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Abstract 1 

 2 

Background: Previous research demonstrated that a high dose of phlorizin-rich apple extract 3 

(AE) can markedly inhibit early-phase postprandial glycemia, but efficacy of lower doses of 4 

the AE is unclear.  5 

 6 

Objective: To determine whether lower AE doses reduce early-phase postprandial glycemia 7 

in healthy adults and investigate mechanisms.  8 

 9 

Design: In a randomized, controlled, double-blinded, cross-over acute trial, drinks containing 10 

1.8 g (HIGH), 1.35 g (MED), 0.9 g (LOW), or 0 g (CON) of a phlorizin-rich AE were 11 

consumed before 75 g starch/sucrose meal. Postprandial blood glucose, insulin, C-peptide, 12 

glucose-dependent insulinotropic polypeptide (GIP) and polyphenol metabolites 13 

concentrations were measured 0-240 min, acetaminophen concentrations to assess gastric 14 

emptying rate, and 24 h urinary glucose excretion. Effects of AE on intestinal glucose 15 

transport were investigated in Caco-2/TC7 cells. 16 

 17 

Results: AE significantly reduced plasma glucose iAUC 0-30 min at all doses: mean 18 

differences (95% CI) relative to CON were -15.6 (-23.3, -7.9), -11.3 (-19.6, -3.0) and -8.99 (-19 

17.3, -0.7) mmol/L/min for HIGH, MEDIUM and LOW respectively, delayed Tmax (HIGH, 20 

MEDIUM and LOW 45 min vs. CON 30 min), but did not lower Cmax. Similar dose-21 

dependent treatment effects were observed for insulin, C-peptide, and GIP. Gastric emptying 22 

rates and urinary glucose excretion did not differ. Serum phloretin, quercetin and epicatechin 23 

metabolites were detected postprandially. A HIGH physiological AE dose equivalent 24 

decreased total glucose uptake by 48 % in Caco-2/TC7 cells.  25 
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 26 

Conclusions: Phlorizin-rich AE, even at a low dose, can slightly delay early-phase glycaemia 27 

without affecting peak and total glycaemic response. 28 

 29 

Keywords: Randomized controlled trial, Postprandial glycemia, Polyphenols, Phlorizin, 30 

Apples, Glucose transport.  31 

 32 

1. Introduction 33 

Food and beverages high in available carbohydrates elicit a marked glycemic and insulinemic 34 

response. Lowering the glycemic index/load of diets may improve glycemic control, 35 

particularly in individuals with raised fasting blood glucose [1,2] and reduces the risk of 36 

developing chronic diseases such as type 2 diabetes (T2D) [3]. Chronic exposure to 37 

exaggerated postprandial glucose excursions can lead to adverse modifications to functional 38 

proteins, oxidative stress and pancreatic beta cell dysfunction [4]. Intervention studies have 39 

shown that prescription of acarbose, a potent inhibitor of carbohydrate digestive enzymes, is a 40 

promising metabolic modifier that can reduce the risk of T2D. A 6 % reduction in diabetes 41 

incidence was observed in high-risk patients over 3 years [5]. Given the widespread 42 

availability of refined, high-carbohydrate foods in industrialised countries, dietary strategies 43 

that may moderate postprandial glycemia is a vital area of research for prevention of 44 

cardiometabolic diseases [6].  45 

 46 

Glycemic responses to foods are determined by a range of factors relating to the individual’s 47 

metabolic health status, recent physical activity [7], dietary and alcohol intakes [8,9], and 48 

sleep patterns [10], as well as characteristics of the meal: amount, type and digestibility of 49 

starch; non-nutrient components that may interact (e.g. α-amylase inhibitors, phytates and 50 

polyphenols); amount and type of fat, sugar, and dietary fibres; food matrix structure; 51 
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viscosity within the digestive tract [11]. Polyphenols are a large and heterogeneous group of 52 

phytochemicals containing 1 or more phenol ring [6], with the main classes being flavonoids, 53 

stilbenes, lignans and phenolic acids. Polyphenols may contribute to the cardiometabolic 54 

protective effects of fruits, vegetables and wholegrains [6,12–14]. Polyphenol intake among a 55 

large, health-conscious US cohort was estimated at 0.8 g/day using food frequency 56 

questionnaires, with coffee, fruits (citrus, apples and pears, and purple/red fruits) and fruit 57 

juices as the main food contributors [15]. In the UK, the adult average polyphenol intake has 58 

been estimated at 1-1.6 g/day using 4-day food diaries and 24 h recalls [16–18], with apples 59 

and pears being the biggest fruit contributors [16]. Data extracted from the UK National Diet 60 

and Nutrition Survey (NDNS) rolling programme years 1-4 (2008/12) showed 37 % of 61 

respondents (age ≥19 y old, n=3450) reported eating whole apples (with or without skin) 62 

during a 4 day period; median intake in consumers was 38 g/day (IQR 36) (approximately 63 

equivalent to consuming 2-3 apples per week) [19]. Apples contain a complex profile of 64 

polyphenols; quantitatively (by weight), the most representative are hydroxycinnamic acids, 65 

flavanols/procyanidins, flavonols and dihydrochalcones [20].  66 

 67 

Growing evidence using apple juices and extracts suggests constituents of apples inhibit the 68 

rate of glucose absorption in the intestine [21–23]. Apple polyphenols may inhibit glucose 69 

absorption by inhibiting intestinal enzymes α-amylases and α-glucosidases [24–26], slowing 70 

down the breakdown of starch and sucrose, and by inhibiting the  intestinal glucose  71 

transporters, SGLT1 and GLUT2 [22,27]. A considerable body of evidence has highlighted 72 

the mechanistic importance of the dihydrochalcone polyphenol, phlorizin [22,27–29] which is 73 

found in uniquely high concentrations in apples [20]. Phlorizin is poorly absorbed in the small 74 

intestine; approximately 80 % of phlorizin is hydrolysed to phloretin prior to absorption [30]. 75 

Phlorizin competitively inhibits the sodium-dependent glucose transporter SGLT1, which is 76 
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predominantly distributed in the intestine but also the bile duct, lung, heart and straight (S3 77 

segment) of the proximal tubules of the kidney. Renal SGLT1 is expressed to a lesser extent 78 

than SGLT2, which is distributed in the convoluted (S1 and S2 segments) of the renal 79 

proximal tubules, and is also inhibited by phlorizin [31–33].  Polyphenols may also interact 80 

with chemoreceptors in the stomach or duodenum, for example, bitter taste receptors [34,35], 81 

to trigger a delay in gastric emptying rate by an, as yet, unexplained mechanism such as vagal 82 

afferent signalling, gut hormone release, or direct inhibition of smooth muscle contractility 83 

via ion channels [34,36,37]. 84 

Our group recently reported that 1.8 g AE, containing approximately 1.2 g total phenolics, 85 

markedly reduced plasma glucose concentrations up to 30 min following a high starch and 86 

sucrose meal [23]. However, this level of intake of polyphenols would be difficult to achieve 87 

by consuming fresh apples alone, since this amount equates to over two thirds of average 88 

daily polyphenol intake in adults and roughly 4-6 average-sized eating apples [16–18]. The 89 

efficacy of lower doses that would be more feasible to use in the formulation of functional 90 

foods or beverages, in terms of overall organoleptic properties as well as cost, is unclear. 91 

Decreasing the rate of glucose absorption from carbohydrate in foods would lead to a more 92 

sustained delivery of glucose to the tissues which could be of benefit to individuals with 93 

insulin resistance, and also to endurance athletes who need a more prolonged glycemia 94 

without the reduction in the amount of available carbohydrate and demands on digestive 95 

processes that might occur following whole-food, high-fibre foods. The present study tests the 96 

hypothesis that drinks containing phlorizin-rich AE will dose-dependently decrease the rate of 97 

glucose absorption, assessed by measuring early-phase postprandial glucose concentrations 98 

(incremental area under the curve (iAUC) 0-30 min) as the primary outcome variable, 99 

following a high-starch/high sucrose meal. The primary outcome was iAUC (0-30 min), 100 

intended to capture the time period when the rate of intestinal glucose absorption is the main 101 
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determinant of plasma glucose concentrations and the rate of liver glucose uptake on first pass 102 

metabolism is not yet a major factor. After 30-45 min (the approximate time of peak 103 

glycemia) blood glucose concentrations also reflect other factors that affect the rate of 104 

disappearance, primarily the amount of insulin secreted, the degree of muscle and adipose 105 

tissue insulin sensitivity, and the level of suppression of hepatic glucose output 106 

postprandially. Secondary in vivo outcomes include: total glycemic response (iAUC 0-120); a 107 

prolonged period of glycemic monitoring (iAUC 0-240 min); peak glucose concentrations 108 

(Cmax); time of peak glucose concentrations (Tmax); postprandial parameters of insulin 109 

secretion (insulin, C-peptide); postprandial incretin response indicated by glucose-dependent 110 

insulinotropic polypeptide (GIP); novel data on postprandial apple polyphenol metabolites; 111 

gastric emptying rates by the acetaminophen absorption test in a sub-group; 24 h renal 112 

glucose output as an indicator of phlorizin-induced inhibition of renal glucose reabsorption. 113 

To identify potential underpinning mechanisms of action that exist in vivo, the capacity of the 114 

same AE to inhibit glucose transport was studied using Caco-2/TC7 cells as an in vitro model 115 

of the human enterocyte.  116 

 117 

2. Materials and Methods 118 

2.1 Human study  119 

2.1.1 Participants 120 

Ethical approval was received from King’s College London (KCL) ethics committee (REC 121 

reference: BDM 16/17-3762). The trial was carried out in accordance with the principles 122 

outlined in the Declaration of Helsinki of 1975 as revised in 2013 and registered at 123 

ClinicalTrials.gov (NCT02940249). Healthy participants were recruited from KCL and the 124 

general public in London and surrounding counties. An advertisement was placed in the 125 

London Metro/Evening Standard, emails circulated within KCL, postings on social 126 
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networking websites, and poster advertising at KCL. Using data from our previous study [23], 127 

it was calculated that a sample size of 30 subjects has 80 % power to detect a difference 128 

between average mean iAUC values (0-30 min) of 10 mmol glucose /L.min between test 129 

drinks with a significance level of α=0.01 (two-tailed), calculated from a 16 mmol/L.min 130 

standard deviation (SD) of the mean difference (Castro-Acosta et al., 2017). The previous 131 

study by our group [23] found a mean difference between 1.8 g AE and control (no AE) of 25 132 

mmol glucose/L.min; our study was statistically powered to detect any differences following 133 

lower doses that are 40 % of effect size. For the acetaminophen sub-group, a sample size of 6 134 

had 80 % power to detect a difference between the Cmax of test drinks of 0.054 mmol/L with a 135 

significance level of α=0.05 (two-tailed), calculated from 0.048 mmol/L SD and correlation 136 

between paired observations of 0.6.  137 

 138 

Inclusion criteria were: healthy men and women aged 18-70 y; BMI 18-35 kg/m2; able to 139 

understand the information sheet; willing to comply with study protocol; able to give 140 

informed written consent. Exclusion criteria were: phenylketonuria; allergy, hypersensitivity 141 

or intolerance to any foods/food ingredients and/or acetaminophen; participation in another 142 

clinical trial; those with full blood counts and liver function tests outside of the normal range; 143 

current smokers or those who gave up smoking within the last 6 months; reported history of 144 

cardiovascular disease, cancer, liver, kidney or bowel disease; fasting glucose ≥7.1 mmol/L or 145 

uncontrolled T2D; presence of gastrointestinal disorder or use of drug which is likely to alter 146 

gastrointestinal function; history of substance abuse or alcoholism; unwilling to restrict 147 

consumption of specified high polyphenol foods for 48 h before the study; weight change >3 148 

kg in preceding 2 months and body mass index <18 or >35 kg/m2; cholesterol ≥7.5 mmol/L; 149 

fasting TAG ≥5 mmol/L; blood pressure ≥160/100 mmHg; current use of medications that 150 

may interfere with the study such as α-glucosidase inhibitors (e.g. acarbose), insulin-151 
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sensitising drugs (e.g. metformin, thiazolidinediones), sulfonylureas, and lipid-lowering 152 

drugs; medications that may react with acetaminophen (e.g. ketoconazole, metoclopramide); 153 

current use of nutritional supplements that may interfere with the study such as higher dose 154 

vitamins/minerals (more than double the UK Reference Nutrient Intake (RNI)/US Daily 155 

Reference Intake (DRI)), B vitamins, Vitamin C, calcium, copper, chromium, iodine, iron, 156 

magnesium, manganese, phosphorus, potassium and zinc. Subjects already taking vitamin or 157 

minerals at a dose 100 % or less up to 200 % of the UK RNI, or evening primrose/algal/fish 158 

oil supplements were asked to maintain habitual intake patterns and advised not to stop taking 159 

or begin new supplements during the study. 160 

 161 

Interested volunteers were provided with a participant information sheet. Respondents were 162 

initially interviewed over the telephone. Eligible participants were invited to a screening visit 163 

at the Metabolic Research Unit in the Diabetes & Nutritional Sciences Division, KCL. 164 

Participants arrived following an overnight fast for measurement of body mass index (BMI: 165 

weight, kg / height, m2), waist and hip circumferences (mid-point between the lowest rib and 166 

iliac crest and widest gluteal girth, respectively), body fat percentage (Tanita™ Body 167 

Composition Analyser), supine blood pressure, liver function tests, hematology, plasma 168 

glucose and lipid profile.  169 

 170 

Subjects who met all inclusion and exclusion criteria were randomized according to the 171 

randomization schedule created using Research Randomizer software 172 

(https://www.randomizer.org). The allocation of treatment sequence was blinded from the 173 

investigators, technicians performing analysis of blood samples and participants by a 174 

laboratory technician. Investigators and participants remained blinded until completion of the 175 

study and data analysis.  176 

https://www.randomizer.org/
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  177 

2.1.2 Study design 178 

A randomized, controlled, double-blind, cross-over design study was used to compare 4 test 179 

drinks consumed by participants in random order, at 4 separate study visits and with at least 7 180 

days wash-out between each visit. Test drinks consisted of a “no added sugar” fruit drink 181 

concentrate, diluted with water and with increasing doses of AE added, providing 81 kJ (19 182 

kcal), 4 g carbohydrate and <0.1 g protein, fat and fibre (Table 1).  Drinks contained either no 183 

AE (CON), 1.8 g AE (HIGH), 1.35 g AE (MED) or 0.9 g AE (LOW). Test drinks were 184 

formulated by the researchers. The extract was dispersed in 40 ml of a very low-polyphenol 185 

double concentrate apple and blackcurrant squash (Robinson’s, United Kingdom) mixed with 186 

water. Sucrose (3 g) was added to disguise any difference in taste between drinks. Test drinks 187 

(200 ml) were matched for macronutrient and energy content; Table 1 provides the 188 

polyphenol content of the test drinks. A gastric emptying sub-study was conducted (n=6), 189 

whereby 1.5 g crushed acetaminophen (Sainsbury’s Paracetamol Caplets) was dispersed into 190 

the drink. By measuring blood acetaminophen concentrations at sequential time points, the 191 

rate of absorption of acetaminophen from the duodenum is assumed to reflect the rate of 192 

gastric emptying.  193 

 194 

  195 
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Table 1. Polyphenol composition of the test drinks 196 

Mg per 200 ml1 HIGH (SD) MED LOW CON2 Molar 

% 

Individual polyphenols3      

Flavonols      

    Quercetin 7.4 (0.59) 5.5 3.7 N 3.1 

    Q-3-O-diglucoside 0.2 (0.01) 0.1 0.1 N 0.0 

    Q-3-O-Rhamnoside 24.7 (1.33) 18.5 12.3 N 7.0 

    Q-3-O-Glucoside 50.6 (2.27) 37.9 25.3 N 14.0 

Dihydrochalcones      

    Phlorizin (phloretin 2-O-β-glucoside) 142.9 (6.64) 107.2 71.5 N 41.9 

    Phloretin 1.3 (0.08) 0.9 0.6 N 0.6 

Phenolic acids      

    Caffeic acid 0.9 (0.09) 0.7 0.5 N 0.7 

    Chlorogenic acid 17.8 (0.99) 13.4 8.9 N 6.5 

    Cinnamic acid 0.0 (0.00) 0.0 0.0 N 0.0 

Procyanidin oligomers4      

    Dp2 17.2 (1.67) 12.9 8.6 N 3.8 

    Dp3 5.8 (0.37) 4.3 2.9 N 0.8 

    Dp4 4.9 (0.25) 3.7 2.5 N 0.5 

    Dp5 2.5 (0.20) 1.9 1.3 N 0.3 

    Dp6 1.7 (0.31) 1.3 0.8  0.1 

Epicatechin 46.9 (3.25) 35.2 23.5 N 20.7 

Sum of individual analysed  

polyphenols 

324.7 243.6 162.4 -  

Total phenolics (catechin equivalents) 5 936 702 468 <5  

HIGH; 1800 mg of apple extract, MED; 1350 mg of apple extract, LOW; 900 mg of apple 197 

extract, CON; 0 mg of apple extract. SD; standard deviation. N; negligible.  198 
1 All drinks contained 80.6 kJ (19 kcal), 4.1 g carbohydrate (of which 4.1 g sugars, containing 199 

3 g sucrose). Per gram apple extract contained: 5 kJ (1 kcal), 0.02 g protein, 0.06 g fat, 0.17 200 

g carbohydrate, 0.01 g dietary fibre, 3 mg sodium, 0.2 mg chloride, 0.27 mg calcium, 0.04 201 

mg iron. Analysed at King’s College London, UK.   202 
2 Estimated from Hollands et al. [38] for apple and blackcurrant juices from concentrate.  203 
3 Estimated from analysis of raw extract by mass spectrophotometer and HPLC methods. 204 
4 Molecular weights estimated from Ye et al. [39].  205 
5 Estimated from analysis of raw extract by the Folin-Ciocalteu method, not by direct 206 

analysis of the drinks.  207 
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All test drinks were dispensed into identical black opaque bottles and labelled with codes by a 208 

laboratory technician; study investigators and participants were blind to the contents in each 209 

bottle. Drinks were consumed through a straw within 2 minutes. Once drunk, all bottles were 210 

shaken with an additional 100 ml of water and swallowed to ensure all contents was 211 

consumed. The first mouthful of the test drink marked T+0 (time zero). The drink was 212 

immediately followed by consumption of a mixed high-carbohydrate meal consisting of 100 g 213 

of thick slice white bread (Hovis, London, UK) spread with 43 g of apricot jam (Hartley’s, 214 

Hain Daniels Group, Leeds, UK). Both high-carbohydrate foods are low in phenolics (<6 215 

mg/100 g fresh weight). The meal was consumed within 5 minutes and provided 986 kJ (233 216 

kcal) containing 70.9 g carbohydrate (29.8 g sugars and 41.1 g starch). The drink and meal 217 

provided a total of 75 g carbohydrate and were consumed within 7 minutes.  218 

For premenopausal female participants, in order to avoid any influence on outcomes of 219 

cyclical reproductive hormones, study visits were not scheduled on the week before and 220 

during menses (targeting the period between follicular and luteal phases). Before the first 221 

study visit, participants completed a 7-day food diary for subsequent analysis of baseline food 222 

(Nutritics 4.3) and polyphenol (Polyphenol Explorer and USDA Databases) intakes. Two 223 

days prior to each study visit, participants were asked to avoid certain high-polyphenol foods 224 

from a list provided (Appendix A). High-fat foods (from a list provided), caffeine and alcohol 225 

along with strenuous exercise were avoided 24 h before a study visit to limit potential effects 226 

on insulin sensitivity (Appendix A).  Participants were asked to consume a standard low-fat 227 

meal the evening before each visit and arrived following a 12 hour fast.  228 

Upon arrival, participants emptied their bladder, were weighed and then rested in a supine 229 

position for 10 minutes. Blood pressure was recorded in duplicate using a calibrated 230 

automated blood pressure monitor (Omron M3, Omron Healthcare Europe B.V). A venous 231 

cannula was inserted in a vein in the antecubital fossa or a forearm vein by a trained 232 
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phlebotomist. Baseline blood samples (T-5 min) for analysis of glucose, insulin, C-peptide, 233 

NEFA, acetaminophen and GIP were collected. Glucose baseline samples were taken in 234 

duplicate (at T -10 and -5 min). The drink and test meal were consumed at T+0 min. Blood 235 

samples were taken at frequent intervals up to 4 h post-test meal (Figure 1). Participants were 236 

kept hydrated with water (100 ml/hour). Twenty-four hour urine samples were collected (over 237 

2 g boric acid as a preservative), and fractionated into different collection periods of T+ 0-2.5 238 

h, 2.5-5h, 5-12 h and 12-24 h. Collection containers were kept in opaque cool bags until 239 

sampled. Figure 1 outlines the study visit protocol.  240 

2.1.3. Apple extract composition 241 

Powdered AE (Appl’In™ by DIANA Food Ltd, Antrain, France) was produced from the 242 

juice, flesh, seeds, skin and core of cider apples, with the aim of ensuring a higher phlorizin 243 

content (>5% w/w) than if the extract was derived from the juice and pulp alone. The doses of 244 

AE used in this trial was determined by matching the total amount provided in the HIGH 245 

treatment with that used in the previous study by Castro-Acosta et al.[23] with a 2-fold 246 

reduction for the lowest dose. Table 1 outlines the full details of the AE polyphenol 247 

composition.  248 

 249 

2.1.4 Blood sample analysis 250 

Blood samples were collected at T+ 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240 min into: 251 

fluoride/oxalate tubes (BD Vacutainer Cat No. 368921) for glucose analysis; SST™ serum 252 

tubes (BD Vacutainer Cat No. 367956; 367954; 366882) for insulin, C-peptide, polyphenols 253 

(T+ 120, 240 min only), acetaminophen, and NEFA analysis; and at T+ 30, 60, 90, 120, 180, 254 

240 min into K2 EDTA tubes for GIP analysis (BD Vacutainer Cat No. 367838). All 255 

samples were centrifuged at 1300 g, 4 °C for 15 min and plasma/serum aliquots were stored at 256 

-80 °C until biochemical analysis. Enzymatic assays on ILab 650 chemistry analyser 257 
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(Instrumentation Laboratory™, Werfen Company, UK) were used to analyse glucose (Werfen 258 

Cat No. 00018250840) and NEFA (Randox Cat No. FA115). Insulin, C-peptide, (Siemens 259 

Healthcare Diagnostics Ltd, Frimley, Surrey, UK) and GIP concentrations (Merck Millipore 260 

Corporation MA., USA) were analysed by ELISA. Acetaminophen concentrations were 261 

measured colorimetrically (Randox Laboratories Ltd., London, UK).  262 

 263 

2.1.5. Serum polyphenol metabolites analysis 264 

The serum polyphenol metabolites of 10 randomly selected participants were analysed. 265 

Taxifolin internal standard added (10μl of 1 mg/ml solution in methanol) was added to 250 ul 266 

serum sample. Three volumes (750 μl) of methanol was added and the sample agitated for 10 267 

minutes at room temperature. After 2 min, the sample was centrifuged for 10 min at 15000 268 

rpm.  The supernatant (400 μl) was removed and filtered (0.2 μm) into an autosampler vial to 269 

be passed for LC-MS analysis. LC-MS analysis used targeted MRM detection for native 270 

compounds and their associated sulphate and glucuronide conjugates. Standards included 271 

phloretin, phlorizin, epicatechin, quercetin, isorhamnetin, chlorogenic acid, caffeic acid, 272 

ferulic acid and trans-cinnamic acid and were purchased from Sigma-Aldrich. Standards of 273 

quercetin 3-O-glucuronide, quercetin-3-O-sulfate and isorhamnetin-3-O-glucuronide were 274 

synthesised in-house (Quadram Institute Bioscience). MRM tracking of parent sulphates and 275 

glucuronides of phlorizin, phloretin, isorhamnetin and epicatechin (and methylated 276 

derivatives) were achieved by calculating the addition of mass of a sulphate, glucuronide 277 

and/or methyl group to the native compound. Standards were prepared using blank serum 278 

over a range of 100 to 25000 nM alongside the samples. LC-MS was performed using an 279 

Agilent 1290 UPLC coupled to a 6490 triple quadrupole mass spectrometer operated in 280 

electrospray mode. Chromatographic separation was achieved using a Waters HSS T3 100 x 281 

2.1mm, 1.7μm column at 35°C. Flow rate was 400 μl/min and injection volume was 2 μl. The 282 
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binary gradient used solvent A (Water + 0.1% v/v formic acid) and solvent B (Acetonitrile + 283 

0.1% v/v formic acid) with a gradient of 25% B at injection to 0.3 min, 30% B at 2 min, then 284 

95% B at 8 min before returning to initial conditions for 3 min with an overall run time of 11 285 

min. 286 

 287 

2.1.6. Urine sample analysis  288 

Urine samples were collected over 0.2 g, 0.2 g, 0.6 g and 1 g boric acid (Sigma-Aldrich) for 289 

collection periods 1 (0-2.5 h), 2 (2.5-5 h), 3 (5-12 h) and 4 (12-24 h), respectively. Urine 290 

volumes were measured and all samples were centrifuged at 350 g, 4 °C for 15 min and 291 

supernatant stored at -80 °C until analysis. Urinary glucose and creatinine concentrations 292 

were analysed on ILab 650 chemistry analyser (Instrumentation Laboratory, Warrington, UK) 293 

using enzymatic assays (Werfen cat no. 00018250840 and 00018255540, respectively.).  294 

 295 

2.2. In vitro studies 296 

2.2.1. Caco-2 cells 297 

The human intestinal Caco-2 cell line (TC7 subclone) was cultured as previously described 298 

(21). Cells were cultured at 37 °C in a humidified incubator (BIOHIT, HealthCare, UK) in a 299 

5% CO2–95% air atmosphere in high-D-glucose (25 mM) with glutamine Dulbecco's 300 

modified Eagle's medium (DMEM, Sigma-Aldrich), containing 10% fetal bovine serum 301 

(Sigma-Aldrich), 50 units penicillin and 50 μg streptomycin (Sigma-Aldrich), 0.1 mM 302 

MEM non-essential amino acids (Life Technologies), additional 2 mM L-Glutamine (Life 303 

Technologies) and 5 μg/ml Plasmocin (InvivoGen). For glucose transport assays using Caco-304 

2 monolayers, Krebs buffer solution (KBS) containing 30 mM HEPES (Sigma Aldrich), 130 305 

mM NaCl, 4 mM KH2PO4, 1 mM MgSO4·7H20, 1 mM CaCl2, dH2O, and adjusted pH 7.4, 306 

was used as wash media. KBS supplemented with 0.2% bovine serum albumin (Sigma 307 

https://www.sciencedirect.com/topics/medicine-and-dentistry/caco-2-cell-line
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glutamine
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/eagle
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bovine
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/penicillin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/streptomycin
https://www.sciencedirect.com/topics/medicine-and-dentistry/nonessential-amino-acid
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glucose-transport
https://www.sciencedirect.com/topics/medicine-and-dentistry/caco-2
https://www.sciencedirect.com/topics/medicine-and-dentistry/caco-2
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/solution-and-solubility
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hepes
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ph
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bovine-serum-albumin
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Aldrich) was used as pre-incubation and uptake media. Uptake media contained 10 mM D-308 

glucose (BDH Laboratory Supplies) or 10 mM L-glucose (Santa Cruz Biotechnology) and 0.1 309 

μCi/ml Glucose D-[14C(U)] or 0.1 μCi/ml Glucose L-[1-14C] (Perkin Elmer) as tracer. Times 310 

for pre-incubation and uptake in all experiments were 15 and 10 min, respectively. Cells were 311 

seeded at 8000 cell/cm2 density in 24-well plates and cultured for 21 d; cells were used 312 

between passages 45–53 in all experiments. Before uptake started, DMEM was removed and 313 

cells were washed once with room temperature KBS. Cells were pre-incubated for 15 min 314 

with pre-incubation media; uptake was initiated by replacing pre-incubation media with 315 

uptake media. Uptake media contained, except for controls, increasing concentrations of the 316 

same AE used in the dietary intervention trial at concentrations in the physiological range 317 

estimated to be present in the small intestine after ingestion of the test drinks in human studies 318 

(Minekus et al., 2014) allowing for dilution by gastrointestinal fluids, in addition to higher 319 

and lower concentrations (concentration range 0.28-4.5 mg AE/ml). The AE was dissolved in 320 

KBS and filtered through 0.45 μm syringe filter before it was added to uptake media. After 10 321 

min the uptake media was aspirated and the transport process was stopped by washing each 322 

well 3 times with ice cold KBS, cells were then processed for radioactivity count on a Liquid 323 

Scintillation Counter (Beckman Coulter, LS6500). 324 

 325 

2.3. Statistical analysis 326 

Incremental AUC was calculated by subtracting baseline values from all subsequent time-327 

point values [40]. Statistical analysis was performed using Statistical Package for the Social 328 

Sciences (SPSS) v.22 (IBM, UK). Natural logarithmic transformation was used where data 329 

were not normally distributed.  Each iAUC, Cmax and main effects of drink and drink × time 330 

interactions for the change from baseline at each time point were analysed with linear mixed 331 

effect modelling for each analyte. The models included subject as a factor (a random effect) 332 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/l-glucose
https://www.sciencedirect.com/topics/medicine-and-dentistry/radioactive-tracer
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/density
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and fixed factors were drink (and time and drink × time interaction where appropriate) and 333 

study period. Baseline values (mean of -10 and -5 min values for plasma glucose 334 

concentrations) were used as a covariate and Bonferroni post hoc test was selected for 335 

identifying significance between two treatments. However, Dunnett’s post hoc procedure was 336 

used for pairwise comparisons of treatment doses against Control in GraphPad Prism version 337 

7.00 (GraphPad software, CA, USA) for drink and drink x time effects on change from 338 

baseline data (since SPSS does not provide Dunnett’s multiple testing adjustment in the linear 339 

mixed model facility with repeated measures). The assumption of normality and homogeneity 340 

of variance was investigated. Differences in Tmax and polyphenol metabolites between 341 

treatments were analysed by Friedman’s non-parametric test with Wilcoxon post hoc test. 342 

Baseline HOMA-IR (fasting insulin (microU/L) x fasting glucose (nmol/L)/22.5) and R-343 

QUICKI (1/(log glucose (mg/dL) + log Insulin (μU/mL) + log NEFA (mmol/L)) were 344 

calculated from mean fasting values over the four study visits. All data are represented as 345 

mean ± 95 % confidence intervals (CIs) or standard error of the mean (SEM). In vitro data 346 

were analysed using the software GraphPad Prism 7 (GraphPad software, CA, USA). Data 347 

were analysed by one-way analysis of variance with Dunnett's multiple comparison post hoc 348 

test and IC50 was estimated using SigmaPlot 14 for Windows (Systat Software Inc. CA. 349 

USA).  350 

3. Results 351 

3.1. Human study 352 

A total of 64 healthy men and women aged 18 to 68 years attended screening sessions; 55 met 353 

all inclusion criteria. Of the 34 participants randomized to treatment, 30 completed the study. 354 

All completing participants were fully compliant with the study protocol. Details of flow of 355 

participants through study stages are shown in a Consort diagram (Figure 2). Baseline 356 

characteristics of participants who completed the study are shown in Table 2.    357 
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 358 

Table 2. Baseline characteristics of the study population  359 

 360 
1Values are means (standard deviation); minimum-maximum. N=30.  361 
2Women aged 45 y or older who reported not having had a period for 12 months or longer 362 

were defined as postmenopausal. 363 
3Values are: 5.1 (0.3), 4.7 (0.3), 5.0 (0.4) mmol/L for males, premenopausal females and 364 

postmenopausal females, respectively. 365 
4Values are: 1.2 (0.5), 0.6 (0.1), 0.8 (0.2) mmol/L for males, premenopausal females and 366 

postmenopausal females, respectively. 367 

Variable1, 2  

Age (y) 33.9 (14.5); 18-68 

Males (n=11) 29.6 (11.8); 18-52 

Females (premenopausal; n=13) 27.2 (7.7); 18-43 

Females (postmenopausal; n=6) 56.2 (7.1); 46-68 

Sex (male to female ratio) 11:19 

Body Mass Index (kg/m2) 22.3 (3.0); 18.3-30.2 

Systolic blood pressure (mmHg) 112.9 (13.4); 93-138 

Diastolic blood pressure (mmHg) 72.4 (9.2); 58-96 

Waist circumference (cm)  

Males 86.9 (9.0); 77.5-10.1 

Females (premenopausal) 74.5 (7.5); 66.5-88 

Females (postmenopausal) 80.6 (10.5); 68-94 

Body fat (%)  

Males 17.8 (5.4); 11.2-28 

Females (premenopausal) 25.6 (5.7); 17.2-37.5 

Females (postmenopausal) 32.4 (6.1); 22.5-39.5 

Fasting plasma glucose (mmol/L)3 4.9 (0.35); 4.2-5.7 

Fasting plasma triacylglycerol (mmol/L)4 0.8 (0.4); 0.4-2.2 

Fasting plasma total cholesterol (mmol/L)5 4.7 (1.0); 3.2-6.7 

HOMA-IR 6 1.2 (0.5); 0.4-2.4 

R-QUICKI 6 0.12 (0.003); 0.11-0.13 

Total:HDL cholesterol7 3.0 (0.8); 1.8-4.6 

Total energy intake (kJ/day, kcal/d)8 7360 (1278), 1759 (413); 

4778-13464, 1142-3218 

Total polyphenol intake (mg/d)8 755 (491); 115-1763 
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5Values are: 4.6 (1.0), 4.3 (0.7), 5.6 (1.1) mmol/L for males, premenopausal females and 368 

postmenopausal females, respectively. 369 
6Values are means from baseline glucose, insulin and NEFA concentrations over 4 study 370 

visits. 371 
7Values are: 3.6 (0.8), 2.5 (0.5), 2.9 (0.6) for males, premenopausal females and 372 

postmenopausal females, respectively. 373 
8Calculated from 7-day food diary completed before first study visit. 374 

 375 

3.1.1. Postprandial glycemia 376 

A significant treatment x time effect (P <0.0001; Figure 3A) was observed for plasma 377 

glucose concentrations 0-240 min; Dunnett’s post hoc comparison showed significantly lower 378 

glucose concentrations following all AE doses (HIGH, MED, LOW) compared with CON at 379 

20 and 30 min post-drink (Figure 3A). All AE doses (HIGH, MED, LOW) significantly 380 

lowered plasma glucose concentrations in the early postprandial period (0-30 min) compared 381 

with CON (iAUC 0-30 min P <0.00001; Supplementary Table 1; Figure 3B) but no 382 

differences were observed over longer postprandial periods (iAUC0-120 min and iAUC0-240 383 

min). There were significantly higher glucose concentrations following MED dose compared 384 

with CON at 45 min, and at 60 min there were significantly higher glucose concentrations 385 

following all AE doses (Figure 3A). The time of peak concentration was delayed following 386 

all doses (Tmax  45 min) relative to CON (Tmax 30 min) (P = 0.0356). None of the AE doses 387 

lowered maximal plasma glucose concentration (Cmax; Supplementary Table 1).  388 

3.1.2. Postprandial insulinemia and incretin secretion  389 

All AE drinks significantly lowered postprandial insulin concentrations compared 390 

with CON in the early postprandial period (iAUC 0–30 min; Figure 4A and 391 

Supplementary Table 1). HIGH and MED drinks significantly lowered early 392 

postprandial C-peptide concentrations (iAUC 0-30 min) compared to CON and there 393 

was a trend towards decreased iAUC0-30 min concentrations with the LOW v CON 394 

drinks (P = 0.054), as shown in Figure 4B and Supplementary Table 1. Significant 395 
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treatment x time effects (P = 0.001) were observed for insulin and C-peptide concentrations 396 

0-240 min. Dunnett’s post hoc test analysis on change from baseline data showed 397 

significantly lower insulin and C-peptide responses following all AE doses compared with 398 

CON at 20 min (Insulin: HIGH, MED P = 0.0001; LOW P = 0.0006; C-peptide: HIGH P = 399 

0.0001; MED P = 0.0002; LOW P = 0.02) and 30 min (Insulin all P = 0.0001; C-peptide all P 400 

= 0.0001) post-drink (Figure 4). The ratios of insulin and C-peptide iAUC 0-30 min: iAUC 401 

30-90 min were significantly lower for all AE drinks compared to CON (P <0.00001). The 402 

time of peak insulin concentration was delayed following all doses (Tmax  45 min) relative to 403 

CON (Tmax 30 min) (P = 0.0001).  Maximum insulin and C-peptide concentrations (Cmax), 404 

iAUC 0-120 min and iAUC 0-240 min did not differ between drinks (Supplementary Table 405 

1).  406 

 407 

The HIGH drink significantly lowered GIP concentrations compared with CON in the early 408 

postprandial period (iAUC 0-30 min P = 0.018; Figure 4C; Supplementary Table 1). A 409 

treatment x time effect was observed over 240 min (P = 0.037) and Dunnett’s post hoc 410 

pairwise comparison procedure showed the HIGH and MED drinks produced significantly 411 

lower GIP concentrations at 30 and 60 min post-meal compared with CON (Figure 4C), but 412 

Cmax or Tmax were not significantly different (Supplementary Table 1). There was no effect 413 

of drink on plasma NEFA concentrations (Supplementary Figure 1). 414 

 415 

3.1.3. Gastric emptying rate by acetaminophen test 416 

There was no effect of drink on acetaminophen concentrations (Figure 4D; Supplementary 417 

Table 1). Tests drinks did not produce differences in iAUC 0-30, 0-120, 0-240 min 418 

acetaminophen concentrations and there was no treatment x time interaction observed. The 419 

Cmax and Tmax concentrations were the same for CON and all test drinks.  420 
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 421 

3.1.4. Postprandial serum polyphenol metabolites 422 

Five compounds were detected in serum: a phloretin glucuronide, a phloretin sulphate, an 423 

epicatechin sulphate, quercetin 3-O-glucuronide and quercetin-3-O-sulfate (Figure 5; 424 

Supplementary Figures 2, 3). All other target compounds were not detected or were below 425 

the 100 nM threshold of detection. We anticipated the presence of (epi)-catechin glucuronides 426 

in serum samples, but these were not detected, and in the absence of authentic standards of 427 

epicatechin-3’-O-glucuronide and 4’-O-glucuronide we did not explore this further. 428 

Significant dose-response treatment effects were observed for all detected metabolites. All 429 

polyphenol metabolites were detected at higher concentrations at 120 min compared to 240 430 

min, and were highly variable, with medians (IQR) after consumption of the HIGH drink of: 431 

epicatechin sulfate 3172 nmol/L (2022), total phloretin 2871 nmol/L (1413) and total 432 

quercetin 1313 nmol/L (1480). It is typical to see high inter-individual variation in the 433 

appearance of polyphenol conjugates in human serum [37, 62]. Figure 5 shows total 434 

phloretin, total quercetin and epicatechin-sulphate plasma concentrations; at 120 min 435 

phloretin glucuronide contributed 97 % to total phloretin (Supplementary Figure 2) whilst 436 

quercetin-3-O-sulfate accounted for 98 % of total quercetin measured (Supplementary 437 

Figure 3).  438 

 439 

3.1.5. Urinary Glucose 440 

There was no significant effect of treatment on total 24 h renal glucose output, nor during 441 

defined time periods over the 24 h period, as outlined in Figure 6 (and Supplementary 442 

Table 2).  443 

444 
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3.2. Caco-2 Cells  445 

3.2.1. Caco 2 results 446 

Dose-response assays in the presence of different concentrations of AE showed a significant 447 

inhibition of total glucose uptake down to a concentration of 1.12 mg AE per ml of uptake 448 

media (P < 0.05; Figure 7). The concentration of AE necessary to inhibit total glucose uptake 449 

by half (IC50) relative to control (no AE) was 1.19 ( 0.35) mg/ml. Doses that were 450 

estimated to correspond to physiological doses in the human study, HIGH  (1.8 g AE in the 451 

200 ml drink, 1.12 mg AE/ml) and LOW (0.9 g AE in the 200 ml drink, 0.56 mg AE/ml), 452 

inhibited total glucose uptake by 48 % and 30 %, respectively.  453 

 454 

4. Discussion 455 

 456 

This study aimed to establish the minimum dose of a polyphenol-rich AE delivered in a fruit 457 

drink that could significantly inhibit the rate of glucose absorption following a high-458 

carbohydrate meal in a representative healthy population. The predominant polyphenols in 459 

the AE were the dihydrochalcone, phlorizin, followed by flavonoids such as quercetin and 460 

epicatechin. Based on published literature, phlorizin is expected to lower the rate of intestinal 461 

glucose absorption by inhibition of SGLT1 [22], phloretin and quercetin are expected to 462 

inhibit GLUT2 [41], and apple procyanidins are likely to inhibit digestive enzyme activity 463 

(e.g. pancreatic α-amylase and disaccharidases) [25,26]. In agreement with the hypothesis, all 464 

AE doses inhibited the increase in postprandial glucose, insulin, C-peptide and GIP 465 

concentrations in the first 30 minutes (iAUC 0-30 min; Figures 3, 4; Supplementary Table 466 

1), clearly indicating a reduced rate of intestinal glucose absorption, with lower incretin and 467 

insulin responses in the early postprandial phase as a result. The delayed Tmax and relatively 468 

higher plasma glucose concentrations from 45-60 min demonstrates that digestion/intestinal 469 
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absorption of starch and sucrose was deferred but not slowed, since there were no differences 470 

in Cmax, nor total glycemic response. 471 

 472 

A limited number of human studies [22,28,29] have shown that consuming polyphenol-rich 473 

AE alongside a sugary drink (either glucose only or mixed sugars) can attenuate early 474 

postprandial glucose response. One of these showed that ingestion of 2.8 g AE 475 

(approximately 1200 mg polyphenols) reduced the iAUC within the first 45 minutes 476 

following an oral glucose tolerance test (OGTT) relative to control [22]. It is relevant to note 477 

that intervention studies in this area have used glucose or high-glucose (glucose, sucrose and 478 

fructose) drinks for the carbohydrate challenge, which overlooks the potential inhibitory 479 

effects of apple polyphenols on digestive enzymes that break down starch and sucrose, the 480 

main forms of dietary carbohydrate in terms of contribution to energy intakes. We previously 481 

demonstrated that 1.8 g AE, consumed immediately prior to a mixed starch and sucrose meal, 482 

lowered Cmax and inhibited the average iAUC (0-30 min) by 54 %, relative to matched 483 

placebo [23]. The present study has extended this finding by demonstrating a 34 % reduction 484 

in iAUC (0-30 min) at half this dose. Given that the lowest AE dose of total polyphenols was 485 

equivalent to consuming approximately 1-2 whole eating apples this amount could be 486 

achievable on a regular basis for most individuals. However, whole apples do not contain 487 

such a high proportion of phlorizin and it would require consumption of 14 apples to 488 

consume the amount of phlorizin provided by the lowest AE dose [42,43]. Furthermore, 489 

whole apples contain the soluble fibre pectin so direct comparisons of amounts of total 490 

polyphenols delivered are not very meaningful.  491 

 492 

None of the doses exerted any effect on total glycemic responses over 2 or 4 h. The similarity 493 

in the magnitude of total postprandial glycemia between AE doses and control drinks despite 494 
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early phase reductions is explained by the higher glucose concentrations at 45-60 min 495 

following AE. This was not offset by a proportionate increase in insulin secretion at 45-60 496 

min, as evidenced by the lack of significant difference in C-peptide concentrations between 497 

treatments. Previous research has shown that GIP secretion is dose-dependently related to the 498 

rate of duodenal glucose perfusion [44], and may be a more sensitive indicator of glucose 499 

absorption rates than plasma glucose concentrations [45], which are the sum effect of 500 

absorption, tissue uptake and hepatic output. Previous studies have consistently shown that 501 

GIP is reduced by polyphenol consumption during a carbohydrate challenge [23,28,46,47]. 502 

Hence, lower plasma GIP concentrations 30-60 min may be linked to the lack of 503 

augmentation in insulin secretion (C-peptide concentrations) in response to later peak glucose 504 

concentrations after AE treatment. Despite the lack of effect of the AE on total glycemic 505 

response (0-2 h and 0-4 h), the slower rate of glucose absorption and consequently insulin 506 

concentrations in the early postprandial phase could suggest a potential physiological benefit 507 

in at-risk individuals such as prediabetecs, due to a reduced first-phase insulin secretory 508 

demand on beta-cells. However, this would need to be confirmed by future robust RCTs.  509 

 510 

This study was not designed to investigate potential effects of polyphenols on beta cell 511 

function, but it is worth noting that there is another plausible mechanism whereby AE might 512 

have acute effects on insulin secretory responses, other than directly through reducing the 513 

rate of intestinal glucose absorption. Phlorizin is mostly hydrolysed to its aglycone form, 514 

phloretin, in the intestinal lumen, which is partially absorbed along with phloretin conjugates 515 

[48–50]. Our bioavailability data showed that after consumption of the AE drinks there were 516 

circulating concentrations of phloretin glucuronide and phloretin sulphate, but no detection of 517 

phlorizin. Phloretin, at non-physiological doses (24-40 µM), inhibits GLUT transporters that 518 

mediate glucose transport into pancreatic β-cells in vitro, and reduces glucose-dependent 519 



24 

 

insulin secretion [51]. However, in the current study, if there were any inhibitory effects of 520 

circulating phloretin metabolites (maximum serum concentration was ~6 µmol/L total 521 

phloretin) on GLUT-mediated glucose transport, then they were clearly minor effects,  522 

without any clinically meaningful effect on either circulating insulin concentrations, nor 523 

systemic release of reabsorbed glucose in the kidney as discussed further on. 524 

The lack of inhibitory effect of the HIGH AE dose on glucose Cmax was unexpected as this 525 

contradicts our previous findings at an equivalent dose [23]. Although the age range was 526 

similar between these RCTs, premenopausal women were included in the current study but 527 

not the previous one [22], which may partially account for this inconsistency since 528 

premenopausal women have a greater degree of insulin sensitivity than similar aged men [52] 529 

and postmenopausal women [53]. The AE administered in the previous study was from a 530 

batch derived from the same geographical sources and technology, although there may be 531 

differences in composition due to seasonal variations. Cmax is of relevance for the health 532 

effects of postprandial glycemic response as frequent large swings in glucose levels, 533 

oscillating from high peaks to low nadirs, may be deleterious to vascular and pancreatic beta-534 

cell function leading to increased risk of T2D and cardiovascular disease [3,54–56], and risk 535 

of complications in T2D patients [57,58]. Marked upsurges in postprandial glucose 536 

concentrations, can increase oxidative stress in normoglycemic populations [59]. 537 

Hyperglycemic induction of excessive oxidative stress is a key factor in the increased risk of 538 

disease progression [60], and risk of complications in T2D patients [57]. In this healthy 539 

cohort, all individual Cmax results fall within the normal range (< 7.8 mmol/L; WHO, 2006), 540 

thus there was little scope for lowering Cmax by acute dietary modification. These findings 541 

cannot be extrapolated to at-risk groups and it is important to repeat the current study design 542 

in a sample population with impaired glucose tolerance, in order to determine whether low 543 

doses of AE can reduce Cmax if postprandial hyperglycemia is present.  544 
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Inhibition of carbohydrate digestive enzymes (e.g. alpha-amylase, alpha-glucosidase) and 545 

glucose transporters (e.g. SGLT1/GLUT2) are the most likely mechanisms to explain the 546 

glucoregulatory properties of fruit polyphenols. Our in vitro data supports the theory that the 547 

AE in the present human study may have exerted an inhibitory effect on small intestinal 548 

glucose transport, since the same AE dose-dependently inhibited total glucose uptake into 549 

Caco-2 cells, a well-established model of the human enterocyte. The IC50 (i.e. the AE 550 

concentration necessary to inhibit total glucose uptake by half) was calculated to be 1.2 551 

mg/ml, demonstrating the inhibitory potency of the AE. This is approximately equivalent to 552 

the estimated physiological HIGH dose used in the human study which inhibited iAUC 0-30 553 

min plasma glucose by 58 % compared to CON. Furthermore, a dose corresponding to the 554 

estimated physiological LOW dose that lowered iAUC 0-30 min by 34% in the human study, 555 

inhibited total glucose uptake in Caco-2 cells by approximately 30 % relative to control. The 556 

similarity in the magnitude of inhibition suggests that modulation of glucose transporters are 557 

likely to be a key mechanism for the glucoregulatory effects of this apple extract. However, 558 

caution is needed when directly comparing the size of effect between an intestinal cell model 559 

and the intact human gastrointestinal tract, particularly as in vivo glucose has to be liberated 560 

from starch and sucrose by digestive enzymes, which can also be inhibited by polyphenols 561 

found in apples [26,61–64].  562 

 563 

A further plausible mechanism to explain the glucoregulatory effects of apple polyphenols 564 

lies in the modulation of gastric motility. We have presented novel data that suggests that the 565 

effects of apple polyphenols on postprandial glycemia cannot be explained by delayed gastric 566 

emptying, since there were no differences in acetaminophen kinetics following the test drinks 567 

containing acetaminophen, a simple but effective gastric emptying test when using low-fat 568 
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meals in liquid form. However, more robust methodology using MRI or ultrasound 569 

technology is required to confirm these results.  570 

 571 

Previously, Schulze et al. [22] reported that 2.8 g of apple extract containing 448 mg 572 

phlorizin increased urinary glucose excretion in the first 3 h after administration. This dose of 573 

phlorizin was just over 3 times higher than the amount administered in the HIGH dose in the 574 

current study. The limited bioavailability of phlorizin prevents its use therapeutically as an 575 

SGLT2 inhibitor drug for inhibiting renal glucose reabsorption and lowering blood glucose 576 

concentrations in the treatment of T2D [30]. We have provided original data on detectable 577 

apple polyphenol metabolites after the consumption of a cider apple-derived AE. The 578 

polyphenol profile of the AE was reflected in the metabolites detected in serum following 579 

consumption, although phlorizin and surprisingly epicatechin glucuronides were not detected 580 

as previously reported [22,65].  It is possible for a very small proportion of intact phlorizin to 581 

be absorbed through the intestine [30], and therefore consumption of high doses could lead to 582 

higher circulating concentrations which may potentially inhibit SGLT1 and SGLT2 in the 583 

proximal tubule [66,67]. Increases in circulating phloretin might also inhibit GLUT2-584 

mediated glucose transport in the kidney. However, we have shown that doses of phlorizin up 585 

to 143 mg did not significantly increase urinary glucose excretion at any time over 24 h post-586 

administration in our study population.  587 

 588 

Strengths of this study include the robust trial design with strict adherence to double blinding 589 

along with the control drink being fully matched to the test drinks for taste, appearance and 590 

nutrient composition. The mixed-carbohydrate test meal allowed us to examine the effects of 591 

AE on commonly consumed high-glycemic foods in the diet, delivering doses of polyphenols 592 

that could be achievable through diet. Furthermore, the trial was carried out in a broad cross-593 
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section of healthy men and women, including premenopausal females, and the results are 594 

therefore applicable to a large section of the general population. However, the disadvantage 595 

of selecting a broad sample population is that it introduces a greater degree of heterogeneity 596 

in glycemic responses to AE; a larger sample size would have allowed further analysis by 597 

sub-populations (e.g. age or sex) to explore determinants of inhibition of postprandial 598 

glycemia. A final strength of the study is that the baseline serum polyphenol metabolite data 599 

showed very good subject compliance with the low‐ polyphenol dietary advice prior to study 600 

days. We used a polyphenol-rich extract, as opposed to whole fruit, thereby avoiding 601 

confounding effects of other apple constituents such as pectin. However, this approach is 602 

limited by restricted translatability to real foods, i.e. when polyphenols are encapsulated 603 

within plant cell walls and consumed in combination with other bioactive components. 604 

Indeed, due to analytical constraints it is very difficult to quantify all components of fruit 605 

polyphenol extracts and there may be other bioactive components that were unaccounted for.  606 

Therefore, it is important to recognise that research needs to characterize the behaviour of 607 

polyphenols within the food matrix before we can extrapolate findings to whole fruits. In 608 

fact, the efficacy of polyphenol-rich extracts, such as the AE, when consumed as part of a 609 

regular mixed-macronutrient meal should also be investigated, as both fat and protein can 610 

delay gastric emptying and interact with other food constituents, which may influence the 611 

outcome.  612 

 613 

In conclusion, a low dose of AE moderately delayed postprandial glucose absorption in a 614 

predominantly normoglycemic study population. However, there were no differences in 615 

maximal glucose concentrations nor the total glycemic response. Furthermore, it has been 616 

demonstrated that gastric emptying rate was unaffected by addition of polyphenols to a drink, 617 

and there were no significant effects on urinary glucose excretion. Since this study and 618 
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previous work has presented strong evidence that addition of polyphenols to a drink can 619 

delay the glycemic response to a starch and sucrose meal, further clinical investigation trials 620 

are justified to determine whether low doses of AE can lower total postprandial glycemia in 621 

populations with impaired glucose tolerence/prediabetes. Preventing sharp exaggerated 622 

glucose peaks via consumption of fruit polyphenols could help reduce progression to T2D 623 

and cardiovascular injury. Lastly, these results demonstrate that an apple extract has mild 624 

glucoregulatory properties, providing further support for dietary guidelines that encourage 625 

consumption of fruits and vegetables, alongside wholegrains, nuts and seeds as other rich 626 

sources of polyphenols and fibre.  Since apples and pears contribute 4-12 % and 5% of total 627 

polyphenol intake in Europe [16] and USA populations [15] respectively, then the public 628 

health impact of encouraging apple consumption in at-risk populations could be significant.  629 
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Figure 1. Study visit protocol.  

 

TIME (h) 09.30 10.00 09.00 <20.00 h 10.30 11.00 

Blood sample  

  

11.30 

Fruit drink + high-
carbohydrate test 

meal   

(bread & jam) 

12.00 12.30 13.30 17.30 09.30 

 

Urine Collection 1  

(0-2.5 h and 2.5-5 h samples) 
Urine Collection 2 

(5-12 h) 

Urine Collection 3 

(12-24 h) Standard 

evening 

meal 

14.30 

Figure 1. Study visit protocol



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Consort diagram.  
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Figure 3. A). Plasma glucose concentrations after consumption of high (1.8 g), medium (1.2 

g), low (0.9 g) doses of apple extract (AE) and control drinks from 0-240 min in the study 

population.  Linear mixed modelling analysis: P <0.0005 for an overall treatment effect on 

glucose concentrations 10-240 min, adjusted for baseline concentrations. Post hoc analysis of 

timepoint differences in change from baseline in glucose compared to CON with Dunnett's 

adjustment: a P <0.0005 for difference between HIGH and CON, and MED and CON, and P 

<0.005 for difference between LOW and CON; b P <0.0005 for difference between HIGH 

B. 
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Figure 3. Plasma glucose concentrations



and CON, and MED and CON, and P <0.05 for difference between LOW and CON; c P 

<0.0005 for difference between MED and CON; d P <0.0005, P <0.0005 and P = 0.06 for 

difference between HIGH and CON, MED and CON, and LOW and CON, respectively B). 

Incremental area under the curve 0-30 min plasma glucose following consumption of high 

(1.8 g), medium (1.2 g), low (0.9 g) doses of apple extract and control drinks in the study 

population. Linear mixed model analysis: P <0.000005 for difference in iAUC 0-30 min 

between apple extract drinks and CON; a Bonferroni post hoc test for difference in iAUC 

compared to CON: P <0.00005 (HIGH),  P <0.005 (MED),  P <0.005 (LOW). b Bonferroni 

post hoc test for difference between HIGH and LOW drinks: P <0.05. N=30. Mean ± SEM.
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Figure 4. Insulin C-peptide GIP and acetaminophen



Figure 4. Plasma concentrations of A). insulin B). C-peptide C). Glucose-dependent insulinotropic polypeptide (GIP) D). acetaminophen 0-240 

min following consumption of high (1.8 g), medium (1.2 g), low (0.9 g) doses of apple extract (AE) and control drinks. Linear mixed modelling 

analysis: P <0.0001 (A+B), P <0.05 (C) for an overall drink effect on raw values from baseline to 240 min. Post hoc analysis of timepoint 

differences in change from baseline compared to CON with Dunnett's adjustment: (A) : a P <0.0005 for difference with HIGH and MED; P 

<0.01 for difference with LOW. b P <0.0005 for difference with all drinks. c P <0.05 for difference with LOW. d P <0.005 for difference with 

MED; (B) a  P <0.0005, P <0.005 and P <0.05 for difference with HIGH, MED and LOW, respectively. b P <0.0005 for difference with all 

drinks. c P <0.005 for difference with HIGH; P <0.05 for difference with MED. d P <0.05 for difference with LOW. e P <0.01 for difference 

with LOW. f P <0.005 for difference with MED; P <0.05 for difference with LOW; (C) a P <0.0005 for difference with HIGH and MED; P 

<0.005 for difference with LOW. b P <0.0005 for difference with HIGH; P <0.05 for difference with MED. N=30. Mean ± SEM. 
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Figure 5. Serum polyphenols V2



Figure 5. Serum total phloretin (sum of phloretin glucuronide and phloretin sulfate 

metabolites), total quercetin (sum of quercetin glucuronide and quercetin sulfate metabolites) 

and epicatechin sulfate metabolites concentrations after consumption of High, Medium, Low 

doses of apple extract and Control drinks at 120 min and 240 min in a randomly selected sub-

group of the study population. N=10. High, 1800 mg apple extract. MED, 1200 mg apple 

extract. LOW, 900 mg apple extract. Boxes represent median (centre line) and interquartile 

range. Whiskers are maximum and minimum values. Serum total phloretin concentrations at 

120 min (A), 240 min (B). Serum total quercetin concentrations at 120 min (C), 240 min (D). 

Serum epicatechin sulfate concentrations at 120 min (E), 240 min (F). Significant treatment 

effects were observed on serum concentrations of total phloretin, total quercetin and 

epicatechin sulfate at 120 and 240 min by Friedman’s non-parametric test (all P <0.0001).  
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Figure 6. Urinary glucose



Figure 6. Urinary glucose output after consumption of high (1.8 g), medium (1.2 g), low (0.9 

g) doses of apple extract (AE) and control drinks from 0-2.5 hours (A), 2.5-5 hours (B), 5-12 

hours (C), 12-24 hours (D) and 0-24 hours (E). Y axis is on a Log10 scale. Boxes represent 

median and interquartile range. Whiskers are minimum and maximum values. N=30. 

Statistics calculated using linear mixed effect modelling with natural log data. No effect of 

drink on urinary glucose output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Acute effects of increasing concentrations of Apple Extract on total glucose uptake. 

Caco-2/TC7 cells were treated with increasing concentrations of apple extract contained in 

uptake media, except for Control (0 mg/ml). Values were corrected for simple diffusion by 

subtracting L-glucose uptake. Data are presented as mean + SEM (N=6). A) Total glucose 

uptake: one-way analysis of variance followed by multiple comparisons against Control (0 

mg/ml) with Dunnett’s adjustment: P = 0.0006 for overall treatment effect; a P = 0.0252 v 

1.12 mg/ml; b P = 0.0026 v 2.25 mg/ml; c P = 0.0003 v 4.5 mg/ml. IC50 (1.19  0.348 mg/ml 

apple extract): concentration of AE necessary to inhibit total glucose uptake by half relative 

to control, estimated using SigmaPlot 14 for Windows (Systat Software Inc. CA. USA).  
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Figure 7. Caco2 glucose uptake
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