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Stability and Stabilization with Additive Freedom
for Delayed Takagi-Sugeno Fuzzy Systems by

Intermediary Polynomial-based Functions
Zhichen Li, Huaicheng Yan, Hao Zhang, Jun Sun, and Hak-Keung Lam

Abstract—This paper is devoted to the stability and stabiliza-
tion for Takagi-Sugeno (T-S) fuzzy systems with time-varying
delays. Firstly, an improved matrix inequality is presented to
bound both strictly and non-strictly proper rational functions,
which is more general than the existing versions of reciprocally
convex lemmas. Secondly, by suitable operations on parameter-
dependent polynomial multiplied by state rate, a couple of novel
intermediary polynomial-based functions (IPFs) are developed in
delay-product types. Benefitting from slack matrices of IPFs, a
certain degree of flexibility is furnished. More importantly than
that, by feat of adjustment of variable parameter, the resulting
conditions will be further endowed with additive freedom, which
relaxes the feasible space in a distinctive manner. Thirdly, by
utilizing IPFs along with triple integrals, the stability criteria
and controller design approach are derived by some advanced
integral inequalities. Resorting to elaborate construction of IPFs,
the strengths of bounding techniques are sufficiently exploited,
and the information on delay derivative is adequately reflected.
Consequently, more desirable performances are achieved, while
without excessive computational complexity. Finally, the effective-
ness of the proposed methods is verified by numerical examples.

Index Terms—Delayed T-S fuzzy systems, stability, stabiliza-
tion, intermediary polynomial-based functions, variable param-
eter.

I. INTRODUCTION

IN real-world applications, a wide range of practical systems

suffer severe nonlinearities [1-5], which impose formidable

obstacles for analyzing and synthesizing systems [6-8]. With

advent of fuzzy modeling, Takagi-Sugeno (T-S) fuzzy models
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have shown promising performance in approximation of non-

linear systems to any accuracy via combination of rigorous

linear system theory and flexible fuzzy logic theory [6].

Time delays are frequently encountered in almost all of the

industrial processes, which are attributed as the root causes

of performance degradation or instability [9-14]. Accordingly,

the investigations on T-S fuzzy systems with time delays are

of both theoretical significance and practical meaning [15-18].

For analysis and synthesis of delayed systems, rational

construction of Lyapunov-Krasovskii functional (LKF) and

precise estimation of its derivative are perceived as primary

procedures for preferable stability region [19, 20]. As regard to

the first trend, the quadratic form of system state x�(t)Qx(t)
is usually augmented by integrals of state

∫ t

t−τ(t)
x(s)ds and∫ t

t−h
x(s)ds to establish extensive relations among various

extra-states [9, 12] (0 ≤ τ(t) ≤ h is time-varying delay). In

[13], triple integral
∫ t

t−h

∫ t

u

∫ t

θ
ẋ�(s)Rẋ(s)dsdθdu are intro-

duced in full consideration of delay information. By refining

the Lyapunov matrix with slack variables, the matrix-refined-

functions (MRFs) are developed to provide more feasibility

[21]. Correspondingly, the pattern of augmented term equipped

with a unitary matrix is thoroughly transformed to exert

impressive contribution. However, the MRFs only involve

single integrals, and the extension with double integrals will

lead to higher-order time delays due to inherent formation,

inducing difficulty in finding solution. Moreover, the slack

matrices of MRFs are restrained by positive definiteness of

a holistic matrix, and thus the adjusting room is enormously

limited. An interesting question arises from this observation:

how to utilize more system information and improve flexibility

of slack variables, which is the first motivation of this paper.

As to the second trend, bounding integral terms and dis-

posing treated delay-related terms are required for estimation

task. For the first step, Jensen inequality (JI) occupies the

mainstream in the early studies [14, 15, 17, 19, 20], although at

the sacrifice of conservatism. By employing the quadratic with

single integral, the estimating gap of JI is evidently narrowed

by Wirtinger-based inequality (WBI) [22]. In [23], Bessel-

Legendre inequality (BLI) achieves more and more accurate

bounds as the degree of Legendre polynomial grows. Mean-

while, generalized double integral inequalities (GDIIs) [24]

afford improvements over Jensen double integral inequalities

(JDIs) [13]. For the second step, reciprocally convex lemma

(RCL) has once played dominating role in handling − 1
τ(t) - and

− 1
h−τ(t) -related terms [13, 19]. Furthermore, delay-dependent
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RCL is suggested to enhance RCL by requiring four variables

[25]. Recently, extended RCL [26] offers identical estimation

gap, but needs fewer decision variables compared with delay-

dependent RCL. However, if adding triple integrals, not only

the above strictly proper rational functions, but also non-

strictly proper rational ones −h−τ(t)
τ(t) and − τ(t)

h−τ(t) are pro-

duced, to which little attention is paid. Therefore, how to

develop improved matrix inequality suitable for LKF with

triple integral terms still remains as a challenging task, which

is the second motivation of this paper.

The above-mentioned directions are interactive for reduc-

ing conservatism. In [27], the relationships between LKF

construction and integral estimation is discussed, and it is

demonstrated that by a non-augmented LKF, the stability

criterion by WBI is are equivalent to that by JI in the sense

of conservatism, despite high accuracy of the former. From

the unique perspective, the delay-product functions (DPFs)

comprising single integral forms of augmented vectors [27,

28] are formulated, which aims to reveal the advantages of

WBI. However, the DPFs still remain confined to extension

of simple LKF with restricted adjusting space. Therefrom, an

important issue is raised naturally: in order to fit improved

inequalities and provide additional freedom, how to promote

DPFs by reasonable utilization of slack variables, which is the

third motivation of this paper.

Inspired by the above discussions, this paper focuses on

stability and stabilization for T-S fuzzy systems with time-

varying delays to solve these problems. The main contributions

of this paper are summarized as follows:

1) An improved matrix inequality that can be conveniently

combined with integral inequalities is derived for LKF with

triple integrals. The proposed inequality is more general than

the existing ones for estimating both strictly and non-strictly

proper rational functions without improper approximation,

while avoiding superfluous matrices.

2) By establishing polynomial with respect to variable

parameter, the innovative intermediary polynomial-based func-

tions (IPFs) are developed. By appropriate introduction of

slack matrices, extra flexibility is explored than the commonly-

used augmented LKFs and DPFs to some extent. Profiting

from deliberate structure of delay-product type of IBFs, the in-

formation on delay change rate is taken into full consideration,

the merits of advanced bounding techniques are effectually

reflected, and their derivatives will be cast into linear matrix

inequalities (LMIs).

3) Combing those two techniques with improved integral

inequalities, the stability conditions and stabilization control

approach for delayed T-S fuzzy system are designed with

less conservatism. By coordinating the variable parameter, the

adjusting room of slack matrices with parameter-dependent

functions is enlarged to arbitrary degree, which is recognized

as the substantial superiority over the recently reported studies.

This is the first time to investigate stability and stabilization

for T-S fuzzy system from the perspective of additive freedom.

The remainder of this paper is briefly outlined as follows. In

Section II, the stability and stabilization problems for delayed

T-S fuzzy systems, and some useful lemmas are formulated.

The improved matrix inequality is also presented. In Section

III, delay-product type of IPFs are developed. The stability

criteria and controller design method are established in Section

IV. In Section V, three numerical examples are provided

to verify the effectiveness of the proposed approaches. The

conclusion is drawn in Section VI.

Notations. Rn is n-dimensional Euclidean space. The su-

perscripts T and −1 stand for transpose and inverse of matrix,

respectively. diag{·} denotes a block diagonal matrix. S > 0
(< 0) means S being a symmetric positive (negative) definite

matrix. 0 and I are zero and identity matrices of appropriate

dimensions, respectively. ∗ represents a term induced by

symmetry. S ⊗R is the Kronecker product of matrices S and

R. sym{S} is defined as S + S�. col{·} is a column vector.

II. PRELIMINARIES

A. Problem Formulation
Suppose a class of nonlinear systems with time-varying

delays, which can be described by the following T-S fuzzy

model composed of r plant rules:

Plant Rule i: IF θ1(t) is κi1 and . . . and θp(t) is κip, THEN{
ẋ(t) = Aix(t) +Adix(t− τ(t)) + Biu(t)

x(t) = φ(t), t ∈ [−h, 0], i = 1, 2, . . . , r
(1)

where θ1(t), . . . , θp(t) denote the premise variables; κij(i =
1, . . . , r; j = 1, . . . , p) represent fuzzy sets; x(t) ∈ Rn is the

state vector; u(t) ∈ Rm is the control input vector; φ(t) is

the initial condition; Ai, Adi and Bi are system matrices of

compatible dimensions; τ(t) is time-varying delay satisfying

0 ≤ τ(t) ≤ h, μ1 ≤ τ̇(t) ≤ μ2 (2)

where h, μ1 and μ2 are known constant scalars. For notational

simplicity, τ , τ̇ and τ̃ stand for τ(t), τ̇(t) and 1− τ̇(t) in the

subsequent parts, respectively.

Employing the singleton fuzzifier, product inference, and

center-average defuzzifier, the global dynamics of the delayed

fuzzy model is inferred as a convex sum form:

ẋ(t) =
r∑

i=1

λi(θ(t)) (Aix(t) +Adix(t− τ) + Biu(t)) (3)

where

λi(θ(t)) =
wi(θ(t))∑r
i=1 wi(θ(t))

≥ 0, wi(θ(t)) =

p∏
j=1

κij (θj(t))

with κij(θj(t)) representing the grade of membership of θj(t)
in κij . Some basic properties are obeyed:

wi(θ(t)) ≥ 0,

r∑
i=1

wi(θ(t)) > 0,

r∑
i=1

λi(θ(t)) = 1

Inspired by the parallel distribution compensation scheme,

in which the same fuzzy sets with the plant are shared by

the controller’s premise variables, consider the fuzzy state

feedback controller in the form of

Plant Rule i: IF θ1(t) is κi1 and . . . and θp(t) is κip, THEN

u(t) = Kix(t), i = 1, 2, . . . , r (4)
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where Ki is the local gain matrix. Then, the overall controller

is presented as

u(t) =
r∑

i=1

λi(θ(t))Kix(t), i = 1, 2, . . . , r (5)

Therefore, the closed-loop delayed T-S fuzzy system can be

expressed as

ẋ(t) =

r∑
i=1

r∑
j=1

λi(θ(t))λj(θ(t))
(Aix(t) + BiKjx(t)

+Adix(t− τ)
) (6)

with compact form

ẋ(t) = (A(t) + B(t)K(t))x(t) +Ad(t)(t− τ) (7)

where

A(t) =
r∑

i=1

λi(θ(t))Ai, B(t) =
r∑

i=1

λi(θ(t))Bi

Ad(t) =
r∑

i=1

λi(θ(t))Adi, K(t) =
r∑

i=1

λi(θ(t))Ki

The main aims of this paper are 1) deriving stability criteria

for the system (3) with u(t) = 0, and the system (7) with

known K(t); 2) developing controller design approach for the

system (7). For this purpose, some indispensable lemmas for

derivation process are recalled.

B. Related Lemmas
Lemma 1 [28]: For a quadratic function �(s) = a2s

2 +
a1s+ a0, where a0, a1, a2 ∈ R, �(s) < 0, ∀s ∈ [0, h], if

(i) �(h) < 0; (ii) �(0) < 0; (iii) − h2a2 +�(0) < 0

Lemma 2 [23, 24]: Defining ξ1(a, b) = 1
b−a

∫ b

a
x(s)ds

and ξ2(a, b) = 1
(b−a)2

∫ b

a

∫ b

θ
x(s)dsdθ, for any continuously

differentiable function x : [a, b] → Rn, and a given symmetric

matrix Q > 0, the following inequalities hold∫ b

a

ẋ�(s)Qẋ(s)ds ≥ 1

b− a
��1 diag {Q, 3Q, 5Q} �1 (8)∫ b

a

∫ b

θ

ẋ�(s)Qẋ(s)dsdθ ≥ ��2 diag {2Q, 4Q} �2 (9)∫ b

a

∫ θ

a

ẋ�(s)Qẋ(s)dsdθ ≥ ��3 diag {2Q, 4Q} �3 (10)

where

�1 = col{x(b)− x(a), x(b) + x(a)− 2ξ1(a, b),

x(b)− x(a) + 6ξ1(a, b)− 12ξ2(a, b)},
�2 = col{x(b)− ξ1(a, b), x(b) + 2ξ1(a, b)− 6ξ2(a, b)},
�3 = col{x(a)− ξ1(a, b), x(a)− 4ξ1(a, b) + 6ξ2(a, b)}.

Remark 1: Owning to the inclusion of the quadratic forms

with respect to ξ2(a, b), the estimation values of WBI and

JDIs are analytically improved by the second-order BLI

(SOBLI) (8) and GDIIs (9)-(10), respectively. While, along

with the similar line of [27], it can be predicted that if

there exist no ξ2(a, b)-related cross terms induced by LKF,

the stability conditions by the two sets of inequalities are

equivalent. Actually, the augmented vectors caused by the

former set are linearly independent of the double integral

terms created by the latter one, and then the theoretical

improvements are futile for reducing conservatism.

C. Improved Matrix Inequality
Lemma 3: For given positive scalars r and w with r+w = 1,

symmetric matrices Gj > 0 (j = 1, 2, 3, 4), and any matrices

Xn (n = 1, 2), it holds that[
1
rL1 0
∗ 1

wL2

]
≥

[ G1 + wY1 wX1 + rX2

∗ G2 + rY2

]
(11)

where L1 = G1 + wG3,L2 = G2 + rG4,Y1 = G1 + G3 −
X2(G2 + G4)

−1X�
2 and Y2 = G2 + G4 −X�

1 (G1 + G3)
−1X1.

Proof : Since Gj > 0, by the Schur complement, it can be

deduced that

Ξ1 =

[ G13 − G13 + X2G−1
24 X�

2 −X2

∗ G24

]
≥ 0, (12)

Ξ2 =

[ G13 −X1

∗ G24 − G24 + X�
1 G−1

13 X1

]
≥ 0 (13)

with G13 = G1 + G3 and G24 = G2 + G4.

Due to r + w = 1, a convex combination rΞ1 + wΞ2 is

nonnegative definite. Then, one has[ G13 − rY1 −wX1 − rX2

∗ G24 − wY2

]
≥ 0. (14)

Furthermore, pre- and post-multiplying (14) by the matrix

diag
{√

w
r I,

√
r
w I

}
gives rise to[

w
r G13 0
∗ r

wG24

]
≥

[
wY1 wX1 + rX2

∗ rY2

]
. (15)

Finally, adding diag{G1,G2} into both sides of (15), the

matrix inequality (11) is derived.

Remark 2: It is worth noting that by eliminating G3 and G4,

(11) is equivalent to the extended RCL [26] as[
1
rG1 0
∗ 1

wG2

]
≥

[ G1 + wZ1 wX1 + rX2

∗ G2 + rZ2

]
(16)

where Z1 = G1−X2G−1
2 X�

2 and Z2 = G2−X�
1 G−1

1 X1. Next,

from the combination of (11) by setting X1 = X2, and WBI

and SOBLI, respectively, Lemma 4 and Lemma 6 of [29] are

given, which means (11) is less conservative due to getting rid

of restraint on variables.

For the inequality-processed derivatives of double and triple

integrals, both − 1
τ -, − 1

h−τ -, and −h−τ
τ - and − τ

h−τ -dependent

functions are caused. The approaches of [25, 26] fail to deal

with such case directly. In [30], the latter functions are roughly

enlarged as −h−τ
h and − τ

h with considerable conservatism.

Similar to the treatment of [31] with w
r = 1

r−1 and r
w = 1

w−1,

for any matrix X , the following inequality is derived based on

Lemma 3 of [32]:[
1
rL1 0
∗ 1

wL2

]
≥

[ G1 + wY1 X
∗ G2 + rY2

]
. (17)

Since the requirement X1 = X2 = X is waived, it is obvious

that (17) is relaxed by (11).
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From these discussions, it is found that, on the one hand,

the matrix inequality (11) is more general than [25, 26, 32]

for accommodating triple integrals. On the other hand, the

estimation gaps of a series of results in [29] can be gradually

reduced by the special case of (11) in association with BLI

with incremental orders.

III. INTERMEDIARY POLYNOMIAL-BASED FUNCTIONS

In this section, the intermediary polynomial-based functions

(IPFs) are developed.

Lemma 4: Given a pair of positive scalars a and b with

a ≤ b and v = b − a, any scalars σ1, σ2, and a continuously

differentiable function x : [a, b] → Rn, if there exists sym-

metric matrix U = [Upq]3×3 > 0 with appropriate dimension,

the function VP(x) defined as follows is positive definite.

VP(x) = ς�(a, b)Ūς(a, b) +
∫ b

a

∫ b

θ

ẋ�(s)U33ẋ(s)dsdθ

where

ς(a, b) = col{x(b), ξ1(a, b), ξ2(a, b)}, 	1(D) = [D −D 0],

	2(σ1, σ2,D) = [(σ1 + σ2)D − σ2D − 2σ1D],

Ū = Û + sym
{
v	1(U13) + v2	2(σ1, σ2,U23)

}
+ sym

{(σ1
3

+
σ2
2

)
v3U12

}
,

Û =
v2

2
U11 +

(
σ2
1

4
+
σ2
2

2
+

2σ1σ2
3

)
v4U22.

Proof : The major purpose for construction of intermediary

polynomial is to make use of information on ξ1(a, b) and

ξ2(a, b). From integration by parts, one can obtain∫ b

a

∫ b

θ

(s−a)ẋ(s)dsdθ = v2x(b)−2

∫ b

a

∫ b

θ

x(s)dsdθ, (18)

∫ b

a

∫ b

θ

vẋ(s)dsdθ = v2x(b)− v

∫ b

a

x(s)ds. (19)

It is noticed that double integrals of state rate multiplied by

the zero- and first-order polynomials are capable of producing

single and double integrals of state. Hence, without generality,

define the intermediary polynomial in the formation of

ψ(σ1, σ2, s) = σ1(s− a) + σ2v.

On the one hand, it follows from (18)-(19) that∫ b

a

∫ b

θ

ς�(a, b)U13ẋ(s)dsdθ = vς�(a, b)	1(U13)ς(a, b),

(20)∫ b

a

∫ b

θ

ψ(σ1, σ2, s)ς
�(a, b)U23ẋ(s)dsdθ =

v2ς�(a, b)	2(σ1, σ2,U23)ς(a, b).

(21)

Moreover, by computation, it holds that∫ b

a

∫ b

θ

ς�(a, b)U12ψ(σ1, σ2, s)ς(a, b)dsdθ =

v3
(σ1
3

+
σ2
2

)
ς�(a, b)U12ς(a, b).

(22)

On the other hand, it is direct to acquire∫ b

a

∫ b

θ

ς�(a, b)U11ς(a, b)dsdθ =
v2

2
ς�(a, b)U11ς(a, b),

(23)∫ b

a

∫ b

θ

ψ2(σ1, σ2, s)ς
�(a, b)U22ς(a, b)dsdθ =

v4
(
σ2
1

4
+
σ2
2

2
+

2σ1σ2
3

)
ς�(a, b)U22ς(a, b).

(24)

By algebraic calculation, one has

ς�(a, b)Ûς(a, b) +
∫ b

a

∫ b

θ

ẋ�(s)U33ẋ(s)dsdθ =∫ b

a

∫ b

θ

χ�(s)diag {U11,U22,U33}χ(s)dsdθ
(25)

where χ(s) = col{ς(a, b), ψ(σ1, σ2, s)ς(a, b), ẋ(s)}.

Combining (20)-(25), it can be found that

VP(x) =
∫ b

a

∫ b

θ

χ�(s)Uχ(s)dsdθ. (26)

On the account of U > 0, VP(x) > 0 is obtained, which

ends the proof.

Remark 3: On the basis of polynomial ψ(σ1, σ2, s), positive

definitiveness of VP(x) is formulated. Taking double integral

on intermediary polynomial multiplied by state rate,
∫ b

a
x(s)ds

and
∫ b

a

∫ b

θ
x(s)dsdθ are raised simultaneously, which incorpo-

rate the full features of inequalities (8)-(10). For time-varying

delay case, VP(x) is refined to the delay-product versions with

numerical solvability as follows.

Proposition 1: Assuming there exist a given scalar σ, and

matrices G = [Gpq]3×3 > 0 and H = [Hpq]3×3 > 0 with

G12 = H12 = 0 of compatible dimensions, for a continuously

differentiable function x : [a, b] → Rn, the following functions

can be applied to constructing LKF for stability analysis of

delayed T-S fuzzy systems (3).

VP1(xt) = ς�1 (t)G[τ,σ]ς1(t) +

∫ t

t−τ

∫ t

θ

ẋ�(s)G33ẋ(s)dsdθ

VP2(xt) = ς�2 (t)H[τ,σ]ς2(t) +

∫ t−τ

t−h

∫ t−τ

θ

ẋ�(s)H33ẋ(s)dsdθ

where

ς1(t) = ς(t− τ, t), ς2(t) = ς(t− h, t− τ),

G[τ,σ] = τ
(
Ĝ + sym {℘1(G13) + τ℘2(σ,G23)}

)
,

H[τ,σ] = (h− τ)
(
Ĥ+ sym{℘1(H13) + (h− τ)℘2(σ,H23)}

)
,

℘1(D) = 	1(D), ℘2(σ,D) = 	2(−3σ, 2σ,D),

Ĝ =

2∑
n=1

σ2(n−1)

2n
h2n−1Gnn, Ĥ =

2∑
n=1

σ2(n−1)

2n
h2n−1Hnn.

Proof : In view of the relationship between time delay and

delay variation range, the interval [t−h, t] is decomposed into

[t− τ, t] ∪ [t− h, t− τ ]. Considering the first subinterval, the

intermediary polynomial is chosen as

ψ1(σ1, σ2, s) = σ1(s− t+ τ) + σ2τ.
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From (25) and τ ≤ h, one has

ς�1 (t)ℵς1(t) ≥
∫ t

t−τ

∫ t

θ

χ�
1 (s)diag {G11,G22, 0}χ1(s)dsdθ

(27)

where χ1(s) = col{ς1(t), ψ1(σ1, σ2, s)ς1(t), ẋ(s)} and

ℵ =
τh

2
G11 +

(
σ2
1

4
+
σ2
2

2
+

2σ1σ2
3

)
τh3G22.

Then, replacing [a, b] and ψ(σ1, σ2, s) by [t − τ, t] and

ψ1(σ1, σ2, s), respectively, and implementing the similar way

as Lemma 4, it can be derived that

VO1(xt) = ς�1 (t)
(
ℵ+ sym

{(σ1
3

+
σ2
2

)
τ3G12

})
ς1(t)

+ ς�1 (t)
(
sym

{
τ	1(G13) + τ2	2(σ1, σ2,G23)

})
ς1(t)

+

∫ t

t−τ

∫ t

θ

ẋ�(s)G33ẋ(s)dsdθ ≥
∫ t

t−τ

∫ t

θ

χ�
1 (s)Gχ1(s)dsdθ.

It is noteworthy that the condition including time-varying

delay with order larger than 2 cannot be transformed into

LMIs. For the sake of overcoming the difficulties in numeri-

cal solution, the assumption of orthogonality for polynomial

sequel {1, ψ1(σ1, σ2, s)} is considered in the integral inner

space: ∫ t

t−τ

∫ t

θ

ψ1(σ1, σ2, s)dsdθ = 0. (28)

From (28), one has σ1/σ2 = −3/2, and setting σ1 = −3σ
and σ2 = 2σ, VP1(xt) = VO1(xt)[σ1=−3σ,σ2=2σ]. Since G >
0, VP1(xt) > 0 holds. Moreover, G12 can be removed for

easing the computational burden.

For the second subinterval, define the intermediary polyno-

mial as

ψ2(σ1, σ2, s) = σ1(s− t+ h) + σ2(h− τ).

Substituting [t− h, t− τ ] into [a, b], and executing parallel

manner to the above procedure leads to VP2(xt) > 0.

As a result, the positive definiteness of VPn(xt)(n = 1, 2)
is proved, which means that VPn(xt) can be utilized to form

LKF. This completes the proof.

Remark 4: In the literatures [6, 9, 12, 23-26], the augmented

functions VS(xt) = β�(t)Qβ(t) are extensively selected as

LKF elements, where the information on delay derivative is

under-utilized. In IPFs, all constituent parts of G[τ,σ] and H[τ,σ]

are accompanied by time-varying delay, and thus traditional

model of augmented vectors with constant matrix is radically

reformed. Accordingly, when differentiating IPFs, the delay

derivative range is taken into full consideration.

When specifically assigning some matrices in G[τ,σ] and

H[τ,σ], IPFs will reduce to DPFs-like ones [27, 28] in the

form of VD(xt)= τβ�
1 (t)Q1β1(t) + (h − τ)β�

2 (t)Q2β2(t).
Conversely, by proper augmentation of βn(t) and extension

of Qn (n = 1, 2), it is difficult to evolve DPFs into quasi-

IPFs free of parameter σ, since some intricate conditions are

imperative for guaranteeing positive definiteness of functions,

which may be unreachable. For IBFs, the relationships among

the marginally delayed states, single and double integrals are

strengthened by efficacious introduction of slack variables,

through coordinating which, more flexibility is gained. Be-

sides, VPn(xt) > 0 are ensured by requiring the sum of

all terms G > 0 and H > 0, instead of the individuals of

G[τ,σ] and H[τ,σ] to be positive definite, which weakens the

restriction on stability condition.

Remark 5: With help of the single integral form of aug-

mentation, MRFs are instrumental for highlighting the efficacy

of WBI. For cooperating with improved bounding techniques,

a natural choice for MRFs will resort to involvement of∫ t

t−τ

∫ t

θ
x(s)dsdθ and

∫ t−τ

t−h

∫ t−τ

θ
x(s)dsdθ, while in the af-

termath, time delays of fourth-order will be presented, which

fails to fall into numerically tractable LMIs. By advisable

manipulations on ψn(σ1, σ2, s)ẋ(s) of IPFs, ξ2(t − τ, t) and

ξ2(t − h, t − τ) concerned with (8)-(10) are completely in-

corporated into ςn(t), which are conducive to revealing the

advantages of SOBLI and GDIIs for time-varying delays. In

addition, it is worth noting that the Proposition 1 is based on

the following relationship:

VO1(xt) ≥
∫ t

t−τ

∫ t

θ

χ�
1 (s)Gχ1(s)dsdθ.

If the sub-matrix G12 �= 0, it is obviously found that the term

G(t) =
∫ t

t−τ

∫ t

θ
ς�1 (s)G12ψ1(σ1, σ2, s)ς1(t)dsdθ will appear

in VO1(xt). When differentiating G(t), the 3rd-order time-

varying delay will be produced, which cannot be converted

into the LMI form. In order to find the numerical solution,

G12 and its counterpart H12 are set as zeros. Thanks to delay-

product structure with refined relation between σ1 and σ2, the

derivatives of IPFs can be expressed in terms of LMI, which

will be described in the next section.

Remark 6: It can be observed that the parameter σ exhibits

complicated distribution with intensive impact on condition

feasibility. Removing σ, similar to MRFs, a certain degree of

flexibility is achieved by utilizing slack variables G13, G23, H13

and H23. However, these matrices only have extremely limited

adjustment space due to the restriction from G = [Gij ]3×3 > 0
and H = [Hij ]3×3 > 0, which are the essential foundation

for application of VPn(xt) as the LKF components. While,

in Proposition 1, VPn(xt) > 0 is irrelevant to the value of

σ. With aid of arbitrarily adjusted parameter, the variation

scopes of slack matrices coupled with σ-related functions

are amplified to any level, and it corresponds to elimination

of constraints on G and H. For different delay derivative

intervals, multiple choice of σ will yield superior performance,

and for specific bound on delay derivative, one can seek the

maximum delay range by adjusting σ. For this reason, additive

freedom is imparted to the resulting criteria, which is the

fundamental outperformance of IPFs over the previous LKF

types, including augmented LKFs, DPFs and MRFs.

IV. STABILITY AND STABILIZATION FOR DELAYED T-S

FUZZY SYSTEMS

In this section, the proposed IPFs are applied to stability

and stabilization for delayed T-S fuzzy systems.

A. Stability Analysis
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For convenience of presentation, define

ζ(t) = col{x(t), x(t− h), x(t− τ), ẋ(t− h), ẋ(t− τ),

ξ1(t− τ, t), ξ2(t− τ, t), ξ1(t− h, t− τ), ξ2(t− h, t− τ)}
ej = [0n×(j−1)n In×n 0n×(9−j)n] (j = 1, 2, ..., 9)

eFi = Aie1 +Adie3, α1 = col{e1, e3}, α2i = col{eFi, τ̃ e5}
δn1 = e2n−1 − e4−n, δn2 = e2n−1 + e4−n − 2e2n+4

δn3 = e2n−1 − e4−n + 6e2n+4 − 12e2n+5 (n = 1, 2)

Θ1 = Q+R1, Θ2 = Q+R2, � = diag
{
1, 3−1, 5−1

}
δ = col{e1 − e6, e1 + 2e6 − 6e7, e3 − e8, e3 + 2e8 − 6e9,

e3 − e6, e3 − 4e6 + 6e7, e2 − e8, e2 − 4e8 + 6e9}
η1 = col{e1, e6, e7}, η̃i = τη2i + η3, η2i = col{eFi, 0, 0}
η3 = col{0, e1 − τ̃ e3 − τ̇ e6, e1 − τ̃ e6 − 2τ̇ e7}
�1 = col{e3, e8, e9}, �2 = col{τ̃ e5, 0, 0}
�3 = col{0, τ̇ e8 + τ̃ e3 − e2, τ̃ e3 − e8 + 2τ̇ e9}
�̃ = (h− τ)�2 +�3.

Theorem 1: For given scalars h, μ1, μ2 and σ, the T-S

fuzzy system (3) with u(t) = 0 is asymptotically stable, if

there exist symmetric matrices P = [Pmn]2×2 > 0, Q > 0,

Rn > 0, G = [Gpq]3×3 > 0, H = [Hpq]3×3 > 0 with G12 =
H12 = 0, and any matrices Xn,Sn (n = 1, 2) of appropriate

dimensions such that the following inequalities are feasible for

i = 1, . . . , r:

S1[τ̇ ,σ]i =

[
Ξ[0,τ̇ ,σ]i −Π1 Φ[0]i

∗ −Λ1

]
< 0 (29)

S2[τ̇ ,σ]i =

[
h2Ω[τ̇ ,σ]i + Ξ[h,τ̇ ,σ]i −Π2 Φ[h]i

∗ −Λ2

]
< 0 (30)

S3[τ̇ ,σ]i =

[
Ξ[0,τ̇ ,σ]i − h2Ω[τ̇ ,σ]i −Π1 Φ[0]i

∗ −Λ1

]
< 0 (31)

where

Ξ[τ,τ̇ ,σ]i = sym
{
α�
1 Pα2i

}− Ψ +Ω1[τ,τ̇ ,σ]i +Ω2[τ,τ̇ ,σ]

Π1 =

3∑
m=1

(2m− 1)

[
δ1m
δ2m

]� [
J1

S1

h + X1

∗ H33

h

] [
δ1m
δ2m

]

Π2 =
3∑

m=1

(2m− 1)

[
δ1m
δ2m

]� [
J2 X2 +

S2

h

∗ J3

] [
δ1m
δ2m

]
Φ[0]i =

[
Φ2[0]i Δ1

−Φ1[0] 0

]
, Φ[h]i =

[
Φ2[h]i Δ2

−Φ1[h] 0

]
Ω[τ̇ ,σ]i = Ω1[τ̇ ,σ]i +Ω2[τ̇ ,σ], Λ1 = diag {�⊗Θ2, h�⊗H33}
Λ2 = diag {�⊗Θ1, h�⊗ τ̃G33}

with

Ω1[τ̇ ,σ]i = sym
{
η�1 sym {℘2(σ,G23)} η2i

}
Ω2[τ̇ ,σ] = sym

{
��

1 sym {℘2(σ,H23)}�2

}
Ω1[τ,τ̇ ,σ]i = τ̇ η�1

(Ĝ + sym {℘1(G13) + 2τ℘2(σ,G23)}
)
η1

+ τsym
{
η�1 sym {℘2(σ,G23)} η3

}
+ sym

{
η�1

(
Ĝ + sym {℘1(G13)}

)
η̃i

}
Ω2[τ,τ̇ ,σ] = −τ̇��

1

(
sym{℘1(H13) + 2(h− τ)℘2(σ,H23)}

+ Ĥ)
�1 + τ̃(h− τ)e�5 H33e5

+ sym
{
��

1

(
Ĥ+ sym {℘1(H13)}

)
�̃
}

+ (h− τ)sym
{
��

1 sym {℘2(σ,H23)}�3

}
+ (h2 − 2τh)sym

{
��

1 sym {℘2(σ,H23)}�2

}
Φ1[τ ] = diag

{
Q, R1

2
,

R2

2
, τG33

}
Φ2[τ ]i =

[
he�FiQ

h

2
e�FiR1

h

2
e�FiR2 τe�FiG33

]
Ψ = δ� [diag {2, 4, 2, 4} ⊗R1, diag {2, 4, 2, 4} ⊗R2] δ

Δ1 =
[[
δ�11 δ�12 δ�13

]X2

[
δ�11 δ�12 δ�13

]S2

]
Δ2 =

[[
δ�21 δ�22 δ�23

]X�
1

[
δ�21 δ�22 δ�23

]S�
1

]
J1 = Q+Θ1 + (2τ̃ /h)G33,J2 = Q+ (τ̃ /h)G33

J3 = Q+Θ2 + (2/h)H33.

Proof : Incorporating IPFs, the LKF candidate is chosen as

V (xt) =
2∑

n=1

(Vn(xt) + VPn(xt)) (32)

where

V1(xt) = γ�(t)Pγ(t) + h

∫ t

t−h

∫ t

θ

ẋ�(s)Qẋ(s)dsdθ

V2(xt) =

∫ t

t−h

∫ t

ϕ

∫ t

θ

ẋ�(s)R1ẋ(s)dsdθdϕ

+

∫ t

t−h

∫ ϕ

t−h

∫ t

θ

ẋ�(s)R2ẋ(s)dsdθdϕ

with γ(t) = col{x(t), x(t− τ)}.

Firstly, the derivatives of individual LKFs along the trajec-

tory of (3) are computed as

V̇1(xt) = sym

{[
x(t)

x(t− τ)

]�
P

[
ẋ(t)

τ̃ ẋ(t− τ)

]}

+ h2ẋ�(t)Qẋ(t)− h

∫ t

t−h

ẋ�(s)Qẋ(s)ds

=
r∑

i=1

λi(θ(t))ζ
�(t)

(
sym

{
α�
1 Pα2i

})
ζ(t)− Υ1

+ h2ζ�(t)

(
r∑

i=1

λi(θ(t))e
�
Fi

)
Q

(
r∑

i=1

λi(θ(t))eFi

)
ζ(t)

(33)

V̇2(xt) =
h2

2
ẋ�(t) (R1 +R2) ẋ(t)

−
∫ t

t−h

(∫ t

θ

ẋ�(s)R1ẋ(s) +

∫ θ

t−h

ẋ�(s)R2ẋ(s)

)
dsdθ

=
h2

2
ζ�(t)

(
r∑

i=1

λi(θ(t))e
�
Fi

)
2∑

n=1

Rn

(
r∑

i=1

λi(θ(t))eFi

)
ζ(t)

− Υ2 − Υ3
(34)

where

Υ1 = h

∫ t

t−τ

ẋ�(s)Qẋ(s)ds+ h

∫ t−τ

t−h

ẋ�(s)Qẋ(s)ds

Υ2 = (h− τ)

∫ t

t−τ

ẋ�(s)R1ẋ(s)ds+ τ

∫ t−τ

t−h

ẋ�(s)R2ẋ(s)ds
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Υ3 =

∫ t

t−τ

(∫ t

θ

ẋ�(s)R1ẋ(s) +

∫ θ

t−τ

ẋ�(s)R2ẋ(s)

)
dsdθ

+

∫ t−τ

t−h

(∫ t−τ

θ

ẋ�(s)R1ẋ(s) +

∫ θ

t−h

ẋ�(s)R2ẋ(s)

)
dsdθ.

For any matrices X1 and X2, it follows from (8) and (11)

that

−Υ1 − Υ2 ≤ −
r∑

i=1

λi(θ(t))ζ
�(t)Ψ[τ ]ζ(t) (35)

where

Ψ[τ ] =
3∑

m=1

(2m− 1)

(
δ�1mQδ1m + δ�2mQδ2m

+

[
δ1m
δ2m

]� (
τ

h

[
0 X2

∗ Θ2 −X�
1 Θ

−1
1 X1

]

+
h− τ

h

[
Θ1 −X2Θ

−1
2 X�

2 X1

∗ 0

])[
δ1m
δ2m

])
.

By use of (9)-(10), the double integrals can be estimated as

−Υ3 ≤ −
r∑

i=1

λi(θ(t))ζ
�(t)Ψζ(t). (36)

Secondly, when differentiating VP1(xt), some terms related

to ς1(t) and ς̇1(t) are engendered. ς1(t) can be presented as

η1ζ(t), while ς̇1(t) cannot be expressed by ζ(t) linearly due

to the existence of the last two components in ς̇1(t), which

are shown as

ξ̇1(t− τ, t) =
x(t)− τ̃x(t− τ)

τ
+

∫ t

t−τ

∂

∂t

(
x(s)

τ

)
ds

=
e1 − τ̃ e3 − τ̇ e6

τ
ζ(t),

ξ̇2(t− τ, t) =

∫ t

t−τ

∂

∂t

(∫ t

θ

x(s)

τ2
ds

)
dθ − τ̃

∫ t

t−τ

x(s)

τ2
ds

=
e1 − τ̃ e6 − 2τ̇ e7

τ
ζ(t).

In view of G[τ,σ] with delay-product terms, V̇P1(xt) can be

written as

V̇P1(xt) = ς�1 (t)Ġ[τ,σ]ς1(t) + sym
{
ς�1 (t)G[τ,σ]ς̇1(t)

}
+

d

dt

(∫ t

t−τ

∫ t

θ

ẋ�(s)G33ẋ(s)dsdθ

)
=

r∑
i=1

λi(θ(t))ζ
�(t)

(
τ2Ω1[τ̇ ,σ]i +Ω1[τ,τ̇ ,σ]i

)
ζ(t)

+ τ

(
r∑

i=1

λi(θ(t))e
�
Fi

)
G33

(
r∑

i=1

λi(θ(t))eFi

)
− Υ4.

(37)

Performing a similar operation to V̇P1(xt) yields

V̇P2(xt) = ς�2 (t)Ḣ[τ,σ]ς2(t) + sym
{
ς�2 (t)H[τ,σ]ς̇2(t)

}
+

d

dt

(∫ t−τ

t−h

∫ t−τ

θ

ẋ�(s)H33ẋ(s)dsdθ

)
=

r∑
i=1

λi(θ(t))ζ
�(t)

(
τ2Ω2[τ̇ ,σ] +Ω2[τ,τ̇ ,σ]

)
ζ(t)− Υ5

(38)

where

Υ4 + Υ5 = τ̃

∫ t

t−τ

ẋ�(s)G33ẋ(s)ds+

∫ t−τ

t−h

ẋ�(s)H33ẋ(s)ds.

Then, for any matrices S1 and S2, by special case of Lemma

3 with G3 = G4 = 0, it can be found that

−Υ4 − Υ5 ≤ −
r∑

i=1

λi(θ(t))ζ
�(t)Ψ[τ,τ̇ ]ζ(t) (39)

where

Ψ[τ,τ̇ ] =
3∑

m=1

2m− 1

h

(
τ̃ δ�1mG33δ1m + δ�2mH33δ2m

+

[
δ1m
δ2m

]� (
τ

h

[
0 S2

∗ H33 − τ̃−1S�
1 G−1

33 S1

]

+
h− τ

h

[
τ̃G33 − S2H−1

33 S�
2 S1

∗ 0

])[
δ1m
δ2m

])
.

Summing up the above analysis, V̇ (xt) can be bounded as

V̇ (xt) ≤ ζ�(t)

(
r∑

i=1

λi(θ(t))Γ[τ,τ̇ ,σ]i + Γ[τ ]

)
ζ(t) (40)

where

Γ[τ ] =

(
r∑

i=1

λi(θ(t))e
�
Fi

)(
τG33 + h2

(
Q+

∑2
n=1 Rn

2

))

×
(

r∑
i=1

λi(θ(t))eFi

)
Γ[τ,τ̇ ,σ]i = sym

{
α�
1 Pα2i

}− Ψ[τ ] − Ψ − Ψ[τ,τ̇ ] +Ω1[τ,τ̇ ,σ]i

+Ω2[τ,τ̇ ,σ] + τ2
(
Ω1[τ̇ ,σ]i +Ω2[τ̇ ,σ]

)
.

Apparently, if
∑r

i=1 λi(θ(t))Γ[τ,τ̇ ,σ]i + Γ[τ ] < 0 holds,

V̇ (xt) < −ε‖x(t)‖2 for a sufficiently small scalar ε. From

Schur complement,
∑r

i=1 λi(θ(t))Γ[τ,τ̇ ,σ]i + Γ[τ ] < 0 is

equivalent to

r∑
i=1

λi(θ(t))

[
Γ[τ,τ̇ ,σ]i Φ2[τ ]i

∗ −Φ1[τ ]

]
< 0. (41)

All the elements constituting Γ[τ,τ̇ ,σ]i, Φ1[τ ] and Φ2[τ ]i ex-

cept for τ2
(
Ω1[τ̇ ,σ]i +Ω2[τ̇ ,σ]

)
are first-order functions of τ

and τ̇ . From Lemma 1, by Schur complement once again,

(41) is true, if (29)-(31) hold at the vertices of τ̇ ∈ [μ1, μ2],
which implies that the T-S fuzzy system (3) with u(t) = 0 is

asymptotically stable. Then, the proof is completed.

Remark 7: When differentiating VP1(xt) and VP2(xt), it is

found that ς̇1(t) and ς̇2(t) are dependent on the combinations

of ζ(t) and 1
τ ζ(t), and 1

h−τ ζ(t), respectively. Due to the

elaborate framework of IPFs, τ and h−τ in denominators are

eliminated by the delay-product matrices G[τ,σ] and H[τ,σ].

Consequently, the extension difficulties of MRFs limited to

the numerical intractability are well addressed by effectively

disposing the delay-product terms.

Remark 8: The conspicuous features of the newly estab-

lished stability criterion principally lie in three aspects: 1)

Taking derivatives of ς1(t) and ς2(t), a great many of cross
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terms emerge in Ω1[τ̇ ,σ]i, Ω2[τ̇ ,σ], Ω1[τ,τ̇ ,σ]i and Ω2[τ,τ̇ ,σ], and

thus extensive relationships of extra states are formulated. 2)

Single and double integrals are estimated by SOBLI combined

with improved matrix inequality and GDIIs, respectively,

with prominent progress. Driven by double integral types of

augmented vectors, the capacities of advanced inequalities

are brought into full play for reduction of conservatism. 3)

Above all, in light of slack variables with parameter σ, further

freedom is offered for finding feasible solution, and the links

of various system information are intensified, which will take

pivotal role in relaxing criterion. Hence, in virtue of the merits

of IPFs and their facilitation for bounding techniques, more

desirable stability range can be expected by Theorem 1.
Next, the stability condition for T-S fuzzy system (7) with

known K(t) is presented as follows.
Theorem 2: Consider given scalars h, μ1 μ2 and σ, and

suppose that the gain matrix K(t) is known. If there exist

symmetric matrices P = [Pmn]2×2 > 0, Q > 0, Rn > 0, G =
[Gpq]3×3 > 0, H = [Hpq]3×3 > 0 with G12 = H12 = 0, and

any matrices Xn,Sn (n = 1, 2), and Z(t) =
∑r

i=1 λ(θ(t))Zi

of appropriate dimensions such that the following inequalities

hold for p = 1, 2, 3 and i, j, k = 1, . . . , r:

Jp[τ̇ ,σ]iik < 0 (42)

Jp[τ̇ ,σ]ijk + Jp[τ̇ ,σ]jik < 0, 1 ≤ i ≤ j ≤ r (43)

where

J1[τ̇ ,σ]ijk =

[
Ξ̄[0,τ̇ ,σ]ijk −Π1 Φ̄[0]

∗ −Λ1

]

J2[τ̇ ,σ]ijk =

[
h2Ω̄[τ̇ ,σ] + Ξ̄[h,τ̇ ,σ]ijk −Π2 Φ̄[h]

∗ −Λ2

]

J3[τ̇ ,σ]ijk =

[
Ξ̄[0,τ̇ ,σ]ijk − h2Ω̄[τ̇ ,σ] −Π1 Φ̄[0]

∗ −Λ1

]
with

Ξ̄[τ,τ̇ ,σ]ijk = sym
{
α�
1 Pᾱ2

}− Ψ + Ω̄1[τ,τ̇ ,σ] +Ω2[τ,τ̇ ,σ]

+ sym {ZiZSjk}
Ω̄1[τ,τ̇ ,σ] = τ̇ η�1

(Ĝ + sym {℘1(G13) + 2τ℘2(σ,G23)}
)
η1

+ τsym
{
η�1 sym {℘2(σ,G23)} η3

}
+ sym

{
η�1

(
Ĝ + sym {℘1(G13)}

)
(τ η̄2 + η3)

}
Ω̄[τ̇ ,σ] = Ω̄1[τ̇ ,σ] +Ω2[τ̇ ,σ]

Ω̄1[τ̇ ,σ] = sym
{
η�1 sym {℘2(σ,G23)} η̄2

}
ᾱ2 = col{e10, τ̃ e5}, η̄2 = col{e10, 0, 0}
Φ̄[0] =

[
Φ̄2[0] Δ1

−Φ1[0] 0

]
, Φ̄[h] =

[
Φ̄2[h] Δ2

−Φ1[h] 0

]
Φ̄2[τ ] =

[
he�10Q

h

2
e�10R1

h

2
e�10R2 τe�10G33

]
ZSjk =

[Aj + BjKk 0 Adj 0 . . . 0︸ ︷︷ ︸
6

− I
]
,

then the T-S fuzzy system (7) is asymptotically stable.
Proof : Differentiating (32) along the solution of system (7),

and executing deriving process similar to Theorem 1 yield

V̇ (xt) ≤ ζ̄�(t)
(
Γ̄[τ,τ̇ ,σ] + Γ̄[τ ]

)
ζ̄(t) (44)

where ζ̄(t) = col{ζ(t), ẋ(t)}, and

Γ̄[τ ] = e�10

(
τG33 + h2

(
Q+

∑2
n=1 Rn

2

))
e10

Γ̄[τ,τ̇ ,σ] = sym
{
α�
1 Pᾱ2

}− Ψ[τ ] − Ψ − Ψ[τ,τ̇ ]

+ τ2
(
Ω̄1[τ̇ ,σ] +Ω2[τ̇ ,σ]

)
+ Ω̄1[τ,τ̇ ,σ] +Ω2[τ,τ̇ ,σ].

From (7), for any matrices Zi, one has

Δ = 2ζ̄�(t)Z(t)((A(t) + B(t)K(t))x(t) +Ad(t)x(t− τ)

− ẋ(t)) = 0.

Hence, it is easy to get

V̇ (xt) = V̇ (xt) +Δ ≤ ζ̄�(t)Γ̄[τ,τ̇ ,σ](t)ζ̄(t) (45)

where Γ̄[τ,τ̇ ,σ](t) = Γ̄[τ,τ̇ ,σ] + Γ̄[τ ] + sym {Z(t)ZS(t)} and

ZS(t) =
[A(t) + B(t)K(t) 0 Ad(t) 0 . . . 0︸ ︷︷ ︸

6

− I
]
.

It is notable that Γ̄[τ,τ̇ ,σ](t) can be expressed as

r∑
i=1

λi(θ(t))
r∑

j=1

λj(θ(t))
r∑

k=1

λk(θ(t))Γ̄[τ,τ̇ ,σ]ijk

=
r∑

i=1

λ2i (θ(t))
r∑

k=1

λk(θ(t))Γ̄[τ,τ̇ ,σ]iik + 2
r−1∑
i=1

λi(θ(t))

×
r∑

j>i

λj(θ(t))
r∑

k=1

λk(θ(t))

(
Γ̄[τ,τ̇ ,σ]ijk + Γ̄[τ,τ̇ ,σ]jik

2

)
where Γ̄[τ,τ̇ ,σ]ijk = Γ̄[τ,τ̇ ,σ] + Γ̄[τ ] + sym {ZiZSjk}.

As a consequence, for i, j, k = 1, . . . , r, Γ̄[τ,τ̇ ,σ](t) < 0, if

the following inequalities hold

Γ̄[τ,τ̇ ,σ]iik < 0, (46)

Γ̄[τ,τ̇ ,σ]ijk + Γ̄[τ,τ̇ ,σ]jik < 0, 1 ≤ i < j ≤ r. (47)

By applying Schur complement and Lemma 1, it can be

deduced that if (42)-(43) are feasible, Γ̄[τ,τ̇ ,σ](t) < 0 holds,

which indicates that the closed-loop system (7) with known

control gain matrix is asymptotically stable. Thus, the proof

is completed.

B. Controller Design
On the basis of Theorem 2, the controller design method

for the system (7) is provided in the Theorem 3.

Theorem 3: For given scalars h, μ1, μ2, σ, and ϕi1, ϕi2, . . . ,
ϕi10, the closed-loop fuzzy system (7) is asymptotically stable

under the controller (5), if there exist symmetric matrices

P̃ = [P̃mn]2×2 > 0, Q̃ > 0, R̃n > 0, G̃ = [G̃pq]3×3 > 0,

H̃ = [H̃pq]3×3 > 0 with G̃12 = H̃12 = 0, and any

matrices X̃n, S̃n (n = 1, 2),Mi and symmetric matrix Y
of appropriate dimensions such that the following inequalities

hold for p = 1, 2, 3 and i, j = 1, . . . , r:

J̃p[τ̇ ,σ]ii < 0 (48)

J̃p[τ̇ ,σ]ij + J̃p[τ̇ ,σ]ji < 0, 1 ≤ i ≤ j ≤ r (49)
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where

J̃1[τ̇ ,σ]ij =

[
Ξ̃[0,τ̇ ,σ]ij − Π̃1 Φ̃[0]

∗ −Λ̃1

]

J̃2[τ̇ ,σ]ij =

[
h2Ω̃[τ̇ ,σ] + Ξ̃[h,τ̇ ,σ]ij − Π̃2 Φ̃[h]

∗ −Λ̃2

]

J̃3[τ̇ ,σ]ij =

[
Ξ̃[0,τ̇ ,σ]ij − h2Ω̃[τ̇ ,σ] − Π̃1 Φ̃[0]

∗ −Λ̃1

]
Ξ̃[τ,τ̇ ,σ]ij = sym

{
α�
1 P̃ᾱ2

}
− Ψ̃ + Ω̃1[τ,τ̇ ,σ] + Ω̃2[τ,τ̇ ,σ]

+ sym
{
Z̃iZ̃Sij

}
Π̃1 =

3∑
m=1

(2m− 1)

[
δ1m
δ2m

]� [
J̃1

˜S1

h + X̃1

∗ ˜H33

h

] [
δ1m
δ2m

]

Π̃2 =

3∑
m=1

(2m− 1)

[
δ1m
δ2m

]� [
J̃2 X̃2 +

˜S2

h

∗ J̃3

] [
δ1m
δ2m

]

Φ̃[0] =

[
Φ̃2[0] Δ̃1

−Φ̃1[0] 0

]
, Φ̃[h] =

[
Φ̃2[h] Δ̃2

−Φ̃1[h] 0

]
Ω̃[τ̇ ,σ] = Ω̃1[τ̇ ,σ] + Ω̃2[τ̇ ,σ]

Λ̃1 = diag
{
�⊗ (Q̃+ R̃2

)
, h�⊗ H̃33

}
Λ̃2 = diag

{
�⊗ (Q̃+ R̃1

)
, h�⊗ τ̃ G̃33

}
with

Ω̃1[τ,τ̇ ,σ] = τ̇ η�1
(Ǵ + sym

{
℘1(G̃13) + 2τ℘2(σ, G̃23)

})
η1

+ τsym
{
η�1 sym

{
℘2(σ, G̃23)

}
η3

}
+ sym

{
η�1

(
Ǵ + sym

{
℘1(G̃13)

})
(τ η̄2 + η3)

}
Ω̃2[τ,τ̇ ,σ] = −τ̇��

1

(
sym

{
℘1(H̃13) + 2(h− τ)℘2(σ, H̃23)

}
+ H́)

�1 + τ̃(h− τ)e�5 H̃33e5

+ sym
{
��

1

(
H́+ sym

{
℘1(H̃13)

})
�̃
}

+ (h− τ)sym
{
��

1 sym
{
℘2(σ, H̃23)

}
�3

}
+ (h2 − 2τh)sym

{
��

1 sym
{
℘2(σ, H̃23)

}
�2

}
Ǵ =

2∑
n=1

σ2(n−1)

2n
h2n−1G̃nn, H́ =

2∑
n=1

σ2(n−1)

2n
h2n−1H̃nn

J̃1 = 2Q̃+ R̃1 + (2τ̃ /h)G̃33, J̃2 = Q̃+ (τ̃ /h)G̃33

J̃3 = 2Q̃+ R̃2 + (2/h)H̃33

Δ̃1 =
[[
δ�11 δ�12 δ�13

] X̃2

[
δ�11 δ�12 δ�13

] S̃2

]
Δ̃2 =

[[
δ�21 δ�22 δ�23

] X̃�
1

[
δ�21 δ�22 δ�23

] S̃�
1

]
Ψ̃ = δ�

[
diag {2, 4, 2, 4} ⊗ R̃1, diag {2, 4, 2, 4} ⊗ R̃2

]
δ

Ω̃1[τ̇ ,σ] = sym
{
η�1 sym

{
℘2(σ, G̃23)

}
η̄2

}
Ω̃2[τ̇ ,σ] = sym

{
��

1 sym
{
℘2(σ, H̃23)

}
�2

}
Φ̃1[τ ] = diag

{
Q̃, R̃1

2
,

R̃2

2
, τ G̃33

}

Φ̃2[τ ] =

[
he�10Q̃

h

2
e�10R̃1

h

2
e�10R̃2 τe�10G̃33

]
Z̃i =

[
ϕi1I ϕi2I . . . ϕinI

]�
Z̃Sij =

[AiY + BiMj 0 AdiY 0 . . . 0︸ ︷︷ ︸
6

− Y]
.

The corresponding state feedback control gain matrices are

given by Ki = MiY−1.

Proof : Denote F = Y−1, and introduce the matrices

E � diag
{F , F , . . . , F︸ ︷︷ ︸

16

}
, E1 � diag

{F , F}
E2 � diag

{F , F , F}
, E3 � diag

{F , F , . . . , F︸ ︷︷ ︸
10

}
.

Pre- and post-multiplying (48) and (49) by E and E�,

respectively, leads to

EJ̃p[τ̇ ,σ]iiE� < 0, i = 1, . . . , r, (50)

E
(
J̃p[τ̇ ,σ]ij + J̃p[τ̇ ,σ]ji

)
E� < 0, 1 ≤ i ≤ j ≤ r. (51)

Define

P � E1P̃E�
1 , Q � FQ̃F�, Rn � FR̃nF�, Xn � FX̃nF�

Sn � FS̃nF�, Gnn � E2G̃nnE�
2 , Gn3 � E2G̃n3F�

Hnn � E2H̃nnE�
2 , Hn3 � E2H̃n3F� (n = 1, 2)

G33 � FG̃33F�, H33 � FH̃33F�, Zi � E3Z̃i.

Then, one has

E3Z̃iZ̃SijE�
3 =

[
ϕi1F� ϕi2F� . . . ϕi10F�]�Z̃SijE�

3

=Zi

[Aj + BjKk 0 Adj 0 . . . 0︸ ︷︷ ︸
6

− I
]

=ZiZSjk.

Therefore, from the above definition and transformation, it

can be seen that (50) and (51) are equivalent to (42) and (43),

respectively. Consequently, according to the Theorem 2, the T-

S fuzzy system (7) is asymptotically stable under the control

gains Ki = MiY−1, which ends the proof.

Remark 9: By means of the tensor product (TP) model

transformation, the quasi-linear parameter varying (qLPV) can

be effectively transformed into the T-S fuzzy model [33, 34]. In

[33], the TP model transformation is introduced as a numerical

transformation that has the advantages of readily accommo-

dating models described by non-conventional modeling and

identification approaches, such as neural networks and fuzzy

rules. By discussing the relationship between TP models and

T-S fuzzy models, it is found that the model manipulation

and LMI design concepts in [34] can be utilized for fuzzy

modeling and control design. In [35], it is proved that the LMI-

based feasibility of controller and observer design is strongly

influenced by the vertexes of TP model type polytopic repre-

sentation for qLPV state-space model. By stability analysis for

a qLPV state-space model, it is verified that the convex hull of

the polytopic TP model representation have an impact on the

feasibility of LMI-based stability analysis approach [36]. In

[37], considering the time delay as a parameter, the TP model

transformation is used to derive a polytopic representation for
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a LPV model. The TP model transformation can serve as a

final step of identification to build a bridge to T-S fuzzy model-

based control theories of analysis and design [42].

The primary purpose of this paper is to achieve stability

and stabilization approaches for the well-established T-S fuzzy

models, which can be achieved by any modeling techniques,

such as sector nonlinearity method, and even the TP model

transformation method. The main contribution is developing

novel IPFs to give additive freedom. Thus, the widely utilized

T-S fuzzy systems are presented as the numerical examples for

fair comparison of the proposed approaches with the existing

methods. It can be predicted that in the case of another T-

S fuzzy model by a TP model transformation, the results

by IPFs tend to be more desirable for the same T-S fuzzy

model. In the future work, inspired by the innovative works

[33-37, 42], the proposed approaches will be extended to

analysis and synthesis for T-S fuzzy models by the TP model

transformation, especially for the model difficult to find the

feasible solution from LMI.

V. NUMERICAL EXAMPLES

In this section, the advantages of the proposed stability

criteria and stabilization approach are demonstrated by three

numerical examples. For comparison, the conservatism and

computational complexity of different methods are measured

by the allowable upper delay bounds (AUDBs) guaranteeing

stability of systems and the number of variables (NoVs),

respectively.

Example 1: Consider the delayed T-S fuzzy system with

u(t) = 0, which is in the form of (3) with two plant rules,

where

A1 =

[ −3.2 0.6
0.0 −2.1

]
, Ad1 =

[
1.0 0.9
0.0 2.0

]
,

A2 =

[ −1.0 0.0
1.0 −3.0

]
, Ad2 =

[
0.9 0.0
1.0 1.6

]
,

λ1(θ(t)) =
1

1 + e−2x1(t)
, λ2(θ(t)) = 1− λ1(θ(t)).

For various μ = μ2 = −μ1, the AUDBs derived by some

recently reported approaches and Theorem 1 with different σ
are tabulated in the Table I. In [5], taking advantage of delay-

decomposition approach, the stability condition is derived

by augmented LKF and free-matrix-based inequalities. By

selecting the augmented vectors with scalar functions, the

fuzzy-dependent matrices and the convex analysis approach

with parameter α are combined to treat integral terms, while

introducing a great many decision variables [7]. It is noted

that in both of [5] and [7], the characteristics of bounding

techniques are ignored when constructing LKF. In Theorem 1∗

of [28], the triple integral form of LKF is constructed, and the

single and double integral terms are estimated by free-matrix-

based integral inequality [38] and JDIs. The integrals with

time-varying delays are treated by the Lemma 6 of [29]. In

Theorem 1 of [28], the DPFs with single integrals are added.

While, in Theorem 1 of this paper, the IPFs consisting of

double integrals are tailored with slack variables to expand fea-

sibility. Moreover, the SOBLI combined with improved matrix

inequality and GDIIs encompassing the bounding techniques

of [5, 7, 28] as special cases are applied for estimation purpose,

the improvements of which are consolidated by IPFs. From

Table I, it is apparent that Theorem 1 delivers significantly

better performance than the existing results.
Applying Theorem 1 by optimizing parameter σ with-

in [−10, 10], the maximum AUDBs are achieved at σ ∈
{4.13,−8.92,−5.27, 0.64} for μ ∈ {0.03, 0.10, 0.50, 0.90},

respectively, which is described along with the NoVs of

Theorem 1 in Table II. From Table II, one can see lucidly that

more superior stability intervals are captured through coordi-

nating variable parameter, which embodies the effectiveness

of additive freedom given by the IPFs. Moreover, the NoVs

of different criteria are listed in Table III, and it is found

that the NoV required by Theorem 1 is much fewer than

the those of [7, 28]. From these comparative results, it can

be concluded that the conservatism is reduced signally with

less computational complexity through Theorem 1. To further

illustrate the applicability of the proposed approach, under the

initial condition φ(t) = [ 3 −6 ]�, the state trajectories of

Example 1 with 0 ≤ τ ≤ 2.4291 and μ = 0.03 are depicted

in Fig. 1, which converge to zero as time increases.

TABLE I: AUDBs with μ = μ2 = −μ1 for various σ

Criteria μ=0.03 μ=0.10 μ=0.50 μ=0.90
[5,Th.1] 0.8771 0.7687 0.7584 0.7524

[7,Th.1](α = 0) 0.9281 0.8092 0.7671 0.7573
[7,Th.1](α = 0.5) 0.9192 0.7985 0.7630 0.7541

[28,Th.1∗] 1.8328 1.3857 1.2186 1.0820
[28,Th.1] 1.9137 1.4354 1.3123 1.2063

Th.1(σ = 1) 2.2759 1.6016 1.4802 1.3661
Th.1(σ = 3) 2.2810 1.6251 1.4797 1.3734
Th.1(σ = 5) 2.2782 1.6065 1.4819 1.3686

� Th. indicates Theorem.

TABLE II: Maximum AUDBs and NoVs for Theorem 1

Criteria μ=0.03 μ=0.10 μ=0.50 μ=0.90 NoVs

Th.1 2.4291 1.7493 1.6355 1.4908 38.5n2 + 9.5n

TABLE III: NoVs for different criteria

[5,Th.1] [7,Th.1] [28,Th.1∗] [28,Th.1]
16.5n2 + 6.5n 70.5n2 + 7.5n 47.5n2 + 7.5n 51.5n2 + 9.5n

Example 2: Consider the nonlinear Lorenz system with

input term [39]:⎧⎪⎨⎪⎩
ẋ1(t) = −ax1(t) + ax2(t) + u(t)

ẋ2(t) = cx1(t)− x2(t)− x1(t)x3(t)

ẋ3(t) = x1(t)x2(t)− bx3(t)

(52)

For −d ≤ x1(t) ≤ d, the Lorenz system (52) can be

represented as:

ẋ(t) =
r∑

i=1

λi(θ(t))
(
Ãix(t) + B̃iu(t)

)
(53)

where

Ã1 =

⎡⎣ −a a 0
c −1 −d
0 d −b

⎤⎦ , Ã2 =

⎡⎣ −a a 0
c −1 −d
0 −d −b

⎤⎦
B̃1 =

[
1 0 0

]�
, B̃2 =

[
1 0 0

]�
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Fig. 1: State responses of the system (Example 1)

λ1(θ(t)) =
1

2

(
1 +

1

d
x1(t)

)
, λ2(x(t)) = 1− λ1(θ(t))

and the parameters are assumed to be a = 10, b = 8
3 , c =

28, d = 25.

In order to facilitate comparison with the result of [39],

from the parallel distributed compensation idea, applying the

following sampled-data controller as [39]:

u(t) =
r∑

i=1

λi(θ(tk))Kix(tk), i = 1, 2, . . . , r, tk ≤ t ≤ tk+1

where tk denotes sampling instant with tk+1 − tk ≤ h̃ (h̃ is

the maximum allowable sampling period to be determined).

For tk ≤ t ≤ tk+1, by input delay approach with 0 ≤ τ =
t− tk ≤ h̃, the closed-loop system (53) can be rewritten as

ẋ(t) =
r∑

i=1

r∑
j=1

λi(θ(t))λj(θ(tk))
(
Ãix(t) + B̃iK̃jx(t− τ)

)
.

(54)

For given maximum sampling period h̃ = 0.05, by using

the Theorem 2 of [39], the control gain matrices are given as

K̃1 = K̃2 = K̃ =
[ −8.7663 −23.1521 0.0000

]
.

Since limt→t−k
V (xt) = limt→t+k

V (xt), V (xt) (32) does

not increase at the jumping instants tk. Besides, the derivative

of input delay τ̇ = 1 except for t = tk. Then, when K̃1 = K̃2,

the Theorem 2 with μ1 and μ2 approaching 1 can be applied

for stability analysis of the system (54). Selecting the identical

control gains as [39] and regarding Ãi and B̃iK̃ of (54) as

Ai and Adi of (6), respectively, h̃ are derived as 0.0593 and

0.0580 at σ = −7.62 and σ = −4.19 via Theorem 2 with

−10 ≤ σ ≤ 10, respectively. Thus, the distinct outperformance

of the presented method is indicated compared with that

of [39]. For initial condition φ(t) = [ 10 10 10 ]�, the

dynamic behaviors of the system with 0 ≤ τ ≤ 0.0593 under

K̃1 and K̃2 are shown in Fig. 2, which go to equilibrium points.

0 2 4 6 8 10
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−20

−15

−10

−5

0

5

10

15

Time (s)

x
(t

)

x1(t)

x2(t)

x3(t)

Fig. 2: State responses of the system (Example 2)

Example 3: Consider nonlinear model of truck-trailer sys-

tem with time delay formulated in [28, 40, 41]:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −a vt̄

Lt0
x1(t)− b

vt̄

Lt0
x1(t− τ) +

vt̄

lt0
u(t)

ẋ2(t) = a
vt̄

Lt0
x1(t) + b

vt̄

Lt0
x1(t− τ)

ẋ3(t) =
vt̄

t0
sin

(
x2(t) + a

vt̄

2L
+ b

vt̄

2L
x1(t− τ)

) (55)

where x1(t) is the angular difference between the truck and

trailer, x2(t) is the angle of trailer, and x3(t) is the vertical

position of rear end of trail; l and L are the lengths of truck

and trailer, and v is constant speed of backing up.

Defining the state as x(t) = [x1(t) x2(t) x3(t)]
�, and

θ(t) = x2(t) + a(vt̄)/(2L)x1(t) + b(vt̄)/(2L)x1(t− τ), (55)

can be represented as the T-S fuzzy system [40, 41]:

Plant Rule 1: IF θ(t) is about 0 rad,

THEN ẋ(t) = A1x(t) +Ad1x(t− τ) + B1u(t).

Plant Rule 2: IF θ(t) is about π rad or −π rad,

THEN ẋ(t) = A2x(t) +Ad2x(t− τ) + B2u(t).
where

A1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−a vt̄

Lt0
0 0

a
vt̄

Lt0
0 0

a
v2t̄2

2Lt0

vt̄

t0
0

⎤⎥⎥⎥⎥⎥⎥⎦ , Ad1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−b vt̄

Lt0
0 0

b
vt̄

Lt0
0 0

b
v2t̄2

2Lt0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−a vt̄

Lt0
0 0

a
vt̄

Lt0
0 0

a
gv2t̄2

2Lt0

gvt̄

t0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Ad2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−b vt̄

Lt0
0 0

b
vt̄

Lt0
0 0

b
gv2t̄2

2Lt0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦
B1 =

[
vt̄

lt0
0 0

]�
, B2 =

[
vt̄

lt0
0 0

]�
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with the membership functions

λ1(θ(t)) =

⎧⎨⎩
sin(θ(t))− ḡθ(t)

θ(t)(1− ḡ)
, θ(t) �= 0

1, θ(t) = 0

λ2(θ(t)) =

⎧⎨⎩
−sin(θ(t)) + θ(t)

θ(t)(1− ḡ)
, θ(t) �= 0

0, θ(t) = 0

Let the model parameters be a = 0.7, b = 1 − a, l =
2.8, L = 5.5, v = −1.0, t̄ = 2.0, t0 = 0.5, g = 10t0/π and

ḡ = 10−2/π [40, 41].

Considering the constant delay case, the AUBD is given

as 114 by utilizing the approach of [40] with the following

control gains

K̃1 =
[
12.9598 −11.0199 0.7596

]
K̃2 =

[
12.9818 −11.0313 0.7622

]
It is noted that the constant delay can be regraded as the time-

varying delay with equal lower and upper bounds, and zero

derivative. Therefore, the proposed approach can be applied

to constant delay systems by setting τ = h and μ1 = μ2 = 0.

By the Theorem 2 with −5 < σ < 5, the AUDB is obtained

as 153 with the controllers of [40] at σ = 3.41, which shows

the advantage of the IPFs.

In [28], choosing the controller gains as [41]

K̃1 =
[
20.6936 −51.9608 0.5275

]
,

K̃2 =
[
20.6902 −51.9170 0.5256

]
,

the AUDB can reach 8.1951 with μ = μ2 = −μ1 = 0.9.

By use of Theorem 2 with K̃1, K̃2, and −5 ≤ σ ≤ 5, one

can compute the maximum AUDB as 8.4277 when σ = 2.36,

which validates the superiorities of the proposed approach for

less conservatism. With unknown control gains, the maximum

AUDB is given as 8.9406 by Theorem 3 with σ = −4.52, and

the corresponding controller gains are calculated as

K1 =
[
2.5667 −2.3915 0.0254

]
,

K2 =
[
2.4071 −2.1416 0.0360

]
.

Under the fuzzy controller (5) with gain matrices K1 and

K2, Fig. 3 describes the state responses of the system with

initial condition φ(t) = [ −0.5π 0.75π −10 ]�, μ = 0.9,

and 0 ≤ τ ≤ 8.9406. From Fig.3, it is plainly visible that the

system is asymptotically stable at its equilibrium points.

Remark 10: Duo to the theoretical importance and prac-

tical significance, the research on T-S fuzzy systems has

attracted a great deal of attention. In the paper, by suitable

operations on parameter-dependent polynomial, some novel

IPFs with variable parameter are developed in delay-product

types, which introduce obvious improvements on system per-

formance, while avoiding excessive computational complexity.

It is noted that the proposed IPFs has more advantages than

the enlargement on stable delay regions. In essence, in the

framework of Lyapunov theory, the fundamental superiority

of the IPFs lies in providing additional flexibility for choice

of decision variables. It is found that the system state x(t)
and exactly delayed state x(t− τ) are involved into the IPFs.

When differentiating IPFs, ẋ(t) is produced, and thus more
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Fig. 3: State responses of the system (Example 3)

information closely related to the concerned T-S fuzzy model

(6), including that on local subsystems and memberships, is

taken into consideration. Moreover, the relationship among

the various states of T-S fuzzy system is consolidated by

slack matrices. By adjusting variable parameters, the resulting

conditions are further endowed with the more freedom. The

significance for reducing conservatism by the IPFs reflects

on both of the desirable performance for system analysis

criterion, and the superior feasibility for controller design

approach. As thus, on the one hand, referring to various

analysis issues of delayed T-S fuzzy systems, such as H∞
analysis [16] and dissipative analysis [19], more preferable

performance index will be achieved by means of IPFs with

the given delay ranges. On the other hand, as to the control

synthesis for delayed systems with diverse constraints, such

as asynchronous grades of membership [8] and incomplete

measurement [11], it tends to be easier to achieve feasible

solutions for fuzzy control strategies taking advantages of

IPFs. Thus, such characteristics of IPFs can make positive

contributions to a variety of problems for T-S fuzzy systems,

which will be investigated in the future work.

VI. CONCLUSION

In this paper, the stability analysis and controller design

for delayed T-S fuzzy systems are investigated. In order to be

suitable for triple integral terms, an improved matrix inequality

is proposed to estimate both strictly and non-strictly rational

proper functions. By appropriately defining polynomials with

variable parameter, novel delay-product versions of IPFs are

developed with slack matrices. Using the LKF with IPFs, the

stability criteria and stabilization control method are derived

via some advanced integral inequalities. By virtue of the IPFs,

additional flexibility is achieved by introducing slack variables,

and the relationships between various system information is

enhanced, which is beneficial for highlighting the active af-

fections of bounding techniques. Above all, taking advantages

of adjusting parameter, the criteria are refined from the point

of view of additive freedom. As a result, the conservatism is

significantly reduced by the proposed approaches, but without

requiring excessive computational cost. In the future work, the
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proposed IPFs will be extended to analysis and synthesis for

T-S fuzzy systems subject to the constraints and T-S fuzzy

systems by the TP model transformation.
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