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Abstract

In this paper, the conservatism source of the positivity and stability analysis

results of positive polynomial fuzzy-model-based (PPFMB) control system are

studied. Also, in order to improve the flexibility of controller design, a fuzzy

controller that does not depend on the membership functions of the fuzzy model

is designed. In the existing literatures, it is proved that the LCLF can reduce

the conservatism of stability results. However, the LCLF generally results in

non-convex conditions which is still a conservatism source. To handle the non-

convex conditions, the sector nonlinear concept is applied to handle non-convex

terms in stability conditions, and the obstacles caused by mismatched member-

ship functions can be eliminated by PLMF dependent method. In addition, to

relax the conservatism caused by the lack of membership functions information,

the PLMF dependent positivity analysis are performed for the first time. Mean-

while, PLMF dependent method is extended to stability conditions to obtained

more relaxed conditions. Finally, a simulation example is presented to verify

the feasibility of this method.

Keywords: positive polynomial fuzzy-model-based (PPFMB) control systems,
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linear copositive Lyapunov function (LCLF), sector nonlinear concept,

piecewise linear membership functions (PLMF) dependent method.

1. Introduction

Positive systems are a class of systems whose states are always confined

in the positive orthant whenever the initial conditions are non-negative. Such

kind of systems are common in the practical industry and life, such as energy

market [1], DC-DC power converters [2], and pharmacokinetics [3]. Consid-5

ering the practical significance of investigating positive systems, some papers

[4, 5, 6, 7, 8, 9] started the research process of positive systems from positive

linear systems. Paper [5] established the necessary and sufficient conditions

with quadratic form for the existence of positive observer. Papers [6] and [7]

gave the linear necessary and sufficient conditions based on the consideration of10

the properties of the positive system to guarantee the existence of the positive

observer and asymptotic stability of the system, respectively. Whereafter, in

order to facilitate systematic research on the positive systems, the literature

[4] reviewed some basic properties and applications of positive linear systems.

In recent years, some papers [8, 9] investigated positive linear systems by us-15

ing linear copositive Lyapunov function (LCLF) because this kind of Lyapunov

function makes the analysis process more concise.

Although the research on positive linear systems has a good foundation, there

are still some problems in the study of positive nonlinear systems. One problem

is that the nonlinear terms in positive nonlinear system model increase the20

difficulty of system analysis. In order to deal with the nonlinearity of the positive

nonlinear systems, Takagi-Sugeno (T-S) fuzzy model was used in [10] for the first

time. Whereafter, T-S fuzzy model was widely used in various types of positive

nonlinear systems with different control requirements, including the stability

analysis of positive T-S fuzzy-model-based (FMB) continuous-time systems with25

time delay [11], stability analysis of positive T-S FMB discrete-time systems

with time delay and bounded control [12], stochastic stability analysis of positive
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T-S FMB Markov Jump systems [13, 14], positive L1 observer design for positive

fuzzy Semi-Markovian switching systems [15], stability analysis and synthesis

for switched T-S fuzzy positive systems [16], observer-based control for positive30

T-S FMB systems [17], output-feedback control for positive T-S FMB systems

[18], tracking control [19] and filter design [20] for positive T-S FMB systems,

etc.

T-S fuzzy model demonstrates a strong expressing capability for model-

ing the nonlinear dynamics through fuzzy combination of local linear systems.35

When polynomial systems are used as local systems as proposed in polynomial

fuzzy model [21, 22], its expressing capability is further enhanced with fewer

number of rules in general. For polynomial fuzzy model based systems, sum

of squares (SOS) based analysis approach is used instead of the linear-matrix-

inequality (LMI) and linear programming (LP) based analysis approaches. Fol-40

lowing the SOS based analysis approach, the conditions in terms of SOS are

obtained in work [21], and the solutions of these SOS-based conditions can be

found numerically by using the third-party MATLAB toolbox SOSTOOLS [23].

To the best of our knowledge, polynomial fuzzy model is rarely applied on posi-

tive systems in the existing literatures. The polynomial fuzzy model will be used45

in this paper to model positive nonlinear systems and perform polynomial-based

fuzzy control for those significant advantages.

Another problem for the study of positive nonlinear systems is that the

positivity analysis methods of positive linear systems are not perfect for pos-

itive nonlinear systems. For example, although the positivity conditions of50

positive linear systems can guarantee the positivity of fuzzy positive systems

[11, 12, 13, 14, 24, 25, 26], positivity analysis results of fuzzy positive systems

under these positivity conditions are very conservative because these positivity

conditions are membership function independent (MFI). To handle this prob-

lem, the membership-function-dependent (MFD) positivity conditions are given55

in this paper for the first time by adapting the positivity conditions shown in

paper [4] and improving the piecewise linear membership functions (PLMF)

dependent method [27].
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In addition to the problems in positive analysis for fuzzy positive systems,

there are also some problems in the stability analysis. For example, in order60

to relax the stability analysis results of positive nonlinear systems, by consid-

ering the positive characteristics of system states, linear-copositive-Lyapunov-

function-based analysis method [11, 13, 14, 18, 28, 29], fuzzy-linear-copositive-

Lyapunov-function-based analysis method [15] and quadratic-copositive-Lyapunov-

function-based analysis method [19, 30, 31] were proposed to replace the quadratic-65

Lyapunov-function-based analysis method [32]. However, these Lyapunov func-

tions generally lead to non-convex stability conditions which cannot be directly

solved by convex programming technique such as LMI, LP, and SOS. Therefore,

some iterative algorithms were applied in the exiting literatures [11, 18, 19, 30],

which may bring computational complexity. In order to avoid this shortcom-70

ing of iterative algorithms, the work [14] adopted the convexification method

in work [8] to handle the non-convex conditions derived by LCLF. However,

this convexification method is only applicable to a special nonlinear positive

systems where the input matrix of the sub-systems in the T-S fuzzy model is

required to be a common matrix. In order to make the designed control strat-75

egy applicable to a wider range of systems, the work [29] designed a novel fuzzy

controller which allows the input matrices of the sub-systems in the polynomial

fuzzy model to be different, and it allows the imperfect premise matching (IPC)

concept [33, 34, 24, 25, 35, 26, 36, 37] being used to increase the flexibility of

controller design. IPC concept suggests that the membership functions between80

the fuzzy model and fuzzy controller can be different, which provides more free-

dom for the controller design and thus makes it possible to reduce the cost of

controller implementation. However, the membership functions of the controller

designed in work [29] are not completely different from the membership func-

tions of the fuzzy model, they must same with the membership functions of85

the input matrices of the fuzzy model. Thus, the controller design in work [29]

is less flexible, which motivates us to design a fuzzy controller that does not

depend on the membership functions of fuzzy model at all, and give an effective

convexification method to handle the generated non-convex conditions.
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In this paper, the stability and positivity of positive polynomial fuzzy model90

based (PPFMB) system are investigated. The polynomial fuzzy model is used to

represent a wider range of positive nonlinear systems, and IPC concept is applied

to provide the possible to reduce the controller implementation costs. In order to

relax the analysis results, the MFD positivity conditions are given by adapting

the positivity conditions in literature [4] and using the PLMF dependent method95

[27]. Also, its ability to relax analysis results is compared with the ability of

parallel distributed compensation (PDC) method in this paper. Furthermore,

LCLF is applied in this paper to perform the stability analysis. Considering

that the existing literatures have not given effective convexification method for

the non-convex conditions caused by LCLF, an effective convexification method100

combining sector nonlinear concept and PLMF dependent method is proposed

in this paper.

The contributions of this paper are listed as below:

1) Flexible controller design:

Under the stability analysis framework based on LCLF, a more flexible105

controller design strategy is adopted. Different from the existing litera-

tures, the membership functions of the fuzzy controller in this paper are

allowed to be completely different from the membership functions of the

fuzzy model. This controller design strategy will effectively reduce the

implementation cost of the controller.110

2) Convexification of positivity and stability conditions:

For the non-convex conditions caused by LCLF which is applied on the

PPFMB system under IPC concept, an effective convexification method

is first proposed by integrating sector nonlinear concept and PLMF de-

pendent method.115

3) The relaxed MFD positivity conditions:

The MFD positivity conditions with a complete proof process are given for

the first time by adapting the existing positivity conditions and adopting

PLMF dependent method, so that more relaxed results are obtained.
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The organization of this paper is as follows. In Section 2, the notations120

and the formulation of polynomial fuzzy model, polynomial fuzzy controller are

described. In Section 3, the LCLF is adopted to perform the stability analy-

sis of the PPFMB system, and an effective convexification method is proposed

to handle the non-convex stability conditions. In Section 4, the PLMF de-

pendent method is applied on positivity conditions and stability conditions to125

obtain more relaxed analysis results of PPFMB system. Also, the PDC analy-

sis method is applied on positive analysis to compare the characteristics of the

PLMF dependent method and PDC analysis method. In Section 5, a simulation

example is provide to illustrate the advantages of the proposed control scheme.

In Section 6, a conclusion is drawn. In Appendix, the proof of Lemma 1 is130

provided.

2. Preliminaries

2.1. Notation

The following notations are used throughout the paper. A monomial in

x(t) = [x1(t), x2(t), . . . , xn(t)]
T

is a function in the form of xd11 (t)xd22 (t) . . . xdii (t),135

where di ≥ 0, i ∈ {1, 2, . . . , n} are nonnegative integers. The degree of a mono-

mial is d =
n∑
i=1

di. A polynomial f(x (t)) is an SOS if there exist polyno-

mials f1(x (t)), f2(x (t)), . . . , fm(x (t)) such that f(x (t)) =
m∑
i=1

f2
i (x (t)), where

fi(x (t)) is a polynomial and m is a nonnegative integer. It is clear that f(x (t))

being an SOS naturally implies f(x (t)) ≥ 0 for all x(t) ∈ <n. A ≺ 0 and A � 0140

mean that all elements of A are negative and positive, respectively; A < 0

and A > 0 mean that A is negative definite and positive definite, respectively.

A(α,β) denotes the αth row, βth column element of A. A(:,β) is a vector denoting

the βth column of A. A(α,:) is a vector denoting the αth row of A. AT denotes

the transpose of the matrix A. Matrix Q is called Metzler matrix [4], if its off145

diagonal elements are all nonnegative. p represents {1, 2, . . . , p}, where p is a

non-zero integer.
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2.2. Polynomial Fuzzy Plant Model

The nonlinear system is described by a polynomial fuzzy model with p rules.

The ith rule is of the following format:

Rule i : IF f1(x (t)) is M i
1 AND · · ·AND fψ(x (t)) is M i

ψ,

THEN ẋ(t) = Ai(x(t))x(t) + Bi(x(t))u(t)

where x(t) ∈ <n and u(t) ∈ <m are the state vector and control input vector

of the system, respectively; n, m are their dimensions, fϑ(x (t)) is the premise150

variable and M i
ϑ is the fuzzy set corresponding to its premise variable in rule i,

i ∈ p, ϑ ∈ ψ, and ψ is a positive integer; Ai(x(t)) ∈ <n×n, Bi(x(t)) ∈ <n×m

are the known polynomial system matrices and input matrices, respectively.

The dynamics of the nonlinear system is defined as follows:

ẋ(t) =

p∑
i=1

wi(x(t))(Ai(x(t))x(t) + Bi(x(t))u(t)), (1)

where wi(x(t)) =
ψ∏
ϑ=1

µMi
ϑ
(fϑ(x (t)))/

p∑
k=1

ψ∏
ϑ=1

µMk
ϑ

(fϑ(x (t))) is the normalized

grade of membership, wi(x(t)) ≥ 0, and
p∑
i=1

wi(x(t)) = 1; µMi
ϑ
(fϑ(x (t))) is the155

grade of membership corresponding to the fuzzy term M i
ϑ.

Definition 1. The polynomial fuzzy system (1) is said to be positive only if for

every nonnegative initial state, its state variables and outputs are all nonnega-

tive.

By adapting the proof of the positivity conditions in reference [4], the posi-160

tivity conditions of the PPFMB system are given in the following lemma.

Lemma 1. A polynomial fuzzy system (1) is guaranteed to be positive if
p∑
i=1

wi(x(t))Ai(x(t))

is a Metzler matrix; input matrices satisfy the conditions that
p∑
i=1

wi(x(t))Bi(x(t)) �

0 when u(t) is nonnegative.

Proof 1. The proof of Lemma 1 is given in the Appendix.165
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2.3. Polynomial Fuzzy Controller

The IPC concept is adopted to design a polynomial fuzzy controller with p

rules for the polynomial fuzzy system (1), the jth rule of the polynomial fuzzy

controller is as follows:

Rule j : IF g1(x (t)) is N j
1 AND · · ·AND gφ(x (t)) is N j

φ,

THEN u(t) = Gj(x(t))x(t)

where gϑ(x (t)) is the premise variable and N j
ϑ is the fuzzy set corresponding

to its premise variable in rule j, j ∈ p, ϑ ∈ φ, and φ is a positive integer. The

polynomial fuzzy controller is defined as follows:

u(t) =

p∑
j=1

mj(x(t))Gj(x(t))x(t), (2)

where mj(x(t)) =
φ∏
ϑ=1

µNjϑ
(gϑ(x (t)))/

p∑
k=1

φ∏
ϑ=1

µNkϑ (gϑ(x (t))), mj(x(t)) ≥ 0, and

p∑
j=1

mj(x(t)) = 1; µNjϑ
(gϑ(x (t))) is the grade of membership corresponding to

the fuzzy term N j
ϑ. Gj(x(t)) is the polynomial fuzzy controller gain, which is

defined as Gj(x(t)) =
∑m
ι=1 eιmDjι(x(t))∑p

s=1ms(x(t))λTBs(x(t))em
∈ <m×n, where λ is the Lya-170

punov function variable which will be introduced in the following section; em =

[1, . . . , 1]T ∈ <m×1, ekm denotes only the kth element of em is 1, other elements

are 0; Djι(x(t)) ∈ <1×n is to be determined, ι ∈ m . For example, m = 2, n =

3, e1
2 = [1, 0]T , e2

2 = [0, 1]T , Dj1(x(t)) = [D
(1)
j1 (x(t)), D

(2)
j1 (x(t)), D

(3)
j1 (x)(t)],

Dj2(x(t)) = [D
(1)
j2 (x(t)), D

(2)
j2 (x(t)), D

(3)
j2 (x)(t)],

∑m
ι=1 eιmDjι(x(t)) =175  D

(1)
j1 (x(t)) D

(2)
j1 (x(t)) D

(3)
j1 (x(t))

D
(1)
j2 (x(t)) D

(2)
j2 (x(t)) D

(3)
j2 (x(t))

.

Remark 1. In reference [8], the linear positive system was investigated, and

the controller was design as
∑m
ι=1 eιmDι

λTBem
to avoid the non-convex terms in sta-

bility conditions. When T-S fuzzy positive system is investigated in [14], this

kind of controller also can be applied to obtained convex conditions. However, it180

need to limit the input part of the system to be linear, which means that Bi = B
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for any i ∈ p. In this paper, in order to eliminate this restriction, the mem-

bership functions dependent controller gain
∑m
ι=1 eιmDjι(x)∑p

s=1ms(x)λTBs(x)em
is designed. It

can be seen that the membership functions in the denominator of this designed

controller gain are consistent with the controller membership functions, so this185

novel controller allows that the membership functions between the fuzzy model

and the fuzzy controller are different.

3. Novel Stability Analysis Results for PPFMB System

In the following analysis, for simplicity, the time t is dropped for the situation

without ambiguity. From (1) and (2), the closed-loop control system is rewritten

as follows:

ẋ =

p∑
i=1

p∑
j=1

wi(x)mj(x)[(Ai(x) + Bi(x)Gj(x))x]. (3)

In order to make the PPFMB control system (3) positive and asymptoti-

cally stable, the polynomial fuzzy controller is designed through the following190

Theorem.

Theorem 1. For the PPFMB control system (3), if there exist λ ∈ <n×1, poly-

nomial vectors Djι(x) ∈ <1×n and D̃j(x) ∈ <1×n, ∀j ∈ p, ι ∈ m, polynomial

scalars Ykv and Rk̂ς , ∀k ∈ {1, 2, 3, 4}, k̂ ∈ {1, 2, 3}, v ∈ p, ς ∈ σ, such that the

following SOS-based conditions are satisfied:

νT (λ(α,1) − ε1)ν is SOS; ∀α ∈ n (4)

νT (D̃
(1,β)
j (x)−D

(1,β)
jι (x))ν is SOS, ∀j ∈ p, ι ∈ m,β ∈ n; (5)

− νT (Ξ
(α,1)
1ij (x)− ε2(x))ν is SOS, ∀i, j ∈ p, α ∈ n; (6)

− νT (Ξ
(α,1)
2ij (x)− ε3(x))ν is SOS, ∀i, j ∈ p, α ∈ n; (7)

νT (Ykv(x)− ε4(x))ν is SOS, ∀k ∈ {1, 2, 3, 4}, v ∈ p; (8)

νT (Ykv(x)− θv(x)− ε5(x))ν is SOS, ∀k ∈ {1, 2, 3, 4}, v ∈ p; (9)

νT (Rk̂ς(x)− ε6(x))ν is SOS, ∀k̂ ∈ {1, 2, 3}, ς ∈ σ; (10)

νT (Λ1i1i2...in̂ς(x)− ε7(x))ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (11)
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νTΛ2i1i2...in̂ς(x)ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (12)

νTΛ3i1i2...in̂ς(x)ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (13)

νT (Θ
(α,β)
ijs (x)− ε8(x))ν is SOS, ∀i, j, s ∈ p, α 6= β ∈ n. (14)

where Ξ1ij(x) and Ξ2ij(x) are defined in (19) and (20), respectively; Λ1i1i2...in̂ς(x),

Λ2i1i2...in̂ς(x) and Λ3i1i2...in̂ς(x) are defined in (44), (45) and (46), respectively;

Θ
(α,β)
ijs (x) is defined in (49); fmin and fmax are the predefined positive scalars;

ν is an arbitrary vector independent of x with appropriate dimensions; ε1 > 0,195

ε2(x) > 0, . . ., ε8(x) > 0 are predefined scalar polynomials, then the system (3)

is asymptotically stable and positive. The polynomial fuzzy controller gain can

be obtained by Gj(x) =
∑m
ι=1 eιmDjι(x)∑p

s=1ms(x)λTBs(x)em
.

Proof 2. This proof contains two parts. The first part provides the derivation

process of stability conditions, so the title of this part is Stability Analysis. Cor-200

respondingly, the part titled Positivity Analysis provides derivation process of

the positivity conditions.

Part I: Stability Analysis

In order to perform stability analysis, a LCLF candidate V (x) = xTλ is

chosen, where every element of λ ∈ <n×1 is positive. The time derivation of

V (x) is as follows:

V̇ (x) = ẋTλ

=

p∑
i=1

p∑
j=1

wi(x)mj(x)xT (Ai(x) + Bi(x)Gj(x))Tλ (15)

The polynomial fuzzy controller gain Gj(x) has been designed as Gj(x) =∑m
ι=1 eιmDjι(x)∑p

s=1ms(x)λTBs(x)em
. Suppose that there exist polynomial vector variables D̃j(x)

such that D̃j(x) � Djι(x), ∀ι ∈ m, which means that the kth element of every

Djι is less than the kth element of D̃j(x), where k ∈ n, then (15) can be derived

as follows:

V̇ (x)
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=

p∑
i=1

p∑
j=1

wi(x)mj(x)xT (AT
i (x)λ + GT

j (x)BT
i (x)λ)

=

p∑
i=1

p∑
j=1

wi(x)mj(x)xT [AT
i (x)λ +

∑m
ι=1 DT

jι(x)(eιm)T∑p
s=1ms(x)eTmBT

s (x)λ
BT
i (x)λ]

≺
p∑
i=1

p∑
j=1

wi(x)mj(x)xT (AT
i (x)λ +

∑m
ι=1 D̃T

j (x)(eιm)T∑p
s=1ms(x)eTmBT

s (x)λ
BT
i (x)λ)

=

p∑
i=1

wi(x)xTAT
i (x)λ +

p∑
j=1

mj(x)xT D̃T
j (x)

∑p
i=1 wi(x)

∑m
ι=1(eιm)TBT

i (x)λ∑p
s=1ms(x)eTmBT

s (x)λ

(16)

where
∑m
ι=1(eιm)T = eTm.

Remark 2. In reference [29], the non-convex term
∑p
i=1 wi(x)

∑m
ι=1(eιm)TBTi (x)λ∑p

s=1ms(x)eTmBTs (x)λ
205

is avoided by making the membership functions of the fuzzy controller consistent

with the membership functions of the input part of the fuzzy model. Although

this method makes stability analysis easier, it reduces the flexibility of controller

design. In this paper, in order to increase the flexibility of controller design, a

fuzzy controller that does not depend on the membership functions of the fuzzy210

model at all is designed, and an effective method to deal with the non-convex

term
∑p
i=1 wi(x)

∑m
ι=1(eιm)TBTi (x)λ∑p

s=1ms(x)eTmBTs (x)λ
is proposed in the following.

For the non-convex term
∑p
i=1 wi(x)

∑m
ι=1(eιm)TBTi (x)λ∑p

s=1ms(x)eTmBTs (x)λ
in (16), the sector non-

linear technique [38] is applied on the nonlinear term f(x) =
∑p
i=1 wi(x)

∑m
ι=1(eιm)TBTi (x)λ∑p

s=1ms(x)eTmBTs (x)λ
.

Assume that positive scalar fmin and fmax are the minimum and maximum

value of f(x) in the operating domain of x defined in prior, respectively. Then,

according to the sector nonlinear technique, the nonlinear term f(x) is repre-

sented as follows:

f(x) = µM1(x)fmin + µM2(x)fmax, (17)

where µM1(x) = f(x)−fmax
fmin−fmax , µM2(x) = 1 − µM1(x). fmax and fmin are two

constants that are slightly greater than and less than 1 respectively in a case

that wi(x) and mi(x) are closed to each other.215
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According to (17), it follows from (16) that:

p∑
i=1

wi(x)xTAT
i (x)λ +

p∑
j=1

mj(x)xT D̃T
j (x)

∑p
i=1 wi(x)

∑m
ι=1(eιm)TBT

i (x)λ∑p
s=1ms(x)eTmBT

s (x)λ

=

p∑
i=1

wi(x)xTAT
i (x)λ +

p∑
j=1

mj(x)xT D̃T
j (x)

2∑
l=1

µMl(x)fl

=

2∑
l=1

p∑
i=1

p∑
j=1

µMl(x)wi(x)mj(x)xT (AT
i (x)λ + D̃T

j (x)fl), (18)

where f1 = fmin and f2 = fmax.

Defining

Ξ1ij(x) = AT
i (x)λ + D̃T

j (x)fmin, (19)

Ξ2ij(x) = AT
i (x)λ + D̃T

j (x)fmax. (20)

Since 0 ≤ µM1(x), µM2(x) ≤ 1, the condition V̇ (x) < 0 can be guaranteed by

p∑
i=1

p∑
j=1

wi(x)mj(x)Ξ1ij(x) ≺ 0, (21)

p∑
i=1

p∑
j=1

wi(x)mj(x)Ξ2ij(x) ≺ 0, (22)

fmin ≤
∑p
i=1 wi(x)

∑m
ι=1(eιm)TBT

i (x)λ∑p
s=1ms(x)eTmBT

s (x)λ
≤ fmax. (23)

The conditions (21) and (22) can be guaranteed by Ξ1ij(x) ≺ 0 and Ξ2ij(x) ≺

0, ∀i ∈ p, j ∈ p, which are expressed in terms of SOS in (6) and (7). However,

the difficulty of analysis is that the restricted condition (23) cannot be guaran-

teed when membership functions are ignored. Thus, the MFD analysis method

needs to be used. In this paper, the PLMF dependent method [27] is adapted to

apply on the condition (23). The membership functions wi(x) and ms(x) are

approximated by PLMFs ŵi(x) and m̂s(x). Suppose that there are dr + 1 inter-

polation points for state variable xr, the number of substate spaces of xr is dr,

and the overall state space Ψ is divided into σ connected substate spaces which

are denoted as Ψς , ς ∈ σ, σ =
∏n
r=1 dr. In substate space Ψς , the original

12



membership functions are denoted as wiς(x) and msς(x), and they are approx-

imated by PLMFs ŵiς(x) and m̂sς(x). Then, in whole state space, the PLMFs

are defined as follows:

ŵi(x) =

σ∑
ς=1

ϕς(x)ŵiς(x)

=

σ∑
ς=1

ϕς(x)

2∑
i1=1

2∑
i2=1

. . .

2∑
in̂=1

n̂∏
r=1

υrirς(xr)ζii1i2...in̂ (24)

m̂s(x) =

σ∑
ς=1

ϕς(x)m̂sς(x)

=

σ∑
ς=1

ϕς(x)

2∑
i1=1

2∑
i2=1

. . .

2∑
in̂=1

n̂∏
r=1

υrirς(xr)ηsi1i2...in̂ (25)

where n̂ is the number of the system state variables on which the membership

functions wi(x) and mi(x) depend; ϕς(x) = 1 if x ∈ Ψς ; ϕς(x) = 0 if x /∈ Ψς ;

the predefined interpolation functions υrirς(xr) have the properties that 0 ≤220

υrirς(xr) ≤ 1 and υr1ς(xr)+υr2ς(xr) = 1 for r ∈ n̂, ir ∈ {1, 2}; constant scalars

ζii1i2...in̂ and ηsi1i2...in̂ denote the values of the membership functions wi(x) and

ms(x) at the interpolation point x = [x1i1 , x2i2 , . . . , xn̂in̂ ], respectively.

It is difficult to obtain an approximate function without error, so approxi-

mation errors need to be considered when approximation functions are intro-225

duced in conditions. Defining ∆wiς(x) = wiς(x) − ŵiς(x) and ∆msς(x) =

msς(x)− m̂sς(x) as the approximated errors of wi(x) and ms(x) in the substate

space Ψς , respectively. The lower and upper bounds of ∆wiς(x) are denoted as

δiς and δiς , the lower and upper bounds of ∆msς(x) are denoted as ρ
sς

and ρsς .

Referring to (23), denote θi(x) =
∑m
ι=1(eιm)TBT

i (x)λ and θs(x) = eTmBT
s (x)λ,230

then
∑p
i=1 wi(x)

∑m
ι=1(eιm)TBTi (x)λ∑p

s=1ms(x)eTmBTs (x)λ
=

∑p
i=1 wi(x)θi(x)∑p
s=1ms(x)θs(x)

.

Suppose that there exist positive decision variables Y1i(x) such that Y1i(x) ≥

θi(x), based on the PLMF dependent analysis method, the following conditions

can be obtained:

p∑
i=1

wi(x)θi(x)

13



=

σ∑
ς=1

ϕς(x)

p∑
i=1

[(ŵiς(x) + δiς)θi(x) + (wi(x)− ŵiς(x)− δiς)θi(x)]

≤
σ∑
ς=1

ϕς(x)

p∑
i=1

[(ŵiς(x) + δiς)θi(x) + (δ̄iς − δiς)Y1i(x)]

=Wθ(x). (26)

Similarly, suppose that there exist positive decision variables Y2i(x) such that

Y2i(x) ≥ θi(x), the following conditions can be obtained:

p∑
i=1

wi(x)θi(x)

=

σ∑
ς=1

ϕς(x)

p∑
i=1

[(ŵiς(x) + δiς)θi(x) + (wi(x)− ŵiς(x)− δiς)θi(x)]

≥
σ∑
ς=1

ϕς(x)

p∑
i=1

[(ŵiς(x) + δiς)θi(x) + (δiς − δiς)Y2i(x)]

=Wθ(x). (27)

Following the same line of the above, suppose that there exist positive deci-

sion variables Y3s(x) such that Y3s(x) ≥ θs(x), the following conditions can be

obtained:

p∑
s=1

ms(x)θs(x)

≤
σ∑
ς=1

ϕς(x)

p∑
s=1

[(m̂sς(x) + ρ
sς

)θs(x) + (ρsς − ρsς)Y3s(x)]

=Mθ(x). (28)

Suppose that there exist positive decision variables Y4s(x) such that Y4s(x) ≥

θs(x), the following conditions can be obtained:

p∑
s=1

ms(x)θs(x)

≥
σ∑
ς=1

ϕς(x)

p∑
s=1

[(m̂sς(x) + ρsς)θs(x) + (ρ
sς
− ρsς)Y4s(x)]

=Mθ(x). (29)
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Then, the following inequation can be obtained:

Wθ(x)

Mθ(x)
≤

∑p
i=1 wi(x)

∑m
ι=1(eιm)TBT

i (x)λ∑p
s=1ms(x)eTmBT

s (x)λ
≤ Wθ(x)

Mθ(x)
. (30)

If fmin ≤ Wθ(x)

Mθ(x)
and Wθ(x)

Mθ(x) ≤ fmax are guaranteed, fmin ≤
∑p
i=1 wi(x)

∑m
ι=1(eιm)TBTi (x)λ∑p

s=1ms(x)eTmBTs (x)λ
≤

fmax can be satisfied. In addition, since
∑p
s=1ms(x)θs(x) > 0, (28) can lead to

Mθ(x) > 0. Thus, (23) can be guaranteed by the following inequality:

Mθ(x) > 0. (31)

Wθ(x)− fminMθ(x) ≥ 0, (32)

fmaxMθ(x)−Wθ(x) ≥ 0, (33)

In addition, in order to avoid false approximation errors caused by the global

searchability of the SOSTOOLS for state variables, the threshold functions are

defined as follows:

ξr̂ς(x) =

2∑
i1=1

2∑
i2=1

· · ·
2∑

in̂=1

n̂∏
r=1

υrirς(xr)(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂), ∀ς ∈ σ

(34)

where xr̂ςmin and xr̂ςmax are the minimal and maximal value of the system

state xr̂ in substate space Ψς , respectively, so ξr̂ς(x) has the properties that

ξr̂ς(x) ≥ 0 if x ∈ Ψς and ξr̂ς(x) < 0 if x /∈ Ψς . According to the S-procedure

concepts, if there exist positive slack scalars R1ς(x), R2ς(x) and R3ς(x) such

that:

Mθ(x)−
σ∑
ς=1

ϕς(x)

n̂∑
r̂

ξr̂ς(x)R1ς(x) > 0 (35)

Wθ(x)− fminMθ(x)−
σ∑
ς=1

ϕς(x)

n̂∑
r̂

ξr̂ς(x)R2ς(x) ≥ 0, (36)

fmaxMθ(x)−Wθ(x)−
σ∑
ς=1

ϕς(x)

n̂∑
r̂

ξr̂ς(x)R3ς(x) ≥ 0, (37)

then (31), (32) and (33) hold.
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From (26), (27), (28) and (29), the inequalities (35), (36) and (37) are

equivalent to the following:

σ∑
ς=1

ϕς(x){
p∑
s=1

[(m̂sς(x) + ρsς)θs(x) + (ρ
sς
− ρsς)Y4s(x)]−

n̂∑
r̂

ξr̂ς(x)R1ς(x)} > 0

(38)

σ∑
ς=1

ϕς(x){
p∑
i=1

[(ŵiς(x) + δiς)θi(x) + (δiς − δiς)Y2i(x)]

− fmin
p∑
s=1

[(m̂sς(x) + ρ
sς

)θs(x) + (ρsς − ρsς)Y3s(x)]−
n̂∑
r̂

ξr̂ς(x)R2ς(x)} ≥ 0,

(39)

σ∑
ς=1

ϕς(x){fmax
p∑
s=1

[(m̂sς(x) + ρsς)θs(x) + (ρ
sς
− ρsς)Y4s(x)]

−
σ∑
ς=1

ϕς(x)

p∑
i=1

[(ŵiς(x) + δiς)θi(x) + (δ̄iς − δiς)Y1i(x)]−
n̂∑
r̂

ξr̂ς(x)R3ς(x)} ≥ 0,

(40)

In the definition (24) and (25), the positive scalars ϕς(x) and υrirς(xr) are

independent of rule i and s, and
∑2
i1=1

∑2
i2=1 · · ·

∑2
in̂=1

∏n̂
r=1 υrirς(xr) = 1 in

substate space Ψς , so ϕς(x) and υrirς(xr) can be removed from the conditions

(38), (39) and (40). Thus, these conditions can be guaranteed by the following

conditions:

Λ1i1i2...in̂ς(x) > 0, ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ, (41)

Λ2i1i2...in̂ς(x) ≥ 0, ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ, (42)

Λ3i1i2...in̂ς(x) ≥ 0, ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ. (43)

where

Λ1i1i2...in̂ς(x)

=

p∑
s=1

[(ηsi1i2...in̂ + ρsς)θs(x) + (ρ
sς
− ρsς)Y4s(x)]−

n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)R1ς(x),

(44)
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Λ2i1i2...in̂ς(x)

=

p∑
i=1

[(ζii1i2...in̂ + δiς)θi(x) + (δiς − δiς)Y2i(x)]− fmin
p∑
s=1

[(ηsi1i2...in̂(x) + ρ
sς

)θs(x)

+ (ρsς − ρsς)Y3s(x)]−
n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)R2ς(x), (45)

Λ3i1i2...in̂ς(x)

=fmax

p∑
s=1

[(ηsi1i2...in̂ + ρsς)θs(x) + (ρ
sς
− ρsς)Y4s(x)]−

p∑
i=1

[(ζii1i2...in̂(x) + δiς)θi(x)

+ (δ̄iς − δiς)Y1i(x)]−
n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)R3ς(x). (46)

As a result, the condition (23) can be guaranteed by Ykv(x) > 0, Ykv(x) −

θv(x) > 0, Rk̂ς(x) > 0, ∀k ∈ {1, 2, 3, 4}, k̂ ∈ {1, 2, 3}, v ∈ p, ς ∈ σ and235

conditions (41)-(43), these conditions are expressed in terms of SOS in (8)-

(13).

Part II: Positivity Analysis

The PPFMB control system (3) can be regarded as a PPFMB system without

input matrices, with Ai(x) + Bi(x)Gj(x) being the system matrix. Similar to

the previous literature [14], the positivity of the PPFMB control system (3) is

achieved by conditions

A
(α,β)
i (x) + B

(α,:)
i (x)G

(:,β)
j (x) > 0; ∀i, j ∈ p, α 6= β ∈ n. (47)

According to the definition of Gj(x), G
(:,β)
j (x) in the above condition is

replaced by
∑m
ι=1 eιmD

(:,β)
jι (x)∑p

s=1ms(x)λTBs(x)em
. Due to em � 0, Bi(x) � 0, λ � 0, as a result,240 ∑p

s=1ms(x)λTBs(x)em > 0.

Thus,

A
(α,β)
i (x) + B

(α,:)
i (x)

∑m
ι=1 eιmD

(:,β)
jι (x)∑p

s=1ms(x)λTBs(x)em
> 0

⇔
p∑
s=1

ms(x)Θ
(α,β)
ijs (x) > 0. (48)
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where

Θ
(α,β)
ijs (x) = λTBs(x)emA

(α,β)
i (x) + B

(α,:)
i (x)

m∑
ι=1

eιmD
(:,β)
jι (x). (49)

Then, the positivity of the PPFMB control system (3) can be guaranteed by

the following conditions:

Θ
(α,β)
ijs (x) > 0; ∀i, j, s ∈ p, α 6= β ∈ n, (50)

these positivity conditions are expressed in terms of SOS in (14).

4. Membership Functions Dependent Positivity and Stability Analy-

sis

In the last Section, the positivity conditions and stability conditions all are245

MFI conditions, which means that every sub-condition of these basic conditions

for any i, j and s needs to be positive or negative, so the MFI conditions lead to

conservative results. It should be pointed that PLMF dependent method is only

applied to the restricted conditions (23) for the purpose of handling non-convex

problem in the last Section, the conservativeness of the results caused by the250

lack of membership functions information has not been eliminated. Thus, the

PLMF dependent method is applied on all resultant conditions in this section to

relax the results. In addition, considering the characteristics of positivity con-

ditions, PDC-PLMF dependent method (combination of PDC analysis method

and PLMF dependent method) is also applied to the positivity conditions to255

compare the ability of PDC analysis method and PLMF dependent method to

relax the results.

4.1. PLMF Dependent Positivity Analysis

According to Lemma 1, the MFD positivity conditions are obtained as fol-

lows:

p∑
i=1

p∑
j=1

p∑
s=1

wi(x)mj(x)ms(x)Θ
(α,β)
ijs (x) > 0, ∀i, j, s ∈ p, α 6= β ∈ n, (51)
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In order to handle the membership functions in (51), PLMF dependent

method is performed in this section. Denote qijs(x) ≡ wi(x)mj(x)ms(x), and

the corresponding PLMFs is denoted as q̂ijs(x). In substate space Ψς , qijs(x)

and q̂ijs(x) are denoted by qijsς(x) and q̂ijsς(x), respectively. Then, PLMFs

q̂ijs(x) can be defined as

q̂ijs(x) =

σ∑
ς=1

ϕς(x)q̂ijsς(x)

=

σ∑
ς=1

ϕς(x)

2∑
i1=1

2∑
i2=1

. . .

2∑
in̂=1

n̂∏
r=1

υrirς(xr)κijsi1i2...in̂ . (52)

In addition, we denote ∆qijsς(x) = qijsς(x)− q̂ijsς(x) as the approximation

error, and the minimum and maximum values of ∆qijsς(x) are denoted as %
ijsς

and %ijsς , respectively. If there exist positive scalars Nς(x) and positive scalars

Γ
(α,β)
ijs (x) that satisfy Γ

(α,β)
ijs (x) > Θ

(α,β)
ijs (x), ∀i, j, s ∈ p, ς ∈ σ, α 6= β, following

the same line of Section 3, (51) can be guaranteed by the following conditions:

p∑
i=1

p∑
j=1

p∑
s=1

[(κijsi1i2...in̂(x) + %ijsς)Θ
(α,β)
ijs (x) + (%

ijsς
− %ijsς)Γ

(α,β)
ijs (x)]

−
n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)Nς(x) > 0;

∀i, j, s ∈ p, i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ, α 6= β ∈ n. (53)

Theorem 2. For the PPFMB control system (3), if there exist λ ∈ <n×1, poly-

nomial vectors Djι(x) ∈ <1×n and D̃j(x) ∈ <1×n, ∀j ∈ p, ι ∈ m, polynomial

scalars Ykv(x) and Rk̂ς(x), ∀k ∈ {1, 2, 3, 4}, k̂ ∈ {1, 2, 3}, v ∈ p, ς ∈ σ, poly-

nomial scalars Γ
(α,β)
ijs (x) and Nς(x), ∀i, j, s ∈ p, ς ∈ σ, such that the following

SOS-based conditions are satisfied:

νT (λ(α,1) − ε1)ν is SOS, ∀α ∈ n (54)

νT (D̃
(1,β)
j (x)−D

(1,β)
jι (x))ν is SOS, ∀j ∈ p, ι ∈ m,β ∈ n; (55)

− νT (Ξ
(α,1)
1ij (x)− ε2(x))ν is SOS, ∀i, j ∈ p, α ∈ n; (56)

− νT (Ξ
(α,1)
2ij (x)− ε3(x))ν is SOS, ∀i, j ∈ p, α ∈ n; (57)

νT (Ykv(x)− ε4(x))ν is SOS, ∀k ∈ {1, 2, 3, 4}, v ∈ p; (58)
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νT (Ykv(x)− θv(x)− ε5(x))ν is SOS, ∀k ∈ {1, 2, 3, 4}, v ∈ p; (59)

νT (Rk̂ς(x)− ε6(x))ν is SOS, ∀k̂ ∈ {1, 2, 3}, ς ∈ σ; (60)

νT (Λ1i1i2...in̂ς(x)− ε7(x))ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (61)

νTΛ2i1i2...in̂ς(x)ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (62)

νTΛ3i1i2...in̂ς(x)ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (63)

νT (Γ
(α,β)
ijs (x)− ε8(x))ν is SOS; ∀i, j, s ∈ p, α 6= β ∈ n; (64)

νT (Γ
(α,β)
ijs (x)−Θ

(α,β)
ijs (x)− ε9(x))ν is SOS; ∀i, j, s ∈ p, α 6= β ∈ n; (65)

νT (Nς(x)− ε10(x))ν is SOS; ∀ς ∈ σ; (66)

νT {
p∑
i=1

p∑
j=1

p∑
s=1

[(κijsi1i2...in̂(x) + %ijsς)Θ
(α,β)
ijs (x) + (%

ijsς
− %ijsς)Γ

(α,β)
ijs (x)]

−
n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)Nς(x)− ε11(x)}ν is SOS,

∀i, j, s ∈ p, α 6= β ∈ n, ς ∈ σ, i1, i2, . . . , in̂ ∈ {1, 2}. (67)

where Ξ1ij(x) and Ξ2ij(x) are defined in (19) and (20), respectively; Λ1i1i2...in̂ς(x),

Λ2i1i2...in̂ς(x) and Λ3i1i2...in̂ς(x) are defined in (44), (45) and (46), respectively;260

Θ
(α,β)
ijs (x) is defined in (49); fmin and fmax are the predefined positive scalars;

ν is an arbitrary vector independent of x with appropriate dimensions; ε1 > 0,

ε2(x) > 0, . . ., ε11(x) > 0 are predefined scalar polynomials, then the system

(3) is asymptotically stable and positive. The polynomial fuzzy controller gains

can be obtained by Gj(x) =
∑m
ι=1 eιmDjι(x)∑p

s=1ms(x)λTBs(x)em
.265

In Theorem 2, all membership functions wimjms, ∀i, j, s ∈ p are included

in the positivity conditions. Considering that wimjms and wimsmj are the

same membership functions, PDC analysis method can be applied to relax the

conditions. Then, the relaxed condition of (51) can be obtained as follows by

grouping the terms with same membership functions:

p∑
i=1

p∑
j=1

p∑
s≥j

wi(x)mj(x)ms(x)(Θ
(α,β)
ijs (x) + Θ

(α,β)
isj (x)) > 0,

∀i, j ∈ p, s ≥ j ∈ p, α 6= β ∈ n, (68)
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Different from the full PLMF dependent positivity conditions (51), only

the membership functions wimjms, ∀i, j, s ≥ j ∈ p need to be approximated

by PLMFs and introduced into positivity conditions in (68), because the terms

which are weighted by membership functions wimjms, ∀i, j, s ≤ j ∈ p have been

grouped with the terms which are weighted by membership functions wimjms,

∀i, j, s ≥ j ∈ p. Following the same line of derivation of Theorem 2, if there exist

positive scalars N̂ς(x) and positive scalars Γ̂
(α,β)
ijs (x) that satisfy the conditions

Γ̂
(α,β)
ijs (x) > Θ

(α,β)
ijs (x) + Θ

(α,β)
isj (x), ∀i, j, s ≥ j ∈ p, the condition (68) can be

guaranteed by the following condition:

p∑
i=1

p∑
j=1

p∑
s≥j

[(κijsi1i2...in̂(x) + %ijsς)(Θ
(α,β)
ijs (x) + Θ

(α,β)
isj (x)) + (%

ijsς
− %ijsς)Γ̂

(α,β)
ijs (x)]

−
n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)N̂ς(x) > 0;

∀i, j, s ≥ j ∈ p, i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ, α 6= β ∈ n. (69)

Corollary 1. For the PPFMB control system (3), if there exist λ ∈ <n×1,

polynomial vectors Djι(x) ∈ <1×n and D̃j(x) ∈ <1×n ∀j ∈ p ι ∈ m, polynomial

scalars Ykv(x) and Rk̂ς(x) ∀k ∈ {1, 2, 3, 4}, k̂ ∈ {1, 2, 3}, v ∈ p, ς ∈ σ, polyno-

mial scalars Γ̂
(α,β)
ijs (x) and N̂ς(x) ∀i, j, s ≥ j ∈ p, ς ∈ σ, such that the following

SOS-based conditions are satisfied:

νT (λ(α,1) − ε1)ν is SOS; ∀α ∈ n (70)

νT (D̃
(1,β)
j (x)−D

(1,β)
jι (x))ν is SOS, ∀j ∈ p, ι ∈ m,β ∈ n; (71)

− νT (Ξ
(α,1)
1ij (x)− ε2(x))ν is SOS, ∀i, j ∈ p, α ∈ n; (72)

− νT (Ξ
(α,1)
2ij (x)− ε3(x))ν is SOS, ∀i, j ∈ p, α ∈ n; (73)

νT (Ykv(x)− ε4(x))ν is SOS, ∀k ∈ {1, 2, 3, 4}, v ∈ p; (74)

νT (Ykv(x)− θv − ε5(x))ν is SOS, ∀k ∈ {1, 2, 3, 4}, v ∈ p; (75)

νT (Rk̂ς(x)− ε6(x))ν is SOS, ∀k̂ ∈ {1, 2, 3}, ς ∈ σ; (76)

νT (Λ1i1i2...in̂ς(x)− ε7(x))ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (77)

νTΛ2i1i2...in̂ς(x)ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (78)
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νTΛ3i1i2...in̂ς(x)ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (79)

νT (Γ̂
(α,β)
ijs (x)− ε8(x))ν is SOS; ∀i, j, s ≥ j ∈ p, α 6= β ∈ n; (80)

νT (Γ̂
(α,β)
ijs (x)− (Θ

(α,β)
ijs (x) + Θ

(α,β)
isj (x))− ε9(x))ν is SOS;

∀i, j, s ≥ j ∈ p, α 6= β ∈ n; (81)

νT (N̂ς(x)− ε10(x))ν is SOS; ∀ς ∈ σ; (82)

νT {
p∑
i=1

p∑
j=1

p∑
s≥j

[(κijsi1i2...in̂(x) + %ijsς)(Θ
(α,β)
ijs (x) + Θ

(α,β)
isj (x))

+ (%
ijsς
− %ijsς)Γ̂

(α,β)
ijs ]−

n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)N̂ς(x)− ε11(x)}ν is SOS,

∀i, j, s ≥ j ∈ p, α 6= β ∈ n, ς ∈ σ, i1, i2, . . . , in̂ ∈ {1, 2}. (83)

where Ξ1ij(x) and Ξ2ij(x) are defined in (19) and (20), respectively; Λ1i1i2...in̂ς(x),

Λ2i1i2...in̂ς(x) and Λ3i1i2...in̂ς(x) are defined in (44), (45) and (46), respectively;

Θ
(α,β)
ijs (x) is defined in (49); fmin and fmax are the predefined positive scalars;

ν is an arbitrary vector independent of x with appropriate dimensions; ε1 > 0,

ε2(x) > 0, . . ., ε11(x) > 0 are predefined scalar polynomials, then the system270

(3) is asymptotically stable and positive. The polynomial fuzzy controller gains

can be obtained by Gj(x) =
∑m
ι=1 eιmDjι(x)∑p

s=1ms(x)λTBs(x)em
.

Remark 3. Compared with Theorem 2, Corollary 1 requires fewer decision

variables. For example, Γ̂
(α,β)
ijs (x) represents (n2 − n)pp! positive scalars, and

Γ
(α,β)
ijs (x) represents (n2−n)p3 positive scalars. Thus, Corollary 1 has a smaller275

computational burden than Theorem 2. However, since Theorem 2 introduces

more membership functions information for the positive conditions, it has a

stronger ability to relax the results than Corollary 1.

4.2. PLMF Dependent Stability Analysis

In addition to the positivity conditions, conservatism also exists in ba-

sic stability conditions due to the absent of membership functions informa-

tion. Thus, the similar method which is used in Subsection 4.1 is applied to

the stability conditions in this subsection. The original membership functions
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hij(x) ≡ wi(x)mj(x) are approximated by PLMFs ĥij(x). In substate space

Ψς , hij(x) and ĥij(x) are denoted by hijς(x) and ĥijς(x), respectively. Then,

PLMFs ĥij(x) can be defined as

ĥij(x) =

σ∑
ς=1

ϕς(x)ĥijς(x)

=

σ∑
ς=1

ϕς(x)

2∑
i1=1

2∑
i2=1

. . .

2∑
in̂=1

n̂∏
r=1

υrirς(xr)χiji1i2...in̂ . (84)

Denoting µ
ijς

and µijς as the minimum and maximum approximation errors,

which satisfy the condition µ
ijς

< hijς(x)−ĥijς(x) < µijς . If there exist positive

scalars Lk̆ς(x) and Ω
(α,1)

k̆ij
(x) that satisfy the conditions Ω

(α,1)

k̆ij
(x) > Ξ

(α,1)

k̆ij
(x),

∀α ∈ n, k̆ ∈ {1, 2}, i, j ∈ p, based on the PLMF dependent method, the basic

stability conditions Ξ
(α,1)

k̆ij
(x) < 0, ∀k̆ ∈ {1, 2} can be relaxed by the following

conditions:

p∑
i=1

p∑
j=1

[(χiji1i2...in̂(x) + µ
ijς

)Ξ
(α,1)

k̆ij
(x) + (µijς − µijς)Ω

(α,1)

k̆ij
(x)]

−
n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)Lk̆ς(x) < 0;

∀k̆ ∈ {1, 2}, i, j ∈ p, i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ, α ∈ n. (85)

Combining Theorem 2 and the results of this subsection, the positivity and280

stability of the PPFMB control system (3) can be guaranteed by the following

Theorem.

Theorem 3. For the PPFMB control system (3), if there exist λ ∈ <n×1,

polynomial vectors Djι(x) ∈ <1×n and D̃j(x) ∈ <1×n, ∀j ∈ p, ι ∈ m, polyno-

mial scalars Ykv(x) and Rk̂ς(x), ∀k ∈ {1, 2, 3, 4}, k̂ ∈ {1, 2, 3}, v ∈ p, ς ∈ σ,

polynomial scalars Γ
(α,β)
ijs (x) and Nς(x), ∀i, j, s ∈ p, ς ∈ σ, polynomial scalars

Ω
(α,1)

k̆ij
(x), Lk̆ς(x), ∀k̆ ∈ {1, 2}, i, j ∈ p, ς ∈ σ such that the following SOS-based

conditions are satisfied:

νT (λ(α,1) − ε1)ν is SOS; ∀α ∈ n (86)

νT (D̃
(1,β)
j (x)−D

(1,β)
jι (x))ν is SOS, ∀j ∈ p, ι ∈ m,β ∈ n; (87)
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νT (Ω
(α,1)

k̆ij
(x)− ε2(x))ν is SOS, ∀i, j ∈ p, k̆ ∈ {1, 2}, α ∈ n; (88)

νT (Ω
(α,1)

k̆ij
(x)−Ξ

(α,1)

k̆ij
(x)− ε3(x))ν is SOS, ∀i, j ∈ p, k̆ ∈ {1, 2}, α ∈ n; (89)

νT (Lk̆ς(x)− ε4(x))ν is SOS, ∀k̆ ∈ {1, 2}, ς ∈ σ; (90)

− νT {
p∑
i=1

p∑
j=1

[(χiji1i2...in̂(x) + µ
ijς

)Ξ
(α,1)

k̆ij
(x) + (µijς − µijς)Ω

(α,1)

k̆ij
(x)]

−
n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)Lk̆ς − ε5(x)}ν is SOS,

∀i, j ∈ p, i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ, α ∈ n, k̆ ∈ {1, 2}; (91)

νT (Ykv(x)− ε6(x))ν is SOS, ∀k ∈ {1, 2, 3, 4}, v ∈ p; (92)

νT (Ykv(x)− θv − ε7(x))ν is SOS, ∀k ∈ {1, 2, 3, 4}, v ∈ p; (93)

νT (Rk̂ς(x)− ε8(x))ν is SOS, ∀k̂ ∈ {1, 2, 3}, ς ∈ σ; (94)

νT (Λ1i1i2...in̂ς(x)− ε9(x))ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (95)

νTΛ2i1i2...in̂ς(x)ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (96)

νTΛ3i1i2...in̂ς(x)ν is SOS; ∀i1, i2, . . . , in̂ ∈ {1, 2}, ς ∈ σ (97)

νT (Γ
(α,β)
ijs (x)− ε10(x))ν is SOS; ∀i, j, s ∈ p, α 6= β ∈ n; (98)

νT (Γ
(α,β)
ijs (x)−Θ

(α,β)
ijs (x)− ε11(x))ν is SOS; ∀i, j, s ∈ p, α 6= β ∈ n; (99)

νT (Nς(x)− ε12(x))ν is SOS; ∀ς ∈ σ; (100)

νT {
p∑
i=1

p∑
j=1

p∑
s=1

[(κijsi1i2...in̂(x) + %ijsς)Θ
(α,β)
ijs (x) + (%

ijsς
− %ijsς)Γ

(α,β)
ijs (x)]

−
n̂∑
r̂=1

(xr̂ − xr̂ςmin)(xr̂ςmax − xr̂)Nς(x)− ε13(x)}ν is SOS,

∀i, j, s ∈ p, α 6= β ∈ n, ς ∈ σ, i1, i2, . . . , in̂ ∈ {1, 2}. (101)

where Ξ1ij(x) and Ξ2ij(x) are defined in (19) and (20), respectively; Λ1i1i2...in̂ς(x),

Λ2i1i2...in̂ς(x) and Λ3i1i2...in̂ς(x) are defined in (44), (45) and (46), respectively;

Θ
(α,β)
ijs (x) is defined in (49); fmin and fmax are the predefined positive scalars;285

ν is an arbitrary vector independent of x with appropriate dimensions; ε1 > 0,

ε2(x) > 0, . . ., ε13(x) > 0 are predefined scalar polynomials, then the system

(3) is asymptotically stable and positive. The polynomial fuzzy controller gains

24



can be obtained by Gj(x) =
∑m
ι=1 eιmDjι(x)∑p

s=1ms(x)λTBs(x)em
.

Remark 4. Theorem 1 provides basic positivity condition (14), basic stability290

conditions (4)-(7) and restricted conditions (8)-(13), where restricted conditions

are the prerequisites for the stability conditions (4)-(7) to guarantee the stability

of system (3). In Theorem 1, basic positivity and stability conditions all do not

depend on membership functions, so this theorem lead to conservative results. In

order to relax the results, PLMF dependent method is tried to apply to positivity295

conditions in Theorem 2. In Corollary 1, the PDC method and PLMF depen-

dent method are combined and applied to positivity conditions. To further relax

the result, PLMF dependent method is applied to both positivity conditions and

stability conditions in Theorem 3, the conditions (88)-(91) are stability condi-

tions which are used to guarantee that the PPFMB system (3) is asymptotically300

stable, conditions (92)-(97) are restricted conditions. The positivity conditions

(98)-(101) are used to guarantee that the PPFMB system (3) is positive.

5. Simulation Example

In this section, one example is provided to demonstrate the effectiveness and

applicability of the analysis results. The simulation results verify that the LCLF305

with the help of the proposed convexification method leads to less conservatism

than quadratic Lyapunov function. In addition, the simulation results show that

the PLMF dependent analysis method has a stronger ability to relax results than

PDC analysis method.

A three-rules PPFMB system is considered. The system and input matrices

are as follows:

A1(x1) =

 −0.039 28.82

1 −2− x2
1 − x1

 ,
A2(x1) =

 −0.037 26.71

0.80 −4− 1.20x2
1

 ,
A3(x1) =

 −0.033 22.07

a −2− x2
1 − x1 − b

 ,
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B1(x1) =

 3.27 + 0.05x2
1

0.05

 ,B2(x1) =

 2.90 + 0.02x2
1

0.05

 ,
B3(x1) =

 2.09 + 0.10x2
1

b

 , (102)

where a and b are constant scalars to be specified, the working range of both x1310

and x2 are [0, 4].

The membership functions of the PPFMB system are chosen as w1(x1) =

1− 1
1+e−5(x1−1.6) , w3(x1) = 1

1+e−5(x1−2.4) , w2(x1) = 1−w1(x1)−w3(x1). In this

paper, we adopt IPC concept [33, 34, 24, 25, 35, 26, 36] to design the polynomial

fuzzy controller, which means that the membership functions between the poly-

nomial fuzzy model and controller are allowed to be different. The membership

functions of the fuzzy controller are chosen as

m1(x1) =


0 if x1 > 2.13

− 1
1.06x1 + 2.13

1.06 if 1.07 ≤ x1 ≤ 2.13

1 if x1 < 1.07

,

m3(x1) =


1 if x1 > 2.93

1
1.06x1 − 1.87

1.06 if 1.87 ≤ x1 ≤ 2.93

0 if x1 < 1.87

,

m2(x1) = 1−m1(x1)−m3(x1). (103)

In order to verify that the LCLF with the proposed convexification method

can lead to more relaxed stability region than quadratic Lyapunov function,

three cases are considered. In the first case, Corollary 1 of [37] is applied, which315

adopted quadratic Lyapunov function and two controller membership functions

rules; In the second case, Corollary 1 of [37] with the controller membership

functions (103) is applied; In the third case, Theorem 1 with the controller

membership functions (103) is applied. The constant parameters a and b are

chosen in the range of 8 ≤ a ≤ 22 at the interval of 2 and 0 ≤ b ≤ 1 at the320
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Figure 1: Comparison of stability regions which are obtained under case 1 (“×”), case2 (“�”)

and case 3 (“ ◦ ”).

interval of 0.1. For Theorem 1, the settings of ε1 = . . . = ε8 = 1× 10−3 are the

same as the settings of them in Corollary 1 of [37]; fmin and fmax are chosen

as 0.92 and 1.3, respectively; Djι(x1) and D̃j(x1) are all of degrees from 0 to

2 in x1. The stability regions obtained under these three cases are shown in

Fig. 1. The stability regions given by Corollary 1 of [37] with 2 and 3 controller325

membership functions rules are indicated by “×” and “�”, respectively, and the

stability region given by Theorem 1 is indicated by “◦”. It is obvious that the

LCLF with the proposed convexification method gives larger stability region

than quadratic Lyapunov function.

In order to verify that the MFD positivity conditions can be used to en-330

sure that the system state is positive and effectively relax the stability re-

gion, Theorem 2 is applied, and the expansion points are chosen as x1 =

{0, 0.5, 1.07, 1.4, 1.87, 2.13, 2.6, 2.93, 3.5, 4}. The constant parameters a and b

are chosen in the range of 10 ≤ a ≤ 74 at the interval of 4 and 0 ≤ b ≤ 1

at the interval of 0.1. We choose ε1 = . . . = ε11 = 1 × 10−3; fmin = 0.92,335

fmax = 1.3; D̃j(x1), Djι(x1), Ykv(x1), Rk̂ς(x1), Γ
(α,β)
ijs (x1), and Nς(x1) are all

of degree from 0 to 2 in x1. In order to compare the ability of PLMF dependent

analysis method and the PDC analysis method to relax positivity conditions,

the Corollary 1 is applied, the degree of Γ̂
(α,β)
ijs (x1) and N̂ς(x1) are the same
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Figure 2: Stability regions for PPFMB system in Theorem 1 (“ × ”), Theorem 2 (“�”),

Corollary 1 (“ + ”) and Theorem 3 (“ ◦ ”).

as the degree of Γ
(α,β)
ijs (x1) and Nς(x1), and the other parameters and settings340

are kept the same as Theorem 2. In Theorem 3, both positivity conditions and

stability conditions all are MFD conditions. Ω
(α,1)
1ij (x1), Ω

(α,1)
2ij (x1), L1ς(x1) and

L2ς(x1) are all of degree from 0 to 2, and ε12 and ε13 are chosen as 1 × 10−3.

The other parameters and settings are the same as those in Theorem 2. The

stability regions obtained by Theorems 1-3 and Corollary 1 are shown in Fig. 2.345

“× ”, “�” and “ ◦ ” represent the stability regions which are given by Theorem

1, 2 and 3. “ + ” represents the stability region which is given by Corollary 1.

It can be seen in Fig. 2 that the stability regions given by Theorems 2 and

3, and Corollary 1 are larger than the stability region given by Theorem 1,

which means that the PLMF dependent analysis method and the PDC analysis350

method all can effectively relax the analysis results. The stability region given

by Theorem 2 is larger than the stability region given by Corollary 1, which

means that PLMF dependent analysis method has ability to provide more re-

laxed positive analysis result than PDC analysis method. Thus, with the help of

PLMF dependent analysis method, we can freely choose the membership func-355

tions of the controller for the flexibility of the controller design without worrying

about the conservativeness brought by the mismatched premise variables.

In order to demonstrate that the system states with any initial states in
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Figure 3: Phase plot of the states x1 and x2 for a = 16, b = 0.4 given by Theorem 1.

the stability regions can be steered to the equilibrium point by the designed

controller and always remains in the positive quadrant, we draw phase plots360

for the boundary point of these stability regions. For example, we choose a =

16, b = 0.4 in the stability region given by Theorem 1; a = 34, b = 0 in the

stability region given by Theorem 2; a = 38, b = 0.8 in the stability region

given by Corollary 1; a = 74, b = 1 in the stability region given by Theorem 3.

For different sets of a and b, the conditions in the corresponding theorems or365

corollary are calculated by SOSTOOLS. The obtained results including Djι(x1)

and λ are shown in the Table I. The phase plots for different sets of a and b

are shown in Figs 3-6. It can be seen that the PPFMB system is positive and

asymptotically stable under the proposed control strategy.

6. Conclusion370

The stability and positivity of PPFMB fuzzy system have been investigated.

The IPC concept has been adopted to increase the flexibility of the controller

design. In order to obtain more relaxed analysis results, LCLF has been applied

on the stability analysis. For the non-convex conditions derived by LCLF, the

novel controller has been designed and the sector nonlinear concept has been375

used to handle the non-convex terms. Also, the PLMFs were adopted to remove

obstacles to convexity caused by mismatched premise membership functions.
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Figure 4: Phase plot of the states x1 and x2 for a = 34, b = 0 given by Theorem 2
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Figure 5: Phase plot of the states x1 and x2 for a = 38, b = 0.8 given by Corollary 1.

Relaxed analysis results have been obtained by LCLF with the proposed effec-

tive convexification strategy, meanwhile different premise membership functions

between the fuzzy controller and model are allowed. In addition, the PLMF de-380

pendent positivity and stability conditions have been obtained by developing a

systematic analysis method with the consideration of controller design, member-

ship functions information, system positivity and stability, which leads to more

relaxed analysis results. A simulation example has been presented to verify

that the proposed method can effectively relax the results. This paper pro-385

poses an effective convexification method to handle the non-convex conditions

when LCLF is adopted to investigate the stability of state feedback control of
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Figure 6: Phase plot of the states x1 and x2 for a = 74, b = 1 given by Theorem 3.

PPFMB system. In the future, LCLF with this convexification method can be

used to investigate the stability of more extensive systems, such as switched

positive fuzzy systems, positive Markov Jump fuzzy systems, positive tracking390

fuzzy systems, and so on.

Appendix

Proof of Lemma1

Necessity: For the case that system input u ≡ 0, letting x(0) = m(β) be the

initial state vector of system (1), where m(β) is the unit vector of the β-axis395

of x, it follows that ẋ(0) =
p∑
i=1

wi(x(0))Ai0(x(0))m(β) = the β-th column of

p∑
i=1

wi(x(0))Ai(x(0)). Because the trajectory of a positive system cannot leave

the positive orthant, so that ẋ(α)(0) � 0 for ∀α 6= β where ẋ(α) is the α-th

element of ẋ. Therefore, the off-diagonal elements of
p∑
i=1

wi(x(t))Ai(x(t)) must

be nonnegative, i.e.,
p∑
i=1

wi(x(t))Ai(x(t)) must be a Metzler matrix.400

For the case that system input u 6= 0, letting x(0) = 0, positivity implies

ẋ(0) =
p∑
i=1

wi(x(0))Bi(x(0))u(0) � 0 for every u(0) � 0, that is,
p∑
i=1

wi(x(t))Bi(x(t)) �

0.

Sufficiency: In order to show that x(t) � 0, it is sufficient to check that

the vector ẋ does not point toward the outside of positive orthant whenever405
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Table 1: a, b, λ, Djι of Theorem 1 to 3 and Corollary 1

λ Djι

Theorem1

[0.2866; 0.7444]

D11(x1) = [−0.0701x2
1 − 4.6595 × 10−12x1 −

13.2969, 0.3906x2
1 + 0.3003x1 − 7.5660]

a = 16 D21(x1) = [−0.0701x2
1 − 5.4887 × 10−13x1 −

13.2969, 0.3906x2
1 + 0.3003x1 − 7.5660]

b = 0.4 D31(x1) = [−0.0701x2
1 − 3.7538 × 10−12x1 −

13.2969, 0.3906x2
1 + 0.3003x1 − 7.5660]

Theorem2

[4.7005; 4.6041]

D11(x1) = [−4.7878x2
1 + 15.5363x1 −

183.7030,−2.8995x2
1 + 7.5012x1 − 137.4550]

a = 34 D21(x1) = [−7.5239x2
1 + 24.4027x1 −

190.0470,−9.8691x2
1 + 47.9237x1 − 168.3621]

b = 0 D31(x1) = [−63.4531x2
1 + 23.5314x1 −

223.3872,−6.0523x2
1 + 48.1855x1 − 179.4600]

Corollary1

[12.9377; 12.4232]

D11(x1) = [−7.8902x2
1 + 23.7111x1 −

530.5932,−4.0795x2
1 + 13.8278x1 − 378.2983]

a = 38 D21(x1) = [−32.0914x2
1 + 222.2634x1 −

1017.8435,−13.4412x2
1+74.2394x1−413.5052]

b = 0.8 D31(x1) = [−42.7542x2
1 + 120.1953x1 −

1951.8239,−10.4494x2
1+58.9231x1−401.9825]

Theorem3

[10.9280; 10.6704]

D11(x1) = [3.3600x2
1 + 150.6442x1 −

237.2883,−4.6218x2
1 + 14.6757x1 − 319.5539]

a = 74 D21(x1) = [−101.2932x2
1 + 394.9653x1 −

888.4543,−15.9847x2
1+110.4992x1−371.7873]

b = 1 D31(x1) = [−79.7588x2
1 + 115.8095x1 −

2480.0106,−16.7703x2
1+81.9643x1−345.6084]

x is on the boundary of positive orthant. This is equivalent to verify that

the vector of ẋ(t) =
p∑
i

wi(x(t))(Ai(x(t))x(t) + Bi(x(t))u(t)) corresponding

to the zero components of x � 0 are nonnegative, the set of indices of such
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components is denoted by I, i.e., x(α) = 0 for α ∈ I, we can write that

ẋ(α)(t) =
p∑
i

wi(x(t))(
∑

(β)/∈I
A

(α,β)
i (x(t))xβ(t)+B

(α)
i (x(t))u(t)) for α ∈ I, where410

p∑
i

wi(x(t))A
(α,β)
i (x(t)) is the α-th row, β-th column element of

p∑
i

wi(x(t))Ai(x(t)),

p∑
i

wi(x(t))B
(α)
i (x(t)) is the α-th row element of

p∑
i

wi(x(t))Bi(x(t)). So, from

the nonnegativity of
p∑
i

wi(x(t))B
(α)
i (x(t)) and

p∑
i

wi(x(t))A
(α,β)
i (x(t)) with α 6=

β, it follows that ẋ(α)(t) � 0. Assume that x is at the origin of the coordi-

nates and x(t) = [x1(t), x2(t), . . . , xn(t)]
T

, then α ∈ {1, 2, . . . , n}, so we can415

obtain the positivity conditions that
p∑
i

wi(x(t))Ai(x(t)) is Metzler matrix and

p∑
i

wi(x(t))Bi(x(t)) � 0. The proof is completed.

Acknowledgements

The authors are grateful to the financial support of Natural Science Foun-

dation of Hebei Province [grant number F2019203505].420

References

[1] M. S. Fadali, S. Jafarzadeh, Stability analysis of positive interval Type-2

TSK systems with application to energy markets, IEEE Transactions on

Fuzzy Systems 22 (4) (2014) 1031–1038.

[2] A. Benzaouia, F. Mesquine, M. Benhayoun, H. Schulte, S. Georg, Stabi-425

lization of positive constrained T–S fuzzy systems: Application to a Buck

converter, Journal of the Franklin Institute 351 (8) (2014) 4111–4123.

[3] J. A. Jacquez, Compartmental analysis in biology and medicine, The Quar-

terly Review of Biology 48 (4) (1973) 661–661.

[4] L. Farina, S. Rinaldi, Positive linear systems: theory and applications,430

Vol. 50, John Wiley & Sons, 2011.

[5] Z. Shu, J. Lam, H. Gao, B. Du, L. Wu, Positive observers and dy-

namic output-feedback controllers for interval positive linear systems, IEEE

33



Transactions on Circuits & Systems I Regular Papers 55 (10) (2008) 3209–

3222.435

[6] H. Trinh, D. C. Huong, L. V. Hien, S. Nahavandi, Design of reduced-order

positive linear functional observers for positive time-delay systems, IEEE

Transactions on Circuits and Systems II: Express Briefs 64 (5) (2017) 555–

559.

[7] X. Liu, W. Yu, L. Wang, Stability analysis of positive systems with bounded440

time-varying delays, IEEE Transactions on Circuits and Systems II: Ex-

press Briefs 56 (7) (2009) 600–604.

[8] J. Zhang, X. Zhao, R. Zhang, An improved approach to controller de-

sign of positive systems using controller gain decomposition, Journal of the

Franklin Institute 354 (3) (2017) 1356–1373.445

[9] S. Huang, Z. Xiang, H. R. Karimi, Mixed L /L1 fault detection filter design

for fuzzy positive linear systems with time-varying delays, IET Control

Theory & Applications 8 (12) (2014) 1023–1031.

[10] A. Benzaouia, A. Hmamed, A. E. Hajjaji, Stabilization of controlled pos-

itive discrete-time T–S fuzzy systems by state feedback control, Interna-450

tional Journal of Adaptive Control & Signal Processing 24 (12) (2010)

1091–1106.

[11] Y. Mao, H. Zhang, C. Dang, Stability analysis and constrained control of a

class of fuzzy positive systems with delays using linear copositive Lyapunov

functional, Circuits Systems & Signal Processing 31 (5) (2012) 1863–1875.455

[12] A. Benzaouia, R. Oubah, A. E. Hajjaji, Stabilization of positive Takagi–

Sugeno fuzzy discrete-time systems with multiple delays and bounded con-

trols, Journal of the Franklin Institute 351 (7) (2014) 3719–3733.

[13] J. Lian, S. Li, J. Liu, T–S fuzzy control of positive Markov Jump nonlinear

systems, IEEE Transactions on Fuzzy Systems 26 (4) (2018) 2374–2383.460

34



[14] J. Lian, S. Li, Fuzzy control of uncertain positive Markov jump fuzzy sys-

tems with input constraint, IEEE Transactions on Cybernetics (2019) 1–10.

[15] W. Qi, J. H. Park, G. Zong, J. Cao, J. Cheng, A fuzzy Lyapunov function

approach to positive L1 observer design for positive fuzzy Semi-Markovian

switching systems with its application, IEEE Transactions on Systems,465

Man, and Cybernetics: Systems (2018) 1–11.

[16] J. Wang, J. Liang, A. M. Dobaie, Stability analysis and synthesis for

switched Takagi–Sugeno fuzzy positive systems described by the roesser

model, Fuzzy Sets and Systems 371 (2019) 25 – 39.

[17] B. Pang, Q. Zhang, Stability analysis and observer-based controllers design470

for T-S fuzzy positive systems, Neurocomputing 275 (2018) 1468–1477.

[18] X. Chen, L. Wang, M. Chen, J. Shen, L∞ -induced output-feedback con-

troller synthesis for positive nonlinear systems via T-S fuzzy model ap-

proach, Fuzzy Sets and Systems 385 (2020) 98 – 110.

[19] X. Zheng, X. Wang, Y. Yin, L. Hu, Stability analysis and constrained fuzzy475

tracking control of positive nonlinear systems, Nonlinear Dynamics 83 (4)

(2016) 2509–2522.

[20] X. Chen, J. Lam, H. K. Lam, Positive filtering for positive Takagi–Sugeno

fuzzy systems under `1 performance, Information Sciences 299 (2015) 32–

41.480

[21] K. Tanaka, H. Yoshida, H. Ohtake, H. O. Wang, A sum-of-squares approach

to modeling and control of nonlinear dynamical systems with polynomial

fuzzy systems, IEEE Transactions on Fuzzy Systems 17 (4) (2009) 911–922.

[22] K. Tanaka, H. Ohtake, H. O. Wang, Guaranteed cost control of polynomial

fuzzy systems via a sum of squares approach, IEEE Transactions on Sys-485

tems, Man, and Cybernetics, Part B (Cybernetics) 39 (2) (2009) 561–567.

35



[23] S. Prajna, A. Papachristodoulou, P. A. Parrilo, Introducing SOSTOOLS:

a general purpose sum of squares programming solver, in: Decision and

Control, 2002, Proceedings of the IEEE Conference on, 2002, pp. 741–746

vol.1.490

[24] X. Li, H. K. Lam, G. Song, F. Liu, Stability analysis of positive polynomial

fuzzy-model-based control systems with time delay under imperfect premise

matching, IEEE Transactions on Fuzzy Systems 26 (4) (2018) 2289–2300.

[25] X. Li, H. K. Lam, F. Liu, X. Zhao, Stability and stabilization analysis of

positive polynomial fuzzy systems with time delay considering piecewise495

membership functions, IEEE Transactions on Fuzzy Systems 25 (4) (2017)

958–971.

[26] A. Meng, H. K. Lam, Y. Yu, X. Li, F. Liu, Static output feedback stabi-

lization of positive polynomial fuzzy systems, IEEE Transactions on Fuzzy

Systems 26 (3) (2018) 1600–1612.500

[27] H. K. Lam, Polynomial fuzzy-model-based control systems: Stability analy-

sis via piecewise-linear membership functions, IEEE Transactions on Fuzzy

Systems 19 (3) (2011) 588–593.

[28] M. Meng, J. Lam, J. Feng, X. Zhao, X. Chen, Exponential stability analysis

and L1 synthesis of positive T-S fuzzy systems with time-varying delays,505

Nonlinear Analysis: Hybrid Systems 24 (2017) 186–197.

[29] A. Meng, H. K. Lam, F. Liu, C. Zhang, P. Qi, Output feedback and sta-

bility analysis of positive polynomial fuzzy systems, IEEE Transactions on

Systems, Man, and Cybernetics: Systems (2020) In press.

[30] S. Li, Z. Xiang, Exponential stability analysis and l2-gain control synthesis510

for positive switched T–S fuzzy systems, Nonlinear Analysis Hybrid Sys-

tems 27 (2018) 77–91.

36



[31] X. Zhao, T. Wu, X. Zheng, R. Li, Discussions on observer design of nonlin-

ear positive systems via T–S fuzzy modeling, Neurocomputing 157 (2015)

70–75.515

[32] M. Han, H. K. Lam, Y. Li, F. Liu, C. Zhang, Observer-based control of pos-

itive polynomial fuzzy systems with unknown time delay, Neurocomputing

349 (2019) 77 – 90.

[33] H. K. Lam, M. Narimani, Stability analysis and performance design for

fuzzy-model-based control system under imperfect premise matching, IEEE520

Transactions on Fuzzy Systems 17 (4) (2009) 949–961.

[34] H. K. Lam, A review on stability analysis of continuous-time fuzzy-

model-based control systems: From membership-function-independent to

membership-function-dependent analysis, Engineering Applications of Ar-

tificial Intelligence 67 (2018) 390–408.525

[35] H. K. Lam, M. Narimani, Quadratic-stability analysis of fuzzy-model-based

control systems using staircase membership functions, IEEE Transactions

on Fuzzy Systems 18 (1) (2010) 125–137.

[36] H. K. Lam, C. Liu, L. Wu, X. Zhao, Polynomial fuzzy-model-based control

systems: Stability analysis via approximated membership functions con-530

sidering sector nonlinearity of control input, IEEE Transactions on Fuzzy

Systems 23 (6) (2015) 2202–2214.

[37] M. Han, H. K. Lam, F. Liu, L. Wang, Y. Tang, Stability analysis and

estimation of domain of attraction for positive polynomial fuzzy systems

with input saturation, IEEE Transactions on Fuzzy Systems 28 (8) (2020)535

1723–1736.

[38] A. Sala, C. Arino, Polynomial fuzzy models for nonlinear control: A Taylor

series approach, IEEE Transactions on Fuzzy Systems 17 (6) (2009) 1284–

1295.

37


	Introduction
	Preliminaries
	Notation
	Polynomial Fuzzy Plant Model
	Polynomial Fuzzy Controller

	Novel Stability Analysis Results for PPFMB System
	Membership Functions Dependent Positivity and Stability Analysis
	PLMF Dependent Positivity Analysis
	PLMF Dependent Stability Analysis

	Simulation Example
	Conclusion

