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Abstract. We study a new optimization problem that minimizes the
ratio of two monotone k-submodular functions. The problem has applica-
tions in sensor placement, influence maximization, and feature selection
among many others where one wishes to make a tradeoff between two
objectives, measured as a ratio of two functions (e.g., solution cost vs.
quality). We develop three greedy based algorithms for the problem, with
approximation ratios that depend on the curvatures and/or the values of
the functions. We apply our algorithms to a sensor placement problem
where one aims to install k types of sensors, while minimizing the ratio
between cost and uncertainty of sensor measurements, as well as to an
influence maximization problem where one seeks to advertise k products
to minimize the ratio between advertisement cost and expected number
of influenced users. Our experimental results demonstrate the effective-
ness of minimizing the respective ratios and the runtime efficiency of our
algorithms. Finally, we discuss various extensions of our problems.

Keywords: k-submodular function · greedy algorithm · approximation

1 Introduction

In many applications ranging from machine learning such as feature selection
and clustering [1] to social network analysis [14], we want to select k disjoint
subsets of elements from a ground set that optimize a k -submodular function.
A k-submodular function takes in k disjoint subsets as argument and has a
diminishing returns property with respect to each subset when fixing the other
k − 1 subsets [6]. For example, in sensor domain with k types of sensors, a k-
submodular function can model the diminishing cost of obtaining an extra sensor
of a type when fixing the numbers of sensors of other types. Most recently, the
problem of k-submodular function maximization has been studied in [6,7,14,18].

In this work, we study a new optimization problem which aims to find k
disjoint subsets of a ground set that minimize the ratio of two non-negative and
monotone k-submodular functions. We call this the RS-k minimization problem.
The problem can be used to model a situation where one needs to make a trade-
off between two different objectives (e.g., solution cost and quality). For the
exposition of our problem, we provide some preliminary definitions.
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Let V = {u1, ..., un} be a non-empty set of n elements, k ≥ 1 be an inte-
ger, and [k] = {1, . . . , k}. Let also (k + 1)V = {(X1, ..., Xk) | Xi ⊆ V, ∀i ∈
[k], and Xi ∩ Xj = ∅ ,∀i 6= j ∈ [k]} be the set of k (pairwise) disjoint subsets
of V . A function f : (k + 1)V → R is k-submodular [6] if and only if for any
x,y ∈ (k + 1)V , it holds that:

f(x) + f(y) ≥ f(x u y) + f(x t y), (1)

where

x u y = (X1 ∩ Y1, ..., Xk ∩ Yk) and

x t y = ((X1 ∪ Y1) \ (
⋃

i∈[k]\{1}

Xi ∪ Yi), ..., (Xk ∪ Yk) \ (
⋃

i∈[k]\{k}

Xi ∪ Yi)).

When k = 1, this definition coincides with the standard definition of a submod-
ular function. Given any x = (X1, . . . , Xk) ∈ (k + 1)V and y = (Y1, . . . , Yk) ∈
(k + 1)V , we write x � y if and only if Xi ⊆ Yi, ∀i ∈ [k]. The function
f : (k + 1)V → R is monotone if and only if f(x) ≤ f(y) for any x � y.

Our RS-k minimization problem aims to find a subset of (k+ 1)V that mini-
mizes the ratio of non-negative and monotone k-submodular functions f and g:

min0 6=x∈(k+1)V
f(x)
g(x) . The maximization version can be defined analogously.

Applications. We outline some specific applications of our problem below:

1. Sensor placement: Consider a set of locations V and k different types of sen-
sors. Each sensor can be installed in a single location and has a different purpose
(e.g., monitoring humidity or temperature). Installing a sensor of type i ∈ [k] in-
curs a certain cost that diminishes when we install more sensors of that type. The
cost diminishes, for example, because one can purchase sensors of the same type
in bulks or reuse equipment for installing the sensors of that type for multiple
sensor installations [8]. We want to select a vector x = (X1, . . . , Xk) containing
k subsets of locations, each corresponding to a different type of sensors, so that
the sensors have measurements of low uncertainty and also have small cost. The
uncertainty of the sensors in the selected locations is captured by the entropy
function H(x) (large H(x) implies low uncertainty) and their cost is captured
by the cost function C(x); H(x) and C(x) are monotone k-submodular [8, 14].

The problem is to select x that minimizes the ratio C(x)
H(x) .

2. Influence maximization: Consider a set of users (seeds) V who receive in-
centives (e.g., free products) from a company, to influence other users to use
k products through word-of-mouth effects. The expected number of influenced
users I(x) and the cost of the products C(x) for a vector x of seeds are monotone
k-submodular functions [13, 14]. We want to select a vector x = (X1, . . . , Xk)
that contains k subsets of seeds, so that each subset is given a different product

to advertise and x maximizes the ratio I(x)
C(x) , or equivalently minimizes C(x)

I(x) .

3. Coupled feature selection: Consider a set of features V which leads to an accu-
rate pattern classifier. We want to predict k variables Z1, . . ., Zk using features
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Y1, . . ., Y|V |. Due to communication constraints [16], each feature can be used
to predict only one Zi. When Y1, . . . Y|V | are pairwise independent given Z, the
monotone k-submodular function F (x) = H(X1, . . . , Xk)−

∑
i∈[k]

∑
j∈Xi H(Yj |Zi),

where H is the entropy function and Xi is a group of features, captures the joint
quality of feature groups [16], and the monotone k-submodular function C(x)

captures their cost. The problem is to select x that minimizes the ratio C(x)
F (x) .

The RS-1 minimization problem has been studied in [1, 15, 17] and its ap-
plications include maximizing the F-measure in information retrieval, as well as
maximizing normalized cuts and ratio cuts [1]. However, the algorithms in these
works cannot be directly applied to our problem.

Contributions. Our contributions can be summarized as follows:

1. We define RS-k minimization problem, a new optimization problem that seeks
to minimize the ratio of two monotone k-submodular functions and finds appli-
cations in influence maximization, sensor placement, and feature selection.

2. We introduce three greedy based approximation algorithms for the problem: k-
GreedRatio, k-StochasticGreedRatio, and Sandwich Approximation Ra-
tio (SAR). The first two algorithms have an approximation ratio that depends
on the curvature of f and the size of the optimal solution. These algorithms
generalize the result of [15] to k-submodular functions and improve the result
of [1] for the RS-1 minimization problem. k-Stochastic-GreedRatio differs
from k-GreedRatio in that it is more efficient, as it uses sampling, and in that
it achieves the guarantee of k-GreedRatio with a probability of at least 1− δ,
for any δ > 0. SAR has an approximation ratio that depends on the values of f ,
and it is based on the sandwich approximation strategy [10] for non-submodular
maximization, which we extend to a ratio of k-submodular functions.

3. We experimentally demonstrate the effectiveness and efficiency of our algo-
rithms on the sensor selection problem and the influence maximization problem
outlined above, by comparing them to three baselines. The solutions of our al-
gorithms have several times higher quality compared to those of the baselines.

2 Related Work

The concept of k-submodular function was introduced in [6], and the problem
of maximizing a k-submodular function has been considered in [6, 7, 14, 18]. For
example, [7] studied unconstrained k-submodular maximization and proposed a
k

2k−1 -approximation algorithm for monotone functions and a 1
2 -approximation

algorithm for nonmonotone functions. The work of [14] studied constrained k-
submodular maximization, with an upper bound on the solution size, and pro-
posed k-Greedy-TS, a 1

2 -approximation algorithm for monotone functions, and
a randomized version of it. These algorithms cannot deal with our problem.

When k = 1, the RS-k minimization problem coincides with the submod-
ular ratio minimization problem studied in [1, 15, 17]. The work of [1] initi-
ated the study of the latter problem and proposed GreedRatio, an 1

1−eκf−1 -

approximation algorithm, where kf is the curvature of a submodular function f
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[9]. The work of [15] provided an improved approximation of |X∗|
1+(|X∗|−1)(1−κ̂f (X∗))

for GreedRatio, where |X∗| is the size of an optimal solution X∗ and κ̂f is
an alternative curvature notion of f [9]. The work of [17] considered the sub-
modular ratio minimization problem where both of the functions may not be
submodular and showed that GreedRatio provides approximation guarantees
that depend on the submodularity ratio [5] and the curvatures of the functions.
These previous results do not apply to RS-k minimization with k > 1.

3 Preliminaries

We may use the word dimension when referring to a particular subset of x ∈
(k + 1)V . We use 0 = (X1 = {}, . . . , Xk = {}) to denote the vector of k empty
subsets and x = (Xi,x−i) to highlight the set Xi in dimension i and x−i the
subsets of other dimensions except i.

We define the marginal gain of a k-submodular function f when adding
an element to a dimension i ∈ [k] to be ∆u,if(x) = f(X1, . . . , Xi−1, Xi ∪
{u}, Xi+1, . . . , Xk)− f(X1, . . . , Xk), where x ∈ (k + 1)V and u 6∈

⋃
l∈[k]Xl.

Thus, we can also define k-submodular functions as those that are monotone
and have a diminishing returns property in each dimension [18].

Definition 1 (k-submodular function). A function f : (k + 1)V → R is k-
submodular if and only if: (a) ∆u,if(x) ≥ ∆u,if(y), for all x,y ∈ (k+ 1)V with
x � y, u /∈ ∪`∈[k]Yi, and i ∈ [k], and (b) ∆u,if(x) + ∆u,jf(x) ≥ 0, for any
x ∈ (k + 1)V , u /∈ ∪`∈[k]Xi, and i, j ∈ [k] with i 6= j.

Part (a) of Definition 1 is known as the diminishing returns property and
part (b) as pairwise monotonicity. We define a k-modular function as follows.

Definition 2 (k-modular function). A function f is k-modular if and only
if ∆u,if(x) = ∆u,if(y), for all x,y ∈ (k + 1)V with x � y, u /∈ ∪`∈[k]Yi, and
i ∈ [k].

Without loss of generality, we assume that the functions f and g in RS-k
minimization are normalized such that g(0) = f(0) = 0. Moreover, we assume
that, for each u ∈ V , there are dimensions i, i′ ∈ [k] such that f({u}i,0−i) >
0 and g({u}i′ ,0−i′) > 0. Otherwise, we can remove each u ∈ V such that
g({u}i,0−i) = 0 for all i ∈ [k] from the candidate solution of the problem, as
adding it to any dimension will not decrease the value of the ratio. Also, if there
is u ∈ V with f({u}i,0−i) = 0 for all i ∈ [k], we could add u to the final solution
as it will not increase the ratio. If there is more than one such element, we need
to determine which dimensions to add the elements into, so that g is maximized,
which boils down to solving a k-submodular function maximization problem.
Applying an existing α-approximation algorithm [6, 7, 14, 18] to that problem
would yield an additional approximation multiplicative factor of α to the ratio
of the final solution of our problem. Finally, we assume that the values of f and
g are given by value oracles.
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4 The k-GreedRatio Algorithm

We present our first algorithm for the RS-k minimization problem, called k-
GreedRatio. The algorithm iteratively adds an element that achieves the best
marginal gain to the functions of the ratio f/g and terminates by returning
the subsets (created from each iteration) that have the smallest ratio. We show
that k-GreedRatio has a bounded approximation ratio that depends on the
curvature of the function f . We also show that the algorithm yields an optimal
solution when f and g are k-modular.

Algorithm: k-GreedRatio
Input: V , f : (k + 1)V → R≥0, g : (k + 1)V → R≥0

Output: Solution x ∈ (k + 1)V

1 j ← 0; xj ← 0; R← V ; S ← {}
2 while R 6= {} do

3 (u, i) ∈ arg min
u∈R,i∈[k]

∆u,if(xj)

∆u,ig(xj)

4 xj+1 ← (X1, . . . , Xi ∪ {u}, . . . Xk)
5 R← {u ∈ R | u /∈ Xi, ∀i ∈ [k], and ∃i ∈ [k] : ∆u,ig(xj+1) > 0}
6 S ← S ∪ {xj+1}
7 j ← j + 1

8 x← arg min
xj∈S

f(xj)

g(xj)

9 return x

4.1 The Ratio of k-Submodular Functions

Following [4,9], we define the curvature of a k-submodular function of dimension

i ∈ [k] for any x ∈ (k + 1)V as κf,i(x−i) = 1−minu∈V \
⋃
j 6=iXj

∆u,if(V \{u},x−i)
f({u},x−i) ,

and κf,i(Xi,x−i) = 1−minu∈Xi\
⋃
j 6=iXj

∆u,if(Xi\{u},x−i)
f({u},x−i) . We extend a relaxed

version [9] of the above definition as κ̂f,i(Xi,x−i) = 1−
∑
u∈Xi

∆u,if(Xi\{u},x−i)∑
u∈Xi

f({u},x−i) .

Note that, for a given x ∈ (k+1)V , κ̂f,i(Xi,x−i) ≤ κf,i(Xi,x−i) ≤ κf,i(x−i)
when f is monotone submodular in each dimension [9].

Let κ̂max
f,i (Xi) = max(Xi,xi)∈(k+1)V κ̂f,i(Xi, x̄−i). The following lemma (whose

proof easily follows from Lemma 3.1 of [9]) provides an upper bound on the sum
of the individual elements of a given set of elements for a dimension.

Lemma 1. Given any non-negative and monotone k-submodular function f ,

x ∈ (k+1)V and i ∈ [k],
∑
u∈Xi f({u}i,x−i) ≤ |Xi|

1+(|Xi|−1)(1−κ̂max
f,i (Xi))

f(Xi,x−i).

Notice that the inequality in Lemma 1 depends only on Xi. Thus, it holds for
any x ∈ (k+ 1)V as long as Xi = Xi. We now begin to prove the approximation
guarantee of k-GreedRatio.

Let x∗ = (X∗1 , ..., X
∗
k) ∈ arg min0 6=x∈(k+1)V

f(x)
g(x) be an optimal solution of

the RS-k minimization problem. Let S(x∗) = {x ∈ (k + 1)V | |Xi| = 1[|X∗i | >
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0] ∀i ∈ [k]} be the subsets of (k+ 1)V in which each dimension contains at most
one element (with respect to x∗) where 1[·] is an indicator function. Given S(x∗),

we let x′ = (X ′1, ..., X
′
k) ∈ arg min0 6=x∈S(x∗)

f(x)
g(x) . We first compare x′ with x∗

using a proof idea from [15].

Theorem 1. Given two non-negative and monotone k-submodular functions f

and g, we have f(x′)
g(x′) ≤ α

f(x∗)
g(x∗) , where α =

∏
i∈[k]s.t.|X∗i |>0

|X∗i |
1+(|X∗i |−1)(1−κ̂max

f,i (X∗i ))
.

Proof. We have that

g(x∗) = g(X∗1 , .., X
∗
k) ≤

∑
ui∈X∗i

g({ui}i,x∗−i) ≤
∑

u1∈X∗1 ,...,uk∈X∗k

g({u1}1, ..., {uk}k)

≤
∑

u1∈X∗1 ,...,uk∈X∗k

f({u1}1, ..., {uk}k)
g(x′)

f(x′)

≤
∏

i∈[k]s.t.|X∗i |>0

|X∗i |
1 + (|X∗i | − 1)(1− κ̂max

f,i (X∗i ))

g(x′)

f(x′)
f(x∗),

where the first inequality is from applying Definition 1(a) to dimension i, the sec-
ond inequality is from applying Definition 1(a) to other dimensions successively,

the third inequality is from noting that f(x′)
g(x′) ≤

f(x)
g(x) ⇐⇒ g(x) ≤ f(x) g(x

′)
f(x′)

for any x ∈ S(x∗) and summing up the corresponding terms, and the fourth
inequality is from applying Lemma 1 repeatedly from i = 1 to k. ut

Notice that α in Theorem 1 could be hard to compute3. However, the bound
is tight. For instance, if f is k-modular, then x′ yields an optimal solution.

Theorem 1 shows that we can approximate the optimal solution, using the
optimal solution x′ where each dimension contains at most one element. How-
ever, computing any x′ cannot be done efficiently for large k. Our next the-
orem shows that k-GreedRatio solution can be used to approximate any
x′, which, in turn can be used to to approximate any x∗. To begin, we let

x ∈ arg minx∈V mini∈[k]
f({x}i,0−i)
g({x}i,0−i) and let i be the corresponding dimension.

Theorem 2. Given two non-negative and monotone k-submodular functions f

and g, we have
f({x}i,0−i)
g({x}i,0−i)

≤ k f(x
′′)

g(x′′) , for any x′′ ∈ S = {x ∈ (k + 1)V | |Xi| ≤
1 ∀i ∈ [k]}.

Proof. We have that

g(x′′) = g({x′′1}, ..., {x′′k}) ≤ g({x′′1},0−1) + ...+ g({x′′k},0−k)

≤ [f({x′′1},0−1) + ...+ f({x′′k},0−k)]
g({x}i,0−i)
f({x}i,0−i)

≤ kf(x′′)
g({x}i,0−i)
f({x}i,0−i)

,

3 It is possible to obtain a computable bound by redefining the curvature related
parameters with respect to x−i = 0−i. The proof in Theorem 1 follows similarly up
until the third inequality. However, the achieved approximation essentially depends
on the product of the sizes of the sets (without all k but one denominator term).
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where the first inequality is from applying the definition of k-submodularity ac-
cording to Inequality 1 in Section 1 repeatedly, the second inequality is from not-

ing that
f({x}i,0−i)
g({x}i,0−i)

≤ f({u}j ,0−j)
g({u}j ,0−j) ⇐⇒ g({u}j ,0−j) ≤ f({u}j ,0−j)

g({x}i,0−i)
f({x}i,0−i)

for any u ∈ V and j ∈ [k] and summing up the corresponding terms, and the
third inequality is due to monotonicity. ut

Combining Theorems 1 and 2, we have the following result.

Theorem 3. Given two non-negative and monotone k-submodular functions f
and g, k-GreedRatio finds a solution that is at most kα times of the optimal

solution, where α =
∏
i∈[k]s.t.|X∗i |>0

|X∗i |
1+(|X∗i |−1)(1−κ̂max

f,i (X∗i ))
, in O(|V |2k) time,

assuming it is given (value) oracle access to f and g.

Proof. Let x be the output of k-GreedRatio. We have that f(x)
g(x) ≤

f({x}i,0−i)
g({x}i,0−i)

≤

k f(x
′)

g(x′) ≤ kα
f(x∗)
g(x∗) where the first inequality holds because xi is the first element

selected by the algorithm, the second inequality is due to Theorem 2 (which
holds for any x′′ ∈ S), and the third inequality is due to Theorem 1 and α =∏
i∈[k]s.t.|X∗i |>0

|X∗i |
1+(|X∗i |−1)(1−κ̂max

f,i (X∗i ))
. k-GreedRatio needs O(|V |2k) time, as

step 3 needs O(|V |k) time and the loop in step 2 is executed O(|V |) times. ut

Our result generalizes the result of [15] to k-submodular functions and im-
proves the result of [1] for the RS-1 minimization problem.

4.2 The Ratio of k-Modular Functions

Theorem 4. Given two non-negative and monotone k-modular functions f and

g, k-GreedRatio finds an optimal solution x ∈ arg minx′∈(k+1)V
f(x′)
g(x′) . There

is an O(|V |k+ |V | log |V |)-time implementation of k-GreedRatio, assuming it
is given (value) oracle access to f and g.

Proof. The proof follows a similar argument to [1]. From the definition of k-
modular function, f and g satisfy ∆u,if(x) = f({u}i,0−i) and ∆u,ig(x) =
g({u}i,0−i) for all x ∈ (k + 1)V , u /∈ ∪`∈[k]X`, and i ∈ [k].

As a result, we can provide an (efficient) alternative implementation of k-

GreedRatio by computing Q(u) = mini∈[k]
f({u}i,0−i)
g({u}i,0−i) for each u ∈ V and

sorting u′s in increasing order of Q(u) (breaking ties arbitrarily).
Without loss of generality, let Q(u1) ≤ Q(u2)... ≤ Q(un) be such an ordering

and let i1, i2, .., in be the corresponding dimensions so that
f({u1}i1 ,0−i1 )
g({u1}i1 ,0−i1 )

≤

. . . ≤ f({un}in ,0−in )
g({un}in ,0−in )

. It is not hard to see that k-GreedRatio picks the first i

elements according to the ordering (each in the i iteration).

Let x∗ ∈ arg minx∈(k+1)V
f(x)
g(x) and r∗ = f(x∗)

g(x∗) . There must be some uj ∈ V
such that Q(uj) ≤ τ∗, otherwise r∗ cannot be obtained from the elements of x∗.

Consider the set 0 6= xτ
∗

= (X1, ..., Xk) where Xl = {uj ∈ V | Q(uj) ≤
τ∗ and ij = l} for each l ∈ [k]. First note that xτ

∗
is among the solutions {xi}ni=1
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obtained by k-GreedRatio. Second, we have that τ∗ ≤ f(xτ
∗
)

g(xτ∗ )
≤ τ∗ (i.e., each

of the ratio is bounded by τ∗). Thus, f(x
τ∗ )

g(xτ∗ )
= τ∗.

The above implementation takes O(|V |k) and O(|V | log |V |) time to compute
ratios for each element/dimension and to sort the |V | elements, respectively. ut

5 k-StochasticGreedRatio

We introduce a more efficient randomized version of k-GreedRatio that uses
a smaller number of function evaluations at each iteration of the algorithm. The
algorithm is linear in |V | and it uses sampling in a similar way as the algorithm
of [12] for submodular maximization. That is, it selects elements to add into x
based on a sufficiently large random sample of V instead of V .

Algorithm: k-StochasticGreedRatio
Input: V , f : (k + 1)V → R≥0, g : (k + 1)V → R≥0, δ > 0
Output: Solution x ∈ (k + 1)V

1 j ← 0; xj ← 0; R← V ; S ← {}
2 while R 6= {} do
3 Q← a random subset of size min{

⌈
log |V |

δ

⌉
, |V |}

uniformly sampled with replacement from V \ S

4 (u, i) ∈ arg min
u∈Q,i∈[k]

∆u,if(xj)

∆u,ig(xj)

5 the next steps are the same as steps 4 to 9 of k-GreedRatio

Theorem 5. With probability at least 1− δ, k-StochasticGreedRatio out-
puts a solution that is: (a) at most kα times of the optimal solution when f and
g are non-negative and monotone k-submodular, or (b) optimal when f and g
are non-negative and monotone k-modular where α is the ratio in Theorem 3.

Proof. (a) Let Q1 be Q of the first iteration and consider the first element
selected by k-GreedRatio. If |Q1| = |V |, then the probability that the first el-

ement is not contained in Q1 is 0. Otherwise, this probability is
(

1− 1
|V |

)|Q1|
≤

e− log
|V |
δ = δ

|V | .We have that with probability at least 1−δ k-StochasticGreed-

Ratio selects the first element. The claims follows from this and Theorem 3.
(b) It follows from the fact that k-StochasticGreedRatio selects the first

element with probability at least 1− δ and Theorem 4. ut

Lemma 2. The time complexity of k-StochasticGreedRatio is O(k|V | log |V |δ )

for δ ≥ |V |
e|V |

and O(k|V |2) otherwise, where e is the base of the natural logarithm.

Proof. Step 4 needs O(kmin{dlog |V |δ e, |V |}) = O(kmin{log |V |δ , |V |}) time and
it is executed O(|V |) times, once per iteration of the loop in step 2. If the

sample size min{dlog |V |δ e, |V |} = dlog |V |δ e, or equivalently if δ ≥ |V |
e|V |

, then the

algorithm takes O(k|V | log |V |δ ) time. Otherwise, it takes O(k|V |2) time. ut
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6 Sandwich Approximation Ratio (SAR)

We present SAR, a greedy based algorithm that provides an approximation
guarantee based on the value of f , by extending the idea of [10] from non-
submodular function maximization to RS-k minimization problems. SAR uses
an upper bound k-submodular function and a lower bound k-submodular func-
tion of the ratio function f/g, applies k-Greedy-TS [14] with size constraint
|V | using each bound function as well as f/g, and returns the solution that
maximizes the ratio among the solutions constructed by k-Greedy-TS4.

SAR uses the functions g(x)
2c and g(x)

c′ , where 2c ≥ c∗ = maxx∈(k+1)V f(x)
and c′ = minx∈V mini∈[k] f({x}i,0−i). It is easy to see that these functions

bound h(x) = g(x)
f(x) from below and above, respectively. While c∗ cannot be

computed exactly, we have 2c ≥ c∗, where c is the solution of the k-Greedy-TS
1
2 -approximation algorithm for maximizing a monotone k-submodular function
[14], when applied with function f and solution size threshold |V |.

Algorithm: Sandwich Approximation Ratio (SAR)
Input: V , f : (k + 1)V → R≥0, g : (k + 1)V → R≥0, c, c′

Output: Solution xSAR ∈ (k + 1)V

1 (x1
` , . . . ,x

|V |
` )← k-Greedy-TS with g/2c and threshold |V |

2 (x1
h, . . . ,x

|V |
h )← k-Greedy-TS with h = g/f and threshold |V |

3 (x1
u, . . . ,x

|V |
u )← k-Greedy-TS with g/c′ and threshold |V |

4 return xSAR ← arg max
x∈{x1

`
,...,x

|V |
`

,x1
h
,...,x

|V |
h

,x1
u,...,x

|V |
u }

g(x)
f(x)

Algorithm: k-Greedy-TS
Input: f : (k + 1)V → R≥0, solution size threshold B
Output: Vector of solutions x1

f , . . . ,x
B
f

5

1 x0
f ← 0

2 for j = 1 to B do
3 (u, i) ∈ arg maxu∈V \R,i∈[k]∆u,if(xf )

4 xjf ← xj−1
f

5 xjf (u)← i

6 R← R ∪ {u}
7 return (x1

f , . . . ,x
B
f )

To provide SAR’s approximation guarantee, we define `(x) = g(x)
2c , h(x) =

g(x)
f(x) , and u(x) = g(x)

c′ for all x ∈ (k + 1)V . Let s(x) =
∑
i∈[k] |Xi| be the size of

any x ∈ (k+1)V . Let x∗h ∈ arg maxx∈(k+1)V
g(x)
f(x) be the optimal solution and s =

s(x∗h) be the size of the optimal solution. We let xj∗` ∈ arg maxx∈(k+1)V :s(x)=j `(x),

xj∗h ∈ arg maxx∈(k+1)V :s(x)=j
g(x)
f(x) , and xj∗u ∈ arg maxx∈(k+1)V :s(x)=j u(x).

4 SAR can be easily modified to use other algorithms for monotone k-submodular
maximization instead of k-Greedy-TS, such as the algorithm of [7].

5 We modify k-Greedy-TS to return every partial solution xjf , instead of only xBf .
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Theorem 6. Given two non-negative and monotone k-submodular functions f

and g, SAR finds a solution at most 2
/

max( c′

f(xsu)
,
f(xs∗h )

2c ) times the optimal

solution in O(|V |2k) time, assuming it is given (value) oracle access to f and g.

Proof. We first show that, for each j ∈ [|V |], maxxj∈{xj` ,x
j
h,x

j
u}

g(xj)
f(xj) from SAR

approximates g(xj∗h)
f(xj∗h)

. Since s ∈ [|V |] and xSAR ∈ arg maxxj∈{xj` ,x
j
h,x

j
u}j∈[|V |]

g(xj)
f(xj) ,

our claimed approximation follows immediately. For a fixed j ∈ [|V |], we have

h(xju) =
h(xju)

u(xju)
u(xju) ≥ h(xju)

u(xju)

1

2
u(xj∗u ) ≥ h(xju)

u(xju)

1

2
u(xj∗h ) ≥ h(xju)

u(xju)

1

2
h(xj∗h ),

where the first inequality is due to the use of k-Greedy-TS in [14] for a fixed
size j, the second inequality follows from the definition of xj∗u , and the third
inequality is from the fact that u upper-bounds h.

We also have h(xj`) ≥ `(x
j
`) ≥

1
2`(x

j∗
` ) ≥ 1

2`(x
j∗
h ) ≥ `(xj∗h )

h(xj∗h )

1
2h(xj∗h ), where the

first inequality is due to the use of k-Greedy-TS in [14] for a fixed size j, the
second inequality follows from the definition of xj∗` , and the third inequality is
from the fact that ` lower-bounds h.

From combining h(xju) ≥ h(xju)

u(xju)
1
2h(xj∗h ) and h(xj`) ≥

`(xj∗h )

h(xj∗h )

1
2h(xj∗h ), we have

max
xj∈{xj` ,x

j
h,x

j
u}
h(xj) ≥ max

(
h(xju)

u(xju)
,
`(xj∗h )

h(xj∗h )

)
1

2
h(xj∗h ).

From the above for each j and step 4 of SAR, we have

h(xSAR) ≥ max
j∈[|V |]

{
max

(
h(xju)

u(xju)
,
`(xj∗h )

h(xj∗h )

)
1

2
h(xj∗h )

}
≥
(
h(xsu)

u(xsu)
,
`(xs∗h )

h(xs∗h )

)
1

2
h(xs∗h ).

It follows that: f(xSAR)
g(xSAR)

≤ 2

/
max

(
c′

f(xsu)
,
f(xs∗h )

2c

)
arg minx∈(k+1)V

f(x)
g(x) . The time

complexity of SAR follows from executing k-Greedy-TS three times. ut

7 Experimental Results

We experimentally evaluate the effectiveness and efficiency of our algorithms for
cost-effective variants [13] of two problems on two publicly available datasets;
a sensor placement problem where sensors have k different types [14], and an
influence maximization problem under the k-topic independent cascade model
[14]. We compare our algorithms to three baseline algorithms, alike those in [14],
as explained below. We implemented all algorithms in C++ and executed them
on an Intel Xeon @ 2.60GHz with 128GB RAM. Our source code and the datasets
we used are available at: https://bitbucket.org/grigorios_loukides/ksub.
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7.1 Sensor placement

Entropy and cost functions. We first define the entropy function for the
problem, following [14]. Let the set of random variables Ω = {X1, . . . , Xn} and
H(S) = −

∑
s∈dom S Pr[s] · logPr[s] be the entropy of a subset S ⊆ Ω and

dom S is the domain of S. The conditional entropy of Ω after having observed
S is H(Ω | S) = H(Ω) − H(S). Thus, an S with large entropy H(S) has
small uncertainty and is preferred. In our sensor placement problem, we want
to select locations at which we will install sensors of k types, one sensor per
selected location. Let Ω = {Xu

i }i∈[k],u∈V be the set of random variables for each
sensor type i ∈ [k] and each location u ∈ V . Each Xu

i is the random variable
representing the observation collected from a sensor of type i that is installed at
location u. Thus, Xi = {Xu

i } ⊆ Ω is the set representing the observations for
all locations at which a sensor of type i ∈ [k] is installed. Then, the entropy of
a vector x = (X1, . . . , Xk) ∈ (k + 1)V is given by H(x) = H(∪i∈[k]Xi).

Let ci be the cost of installing any sensor of type i ∈ [k]. We selected each
ci uniformly at random from [1, 10], unless stated otherwise, and computed the
cost of a vector x = (X1, . . . , Xk) ∈ (k + 1)V using the cost function C(x) =∑
i∈[k] ci · |Xi|β , where β ∈ (0, 1] is a user-specified parameter, similarly to [8].

This function models that the cost of installing an extra sensor of any type i
diminishes when more sensors of that type have been installed (i.e., when |Xi|
is larger) and that the total cost of installing sensors is the sum of the costs of
installing all sensors of each type. The function |Xi|β , for β ∈ (0, 1], is monotone
submodular, as a composition of a monotone concave function and a monotone
modular function [3]. Thus, C(x) is monotone k-submodular, as a composition of
a monotone concave and a monotone k-modular function (the proof easily follows

from Theorem 5.4 in [3]). The RS-k minimization problem is to minimize C(x)
H(x) .

We solve the equivalent problem of maximizing H(x)
C(x) .

Setup. We evaluate our algorithms on the Intel Lab dataset (http://db.csail.
mit.edu/labdata/labdata.html) which is preprocessed as in [14]. The dataset
is a log of approximately 2.3 million values that are collected from 54 sensors
installed in 54 locations in the Intel Berkeley research lab. There are three types
of sensors. Sensors of type 1, 2, and 3 collect temperature, humidity, and light
values, respectively. Our k-submodular functions take as argument a vector: (1)
x = (X1) of sensors of type 1, when k = 1; (2) x = (X1, X2) of sensors of type
1 and of type 2, when k = 2, or (3) x = (X1, X2, X3) of sensors of type 1 and of
type 2 and of type 3, when k = 3.

We compared our algorithms to two baselines: 1. Single(i), which allocates
only sensors of type i to locations, and 2. Random, which allocates sensors of
any type randomly to locations. The baselines are similar to those in [14]; the
only difference is that Single(i) is based on H

C . That is, Single(i) adds into
the dimension i of vector x the location that incurs the maximum gain with
respect to H

C . We tested all different i’s and report results for Single(1), which
performed the best. Following [14], we used the lazy evaluation technique [11]
in k-GreedRatio and SAR, for efficiency. For these algorithms, we maintain
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an upper bound on the gain of adding each u in Xi, for i ∈ [k], with respect to
H
C and apply the technique directly. For k-StochasticGreedRatio, we used
δ = 10−1 (unless stated otherwise) and report the average over 10 runs.
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Fig. 1: (a) Entropy to cost ratio H
C for varying k ∈ [1, 3] and β = 0.1. (b) Entropy

H for varying k ∈ [1, 3] and β = 0.1. (c) Cost C for varying k ∈ [1, 3] and β = 0.1.
(d) Entropy to cost ratio H

C for varying k ∈ [1, 3] and β = 0.9. (b) Entropy H
for varying k ∈ [1, 3] and β = 0.9. (c) Cost C for varying k ∈ [1, 3] and β = 0.9.
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Fig. 2: Entropy to cost ratio for varying
β ∈ [0.05, 0.9] and k = 2.

Results. Fig. 1 shows that our algo-
rithms outperform the baselines with
respect to entropy to cost ratio. In
these experiments, we used c1 = c2 =
c3 = 1. Specifically, our algorithms
outperform the best baseline, Sin-
gle(1), by 5.2, 5.1, and 3.6 times on
average over the results of Fig. 1a and
1d. Our algorithms perform best when
C is close to being k-modular (i.e., in
Figs. 1d, 1e and 1f where β = 0.9).

In this case, they outperform Single(1) by at least 6.2 times. The cost func-
tion C(x) increases as β increases and thus it affects the entropy to cost ratio
H(x)/C(x) more substantially when β = 0.9. Yet, our algorithms again selected
sensors with smaller costs than the baselines (see Fig. 1f), achieving a solution
with much higher ratio (see Fig. 1d). The good performance of k-GreedRatio
and k-StochasticGreedRatio when β = 0.9 is because C(x) is “close” to
k-modular (it is k-modular with β = 1) and these algorithms offer a better
approximation guarantee for a k-modular function (see Theorem 3).

Fig. 2 shows that our algorithms outperform the baselines with respect
to entropy to cost ratio for different values of β ∈ [0.05, 0.9]. Specifically, k-
GreedRatio, k-StochasticGreedRatio, and SAR outperform the best base-
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line, Single(1), by 3.4, 3.1, and 3 times on average, respectively. Also, note that
k-GreedRatio and k-StochasticGreedRatio perform very well for β > 0.5,
as they again were able to select sensors with smaller costs.

Fig. 3a shows the number of function evaluations (HC , H and C for SAR

and H
C for all other algorithms) when k varies in [1, 3]. The number of function

evaluations is a proxy for efficiency and shows the benefit of lazy evaluation [14].
As can be seen, the number of function evaluations is the largest for SAR, since
it evaluates both h = H

C and g = C, while it is zero for Random, since it
does not evaluate any function to select sensors. Single(1) performs a small
number of evaluations of H

C , since it adds all sensors into a fixed dimension.
k-StochasticGreedRatio performs fewer evaluations than k-GreedRatio
due to the use of sampling. Fig. 3b shows the runtime of all algorithms for
the same experiment as that of Fig. 3a. Observe that all algorithms take more
time as k increases and that our algorithms are slower than the baselines, since
they perform more function evaluations. However, the runtime of our algorithms
increases sublinearly with k. k-StochasticGreedRatio is the fastest, while
SAR is the slowest among our algorithms.

Figs. 3c and 3d show the impact of parameter δ on the entropy to cost ratio
and on runtime of k-StochasticGreedRatio, respectively. As can be seen,
when δ increases, the algorithm finds a slightly worse solution but runs faster.
This is because a smaller δ leads to a smaller sample size. In fact, the sample
size was 30% for δ = 10−5 and 10.9% for δ = 0.2.
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Fig. 3: (a) Number of evaluations of H
C , H, or C, for varying k ∈ [1, 3] and

β = 0.9. (b) Runtime (sec) for varying k ∈ [1, 3] and β = 0.9. (c) Entropy to
cost ratio H

C for varying δ ∈ [10−5, 0.2] used in k-StochasticGreedRatio. (d)
Runtime (sec) for varying δ ∈ [10−5, 0.2] used in k-StochasticGreedRatio.

7.2 Influence maximization

Influence and cost functions. In the k-topic independent cascade model [14],
k different topics spread through a social network independently. At the ini-
tial time t = 0, there is a vector x = (X1, . . . , Xk) of influenced users called
seeds. Each seed u in Xi, i ∈ [k], is influenced about topic i and has a single
chance to influence its out-neighbor v, if v is not already influenced. The node
v is influenced at t = 1 by u on topic i with probability piu,v. When v becomes
influenced, it stays influenced and has a single chance to influence each of its
out-neighbors that is not already influenced. The process proceeds similarly un-
til no new nodes are influenced. The expected number of influenced users is
I(x) = E[| ∪i∈[k] Ai(Xi)|], where Ai(Xi) is a random variable representing the
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set of users influenced about topic i through Xi. The influence function I is
shown to be k-submodular [14]. The selection of a node u as seed in Xi incurs
a cost C(u, i), which we selected uniformly at random from [2000, 20000]. The

cost of x is C(x) =
(∑

u∈∪i∈[k]Xi C(u, i)
)β

, where β ∈ (0, 1]. C(x) is mono-

tone k-submodular, as a composition of a monotone concave and a monotone
k-modular function (the proof easily follows from Theorem 5.4 in [3]). The RS-k

minimization problem is to minimize C(x)
I(x) . We solve the equivalent problem of

maximizing I(x)
C(x) .
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Fig. 4: Spread to cost ratio I
C for varying: (a) k ∈ [2, 6] and β = 0.5, (b) k ∈ [2, 6]

and β = 0.9

Setup. We evaluate our algorithms on a dataset of a social news website (http:
//www.isi.edu/~lerman/downloads/digg2009.html) following the setup of [14].
The dataset consists of a graph and a log of user votes for stories. Each node
represents a user and each edge (u, v) represents that user u can watch the ac-
tivity of v. The edge probabilities piu,v for each edge (u, v) and topic i were set
using the method of [2]. We compared our algorithms to three baselines [14]:
1. Single(i); 2. Random, and 3. Degree. Single(i) is similar to that used
in Section 7.1 but it is based on I

C . Following [14], we used the lazy evalua-
tion technique [11] on k-GreedRatio, SAR, and k-StochasticGreedRatio.
For the first two algorithms, we applied the technique similarly to Section 7.1.
For k-StochasticGreedRatio, we maintain an upper bound on the gain of
adding each u into Xi, for i ∈ [1, k], w.r.t. HC and select the element in Q with the
largest gain in each iteration. We tested all i’s in Single(i) and report results for
Single(1) that performed best. Degree sorts all nodes in decreasing order of
out-degree and assigns each of them to a random topic. We simulated the influ-
ence process based on Monte Carlo simulation. For k-StochasticGreedRatio,
we used δ = 10−1 and report the average over 10 runs.

Results. Figs. 4a and 4b show that our algorithms outperform all three base-
lines, by at least 15.3, 3.3, and 1.5 times on average for k-GreedRatio, k-
StochasticGreedRatio, and SAR, respectively. The first two algorithms per-
form best when C is close to being k-modular (i.e., in Fig. 4b where β = 0.9).
This is because C is k-modular when β = 1 and these algorithms offer a better
approximation guarantee for a k-modular function (see Theorem 3).
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Fig. 5a shows that all algorithms perform similarly for β < 0.5. This is
because in these cases C has a much smaller value than I. Thus, the benefit
of our algorithms in terms of selecting seeds with small costs is not signifi-
cant. For β ≥ 0.5, our algorithms substantially outperformed the baselines, with
k-GreedRatio and k-StochasticGreedRatio performing better as β ap-
proaches 1 for the reason mentioned above.
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Fig. 5: (a) Spread to cost ratio for varying β ∈ [0.05, 0.9] and k = 6. (b) Number
of evaluations of I

C , I or C, for varying k ∈ [2, 6] and β = 0.7.

Fig. 5b shows the number of evaluations of the functions I
C and I for SAR,

and of I
C for all other algorithms, when k varies in [2, 6]. The number of evalu-

ations is the largest for SAR, since SAR applies k-Greedy-TS on both h = I
C

and g = C, and zero for Random and Degree, since these algorithms select
seeds without evaluating I

C . Single(1) performs a small number of function

evaluations of I
C , since it adds all nodes into a fixed dimension (i.e., dimen-

sion 1). k-StochasticGreedRatio performs fewer function evaluations than
k-GreedRatio, because it uses sampling. k-StochasticGreedRatio was also
30% faster than SAR on average but 5 times slower than Single(1).

8 Conclusion

In this paper, we studied RS-k minimization, a new optimization problem that
seeks to minimize the ratio of two monotone k-submodular functions. To deal
with the problem, we developed k-GreedRatio, k-StochasticGreedRatio,
and Sandwich Approximation Ratio (SAR), whose approximation ratios depend
on the curvatures of the k-submodular functions and the values of the functions.
We also demonstrated the effectiveness and efficiency of our algorithms by ap-
plying them to sensor placement and influence maximization problems.

Extensions. One interesting question is to consider the RS-k minimization
problem with size constraints, alike those for k-submodular maximization in [14].
The constrained k-minimization problem seeks to select k disjoint subsets that
minimize the ratio and either all contain at most a specified number of elements,
or each of them contains at most a specified number of elements. Our algorithms
can be extended to tackle this constrained problem.

Another interesting question is to consider RS-k minimization when f and
g are not exactly k-submodular. A recent work [17] shows that the approxima-
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tion ratios of algorithm for RS-1 minimization depend on the curvatures and
submodularity ratios [5] of the functions f and g, when f and g are not sub-
modular. A similar idea can be considered for our algorithms, provided that we
extend the notion of submodularity ratio to k-submodular functions.
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