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Condition Numbers for Real Eigenvalues in
the Real Elliptic Gaussian Ensemble

Yan V. Fyodorov and Wojciech Tarnowski

Abstract. We study the distribution of the eigenvalue condition numbers
κi =

√
(l∗i li)(r

∗
i ri) associated with real eigenvalues λi of partially asym-

metric N ×N random matrices from the real Elliptic Gaussian ensemble.
The large values of κi signal the non-orthogonality of the (bi-orthogonal)
set of left li and right ri eigenvectors and enhanced sensitivity of the
associated eigenvalues against perturbations of the matrix entries. We
derive the general finite N expression for the joint density function (JDF)
PN (z, t) of t = κ2

i − 1 and λi taking value z, and investigate its several
scaling regimes in the limit N → ∞. When the degree of asymmetry is
fixed as N → ∞, the number of real eigenvalues is O(

√
N), and in the

bulk of the real spectrum ti = O(N), while on approaching the spec-

tral edges the non-orthogonality is weaker: ti = O(
√

N). In both cases
the corresponding JDFs, after appropriate rescaling, coincide with those
found in the earlier studied case of fully asymmetric (Ginibre) matrices.
A different regime of weak asymmetry arises when a finite fraction of
N eigenvalues remain real as N → ∞. In such a regime eigenvectors are
weakly non-orthogonal, t = O(1), and we derive the associated JDF, find-
ing that the characteristic tail P(z, t) ∼ t−2 survives for arbitrary weak
asymmetry. As such, it is the most robust feature of the condition number
density for real eigenvalues of asymmetric matrices.

Mathematics Subject Classification. 60B20 Random matrices.

Keywords. Bi-orthogonal eigenvectors, Eigenvalue condition numbers,
Weak non-Hermiticity.

1. Introduction

A (real-valued) square matrix X is asymmetric if it is different from its trans-
pose XT , and non-normal if XXT �= XT X. Generically, asymmetric matrices
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are non-normal, and their eigenvalues are much more sensitive to the pertur-
bations of the matrix entries than for their symmetric (hence selfadjoint and
normal) counterparts. It is well known that non-normality may raise serious
issues when calculating the spectra of such matrices numerically: keeping a
fixed precision of calculations might not be sufficient, as some eigenvalues can
be ‘ill-conditioned’.

To be more specific, we assume that X can be diagonalized (which for
random matrices happens with probability one). Then to each eigenvalue λi,
real or complex (in the latter case being always accompanied by its complex
conjugate partner λi) correspond two sets of eigenvectors, left li and right
ri which can always be chosen to be bi-orthogonal: l∗i rj = δij , where l∗i := lTi
stands for Hermitian conjugation. The corresponding eigenproblems are Xri =
λiri and XT li = λili. Consider now a matrix X ′ = X + εP , where the second
term represents an error one makes by storing the matrix entries with a finite
precision, with ε > 0 controlling the magnitude of the error and P reflecting
the matrix structure of the perturbation. In the first order perturbation theory
in parameter ε eigenvalues are shifted by

|δλi| = ε|l∗i Pri| ≤ ε||P ||
√

(l∗i li)(r
∗
i ri). (1)

The latter quantity, κi =
√

(l∗i li)(r
∗
i ri), shows that the sensitivity of eigenval-

ues is essentially controlled by the non-orthogonality of the corresponding left
and right eigenvectors. Correspondingly, in the numerical analysis context κi

is called the eigenvalue condition number of the eigenvalue λi [41,42]. Note
also that the Cauchy–Schwarz inequality implies κ ≥ 1, with κ = 1 only when
X is normal.

It is natural to ask how well-conditioned a ‘typical’ asymmetric matrix is.
This question can be most meaningfully answered in the context of Random
Matrix Theory (RMT), by defining ‘typical’ as randomly chosen according to
a probability measure specified by a particular choice of the ensemble. The
simplest yet nontrivial choice is to assume that all entries are mean-zero, inde-
pendent, identically distributed (i.i.d.) Gaussian numbers. This defines the
standard real Ginibre ensemble which we denote Gin1. Note that the question
is equally interesting for matrices with entries that are complex rather than
real, defining the complex Ginibre ensemble, which we denote Gin2. Note that
for such an ensemble eigenvalues λi are purely complex with probability one.

It is the latter ensemble for which the study of the eigenvalue condition
numbers has been initiated two decades ago by Chalker and Mehlig [8,35].
More precisely, Chalker and Mehlig introduced a matrix of inner products
Oij = (l∗i lj)(r

∗
jri), which they called ‘eigenvector overlaps’. The diagonal ele-

ments of that matrix are simply the squared eigenvalue condition numbers.
They further associated with the diagonal elements of the overlap matrix the
following single-point correlation function:

O1(z) =

〈
1
N

N∑

k=1

Okkδ(z − λk)

〉

Gin2

. (2)
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where the angular brackets stand for the expectation with respect to the prob-
ability measure associated with the complex Ginibre ensemble, and δ(z − λk)
is the Dirac delta mass at the eigenvalue λk, so that the empirical density of
eigenvalues in the complex plane z reads ρ(z) = 1

N

∑N
k=1 δ(z − λk).

Such O1(z) gives the conditional expectations of (squared) κ as E(κ2
i |z =

λi) = O1(z)
〈ρ(z)〉 , where 〈ρ(z)〉 is the mean spectral density around z [3]. It turned

out that in the bulk of the spectrum of the complex Ginibre ensemble the
magnitude of a typical diagonal overlap Oii grows linearly with the size of
the matrix N , so one needs to consider a rescaled object Õ1(z) = 1

N O1(z) to
obtain a non-trivial limit. In their influential papers [8,35] Chalker and Mehlig
used the ‘formal’ perturbation theory expansion to evaluate asymptotically,
for N � 1, both the diagonal overlap O1(z) and its more general off-diagonal
counterpart

O2(z1, z2) =

〈
1
N

N∑

k �=l

Oklδ(z1 − λk)δ(z2 − λl)

〉

Gin2

.

The first mathematically rigorous verification of the Chalker and Mehlig result
for the diagonal overlap has been done in [43]. Remarkably, the function O1(z)
can be efficiently studied within the formalism of free probability [33] which
recently allowed to extend the Chalker–Mehlig formulas to a broad class of
invariant ensembles beyond the Gaussian case [3,37]. O1(z) is also known for
a finite size of the complex Ginibre matrix [8,35] and products of small Ginibre
matrices [7]. It has been recently shown that for complex Ginibre matrices the
one- and two-point functions conditioned on an arbitrary number of eigenvalues
are related to determinantal point processes [2]. Various features characterizing
the rich properties of eigenvectors of nonnormal random matrices have been
also studied in [4,9].

Here it is necessary to mention that the interest in statistical properties
of the overlap matrix Okl and related objects extends much beyond the issues
of eigenvalue stability under perturbation and is driven by numerous applica-
tions in theoretical and mathematical physics. In particular, non-orthogonality
governs transient dynamics in complex systems [30,32,40] (see also [16,34]),
analysis of spectral outliers in non-selfadjoint matrices [36], and, last but not
least, the description of the Dyson Brownian motion for non-normal matrices
[5,6,31]. Another steady source of interest in the statistics of eigenvector over-
laps is due to its role in chaotic wave scattering. In that context O1(z) and
O2(z1, z2) have been studied for a few special models different from Ginibre
(both theoretically [19,26,27] and very recently experimentally [10,11]) and in
the associated models of random lasing [38,39]. In the scattering context all
eigenvalues are necessarily complex, and the lasing threshold is associated with
the eigenvalue with the smallest imaginary part. For that special eigenvalue
even the distribution of the overlap Oii has been studied [39].

In fact, Chalker and Mehlig not only analyzed O1(z), but also put forward
a conjecture on the tail for the density P (Oii) of the distribution of diagonal
overlaps Oii. Namely, based on the exactly solvable case of 2 × 2 matrices and
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numerical simulations for the complex Ginibre case they predicted that for
large overlaps the density will exhibit a tail P (Oii) ∼ O−3

ii , making all the
positive integer moments beyond O1(z) divergent. This conjecture has been
settled only recently with two different methods, by Bourgade and Dubach
[5] (where some information about Ol �=k was also provided) and by Fyodorov
[21]. The latter paper also revealed that for real eigenvalues of real Ginibre
matrices Gin1 the diagonal overlaps Oii are distributed with even heavier tail:
P (Oii) ∼ O−2

ii , making even the mean of the overlap divergent.
To address the above distributions it is convenient to introduce the fol-

lowing natural generalization of the equation (2):

PN (z, t) =

〈
∑

i

δ(Oii − 1 − t)δ(z − λi)

〉

(3)

interpreted as the joint density function (JDF) of the ‘diagonal’ (or ‘self-
overlap’) non-orthogonality factor t = Oii − 1 for the right and left eigen-
vectors corresponding to eigenvalues in the vicinity of a point z = x + iy in
the complex plane. The summation runs over all real eigenvalues for the real
ensembles and over all eigenvalues for complex ensembles. As such, it is not
a probability density, because it is normalized to the mean total number of
(real) eigenvalues. As was shown in [5,13,21] the JDF PN (z, t) tends (after an
appropriate rescaling of the variables z and t with the size N) to the inverse
gamma distribution as N � 1:

lim
N→∞

N PN (z
√

N,Nt) =
〈ρ(z)〉

t
e− Õ1(z)

t〈ρ(z)〉

(
Õ1(z)
t〈ρ(z)〉

)β

, |z| < 1. (4)

Here parameter β = 1 corresponds to the real eigenvalues of real Ginibre
matrices (in which case the parameter z should be chosen to be real), β = 2
to the complex Ginibre case and β = 4 to the quaternionic Ginibre case.
Recall that in (4) the limiting spectral density of real eigenvalues for β = 1 is
〈ρ(z)〉 = 1

2
√

2π
for the interval |z| < 1, whereas the limiting spectral density of

complex eigenvalues for β = 2 is 〈ρ(z)〉 = π−1 inside the unit circle |z| < 1.
For complex Ginibre the limiting expression (4) naturally incorporates

the Chalker-Mehlig result. In the formula above Õ(z) = π−1(1−|z|2), which is
the large N limit of the rescaled one-point correlation function. Interestingly,
despite the fact that for β = 1 the mean value O1(z) defined via (2) does
not exist, the closely related rescaled combination, Õ1(z) = 1

2
√

2π
(1 − z2),

appears as a parameter in the inverse γ1 distribution and therefore defines
the typical value of the diagonal overlap. Further calculations in a few non-
Gaussian rotationally invariant matrix ensembles (in particular, associated
with ‘truncations’ of unitary matrices) done very recently in [12] suggest that
(4) might exhibit a certain degree of universality. Note that the statistics of
Oii for complex eigenvalues of real Ginibre matrices remains an outstanding
problem, though it would be natural to expect that also in that case, for a
fixed z with a non-vanishing imaginary part, the limit should be the same as
for the complex Ginibre case.
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Returning to the original question of eigenvalue condition numbers for
real-valued matrices, the above results in particular imply that in contrast
to well-conditioned eigenvalues of symmetric matrices with κ = 1 the typical
condition numbers in fully asymmetric random matrices grow with matrix
size as

√
N [21] and show strong fluctuations. One of natural questions is then

to ask how those properties evolve for matrices with a controlled degree of
asymmetry in their entries. The aim of this work is to answer this question.
To this end we consider matrices with i.i.d. real Gaussian entries, such that
the entries Xij and Xji are correlated. The joint pdf for the elements of this
ensemble, known in the literature either as the real partly symmetric Ginibre
ensemble, or, alternatively, as the real Elliptic Gaussian ensemble, is given by

P (X)dX = C−1
N exp

[
− 1

2(1 − τ2)
Tr(XXT − τX2)

]
dX. (5)

Here dX =
∏N

i,j=1 dXij is the flat Lebesgue measure over all matrix elements

and the normalization constant reads CN = (2π)N2/2(1+τ)N/2(1−τ2)
N(N−1)

4 .
The parameter τ ∈ [0, 1] tunes the degree of correlation, E(XijXji) = τ for
i �= j, and (5) interpolates between the Real Ginibre Ensemble for τ = 0 and
an ensemble of real symmetric matrices (Gaussian Orthogonal Ensemble) for
τ = 1. In particularly, it is well known that for large sizes N � 1 a nontrivial
scaling regime of weak non-Hermiticity arises as long as the product N(1−τ) is
kept of the order of unity [15,23–25,28]. It is this regime when non-normality
gradually develops, and the condition numbers κi start growing away from
the value κi = 1. Our considerations allow us to address this regime in a
quantitative way.

2. Statement of the Main Results

It turns out that the method of evaluating the JDF in (3) suggested for the
Ginibre case in [21] works for the Elliptic ensemble as well, though actual
calculations turn out to be significantly more involved. Relegating technical
detail to the rest of the paper, in this section we present our main findings.

Our main theorem gives the joint density function of the eigenvalue λi and
the shifted overlap t = Oii −1 for elliptic matrices of a given size N distributed
according to (5). It takes a more compact form when the rescaled variable
q = (1−τ)t is considered. Therefore, we define Pτ

N (z, q) = (1−τ)−1PN (z, q
1−τ ).

Theorem 2.1. Let XN be an N ×N random matrix with the probability density
function given by (5). Let us define the rescaled and shifted eigenvalue condition
number q = (1 − τ)(κ2 − 1). The joint density (3) of a real eigenvalue z and
the associated squared condition number expressed via the variable q is given
by

Pτ
N (z, q) =

1

2(1 + τ)
√

2πΓ (N − 1)

e
− z2

2(1+τ)

(
1+ q

1+q

)

√
q(1 + q)

(
q

q + 1 + τ

)N
2 −1
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×
[
(1 + τ − 2z2)PN−2 + 2z[RN−2 + τ(N − 2)RN−3]

1 + q

+
PN−2z

2

(1 + q)2
+

τ2(1 + τ)2N(N − 2)PN−3

(1 + τ + q)2

+
(1 + τ)(1 − τ2)(N − 2)((N − 2)PN−3 − TN−3)

1 + τ + q
− 2τ(1 + τ)(N − 2)zRN−3

(1 + q)(1 + τ + q)

]
,

(6)

where the functions: Pm := Pm(z), Rm := Rm(z), Tm := Tm(z) are defined in
terms of the Hermite polynomials

Hem(z) =
(±i)m

√
2π

e
z2
2

∫

R

tme− t2
2 ∓iztdt, (7)

as

PN (z) = N !

N∑

k=0

τk

k!

(
(k + 1)He

2
k

(
z√
τ

)
− kHek−1

(
z√
τ

)
Hek+1

(
z√
τ

))
, (8)

RN (z) =
N !

2

N∑

k=0

τk+ 1
2

k!

(
(k + 2)Hek+1

(
z√
τ

)
Hek

(
z√
τ

)
− kHek+2

(
z√
τ

)
Hek−1

(
z√
τ

))
,

(9)

TN (z) = N !

N∑

k=0

kτk

k!

(
(k + 1)He

2
k

(
z√
τ

)
− kHek−1

(
z√
τ

)
Hek+1

(
z√
τ

))
. (10)

Remark 2.2. Note that for τ = 0 these quantities simplify to PN =
ez2

Γ
(
N + 1, z2

)
, RN = zPN and TN = Nz2PN−1, with Γ (N + 1, z) =∫ ∞

z
uNe−xdu, and the known result [21, eq. 2.5] is recovered.

Remark 2.3. The exact mean density of purely real eigenvalues ρ
(r)
N (z) for the

real Elliptic ensemble of even size N is known thanks to Forrester and Nagao
[18]. It is given by ρ

(r)
N (z) = ρ

(1)
N (z) + ρ

(2)
N (z) with

ρ
(1)
N (z) =

1√
2π

e− z2
1+τ

N−2∑

k=0

τk

k!
He2

k

(
z√
τ

)
, (11)

ρ
(2)
N (z) =

1√
2π(1 + τ)Γ (N − 1)

e− z2
2(1+τ) τN−3/2HeN−1

(
z√
τ

)

∫ z

0

e− u2
2(1+τ) HeN−2

(
u√
τ

)
du. (12)

For odd N the density can be obtained using the method from [17]. Our expres-
sion (6) by its very definition must reproduce the Forrester-Nagao result after
integration over the variable t. Performing such an integration analytically
is, however, a challenging task which we managed to complete for N = 2, 3, 4.
Nevertheless, we checked that performing such an integral numerically for mod-
erate values of N gives results that are indistinguishable from the density of
real eigenvalues, see “Appendix A’.

As the expression (6) is exact, the joint density in the original variable,
PN (z, t), can be further analyzed in interesting scaling limits as N → ∞. The
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first of such limits is the so-called bulk scaling corresponding to the eigenvalues
inside the limiting support of the spectrum which (after appropriate rescaling
z → √

Nz) for a fixed z and 0 ≤ τ < 1 represents an ellipse in the complex
plane (hence the name for the ensemble), centered at the origin, with semi-axis
1 − τ along imaginary axis and 1 + τ along the real axis. Since we are dealing
only with real eigenvalues, we restrict ourselves to real z such that |z| < 1+ τ ,
where the following asymptotics holds:

Corollary 2.4. (bulk scaling) Define for a fixed 0 ≤ τ < 1 and real z satisfying
|z| < 1 + τ the limiting scaled JDF as Pbulk(z, t) = limN→∞ NPN (

√
Nz,Nt).

Then

Pbulk(z, t) =
√

1 − τ2

2
√

2π

[
1 − z2

(1+τ)2

]

t2
e
− 1−τ2

2t

[
1− z2

(1+τ)2

]

. (13)

This asymptotics shows that the typical value of the diagonal overlap
t = Oii − 1 in this regime is always of the order N as N � 1, similarly
to the behavior for the Ginibre case τ = 0. Moreover, by recalling that the
asymptotic density of real eigenvalues in the elliptic case is 〈ρ(z)〉 = 1√

2π(1−τ2)

and introducing Õ1(z) =
√

1−τ2

2
√

2π
(1 − z2

(1+τ)2 ), we see that (13) is exactly of the
form (4) for β = 1.

When approaching the boundary |z| = 1+τ of the eigenvalue support the
typical diagonal overlap Õ1(z) tends to zero, and in the appropriate scaling
vicinity of the boundary it becomes parametrically weaker, as the variable t
in such a regime becomes of the order

√
N :

Corollary 2.5. (edge scaling) Take a fixed 0 ≤ τ < 1 and parameterize z and
q as z =

√
N(1 + τ) + δτ

√
1 − τ2 and q = σ

√
N(1 − τ2). Then the limit

Pedge(δτ , σ) = limN→∞
√

NPN (z, q) exists and is equal to

Pedge(δτ , σ) =
1

4πσ2(1 − τ2)
e− 1

4σ2 + δτ
σ

[
e−2δ2

τ +
(

1
σ

− 2δτ

)∫ ∞

2δτ

e− u2
2 du

]
.

(14)

Note that this form is essentially the same as the one found for the real
Ginibre case in [21].

Finally, the ultimate goal of our study is to investigate the weak non-
Hermiticity regime occurring for N → ∞ when τ approaches unity with the
rate O(N−1), so that the parameter 2N(1 − τ) = a2 is fixed. Such parameter
therefore controls the deviation from the fully symmetric limit. In this regime
of ‘almost symmetric’ matrices already a finite fraction of eigenvalues of the
order of N are real, and asymptotically their mean density is given by [15,25]

〈ρ(z)〉 = ρsc(z)
∫ 1

0

e− 1
2As2

ds, |z| < 2, (15)

where ρsc(z) = 1
2π

√
4 − z2 is the standard Wigner semicircle density charac-

terizing real symmetric GOE matrices, and A = (πρsc(z)a)2.
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Figure 1. (Left) 3D plot of Pweak(z, t). (Right) Section of
the plot at z = 0 (red line) juxtaposed numerical diagonaliza-
tion of 2 · 104 matrices of size N = 500

As anticipated, such a regime turns out to be not only ‘weakly non-
Hermitian’, but also ‘weakly non-normal’ as the typical value of the diagonal
overlap t = Oii − 1 turns out to be of the order of unity in the bulk of the
spectrum, namely

Corollary 2.6. Let |z| < 2 and t ≥ 0 be fixed. Consider the limit Pweak(z, t) =
limN→∞ N−1/2PN (z

√
N, t) with 2N(1 − τ) = a2 fixed. Then

Pweak(z, t) =
A

2
ρsc(z)

e− A
2t

t2

∫ 1

0

e− 1
2As2

(
1 + A +

A

t
− As2

)
s2ds, (16)

where A = (πρsc(z)a)2 and ρsc(z) = 1
2π

√
4 − z2. See also Fig. 1 for a plot of

this distribution.

Remark 2.7. After integration by parts one can rewrite the above as

Pweak(z, t) =
A

2
ρsc(z)

e− A
2t

t2

[(
2
A

− 1
t

)
e− A

2 +
(

1 +
1
t

− 2
A

)∫ 1

0

e− 1
2As2

ds

]
.

(17)

From this form it is easy to check that
∫ ∞
0

Pweak(z, t)dt agrees with the mean
density (15), as expected.

We thus conclude that the characteristic tail Pweak(z, t) ∼ t−2 is the
most robust feature of the condition number density for real eigenvalues of
asymmetric matrices, as it survives in the regime of arbitrary weak asymmetry
as long as a > 0 (Fig. 1).

3. Derivation of the Main Results

We briefly outline an adaptation of the method of evaluating the JDF in (3)
following [21] with necessary modifications.
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3.1. Partial Schur Decomposition

Let λ be a real eigenvalue of an N ×N real matrix XN . Then it is well known,
see, e.g., [14], that the matrix XN can be decomposed as

XN = O

(
λ wT

0 XN−1

)
OT = OX̃NOT , (18)

where w is a column vector with N − 1 components and XN−1 is a matrix of
size (N − 1) × (N − 1). The matrix O is the Householder reflection matrix,
parameterized as O = 1N −2vvT , where 1N is the N×N identity matrix and v
is an N -dimensional vector of unit norm, with a positive first component. Note
that although the left/right eigenvectors of X̃N corresponding to λ are different
from those of XN , the inner products (hence, the eigenvalue condition num-
bers) are the same. Parameterizing these eigenvectors as r̃λ = (1, 0, . . . , 0)T

and l̃λ = (1, b1, . . . , bN−1) = (1,bT ), we immediately obtain for the associated
condition number κ2

λ = 1 + bTb. Demanding that l̃λ is the left eigenvector of
X̃N leads us to the relation b = (λ − XT

N−1)
−1w. As a consequence [21]

κ2
λ = 1 + wT (λ − XN−1)−1(λ − XT

N−1)
−1w. (19)

The Lebesgue measure on XN can be decomposed as dXN = |det(λ −
XN−1)|dλdwdXN−1dS(v), where dS(v) denotes the uniform measure on the
(N − 1)-hemisphere [14] (see also supplementary material of [22]).

It turns out to be more technically convenient to concentrate on eval-
uating a characteristic function L(z, p) =

〈
δ(z − λ)e−pbT b

〉

N
representing

the Laplace transform of the JDF P(z, t). Hereafter by 〈. . .〉N we denote the
expected value with respect to the probability measure (5) for matrices XN of
size N .

Lemma 3.1. The characteristic function L(z, p) can be represented in the form

L(z, p) =
e− z2

2(1+τ)

2
N
2 Γ

(
N
2

)√
1 + τ

〈
det(z − X)(z − XT )

det 1/2 [2p(1 − τ2) + (z − X)(z − XT )]

〉

N−1

.

(20)

Proof. Substituting the decomposition (18) together with the associated
decomposition of the Lebesgue measure into the probability measure of the
elliptic ensemble (5) one can easily see that the ensemble average in (20)
amounts to performing the following integral:

L(z, p) = C−1
N e

− z2
2(1+τ)

∫
exp

[
− 1

2(1 − τ2)
Tr(XN−1X

T
N−1 − τX2

N−1)

]

× exp

[
− 1

2(1 − τ2)
wT

(
1 + 2p(1 − τ2)(z − XN−1)

−1(z − XT
N−1)

−1
)
w

]
|

z − XN−1|dXN−1dwdS(v). (21)
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The integral over v yields the volume of the (N − 1)-hemisphere
∫

dS(v) =
πN/2

Γ(N
2 ) [14]. The integral over w is Gaussian and can be easily performed, giving

the factor
[
2π(1 − τ2)

]N−1
2

det 1/2[1 + 2p(1 − τ2)(z − XN−1)−1(z − XT
N−1)−1]

=

[
2π(1 − τ2)

]N−1
2 det 1/2(z − XN−1)(z − XT

N−1)
det 1/2

[
(2p(1 − τ2) + (z − XN−1)(z − XT

N−1)
] . (22)

Taking all the multiplicative numerical constants into account and the factor
|det(z − XN−1)| from the Jacobian, we arrive at (20). �

3.2. Ratio of Determinants

The problem has been therefore reduced to the calculation of the expectation
for the ratio of two random determinants

DN :=
〈

det(z − X)(z − XT )
det 1/2 [(2p(1 − τ2) + (z − X)(z − XT )]

〉

N

, (23)

which is evaluated as
Theorem 3.2.

DN =
2− N

2√
1 + τΓ

(
N
2

)
∫ ∞

0

dt

t
e

−pt(1−τ)
e

− z2t

2(1+τ)(1+t)

(
t

1 + t

)1/2 (
t

1 + τ + t

) N−1
2

×
[

PN−1(1 + τ − 2z2) + 2z(RN−1 + τ(N − 1)RN−2)

1 + t
+

PN−1z2

(1 + t)2
+

τ2(1 + τ)2(N2 − 1)PN−2

(1 + τ + t)2

+
(1 + τ)(1 − τ2)(N − 1)[(N − 1)PN−2 − TN−2]

1 + τ + t
− 2τ(1 + τ)(N − 1)zRN−2

(1 + t)(1 + τ + t)

]

, (24)

where PN , RN and TN are defined in (8)–(10).

Remark 3.3. Theorem 3.2 immediately implies our main statement, Theo-
rem 2.1: Indeed, by inserting (24) into (20) we see that L(z, p) is already
represented as a Laplace transform, but of the rescaled variable t(1 − τ), and
(6) follows.

The proof of Theorem 3.2 proceeds via employing the supersymmetry
approach to ratios of determinants.

Proof. Let χ, ρ, θ, η denote N -component vectors in anticommuting (Grass-
mann) variables. This allows us to rewrite the determinant in the numerator
as a standard Berezin Gaussian integral

det(z − X)(z − XT ) =
∫

dχdρdθdη exp
[−χT (z − X)η − θT (z − XT )ρ

]
.

(25)

The inverse square root of the determinant of a symmetric positive definite
matrix A can be represented as a standard Gaussian integral. Namely, intro-
ducing N -component real vectors s1, s2 we can write
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det − 1
2
[
2p(1 − τ2) + (z − X)(z − XT )

]

=
1

(2π)N

∫
ds1ds2 exp

[
−1

2
(sT

1 s
T
2 )

(
u i(z − X)

i(z − XT ) u

)(
s1
s2

)]
,

(26)

where we denoted u2 = 2p(1−τ2). This provides a representation of the right-
hand side in (24) in the form

DN =
1

(2π)N

∫
dχdρdθdηds1ds2

exp
[
−z(χT η + θT ρ) − 1

2
(usT

1 s1 + usT
2 s2 + 2izsT

1 s2)
]

×
〈
eTrX(θρT −ηχT +is2s

T
1 )
〉

N
. (27)

The identity
〈
e−TrXA

〉
N

= e
1
2Tr(AAT +τA2) allows us to perform the ensemble

average. This in turn produces terms that are quartic in Grassmann variables,
which we further bilinearize by employing a few auxiliary Gaussian integrals,
the step known as the Hubbard–Stratonovich transformation:

eθT ηρT χ =
1
π

∫

C

d2ae−|a|2+aθT η+āρT χ,

eτχT θρT η =
1
π

∫

C

d2be−|b|2+√
τbχT θ+

√
τb̄ρT η, (28)

e− τ
2 (ρT θ)2 =

1√
2π

∫

R

e− c2
2 +ic

√
τρT θdc,

e− τ
2 (χT η)2 =

1√
2π

∫

R

e− f2
2 −if

√
τχT ηdf, (29)

where we use the notation d2z = dxdy for z = x + iy.
Applying these transformations converts all integrations over anticom-

muting variables into a Gaussian Berezin integral which we can write as∫
dχdρdθdηe− 1

2 ξT Mξ, where ξT = (χT ηT θT ρT ) and the antisymmetric matrix
M is given by

M =

⎛

⎜
⎜
⎝

0 g − iA −b
√

τ ā
−g + iAT 0 a b̄

√
τ

b
√

τ −a 0 h − iAT

−ā −b̄
√

τ −h + iA 0

⎞

⎟
⎟
⎠ . (30)

Here we denoted g = z + if
√

τ , h = z + ic
√

τ for brevity, and introduced the
rank-two matrix A = s1sT

2 + τs2sT
1 .

The Berezin Gaussian integration yields a Pfaffian of the matrix M . The
Pfaffian is evaluated using the fact that through the Schur decomposition A
is equivalent to Ã ⊕ 0N−2, where 0N−2 denotes the matrix of size N − 2 filled
with zeros, and

Ã =
(

λ1 t
0 λ2

)
. (31)
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As a consequence, Pf(M) = Pf(F )N−2Pf(G), where the matrices of size 4 and
8 read explicitly

F =

⎛

⎜⎜
⎝

0 g −b
√

τ ā
−g 0 a b̄

√
τ

b
√

τ −a 0 h
−ā −b̄

√
τ −h 0

⎞

⎟⎟
⎠ ,

G = F ⊗ 12 +

⎛

⎜⎜
⎝

0 −iÃ 0 0
iÃT 0 0 0
0 0 0 iÃT

0 0 −iÃ 0

⎞

⎟⎟
⎠ . (32)

The Pfaffian reads
Pf(M) = (|a|2 + τ |b|2 + gh)

N−2
[
(|a|2 + τ |b|2 + gh)

2 − (|a|2 + τ |b|2 + gh)i(g + h)TrA

−|a|2TrAA
T − τ |b|2TrA

2 − (g
2

+ h
2
) det A − gh(TrA)

2 − i(g + h) det A TrA + det
2
A
]

.

(33)

We notice that
TrA = (1 + τ)sT

1 s2, TrA2 = (1 + τ2)(sT
1 s2)

2 + 2τ(sT
1 s1)(s

T
2 s2),

TrAAT = (1 + τ2)(sT
1 s1)(s

T
2 s2) + 2τ(sT

1 s2)
2, det A = τ(sT

1 s2)
2 − τ(sT

1 s1)(s
T
2 s2).

Therefore, the resulting expression depends on the vectors s1 and s2 only via
their scalar products, so it is convenient to parameterize integrals by the entries
of the associated Gram matrix [20, Section 2] [29, Theorem 1a in Appendix
D]

Q̂ =
(

Q1 Q
Q Q2

)
, Q̂ij = (sT

i sj), i, j = 1, 2. (34)

The Jacobian of this change of variables is (det Q̂)
N−3

2 , while the inte-
gration over redundant angular variables yields the factor C

(o)
N,2 = 2N−2πN−1

Γ(N−1)

[29]. The range of integration is restricted by the non-negativity conditions
Q1 ≥ 0, Q2 ≥ 0,det Q̂ = Q1Q2 − Q2 ≥ 0. Following [21] it is convenient to
change variables into r = (det Q̂)1/2 and parameterize the integration region
by Q2 = r2+Q2

Q1
. The change of measure reads dQ1dQ2dQ = 2dQ1

Q1
rdrdQ. After

rescaling Q1 → uQ1, we have

DN =
1

4π4Γ (N − 1)

∫

C

d2a

∫

C

d2b e−|a|2−|b|2
∫

R2
dc df e− c2

2 − f2

2

×
∫ ∞

−∞
dQ

∫ ∞

0

dQ1

Q1

∫ ∞

0

rN−2dr e
− 1

2

(
u2Q1+

r2+Q2

Q1
+2izQ+r2+Q2(1+τ)

)

Pf(M).

(35)

After the change of variables (34), Pf(M) can be expressed as

(|a|2 + τ |b|2 + gh)N−2
[
(|a|2 + τ |b|2 + gh)2

−(|a|2 + τ |b|2 + gh)(iQ(1 + τ)(g + h) + Q2(1 + τ)2)−
−|a|2(1 + τ2)r2 − 2τ2r2|b|2 + τr2(g2 + h2) − iτ(g + h)Q(1 + τ)r2 + τ2r4

]
.

(36)
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The integrals over a, b, c, f are performed in the following way. Let us denote

PN =
1

2π3

∫
d2ad2bdcdfe−|a|2−|b|2− c2

2 − f2
2 (|a|2 + τ |b|2 + gh)N . (37)

Expanding the expression in the bracket and using the binomial theorem twice,
we obtain

PN = N !
N∑

k=0

τk
k∑

m=0

1
m!

He2
m

(
z√
τ

)
, (38)

where Hem(x) = (2π)−1/2
∫ ∞

−∞ e− y2
2 (x+iy)mdy are the monic Hermite polyno-

mials. The internal sum can be performed via the Christoffel–Darboux formula,
finally yielding

PN = N !
N∑

k=0

τk

k!

(
(k + 1)He2

k

(
z√
τ

)
− kHek−1

(
z√
τ

)
Hek+1

(
z√
τ

))
.

(39)

Note that PN can be interpreted as the expectation of the squared characteris-
tic polynomial

〈
det(z − X)(z − XT )

〉
N

and in this capacity has been already
studied for the Real Elliptic ensemble [1]. All other integrals over a, b, c, f in
(35) are performed in a similar way. After exploiting the three term recurrence
for Hermite polynomials HeN+1(x) = xHeN (x) − NHeN−1(x), the integrals
are evaluated to

PN − PN−1Q
2(1 + τ)2 + r4τ2PN−2

− r2[(N − 1)(1 + τ2) + 4τ2]PN−2 − 2iQ(1 + τ)RN−1

+ 2r2τ(z − iQ(1 + τ))RN−2 + (1 − τ2)r2TN−2, (40)

where RN and TN are defined by (9) and (10). Note also that RN (z) =
1

2(N+1)
dPN+1(z)

dz . It is convenient to exploit the structure of (40) and expo-

nent in (35) and rescale further Q → Q
1+τ and, similarly, Q1 → Q1

1+τ . Recalling
that u2 = 2p(1 − τ2), one then arrives at

DN =
1

2π(1 + τ)Γ (N − 1)

∫ ∞

0

dQ1

Q1
e

−pQ1(1−τ)
∫

R

dQe
− 1

2(1+τ)

(
Q2 1+Q1

Q1
+2izQ

)

∫ ∞

0
r

N−2
dre

− r2

2
Q1+1+τ

Q1

[
PN − PN−1Q

2
+ r

4
τ
2
PN−2 − r

2
[(N − 1)(1 + τ

2
) + 4τ

2
]PN−2

−2iQRN−1 + 2r
2
τ(z − iQ)RN−2 + (1 − τ

2
)r

2
TN−2

]
. (41)

The integrations over Q and r are elementary. The integral over Q is Gaussian,

while the one over r is of the type
∫ ∞
0

rN−2e−ar2/2dr = 1
2

(
2
a

)N−1
2 Γ

(
N−1

2

)
.

The remaining integral over Q1 formally looks logarithmically divergent. To
see the cancellation of the divergent part, one should exploit a non-trivial
identity

PN − PN−1(1 + τ − z2) − (N − 1)[2τ2 + N − 1]PN−2

−2zRN−1 + (1 − τ2)(N − 1)TN−2 = 0, (42)
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which is verified in “Appendix B”. After elementary but tedious algebraic
manipulations with the help of Mathematica in rearranging terms, we finally
obtain

DN =
2− N

2√
1 + τΓ

(
N
2

)
∫ ∞

0

dQ1

Q1
e−pQ1(1−τ)

e
− z2Q1

2(1+τ)(1+Q1)

(
Q1

1 + Q1

) 1
2
(

Q1

1 + τ + Q1

)N−1
2

×
[
PN−1(1 + τ − 2z2) + 2z(RN−1 + τ(N − 1)RN−2)

1 + Q1

+
PN−1z

2

(1 + Q1)2
+

τ2(1 + τ)2(N2 − 1)PN−2

(1 + τ + Q1)2

+
(1 + τ)(1 − τ2)(N − 1)[(N − 1)PN−2 − TN−2]

1 + τ + Q1
− 2τ(1 + τ)(N − 1)zRN−2

(1 + Q1)(1 + τ + Q1)

]
.

(43)

�

3.3. Asymptotic Analysis

As PN , RN and TN are the building blocks of the determinant, we consider here
their large-N asymptotics. First, we find convenient integral representations,
which should allow the use of the Laplace method. For this we start from (39)
and, using the integral representation for Hermite polynomials in (7) with both
signs, we obtain

PN =
N !
2πτ

e
z2
τ

N∑

k=0

1
k!

∫

R2
dtdse− t2+s2

2τ − iz
τ (t−s)[(k + 1)tksk + ktk+1sk−1].

(44)

The sum is evaluated using
∑N

k=0
xk

k! = ex Γ(N+1,x)
Γ(N+1) , where Γ (N + 1, x) =

∫ ∞
x

uNe−udu. This yields

Lemma 3.4.

PN (z) =
N !
2πτ

e
z2
τ

∫

R2
dtdse− t2+s2

2τ − iz
τ (t−s)+ts

(
Γ (N + 1, ts)

N !
+ t(s + t)

Γ (N, ts)
(N − 1)!

)
. (45)

An analogous procedure applied to TN gives

Lemma 3.5.

TN =
N !
2πτ

e
z2
τ

∫

R2
dtdse− t2+s2

2τ − iz
τ (t−s)+ts

(
(t2 + 2ts)

Γ (N, ts)
(N − 1)!

+ t2s(t + s)
Γ (N − 1, ts)

(N − 2)!

)
. (46)
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3.3.1. Bulk Scaling. Let us give the proof of Corollary 2.4.

Proof. After rescaling z → z
√

N , t → t
√

N and s → s
√

N , and then changing
the integration variables (t, s) → (p, q) as (t + s)/

√
2 = p and (t − s)/

√
2 = q

the equation (45) takes the following form:

PN (z
√

N) =
N !N
2πτ

eN z2
τ

∫

R

dp e−N p2
2 ( 1

τ −1)
∫

R

dqe
−N

(
q2
2 ( 1

τ +1)+ iz
√

2
τ q

)

×
(

θN

(
p2 − q2

2

)
+ Np2θN−1

(
p2 − q2

2
N

N − 1

))
, (47)

where we denoted θN (x) = Γ(N+1,Nx)
Γ(N+1) . Note that for any N this function is

bounded: θN (x) ≤ 1, and in the limit N → ∞ for a fixed real x we have
θN (x) → θ∞(x), where θ∞(x) = 1 for x < 1 and 0 otherwise.

For N � 1 the integral over p can be most straightforwardly evaluated
by the Laplace method, yielding that the leading contribution to PN (z

√
N)

can be written as

PN (z
√

N) ∼ N !
√

N
√

2πτ(1 − τ)
eN z2

τ

∫

R

dqe
−N

(
q2
2 ( 1

τ +1)+ iz
√

2
τ q

)

(
θN

(−q2

2

)
+

τ

1 − τ
θN−1

(−q2

2

))
. (48)

For large N the q-integral above can be performed (for a fixed, N -independent
real value of z) by the standard saddle point method, with the saddle point
position given by q = q∗ := − iz

√
2

1+τ yielding the required asymptotic formula:

PN (z
√

N) ∼ N !√
1 − τ2(1 − τ)

e
Nz2
1+τ θ∞

(
z2/(1 + τ)2

)
. (49)

The same type of reasoning applied to (46) gives

TN (z
√

N) ∼ N !
(1 − τ2)3/2

Nz2

1 + τ
e

Nz2
1+τ θ∞

(
z2/(1 + τ)2

)
. (50)

Finally, the asymptotics

RN (z
√

N) ∼ N !z
√

N

(1 − τ2)3/2
e

Nz2
1+τ θ∞

(
z2/(1 + τ)2

)
(51)

is obtained from (49) using the fact that RN (z) = 1
2(N+1)

dPN+1(z)
dz .

Upon inserting this asymptotics into (6) and rescaling q → Nq it is clear
that only the second to last term in the square bracket provides the leading
order contribution, which happens to be

(1 + τ)(1 − τ2)(N − 1)[(N − 1)PN−2 − TN−2]
1 + τ + Nq

∼ (N − 1)![(1 + τ)2 − z2]
q
√

1 − τ2
e

Nz2
1+τ . (52)
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As a consequence, the joint pdf reads

NPN (z
√

N,Nq) =

√
1+τ
1−τ (1 − z2

(1+τ)2 )

2
√

2πq2
e
− 1+τ

2q

(
1− z2

(1+τ)2

)

. (53)

Changing variables to t = q
1−τ , one immediately recovers Corollary 2.4. �

3.3.2. Edge Scaling. When z is tuned to values parametrically close to z =
±(1 + τ) where the step-function argument in equations (49)–(52) is close to
unity with a distance O(N−1/2), the corresponding asymptotics need to be
evaluated with higher accuracy. Such a regime is known as the edge scaling,
which features in Corollary 2.5 which we now prove.

Proof. In the proof we choose the vicinity of z = 1+τ . Correspondingly, in (47)
we now scale z = 1 + τ + w√

N
, where w is of order 1. The transition from (47)

to (48) remains the same as before. Now we use the integral representation of
the incomplete gamma function Γ (N,x) = xN

∫ ∞
1

uN−1e−uxdu, which helps
to rewrite the integral (48) in the form

PN (z) ∼ N !NN+1

4πτΓ (N)
eN z2

τ

∫

R

dq

e− N(1+τ)
2τ (q2+i2

√
2q)− iqw

√
2N

τ

∫ ∞

1

du e− Nu
2 (−q2)+N ln[u

2 (−q2)]×
(−q2

2
+

τ

1 − τ

1
u

)
. (54)

An inspection shows that whereas the q−integration is dominated by the
contribution from the saddle point q = −√

2i, the last u-integral is dominated
by the vicinity of u = 1 of the width O(N−1/2). Parameterizing in such a
vicinity u = 1 + v√

N
one then arrives at the leading-order asymptotics

PN ∼ N !NN−1/2

(1 − τ)2Γ (N)
e

w2
1+τ +2w

√
N+Nτ

∫ ∞

0

e− 1+τ
2(1−τ) (v+ 2w

1+τ )2dv. (55)

After the change of variables u =
√

1+τ
1−τ (v + 2w

1+τ ) and the use of Stirling’s

approximation Γ (N + 1) ∼ √
2πNN+ 1

2 e−N , we obtain

PN ∼ N !e
z2

1+τ

(1 − τ)
√

2π(1 − τ2)

∞∫

2w√
1−τ2

e− u2
2 du. (56)

The last integral is related to the complementary error function erfc(x) =
2√
π

∫ ∞
x

e−t2dt. Using RN (z) = 1
2(N+1)

dPN+1(z)
dz we obtain that in such a regime

asymptotically RN ∼ √
NPN . From the asymptotics of (52) one expects that

the leading order contributions from (N +1)PN and TN cancel. Therefore, one
needs to work with the appropriate integral representation. Combining (45)
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and (46) and following the analogous reasoning as above we obtain

(N + 1)PN − TN ∼ N !
√

N√
2π(1 − τ2)

e
z2

1+τ

⎡

⎣e
− 2w2

1−τ2 − 2w√
1 − τ2

∫ ∞

2w√
1−τ2

e− u2
2 du

⎤

⎦ ,

(57)

which is of the same order as
√

NPN , as expected. To get the correct asymp-
totics at the edge, we rescale q → q

√
N in (6). It is now clear that the first

term in the square bracket in (6) is subleading and the contribution of other

terms is of the same order. The asymptotics of
(

q
√

N

1+τ+q
√

N

)N
2 −1

is calculated
as

e
− N

2 ln
(
1+ 1+τ

q
√

N

)

∼ e
− (1+τ)

√
N

2q + (1+τ)2

4q2 , (58)

and we obtain

P ∼ 1
4πq2

√
N

e
w
q − 1−τ2

4q2

[

e
− 2w2

1−τ2 +

(√
1 − τ2

q
− 2w√

1 − τ2

)∫

2w
1−τ2

e− u2
2 du

]

.

(59)

After denoting w = δτ

√
1 − τ2 and q = σ

√
1 − τ2, the statement of Corol-

lary 2.5 follows.
�

3.3.3. Weak Non-Hermiticity. Our final goal is to provide the proof of Corol-
lary 2.6.

Proof. We start again from (47) keeping z fixed and N−independent like
before in the bulk case, but for the weak non-Hermiticity regime we replace
τ = 1 − a2

2N . It is then immediately obvious that the p-integral is no longer
dominated by the small vicinity p ∼ N−1/2, but rather by the integration
range of order unity. Then a quick inspection shows that for extracting the
leading asymptotics in the large N limit one can effectively replace (47) by

PN (z
√

N) ∼ N !N2

2πτ
eN z2

τ

∫

R

dp p2e− p2a2
4

∫

R

dqe−N(q2+iz
√

2q)θ∞

(
p2 − q2

2

)
.(60)

Performing the integral over q by the saddle point method, we see that the
range of integration over p is given by |p| <

√
4−z2√

2
. After a few simple changes

of variables and straightforward manipulations one arrives at

PN (z
√

N) ∼ N !N3/2(4 − z2)3/2

2
√

2π
e

Nz2
2

∫ 1

0

e
− s2a2

2

(
1− z2

4

)

s2ds. (61)

The asymptotic behavior of RN simply follows from the relation RN (z) =
1

2(N+1)
dPN+1(z)

dz and is related to the asymptotics of PN as RN = z
√

N
2 PN .

Asymptotics of TN analogously follows from its integral representation and
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reads

TN (z
√

N) ∼ N !N5/2(4 − z2)3/2

2
√

2π
e

Nz2
2

∫ 1

0

e
− s2a2

2

(
1− z2

4

)
4s4 − z2s4 + z2s2

4
ds.

(62)

Note that in (6) we used the rescaled quantity q = (1 − τ)t. Therefore, for the
correct asymptotics, we need to rescale q → 2N

a2 t. This shows that all terms in
the square bracket are of the same order. Direct use of the asymptotic forms
(61) and (62) leads to (16). �
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Appendix A: Density of Real Eigenvalues for Moderate Matrix
Size

For N = 2 the joint pdf (6) reads

PN=2(z, q) =
1

2
√

2π(1 + τ)
e− z2

2(1+τ) (1+
q

1+q )

√
q(1 + q)

(
z2

(1 + q)2
+

1 + τ

1 + q

)
. (63)

The substitution t2 = q
q+1 allows one to calculate the integral. After integration

by parts, we obtain

∫ ∞

0

PN=2(z, q)dq =
e− z2

1+τ√
2π

+
e− z2

2(1+τ)

√
2π

z

1 + τ

∫ z

0

e− u2
2(1+τ) du, (64)
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Figure 2. Histograms of the density of real eigenvalues for
the Real Elliptic ensemble with τ = 0.9 obtained by the direct
diagonalization of 106 matrices of size N = 3 (left) and 2 ·105

matrices of size N = 10 (right). Blue solid lines represent the
formula obtained by analytical (left) and numerical (right)
integration of P(z, q) (6). Formulas are rescaled so that the
density is normalized to 1

which agrees with (11)–(12) when we substitute N = 2. This way, with the help
of Mathematica software, we were also able to perform integration for N = 3, 4.
For N = 4 we again see agreement with the Forrester–Nagao result [18], while
for N = 3 we compared the results of integration with the numerical diagonal-
izations of random matrices, see Fig. 2. For moderate matrix sizes, where
the symbolic calculations were not possible, we numerically integrated (6)
and compared with numerical diagonalization, observing good agreement, see
Fig. 2.

Appendix B: Proof of Identity (42)

We shall prove (42) by induction.

Proof. The first step is trivial as this identity can be verified by substituting
Hermite polynomials for low N . Let us assume that (42) holds for N −1. Using
formulas (8)–(10) it is easy to find the recurrence relations

PN = NPN−1 + AN , (65)

RN = NRN−1 + BN , (66)

TN = NTN−1 + NAN , (67)

with

AN = τN [(N + 1)He2
N − NHeN+1HeN−1], (68)

2BN = τN−1/2[(N + 1)HeNHeN−1 − (N − 1)HeN+1HeN−2, (69)

where, for simplicity, we omitted the argument z√
τ

of Hermite polynomials.
These recursions allow us to rewrite the left-hand side of (42) as
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(N − 1)[PN−1 − PN−2(1 + τ − z2) − (N − 2)(2τ2 + N − 2)PN−3

− 2zRN−2 + (1 − τ2)(N − 2)TN−3]

+ AN + (z2 − τ)AN−1 − N(N − 1)τ2AN−2 − 2zBN−1. (70)

The expression in square brackets is zero by the induction assumption. Ver-
ification that the second line equals 0 relies on the substitution of (68)
and (69) and the consecutive use of the three term recursion HeN+1(x) =
xHeN (x) − NHeN−1(x). �
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[35] Mehlig, B., Chalker, J.T.: Statistical properties of eigenvectors in non-Hermitian
Gaussian random matrix ensembles. J. Math. Phys. 41, 3233 (2000)

[36] Neri, I., Metz, F. L.: Eigenvalue outliers of non-Hermitian random matrices with
a local tree structure. Phys. Rev. Lett. 117, 224101 (2016); Erratum in: Phys.
Rev. Lett. 118, 019901 (2017)

[37] Nowak, M.A., Tarnowski, W.: Probing non-orthogonality of eigenvectors in non-
Hermitian matrix models: diagrammatic approach. JHEP 2018, 152 (2018)

[38] Patra, M., Schomerus, H., Beenakker, C.W.J.: Quantum-limited linewidth of a
chaotic laser cavity. Phys. Rev. A 61, 023810 (2000)

[39] Schomerus, H., Frahm, K., Patra, M., Beenakker, C.W.J.: Quantum limit of the
laser line width in chaotic cavities and statistics of residues of scattering matrix
poles. Physics A 278, 469 (2000)

[40] Tarnowski, W., Neri, I., Vivo, P.: Universal transient behavior in large dynamical
systems on networks. Phys. Rev. Res. 2, 023333 (2020)

[41] Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. The Behavior of Non-
normal Matrices and Operators. Princeton University Press, Princeton (2005)

[42] Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press,
Oxford (1965)

[43] Walters, M., Starr, S.: A note on mixed matrix moments for the complex Ginibre
ensemble. J. Math. Phys. 56, 013301 (2015)

Yan V. Fyodorov
Department of Mathematics
King’s College London
London, Strand WC2R 2LS
UK
e-mail: yan.fyodorov@kcl.ac.uk

Wojciech Tarnowski
Institute of Theoretical Physics
Jagiellonian University
S. �Lojasiewicza 11
30-348 Kraków
Poland
e-mail: wojciech.tarnowski@doctoral.uj.edu.pl

Communicated by Vadim Gorin.

Received: October 28, 2019.

Accepted: September 28, 2020.


	Condition Numbers for Real Eigenvalues in the Real Elliptic Gaussian Ensemble
	Abstract
	1. Introduction
	2. Statement of the Main Results
	3. Derivation of the Main Results
	3.1. Partial Schur Decomposition
	3.2. Ratio of Determinants
	3.3. Asymptotic Analysis
	3.3.1. Bulk Scaling
	3.3.2. Edge Scaling
	3.3.3. Weak Non-Hermiticity


	Acknowledgements
	Appendix A: Density of Real Eigenvalues for Moderate Matrix Size
	Appendix B: Proof of Identity (42)
	References




