaches,
automaton-based and symbolic, can be distinguished. In this work, we follow a sym-
bolic approach which strongly relies upon the notion of expansion laws. Informally,
expansion laws allow for the decomposition of an LTL formulae into two parts: the
fragment of the formula that needs to hold in the current state and the fragment that
needs to hold in the next state in order for the whole formula to be true. It is useful to
view both fragments as obligations, i.e. aspects of the formula that the trace under con-
sideration needs to satisfy immediately and those that it promises to satisfy in the next
step. For example, the expansion law for the ‘until’ operator of LTL is shown below:

φ1 U φ2 ≡ φ2 ∨ (φ1 ∧ X(φ1 U φ2)) (1)

The equivalence states that, in order for a formula φ1 U φ2 to be satisfied at time t ,
either (i) φ2 needs to be satisfied at time t , or (ii) φ1 needs to be satisfied at time t and
φ1 U φ2 needs to be satisfied at time t + 1. Expansion laws play an important role for
the idea of runtime verification since they form the basis for a decision procedure which
can be used to decide in a certain state if a given property has already been satisfied or
violated. By decomposing a formula into an immediate and a future obligation, opti-
mality can be achieved: as soon as the immediate obligation is satisfied and no future
obligation has been created, the entire formula is satisfied and the evaluation finishes.

MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations 7

5 The verification framework

Considering the complexity of ABSs, we believe that a combination of statistical model
checking and runtime verification, which we refer to as statistical runtime verification
(SRV), may serve as an interesting alternative to formal verification. Due to their prob-
abilistic nature, ABSs can be seen as special variants of Monte Carlo simulations and
each execution thus naturally produces a random trace of the underlying space. By ver-
ifying a property on a sufficiently large number of simulation runs, its probability can
thus be estimated to an arbitrary level of precision. Clearly, the usefulness of this idea is
critically dependent on the number of traces analysed. As described further below, the
efficiency of each trace check can be improved significantly by interleaving simulation
and verification. As opposed to formal macro-level analysis, SRV preserves the indi-
vidual richness of the ABS and allows for the verification of interesting properties in a
semi-formal way. Due to its focus on independent traces, SRV is easily parallelisable
and thus highly scalable by exploiting the power of modern parallel hardware.

MC2MABS is a practical framework that incorporates the idea of SRV. Its design
is based on four central requirements, as informally motivated in Section 2: (i) effi-
ciency (timely and tunably accurate verification of large-scale ABSs), (ii) expressivity
(formulation and verification of qualitative and quantitative correctness properties in a
formal, rigorous way), (iii) flexibility (verification of arbitrary ABSs), and (iv) imme-
diacy (verification of the ABS itself, not a simplified model thereof). An overview of
the framework is given below, the source code as well as additional documentation is
available online [1].

5.1 Architectural overview

A high-level overview of MC2MABS is shown in Figure 1. The framework comprises
as its central components (i) an estimator, (ii) a modelling framework, (iii) a property
parser, (iv) a simulator, and (v) a runtime monitor. All components are described in more
detail in Section 5.2 below. The typical sequence of actions in a verification experiment
using MC2MABS is as follows:

1. The user provides (i) the logic of the ABS by utilising the modelling framework, (ii)
an associated correctness property, and (iii) the desired precision of the verification
results as inputs to the verification framework.

2. The correctness property is parsed by the property parser and transformed into an
expanded property that is used by the runtime monitor.

3. The estimator determines the number of simulation traces necessary to achieve the
desired level of precision.

4. The simulator uses the model together with additional configuration information to
produce a set of simulation traces.

5. Each simulation trace is observed by a runtime monitor which assesses the correct-
ness of the trace using a given correctness property; due to the online nature of the
monitor, a verdict is produced as soon as possible.

6. The individual results are aggregated into an overall verification result and pre-
sented to the user.

8 MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations

Simulator

DataModel logicTemporal
propertyPrecision

Aggregation

Monitor

Trace 1

Verdict 1

Result

Estimator

Monitor

Trace 2

Monitor

Trace n

.

.

.

Verdict 2

Verdict n

Number n
of traces

MC2MABS RUNTIME VERIFICATION

Initial obligation

INPUT OUTPUT

Modelling
frameworkFragment

size

Parser

Fig. 1. The overall architecture of MC2MABS

Due to the decoupling of simulation and verification, MC2MABS supports both ad-
hoc and a-posteriori verification. Ad-hoc verification is synonymous to runtime verifi-
cation and assesses the correctness of a system during its execution. A-posteriori veri-
fication assumes the existence of traces prior to the actual verification. The latter mode
can be useful, for example, if the traces have been obtained with a different simulation
tool, e.g. NetLogo [38] or Repast [8]. In that case, the simulator of MC2MABS is merely
used to ‘replay’ the pre-existing output for the purpose of verification.

5.2 Components

Estimator: The main purpose of the estimator is to determine the number of traces
necessary to achieve a certain level of precision (provided by the user) w.r.t. the veri-
fication results. MC2MABS uses an algorithmic variant of the Hoeffding bounds briefly
mentioned in Section 4. Due to its approximate nature, the Hoeffding bound often over-
estimates the actually required number of samples by a significant degree. The proce-
dure we use instead operates directly on the Binomial distribution [13]. It has the same
theoretical dependence on δ and ε but, due to its accurate nature, it returns a lower total
sample size. In the presence of resource constraints, this (theoretically irrelevant) differ-
ence can represent a critical practical advantage. Different levels of precision and their
corresponding sample size are shown below:

1. confidence δ = 99%, accuracy ε = 1%⇒ 13,700 traces
2. confidence δ = 99.9%, accuracy ε = 0.1%⇒ 24,000 traces
3. confidence δ = 99.9, accuracy ε = 0.1%⇒ 2,389,000 traces

MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations 9

Modelling framework: Instead of providing a dedicated model description language —
a path taken by most existing verification tools — we decided to allow for the formula-
tion of the underlying model in a high-level programming language. This is motivated
by the observation that ABSs often contain a significant level of functional complex-
ity (probability evaluations, loading and manipulation of external data, location-based
search algorithms, etc.). Any simple modelling language would thus significantly (and
unnecessarily) limit the range of models which it is capable of describing. As a con-
sequence, we decided to take a different path and realise the communication between
the simulation model and the monitor through a service provider interface (SPI) which
provides a basic skeleton for the underlying model and limits the prescriptive part of
the framework to a handful of callback functions. In order to maintain a high level of
performance (which is crucial for the generation of large batches of traces), we use C++
as the modelling language. As a compiled multi-paradigm language, C++ offers a good
balance between usability and performance.

Alternatively, rather than hosting the actual model logic, the modelling framework
can also be used to implement logic that controls an external simulation tool such as
NetLogo or Repast (e.g. running in ‘headless mode’), collects the resulting data and
forwards it to the verifier. In this case, MC2MABS acts as a ‘man-in-the-middle’ and
extends existing simulation frameworks with a verification capability.

Property parser: The property parser is responsible for translating a textual representa-
tion of a correctness property into an expanded version which is then used by the mon-
itor to observe the temporal dynamics of a simulation trace. The parser uses a formal
grammar that defines the space of valid properties. MC2MABS supports simLTL, a vari-
ant of LTL tailored to the formulation of properties about ABS traces [14]. As opposed
to conventional LTL, simLTL allows for the formulation of properties about individual
agents as well as about arbitrary groups of agents. This is achieved by a subdivision
of the language into an agent layer and a global layer. Furthermore, the language is
augmented with quantification and selection operators. These features make it possible
to formulate properties such as the following:

– It is true for every agent that the energy level will never fall below 0
– No more than 20% of the agents will eventually run out of energy
– Agents of group x are more likely to run out of energy than those of group y

Furthermore, as explained below, the formulation of properties is closely linked with
the way the simulator performs the sampling from the probability space underlying the
simulation model. This is also accommodated by the property specification language
which allows for (i) the annotation of properties in order to denote the length of trace
fragments required for their verification as well as (ii) the formulation of higher-order
properties, e.g. about the correlation of events, as described in the next paragraph.

Simulator: The simulator is responsible for executing the simulation model repeat-
edly in order to obtain a set of traces used for subsequent verification by the monitor.
Technically, by repeatedly executing the simulation model, the simulator performs a
sampling from the underlying probability space. By interpreting the probability space
in different ways, different levels of granularity with respect to property formulation

10 MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations

can be achieved [16]. So, for example, by interpreting a trace of length k produced by
the simulation model not as a single sample from the distribution of traces of length k
but instead as a set of k samples from the distribution of states, properties about indi-
vidual states and their likelihood become expressible; by interpreting the trace as a set
of k/2 samples from the distribution of subsequent states, properties about transitions
and their likelihood become expressible. In general, a single trace of length k can be
interpreted as a set of samples of trace fragments of length 1 ≤ i ≤ k . Furthermore, by
relating probabilities of individual properties, statements about correlations of events
can be made. This allows for a high level of granularity and expressivity with respect to
property formulation and verification. Technically, the simulator is tightly interwoven
with both the modelling framework and the monitor (described below). At the current
stage, all simulation replications are executed sequentially. However, since the individ-
ual replications are entirely independent, the framework is efficiently parallelisable.

Monitor: The runtime monitor is the central component of the verification framework.
Its main purpose is to observe the execution of a single trace as generated by the sim-
ulator and check its correctness against the background of a given property on-the-fly,
i.e. while the trace is being produced. In the case of thousands of traces that need to
be assessed, online verification represents a critical advantage: as soon as a property
can be satisfied or violated, the monitor is able to produce a verdict and move on to the
next trace. For properties that are satisfiable or refutable at some point along the trace,
this leads to significant improvements in speed over an exhaustive approach. As indi-
cated in Section 4, the core of a monitor is a temporal formula; it is constructed from
the temporal property provided by the user by exploiting expansion laws. The monitor
is written in Haskell. Apart from the code being close to the mathematical description
of the algorithms, an important decision for choosing Haskell as the underlying pro-
gramming language was its inherent support for lazy evaluation. Given the potentially
considerable complexity of the underlying simulation, unnecessary computation is to be
avoided in any case. Against this background, it is, for example, important to postpone
calls from the monitor to the underlying simulator until a new state is strictly required
for evaluating the current property (as defined by the expansion laws). Furthermore, it
is important to keep the underlying simulation strictly forward-oriented, i.e. such that
ticks are simulated in ascending order only and no tick is simulated twice. In that con-
text, Haskell’s lazy evaluation strategy is of great help. To illustrate this, consider the
problem of evaluating a property ψ on fragments of a trace π. In an offline setting, π
would have to be constructed in its entirety prior to evaluation. If ψ is either satisfiable
or refutable on a prefix of π, computation would be wasted. In order to avoid that, π
must not be produced prior to evaluation. To this end, instead of holding a sequence
of global states (which it would if π was the result of a full simulation run), π holds a
sequence of thunks, i.e. not yet evaluated expressions. Thanks to Haskell’s lazy evalua-
tion strategy, a thunk is only evaluated if strictly necessary. In this way, the simulation
of the next time step can be postponed in order to achieve the desired online effect.
Furthermore, lazy evaluation supports easy sharing of computations. Each tick is thus
only simulated once which achieves the strict monotonicity effect mentioned above.

MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations 11

5.3 Performance evaluation

In this section, we provide a brief empirical performance evaluation of MC2MABS. A
more detailed evaluation can be found elsewhere [13, 1]. We use as our example model
a simple disease transmission scenario in which each agent can be either susceptible, in-
fected, or recovered. We assume that transitions between the states are probabilistic and
hardcoded and agents are entirely independent. We are aware that, as a consequence of
these simplifying assumptions, the model could well be analysed analytically. Choosing
an approximate approach may thus seem unnecessarily limiting here. However, it is not
our goal to perform a realistic verification experiment here. We rather aim to illustrate
the effects of online verification — the central aspect of our approach — on the per-
formance of the tool. To this end, we have deliberately chosen a simple model. Since
MC2MABS is completely agnostic about the internals of the underlying model and solely
focussed on the resulting traces, the simplicity of the model does not negatively impact
the evaluation results. More comprehensive case studies that focus on the usefulness of
MC2MABS for the analysis of swarm-robotic scenarios can be found elsewhere [13, 15].
For the evaluation, we focus on the following four properties:

1. ‘F allInf ’: unquantified group property, not refutable before the end of the trace
2. ‘G allInf ’: unquantified group property, immediately refutable
3. ‘F(∀ inf)’: quantified group property, not refutable before the end of the trace
4. ‘G(∀ inf)’: quantified group property, immediately refutable

‘allInf ’ describes a population-level proposition that is true if and only if all agents
in the population are infected. ‘inf ’ describes an individual proposition that is true if and
only if the agent under consideration is infected. Due to the use of ‘finally’ and ‘glob-
ally’, respectively, Properties 1 and 2 differ in terms of their satisfiability: Property 2 is
immediately refutable, whereas the satisfiability of Property 1 can only be determined
at the end of the trace. As shown below, this has a significant impact on the time needed
for verification. The same is true for Properties 3 and 4.

Properties 1 and 3 as well as Properties 2 and 4 are semantically equivalent; they
only differ in terms of their observational level: Properties 1 and 3 make a statement
about the population as a whole, whereas Properties 2 and 4 are individual in nature;
the distinction is only made to show the impact of quantification on performance.

We assess the performance against two dimensions: runtime and memory consump-
tion. Since the executable binary file of MC2MABS is a merge of code written in both
C++ and Haskell, their independent evaluation is not easily possible. For that reason,
all individual measurements have to be derived from the profiling results of the entire
application. We focus on four major tasks:

Simulation (SIM): Time spent on executing the model logic; this describes the perfor-
mance of the C++-based simulator.

Extraction (EXT): Time spent on extracting and transforming (marshalling) the group
traces created by the C++ simulator into their corresponding Haskell vectors.

Verification (VER): Time spent on the actual evaluation of the simLTL property.
Other (OTH): Time spent on ‘housekeeping’, i.e. other, non simulation- or evaluation-

related tasks such as garbage collection, system calls and profiling itself.

12 MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations

Table 1. Runtime consumption (in seconds) for different population sizes

10 agents 100 agents 1,000 agents

Prop. SIM VER EXT OTH TOT SIM VER EXT OTH TOT SIM VER EXT OTH TOT
1 0.022 0.023 0.043 0.012 0.100 0.185 0.081 0.383 0.056 0.706 2.480 0.675 4.361 2.510 10.027
2 0.000 0.006 0.001 0.003 0.010 0.001 0.004 0.003 0.002 0.010 0.021 0.025 0.045 0.029 0.120
3 0.025 0.040 0.042 0.014 0.121 0.242 0.119 0.517 0.079 0.957 2.798 0.715 4.902 2.798 11.213
4 0.001 0.006 0.000 0.002 0.010 0.001 0.004 0.003 0.002 0.010 0.022 0.027 0.036 0.025 0.110

Total (TOT): Total runtime of MC2MABS.

The evaluation was performed using gprof, Haskell’s built-in profiling system on a
64 Bit Dell Latitude Laptop with two Intel R© CoreTM 2 Duo CPUs (2.8 GHz each), 8GB
of memory and Linux Mint Rebecca (kernel version 3.13.0-24) as operating system.
The numbers are averaged over 10 runs, each of which involves the execution of 100
individual simulation runs for the purpose of probability estimation. The results w.r.t.
runtime consumption are shown in Table 1, the key points are briefly summarised below.

– MC2MABS scales linearly with the size of the underlying population.
– Satisfiability of the formula has a large impact on the time spent on each task.

Consider, for example, formula ‘G allInf ’ which is immediately refutable; in this
case, evaluation is very quick, even for large populations.

– As the population size grows, an increasing fraction of time is spent on extraction
(i.e. marshalling the data structures between C++ and Haskell) and housekeeping,
in particular garbage collection. This may represent a bottleneck for large popula-
tions which we aim to address as part of the future work.

– MC2MABS also scales linearly with the population size in the case of universally
quantified formulae. However, housekeeping (particularly garbage collection) be-
comes a serious overhead as the number of agents grows. We plan to address this
issue in the future, e.g. by employing strictness in some of the operations.

Table 2. Memory allocation (in Bytes) for different population sizes

10 agents 100 agents 1,000 agents

Pr. SIM VER EXT OTH TOT SIM VER EXT OTH TOT SIM VER EXT OTH TOT
1 6.4e5 9.7e6 4.5e7 5.7e7 5.7e7 6.4e5 9.7e6 4.4e8 4.5e8 4.5e8 6.4e5 9.7e6 4.4e9 4.4e9 4.4e9
2 6.4e3 1.0e6 4.5e5 3.0e6 3.0e6 6.4e3 1.0e6 4.4e6 6.9e6 6.9e6 6.4e3 1.0e6 4.4e7 4.7e7 4.7e7
3 6.4e5 2.5e7 4.5e7 7.3e7 7.3e7 6.4e5 2.5e7 4.4e8 4.7e8 4.7e8 6.4e5 2.5e7 4.4e9 4.4e9 4.4e9
4 6.4e3 1.2e6 4.5e5 3.4e6 3.4e6 6.4e3 1.2e6 4.4e6 7.3e6 7.3e6 6.4e3 1.2e6 4.4e7 4.7e7 4.7e7

Profiling memory consumption for a lazy language like Haskell can be difficult.
For example, expressions without arguments, so-called Constant Application Forms
(CAFs), are evaluated only once and shared for later use. Due to their global scope,
CAFs are thus, strictly speaking, not part of the call graph and hence need to be treated
differently. Straightforward analysis of memory allocated within the call graph only can
thus be misleading. In the analysis below, all CAFs are aggregated under the ‘Other’
section. The results are shown in Table 2. The key points are briefly summarised below.

– Memory consumption for both verification and simulation is constant and memory
consumption for extraction and marshalling increases linearly with population size.

MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations 13

mc2mabs +RTS -pa -h 1,305,693 bytes x seconds Tue Feb 10 15:01 2015

seconds0.0 2.0 4.0 6.0

b
yt

e
s

0k

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

220k

OTHER

Simulation state

Verification (inner)

Verification (outer)

State management

Simulation trace

Extraction (agent state)

Extraction (population state)

Pinned objects

Extraction (agent attributes)

Fig. 2. Runtime heap profile for 1,000 agents

– Verification is the only evaluation step that the formula size has an impact on, which
coincides with the runtime behaviour.
It is important to note that total memory allocation is not sufficient for understand-

ing the full allocation behaviour of the program. It is useful to also analyse the runtime
heap profile which describes memory allocation over time. An example for 1,000 agents
(Property 3) is shown in Figure 2. For clarity, we restrict the number of functions and
data structures shown to 10. In the graph, ‘Pinned objects’ refers to information in mem-
ory which is not movable by the garbage collection, e.g. memory allocated in the C++
part of the application. Furthermore, some of the functions in the Haskell implementa-
tion are split up into an inner and an outer part for technical reasons; this distinction is
also reflected in the graphs. Finally, due to the pure functional nature of Haskell, global
state cannot be maintained. In order to emulate this functionality, alternative options
such as the State Monad have to be used. This state management accounts for a certain
level of memory allocation which is also considered in the analysis. The graph shows
that the peak memory allocation is stable and fairly low compared with the overall mem-
ory consumption; the graphs also show that the amount of garbage collection (indicated
by the reduction in memory consumption) is clearly a function of the runtime.

6 Case studies

For space constraints, we cannot provide a full case study here. An exhaustive eval-
uation of three different versions of the swarm foraging scenario introduced in Sec-
tion 2 including source code is provided in the first author’s PhD thesis [13]. Another
evaluation of the same scenario with a particular focus on the quantitative capabilities
of MC2MABS is provided in [16]. The paper illustrates how properties about transi-
tion probabilities, residence probabilities, state distributions, and correlations between
events can be formulated and answered purely based on the analysis of individual traces.

7 Conclusions and future work

This paper described the architecture, design decisions and implementation details of
MC2MABS, a statistical runtime verification framework for ABSs. With properties for-

14 MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations

mulated in temporal logic, high scalability due to the focus on individual and indepen-
dent simulation traces and its ability to provide confidence intervals for the results, it
aims to combine some of the strengths of both formal and informal verification tech-
niques into a common framework. The approach aims to satisfy the four requirements
introduced in Section 2 as follows:

Efficiency: Due to the approximate nature of the approach, simulation models with a
large number of constituents are efficiently verifiable. The number of simulation
runs necessary for verification is only dependent on the desired level of precision
and not on the size of the underlying system. Since individual traces are entirely
independent, the approach is also inherently parallel and therefore highly scalable.

Expressivity: Properties can be formulated in temporal logic and checked automati-
cally. The syntax of the specification language provides quantification and selec-
tion operators and thus allows for the formulation of properties on different obser-
vational levels. In addition to that, the trace fragment-based semantics allow for the
verification of quantitative properties.

Flexibility: Due to the reliance on simulation traces rather than on a formal model,
arbitrary simulation models are verifiable.

Immediacy: Verification is performed upon the output of the original simulation.

It is important to stress here that we do not aim to propose a substitute for purely
formal verification. In cases where formal verification is feasible, it is clearly prefer-
able over an approximate approach such as the one describe here. However, for cases
which are not (and may never be) formally verifiable, MC2MABS can present an inter-
esting alternative and help to gain a better understanding of the emergent simulation
dynamics than is currently possible. First experiments produced encouraging results
and showed that the tool allows for the verification of complex simulation models with
a high level of confidence (> 99%) and accuracy (< 1%) in a timely manner [13, 15].
Before MC2MABS can be used efficiently in the real world, there are, of course, still
plenty of limitations and open problems to be overcome. Some are mentioned below.

Accuracy: It is clear that, for highly safety-critical areas, a significantly higher level
of precision than that used in our experiments is needed. With the current estimation
procedure, the number of simulation traces increases quadratically with the level of
accuracy which represents a critical bottleneck. One way to remedy this problem is to
use ideas from rare event sampling in order to reduce the sample size needed.

Efficiency: An important advantage of trace-based verification is that it is efficiently
parallelisable. At the current stage, MC2MABS performs verification sequentially and
does not exploit the capabilities of modern parallel hardware. A second important start-
ing point for performance improvements is the performance of the simulation itself.
For example, by making use of C++ template metaprogramming, some of the runtime
calculations can be shifted towards compile time. Finally, MC2MABS is technically sub-
divided into a simulation (written in C++) and a verification part (written in Haskell).
Marshalling, i.e. translating and transferring the data structures between the two lan-
guages represents a significant bottleneck which also negatively influences the capabil-
ity of the tool to analyse large batches of simulation traces.

Usability: The tool is still in a prototypical state and its usability is therefore still
fairly low. Temporal logic and C++ are certainly not the most typical skills of an agent-

MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations 15

based modeller. The choice has been made for the purpose of rigour and performance.
But it is clear that, if the tool is to be used practically, higher-level interfaces need to be
developed. The same holds for the connection to existing simulators such as Repast or
NetLogo which currently requires manual efforts.

References

1. MC2MABS website. https://github.com/bherd/mc2mabs. Access: 02/15.
2. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
3. P. Ballarini, M. Fisher, and M. Wooldridge. Uncertain agent verification through probabilistic

model-checking. In Safety and Security in Multiagent Systems, volume 4324 of LNCS, pages
162–174. Springer, 2009.

4. G. K. Bharathy and B. Silverman. Validating agent based social systems models. In Proc.
Winter Simulation Conference, pages 441–453. Winter Simulation Conference, 2010.

5. T. Bosse and N. Mogles. Comparing modelling approaches in aviation safety. In R. Curran,
editor, Proc. 4th Int. Air Transport and Operations Symposium, Toulouse, France, 2013.

6. I. Cakirlar, . Grcan, O. Dikenelli, and S. Bora. RatKit: A repeatable automated testing toolkit
for agent-based modeling and simulation. In Proc. 15th Int. Workshop on Multi-Agent-Based
Simulation, 2014.

7. Y. U. Cao, A. S. Fukunaga, and A. Kahng. Cooperative mobile robotics: Antecedents and
directions. Autonomous Robots, 4(1):7–27, Mar. 1997.

8. N. Collier. Repast: An extensible framework for agent simulation. Natural Resources and
Environmental Issues, 8, 2001.

9. M. Dastani, K. V. Hindriks, and J.-J. Meyer. Specification and verification of multi-agent
systems. Springer Science & Business Media, 2010.

10. T. De Wolf, T. Holvoet, and G. Samaey. Development of self-organising emergent appli-
cations with simulation-based numerical analysis. In Engineering Self-Organising Systems,
volume 3910 of LNCS, pages 138–152. Springer, 2006.

11. M. I. Dekhtyar, A. J. Dikovsky, and M. K. Valiev. Temporal verification of probabilistic
multi-agent systems. In Pillars of Computer Science, pages 256–265. Springer, 2008.

12. T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate probabilistic model
checking. In Proc. 5th Int. Conference on Verification, Model Checking and Abstract Inter-
pretation, volume 2937 of LNCS, pages 307–329. Springer, 2004.

13. B. Herd. Statistical runtime verification of agent-based simulations. PhD thesis, King’s
College London, 2015.

14. B. Herd, S. Miles, P. McBurney, and M. Luck. An LTL-based property specification language
for agent-based simulation traces. TR 14-02, King’s College London, Oct 2014.

15. B. Herd, S. Miles, P. McBurney, and M. Luck. Approximate verification of swarm-based
systems: a vision and preliminary results. In Engineering Systems for Safety: Proc. 23rd
Safety-critical Systems Symposium. CreateSpace Independent Publishing Platform, 2015.

16. B. Herd, S. Miles, P. McBurney, and M. Luck. Towards quantitative analysis of multiagent
systems through statistical model checking. In 3rd Int. Workshop on Engineering Multiagent
Systems, 2015.

17. S. Karnouskos and T. de Holanda. Simulation of a smart grid city with software agents. In
3rd Europ. Symposium on Computer Modeling and Simulation, pages 424–429, Nov 2009.

18. S. Konur, C. Dixon, and M. Fisher. Formal verification of probabilistic swarm behaviours.
In Swarm Intelligence, volume 6234 of LNCS, pages 440–447. Springer, 2010.

19. S. Konur, C. Dixon, and M. Fisher. Analysing robot swarm behaviour via probabilistic model
checking. Robotics and Autonomous Systems, 60(2):199–213, 2012.

16 MC2MABS: A Monte Carlo Model Checker for Multiagent-based Simulations

20. M. Kwiatkowska, A. Lomuscio, and H. Qu. Parallel model checking for temporal epistemic
logic. In Proc. 19th European Conf. on Artificial Int., pages 543–548, 2010. IOS Press.

21. A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: an overview. In Proc.
1st Int. Conf. on Runtime Verification, pages 122–135. Springer, 2010.

22. M. Leucker and C. Schallhart. A brief account of runtime verification. The Journal of Logic
and Algebraic Programming, 78(5):293 – 303, 2009.

23. W. Liu, A. Winfield, and J. Sa. Modelling swarm robotic systems: A case study in collective
foraging. In Towards Autonomous Robotic Systems, pages 25–32, 2007.

24. W. Liu, A. Winfield, J. Sa, J. Chen, and L. Dou. Strategies for energy optimisation in a
swarm of foraging robots. In volume 4433 of LNCS, pages 14–26. Springer, 2007.

25. A. Lomuscio, W. Penczek, and H. Qu. Partial order reductions for model checking temporal-
epistemic logics over interleaved multi-agent systems. Fundamenta Informaticae, 101(1-
2):71–90, Januar 2010.

26. A. Lomuscio, W. Penczek, and B. Woz̀na. Bounded model checking for knowledge and real
time. Artificial Intelligence, 171(16-17):1011 – 1038, 2007.

27. I. Lorscheid, B.-O. Heine, and M. Meyer. Opening the ‘black box’ of simulations: increased
transparency and effective communication through the systematic design of experiments.
Computational and Mathematical Organization Theory, 18(1):22–62, 2012.

28. C. M. Macal and M. J. North. Tutorial on agent-based modelling and simulation. Journal of
Simulation, 4(3):151–162, 2010.

29. R. E. Marks. Validating simulation models: A general framework and four applied examples.
Computational Economics, 30:265–290, October 2007.

30. R. McCune and G. Madey. Agent-based simulation of cooperative hunting with UAVs. In
Proc. of the Agent-Directed Simulation Symposium. Society for Comp. Sim. Int., 2013.

31. B. McKelvey. The Blackwell Companion to Organizations, chapter Model-centered organi-
zation science epistemology, pages 752–780. Blackwell, 2002.

32. M. Niazi, A. Hussain, and M. Kolberg. Verification and validation of agent based simulations
using the VOMAS approach. In Proc. 3rd Workshop on Multi-Agent Systems and Sim., 2009.

33. T. Pedersen and S. K. Dyrkolbotn. Agents homogeneous: A procedurally anonymous seman-
tics characterizing the homogeneous fragment of atl. In Principles and Practice of Multi-
Agent Systems (PRIMA’13), volume 8291 of LNCS, pages 245–259. Springer, 2013.

34. D. Phan and F. Varenne. Agent-based models and simulations in economics and social sci-
ences: From conceptual exploration to distinct ways of experimenting. Journal of Artificial
Societies and Social Simulation, 13(1):5, 2010.

35. R. G. Sargent. Verification and validation of simulation models. In Proc. 40th Winter Simu-
lation Conference (WSC ’08), pages 157–169, 2008.

36. S. Sebastio and A. Vandin. MultiVeStA: Statistical model checking for discrete event simu-
lators. In Proc. 7th Int. Conf. on Performance Evaluation Methodologies and Tools, 2013

37. W. Wan, J. Bentahar, and A. Ben Hamza. Model checking epistemic and probabilistic prop-
erties of multi-agent systems. In Modern Approaches in Applied Intelligence, volume 6704
of LNCS, pages 68–78. Springer, 2011.

38. U. Wilensky. NetLogo. TR, Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL., 1999.

39. C. J. Wright, P. McMinn, and J. Gallardo. Towards the automatic identification of faulty
multi-agent based simulation runs using MASTER. In Multi-Agent-Based Simulation XIII,
volume 7838 of LNCS, pages 143–156. Springer, 2013.

