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Abstract 

Treatment-resistant depression (TRD) occurs in ~30% of patients with major depressive disorder 

(MDD) but the genetics of TRD was previously poorly investigated.  

Whole exome sequencing and genome-wide genotyping were available in 1209 MDD patients after 

quality control. Antidepressant response was compared to non-response to one treatment and non-

response to two or more treatments (TRD). Differences in the risk of carrying damaging variants were 

tested. A score expressing the burden of variants in genes and pathways was calculated weighting 

each variant for its functional (Eigen) score and frequency. Gene- and pathway-based scores were 

used to develop predictive models of TRD and non-response using gradient boosting in 70% of the 

sample (training) which were tested in the remaining 30% (testing), evaluating also the addition of 

clinical predictors. Independent replication was tested in STAR*D and GENDEP using exome array-

based data.  

TRD and non-responders did not show higher risk to carry damaging variants compared to responders. 

Genes/pathways associated with TRD included those modulating cell survival and proliferation, 

neurodegeneration and immune response. Genetic models showed significant prediction of TRD vs. 

response and they were improved by the addition of clinical predictors, but they were not significantly 

better than clinical predictors alone. Replication results were driven by clinical factors, except for a 

model developed in subjects treated with serotonergic antidepressants, which showed a clear 

improvement in prediction at the extremes of the genetic score distribution in STAR*D.      

These results suggested relevant biological mechanisms implicated in TRD and a new methodological 

approach to the prediction of TRD. 

 

Keywords: treatment-resistant depression; exome sequencing; genome-wide association study; 

pathway; antidepressant; polygenic prediction; predictive modeling 
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1. Introduction 

Major depressive disorder (MDD) is the second leading cause of disability in middle-aged adults on 

a global scale (1). Despite the availability of a number of different pharmacological treatments, 

treatment-resistant depression (TRD) is estimated to occur in ~30% of patients (2). TRD is usually 

defined as lack of response to at least two adequate treatments and it is associated with social and 

occupational impairment, suicidal thoughts, decline of physical health and increased health care 

utilization (3) (4). Annual costs for health care and lost productivity were estimated to be $5,481 and 

$4,048 higher, respectively, for a patient with TRD versus a patient with treatment-responsive 

depression (5).  

In the future, biomarkers associated with TRD risk may contribute to improve the clinical 

management of MDD by providing an estimate of TRD genetic risk at baseline, by guiding the 

prescription of personalized treatments and the development of new drugs. Genetic variants are ideal 

biomarkers to predict treatment response and TRD: a genetic basis to treatment response has been 

demonstrated and genotyping can be performed in easily accessible samples with reasonable cost and 

time (6). The development of models able to predict the genetic risk of TRD at baseline would provide 

valuable information to personalize treatment prescription and hypothetically reduce the rate of TRD. 

Possible ways by which this could be achieved include: 1) identifying genetic predictors of non-

response to specific antidepressant classes; 2) prescribing treatments with increased efficacy but 

limited availability because of costs constraints to patients having genetic risk for TRD. However, 

most existing pharmacogenomic studies were focused on measures of response to the last treatment 

without taking into account previous treatments, leaving the genetics of TRD largely unexplored (7). 

Another issue was the investigation of common variants only, while the possible role of rare variants 

was overlooked, despite they were suggested as one of the factors contributing to missing heritability 

of common traits (8). To the best of our knowledge, only a small pilot study (n=10) performed whole 

exome sequencing to the study of treatment response in MDD (but not TRD) and found that the bone 

morphogenetic protein (BMP5) gene may be associated with the therapeutic outcome (9).  

The present study aimed to contribute in filling the existing gap in the knowledge of TRD genetics 

using whole exome sequencing and genome-wide genotyping to analyze the role of rare and common 

variants in the prediction of this phenotype and contribute to the development of predictive models 

potentially useful to personalize antidepressant prescription. 
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2. Patients and Methods 

2.1. Sample 

The Group for the Study of Resistant Depression (GSRD) sample was recruited within a multicenter, 

cross-sectional study including adult in- and outpatients with major depressive disorder (MDD) 

(DSM IV-TR criteria), as confirmed using the Mini International Neuropsychiatric Interview (MINI). 

Depressive symptom severity was assessed using the Montgomery and Åsberg Depression Rating 

Scale (MADRS) at study inclusion and at the onset of the current MDD episode. Information on 

previous and current antidepressant and other pharmacological treatments during the current MDD 

episode was collected as well as clinical-demographic characteristics. Antidepressant treatment was 

naturalistic according to best-clinical practice principles (Supplementary Table 1). The study protocol 

was approved by the local ethnic committees and the participant signed the written informed consent. 

Further details can be found elsewhere (10). 

  

2.2. Phenotype, training and testing samples 

TRD (treatment-resistant depression) was defined according to the most common definition of lack 

of response to at least two adequate antidepressant treatments during the current depressive episode 

(11), while non-response was referred to one adequate treatment only. Adequate treatment was 

defined as an antidepressant treatment of minimum duration of four weeks at least at the minimum 

therapeutic dose according to drug labeling. Response was defined as a MADRS score < 22 and a 

score decrease of at least 50% compared to the onset of the current MDD episode. Responders could 

have had not more than one failed antidepressant treatment during the current depressive episode. 

After quality control, the sample was split in a training (70%) and testing set (30%) which were 

balanced in terms of phenotypic distribution (TRD, non-response and response) using the partition 

function of groupdata2 R package, and they did not differ for gender, age, baseline depression severity 

or centre of recruitment. 

 

2.3. Whole exome sequencing and genome-wide genotyping  

Whole exome sequencing was performed using the Illumina HiSeq platform with 100 bp read length. 

Genome-wide genotyping was performed using the Illumina Infinium PsychArray 24 BeadChip 

(Illumina, Inc., San Diego) and these data were imputed as described in Supplementary Methods. 

Rare variants were extracted from exome sequence data and were defined as those having minor allele 

frequency (MAF) < 1/Ö(2n), where n is the sample size (12), which corresponded to 0.02 in GSRD. 

Information about DNA extraction, quality control of exome sequence data and genome-wide data 

are reported as Supplementary Methods. We compared the concordance of genotypes of SNPs 
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available in both exome sequence and array data, splitting them in genotyped and imputed and by 

minor allele frequency (MAF). These comparisons were also relevant to determine the putative 

reliability of rare imputed variants in the replication samples. Subjects with discrepancies between 

genome-wide and exome sequence data were excluded (non-major homozygote genotype 

concordance £ 90% for rare variants and £ 95% for common variants).  

 

2.4. Statistical analysis 

2.4.1. Variant annotation and distribution of functional variants  

We tested if predicted detrimental/damaging variants obtained through exome sequencing were 

differently distributed between TRD patients, non-responders and responders. Variant annotation was 

performed using Variant Effect Predictor (Vep) release 90, using the –pick flag that chooses one 

block of annotation per variant, based on an ordered set of criteria (13). Annotations from SIFT, 

PolyPhen and functional consequence scores from the Sequence Ontology (SO) project were used to 

estimate the relative pathogenicity of variants (14) (15) (17). The use of scores which combine 

different variant annotations was also pursued and it is described in the next paragraph. The risk of 

carrying SIFT deleterious variants (scores<0.05), PolyPhen damaging or probably damaging variants 

(scores>0.45) and variants with SO functional score ³ 0.90 and ³ 0.70 in specific genes was compared 

across TRD patients, non-responders and responders using regression models adjusted for three 

population principal components and center of recruitment. Bonferroni correction was applied to 

account for multiple testing (the number of included genes was between 14,353 and 18,600 depending 

from the considered annotation). Additional details are reported as Supplementary Methods.  

 

2.4.2. Exome risk scores   

These analyses aimed to estimate a weighted measure reflecting the burden of rare genetic variants 

exome-wide and in a gene- and pathway-based way. Secondly, we combined these measures with 

analogous estimations for common variants. 

For rare variants, a score was calculated for each individual as  

! "#$$´	&'´	&(
)

*+,
 

where n is the number of genetic variants within the considered unit (whole exome, gene or pathway), 

vall is the number of alternative alleles, ws is the corresponding functional score and wf  is the frequency 

weight for that variant. In this way, the score is not dependent from the presence of individual variants 

which could not be observed in some of the tested samples. A similar approach was previously applied 

to the study of schizophrenia risk using exome sequence data (18), but it was modified in this study 

by using different functional weighting (composite scores reflecting multiple annotations) and 
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different frequency weighting (to allow the inclusion of rare but also common variants). Different 

sources for determining ws were tested and compared (Eigen scores (19), CADD scores (16) and SO 

functional scores (15), see Supplementary Methods). The frequency weight was determined using a 

beta distribution based on the frequency of the alternative allele alt_all (wf =dbeta(alt_all,1,25), 

according to the previous literature (12), see the corresponding curve in Supplementary Figure 1). 

Rare variants were extracted from exome sequence data as those with minor allele frequency (MAF 

< 1/Ö(2n), where n is the sample size (12), which corresponded to 0.02 in GSRD). Common intragenic 

variants were extracted from genome-wide genotyping data and clumped based on their functional 

scores ws and linkage disequilibrium (LD) using Plink v.1.9 (Supplementary Methods). A smoother 

beta distribution was used to weight these variants based on frequency (wf =dbeta(alt_all,0.5,0.5) (12), 

see curve in Supplementary Figure 1).  

The obtained scores were tested for different distribution among the phenotypic groups considering 

rare variants only and the sum of the scores for rare and common variants. These tests were performed 

using regression models adjusted for three population principal components and centre of recruitment. 

 

2.4.3. Predictive modeling 

Gene- and pathway-based scores (adjusted for the described confounders, more details in 

Supplementary Methods) were entered into a predictor selection process in the training sample using 

a five-fold cross-validation repeated 100 times for pathways and 20 times for genes, 500 and 100 

rounds in total, respectively. In each round, one fifth of the training dataset was left out, and in the 

remaining four-fifths of the training dataset a Correlation-Adjusted T (CAT) score was estimated (i.e. 

a multivariate generalization of the standard univariate T-test statistic that takes the correlation among 

variables explicitly into account (20) (21)) and the Local False Discovery Rate (LFDR) (i.e. the 

probability of a variable to be non-informative with regard to phenotype prediction given its CAT 

score) for each potential predictor. We selected predictors that had a LFDR smaller than 0.8 in > 50% 

of the rounds (22). This process reduces dimensionality and select variables with higher probability 

of being informative, reducing the risk of overfitting. These predictors were used to develop 

predictive models in the training sample using a gradient boosting machine (GBM) algorithm with a 

five-fold cross-validation repeated 100 and 20 times when predictors were pathway and gene scores, 

respectively. Cross-validation in this phase was used to provide better estimates of predictor 

contribution and empirically estimate model parameters (number of trees and interaction depth; 

shrinkage was set to 0.1 and minimum number of observations in each terminal node was set to 10). 

GBM produces a prediction model in the form of an ensemble of weak prediction models based on 

decision trees and it was demonstrated to be a suitable algorithm to learn from weak predictors, when 
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there is not a large amount of available data for training and predictors may interact among each other 

(23) (24). Models using gene-based scores as predictors included both rare and common variants, 

because the inclusion of rare variants only would have created scores very skewed towards zero which 

could not be realistically adjusted for confounders, while models using gene-set scores were tested 

for rare variants only and rare combined with common variants. 

The performance of the developed models in predicting TRD or non-response in the testing sample 

was estimated using the area under the curve (AUC) of ROC (receiver operating characteristic) curves. 

Predictive models were developed in the whole training sample and in the subsamples treated with 

serotonergic antidepressants (5-HT ADs) and noradrenergic or noradrenergic-serotonergic 

antidepressants (NA ADs) according to the pharmacology domain reported in the NbN classification 

(Neuroscience based Nomenclature) (25). Different genetic profiles were indeed previously found 

for antidepressants belonging to these pharmacology domains (22). Only the current treatment was 

considered and subjects treated with combinations of 5-HT ADs and NA ADs were not included in 

this analysis (Supplementary Table 1). The addition of a clinical risk score to the genetic predictors 

was evaluated. The clinical risk score was calculated as a weighted sum of the variables independently 

associated with TRD or non-response in the training sample in a regression model after Bonferroni 

correction (Supplementary Table 2). Each variable included in the clinical score was weighted for its 

effect size (z score) and divided by the number of variables available in each subject 

(∑ ./012345/	´	6/8)
9:;<*=>?:+, ) in order to avoid the exclusion of subjects with one or two missing 

values. We compared the ROC curves including genetic predictors with those including clinical or 

clinical-genetic predictors using the DeLong’s method. 

The risk of TRD or non-response may increase particularly at the extremes of the genetic score 

distribution. Thus, we also tested the significant models including only subjects with a genetic score 

£ 30 or ³ 70 percentiles; we used this threshold to balance the risk of instability of findings due to 

the limited sample size, particularly in the subsamples treated with specific drug classes. The total 

genetic score was calculated in each subject as a sum of the gene/pathway scores included in the 

model of interest, each of them weighted for its importance in the predictive model. This approach is 

a simplification, since it does not reflect the non-linearity of the developed models and possible 

interactions.  

We did not perform multiple-testing correction for these analyses because: 1) these tests were 

correlated among each other and not independent (for example, patients in the tails of the genetic 

score are a subset); 2) we looked at the consistency of results of correlated analyses (i.e. we analysed 

patients in the tails or added the clinical score for further testing models which showed non-random 

prediction in the basic test). 
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The following R cran packages were used for the described analyses: caret, nnet, sda, crossval, pROC.   

 

2.5. Replication  

Replication of the significant predictive models was tested in STAR*D and GENDEP (26) (27), using 

the same approach described for creating gene- and pathway-based risk scores (including rare and 

common variants according to the definition reported in paragraph 2.4.2, more details are in 

Supplementary Methods). In replication samples we used a genetic score £ 20 or ³ 80 percentiles to 

identify subjects with extreme genetic scores since the larger sample size. In both these samples 

genome-wide genotyping was available, including standard genome-wide arrays and an exome array 

(Illumina Infinium Exome-24 v1.0 BeadChip) (28), but not exome sequence data. Further information 

on genotyping methods and quality control was previously reported (29) and it is described also in 

the Supplementary Methods. Imputation was carried out using the Michigan imputation server and 

the Haplotype Reference Consortium (HRC, version r1.1 2016) as reference panel (30). Different 

imputation quality thresholds were used to prune rare and common variants according to the previous 

literature (R2>0.30 and R2>0.60 for common and rare variants, respectively (31)(32)). The 

comparability between the available rare variants in GENDEP/STAR*D and GSRD was tested in 

terms of number and functional annotation. Phenotypes were defined in a way comparable to the 

GSRD sample, only TRD and response were considered because of their univocal phenotypic 

definition (part of non-responders are expected to become TRD) and these analyses aimed to replicate 

significant results in GSRD (which were concentrated to the comparison TRD vs. response). Further 

details on phenotype definition are reported in Supplementary Methods (paragraph “Replication 

samples: STAR*D and GENDEP”).  

 

2.6. Power estimation 

GSRD sample size after quality control (n=1209) provides adequate power (³0.80) in 865 out of 1000 

simulations when testing a set of 45 simulated rare variants (MAF < 0.02) and 100 simulated common 

variants (which reflects the median number of variants in the analysed genes), having effect sizes (b) 

randomly distributed between -0.25 and 0.25, at alpha=2.69e-06 (Bonferroni corrected p-value for 

number of genes). R cran libraries KATSP, minqa and CompQuadForm were used for power 

estimation (33).  

 

3. Results 

The number of subjects available after quality control was 1209 (details on number of excluded 

subjects are in Supplementary Figure 2). A comprehensive description of the clinical-demographic 
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characteristics of the samples is reported in Supplementary Table 1, while a condensed overview is 

shown in Table 1. The number of included variants split by variant type and MAF is reported in 

Supplementary Table 3 (exome sequence data). Five subjects showed low concordance between 

genotypes available in both exome and genome-wide data and they were excluded from the analyses 

including both rare and common variants, since exome sequencing repeated on one of these subjects 

demonstrated genotype concordance >99% with the initial sequencing results. The comparison 

between sequenced rare variants and rare variants imputed from genome-wide data showed a mean 

concordance of 75% (SD=5%) considering only non-major homozygote genotypes. The mean 

concordance considering the same comparison but for genotyped rare variants (array data) was 93% 

(SD=2%) (Supplementary Figure 3), suggesting that the use of rare variants obtained from an array 

may be feasible even though not optimal. From the genome-wide data, 476,319 intragenic common 

variants in low LD and 1180 subjects were included after quality control.  

The variables included in the clinical risk score were suicidal risk, number of previous depressive 

episodes, chronic depression and two MADRS factors (pessimism and interest-activity) 

(Supplementary Table 2).  

 

3.1. Distribution of damaging variants  

Patients with TRD and non-responders did not show an increased risk to carry SIFT/PolyPhen 

damaging variants compared to responders or variants with SO functional score ³ 0.90 or ³ 0.70 

(Supplementary Table 4 and Figure 1). When considering individual genes (Supplementary Tables 

5-6), we did not identify any difference among phenotypic groups after Bonferroni correction. The 

top gene was WDR90 (WD Repeat Domain 90) which showed variants with SO functional score ³ 

0.90 in 21 patients with TRD but only in 4 non-responders and 2 responders (p=3.44e-05).   

 

3.2. Exome-wide, gene and pathway scores 

The distribution of the of exome-wide scores for the three tested functional weights were substantially 

overlapping. Six patients were excluded from the subsequent analyses as they scored outside five 

standard deviations from the sample mean (Supplementary Figure 4). Patients with TRD and non-

responders did not show higher exome-wide scores compared to responders (p>0.05 for all three 

tested functional weights). The correlations between gene scores calculated using the three tested 

functional weights were high (mean correlation coefficient between 0.89 and 0.95 with SD from 0.04 

to 0.06 in pair-wise comparisons, Supplementary Figure 5). In consideration of these high correlation 

coefficients, the demonstration that Eigen scores have better discriminatory ability using disease-

associated and putatively benign variants from published studies compared to CADD scores (19), and 
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the lower functional precision of SO functional scores, only Eigen-based functional weighting was 

used in subsequent analysis.  

Gene- and pathway-based scores were not associated with phenotypic groups after Bonferroni 

correction (Supplementary Tables 7-8). The top genes were NBN and ZNF418 (p=4.34e-05 and 5.18e-

05, respectively, whole sample, Supplementary Table 4) and the top pathways were PID (protein 

interaction database) CD40 pathway in the subsample treated with serotonergic drugs and GO (gene 

ontology) response to cocaine in the subsample treated noradrenergic drugs (p=5.28e-05 and 5.61e-

05, respectively, Supplementary Table 8).  

 

3.3. Predictive modeling 

Pathway-based models for TRD vs. response in the whole sample including only rare genetic variants 

showed non-random prediction in the testing sample (n=237, AUC 0.61 [95% CI 0.54-0.69], Table 2 

and Figure 2) and in patients treated with 5-HT ADs (n=272 and n=118 in the training and testing 

samples respectively, AUC 0.62  [95% CI 0.52-0.73], Table 2 and Figure 2). The list of pathways 

used as predictors is in Supplementary Table 9 and their relative contribution to the models in 

Supplementary Figure 6. No significant prediction of TRD vs. response was observed in patients 

treated with NA ADs or when comparing non-responders vs. responders or TRD plus non-responders 

vs. responders (Supplementary Table 10). Prediction was improved by adding the clinical risk score 

to genetic predictors in both the whole sample and patients treated with 5-HT ADs (AUC 0.73 [0.66-

0.79] and AUC 0.65 [0.55-0.76], respectively, Table 2 and Figure 2), and this effect was more evident 

in subjects having extreme genetic scores for the included pathways (n=142, AUC 0.75 [0.67-0.83] 

and n=71, AUC 0.68 [ 0.55-0.82], respectively; Table 2 and Figure 2). However, there was no 

significant difference between the AUC obtained using the clinical risk score and that of the models 

including genetic and clinical predictors (p=0.89 and p=0.68 for the whole testing sample and for 5-

HT ADs, respectively). The clinical risk score showed similar or better AUC compared to the models 

including genetic predictors alone (p=0.03 and p=0.45 for the whole testing sample and for 5-HT 

ADs, respectively). A possible interpretation of this finding can be found in the observation that 

patients in the 5-HT ADs group had a lower clinical risk score compared to the others (p=9.73e-09).       

Pathway-based models including rare and common genetic variants did not show predictive effect in 

the testing sample in almost all scenarios (Supplementary Table 10).  

Gene-based models including rare and common variants predicted TRD vs. response in the whole 

testing sample and in subjects treated with 5-HT ADs (n=230, AUC 0.61, [0.53-0.69]; n=113, AUC 

0.65 [0.55-0.76], respectively; Table 2). The lists of genes used as predictors is shown in 

Supplementary Table 9 and their relative contribution to the models in Supplementary Figure 6. The 
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addition of the clinical risk score improved the prediction while the subgroups having scores in the 

extreme percentiles did not show different results (Table 2). There was no significant difference 

between the AUC of the model including only clinical predictors and that of the models including 

genetic and clinical predictors (p=0.74 and p=0.70 for the whole testing sample and for 5-HT ADs, 

respectively). The clinical risk score showed similar or better AUC compared to the models including 

genetic predictors alone (p=0.02 and p=0.50 for the whole testing sample and for 5-HT ADs, 

respectively).   

Predictive models of non-response vs. response showed marginal significance in the whole sample 

(n=211, AUC 0.59 [0.51-0.67]) but better values in the sample treated with 5-HT ADs (n=121, AUC 

0.64, [0.53-0.74]; Supplementary Table 10). However, given that models including non-responders 

were significant in a smaller number of scenarios compared to those focused on TRD, we did not 

further investigate them in the replication samples. 

 

3.5. Replication in STAR*D and GENDEP 

Despite the availability of genotypes from an exome array, a low covering of coding regions was 

obtained compared to exome sequence data, limiting the comparability of these data with those 

available in GSRD (Supplementary Figure 7). In GENDEP, LCE1B gene was not covered and we 

had to re-train the corresponding predictive model (gene scores in patients treated with 5-HT ADs) 

without this gene, with no major change in predictive performance in the GSRD testing sample (not 

shown). The number of included subjects and their main clinical-demographic characteristics are 

reported in Supplementary Table 11.  

None of the models including only genetic variables predicted TRD, apart from the rare variant 

pathway-based model developed in patients treated with 5-HT ADs. In STAR*D, this genetic model 

showed significant prediction of TRD risk in subjects with scores £ 10 or ³ 90 percentiles (we looked 

at more extreme percentiles because of the larger sample size; n=134, AUC 0.73, 95% CI 0.61-0.86, 

Table 3). The AUC of this model was not different from that of the model including clinical and 

genetic variables (p=0.63), but it was better compared to the model including clinical variables only 

(AUC of the clinical predictor: 0.55 [0.49-0.62], p=0.01). The other models showing replication (all 

including genetic and clinical predictors) are reported in Table 3; the ROC AUC of these models were 

not significantly different from those of the models based on the clinical risk score (all p > 0.05).  An 

overview of all replication results is provided in Supplementary Table 12.  
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4. Discussion 

This study found no overall difference in the distribution of functional and deleterious/damaging 

variants between TRD patients, non-responders and responders within the whole exome or within 

individual genes. The closest gene to the significance threshold was WDR90 (WD Repeat Domain 

90), which product function is still poorly known but it is thought to participate in microtubule 

organization within the presynaptic axon terminal (34). The tested risk scores were not associated 

with TRD at gene or gene set level, with NBN (nibrin) and ZNF418 (Zinc Finger Protein 418) genes, 

PID CD40 and GO response to cocaine pathways as top results. NBN is thought to be involved in 

DNA double-strand break repair, DNA damage-induced checkpoint activation and telomere integrity 

(35). It may be involved in neurodegenerative disorders (36). Variants in the ZNF418 region had a 

non-significant trend of association with MDD in a previous PGC (Psychiatric Genetic Consortium) 

mega-analysis (37) and in an exome sequence study (38). The PID CD40 gene set includes 31 genes, 

it is involved in the modulation of inflammation and CD40 ligand has been previously associated 

with MDD (39).  

The lack of strong signals coming from individual genes or pathways was expected as it is in line 

with a previous genome-wide association study of copy number variants (CNVs) that reported no 

significant enrichment of CNVs in TRD (40). Thus, it is reasonable to hypothesize that if genetics 

contributes to TRD, multiple genes/pathways must be involved with complex interactions. This 

mirrors the highly polygenic liability to MDD that is emerging from other studies (41). On the basis 

of this hypothesis, we applied predictive modeling to assess TRD risk using gene- and pathway 

genetic as well as clinical scores as predictors. Predictive modeling combining genetic and clinical 

predictors has been used by only two previous studies to predict antidepressant response to the best 

of our knowledge (22) (42), both these studies used SNPs from genome-wide genotyping as genetic 

predictors. In contrast to the present study, they did not perform any independent replication and the 

second study did not distinguish between training and testing sets (42).  

The present study applied an innovative approach which combined gene and pathway polymorphisms 

in genetic scores weighted by their functional relevance, using exome sequence and genome-wide 

data. The predictive models comparing TRD vs. response showed significant prediction in a higher 

number of scenarios compared to models including non-responders, confirming the biological 

relevance of TRD as a distinct phenotype. In this regard, it should be noted that non-responders are a 

more heterogeneous group than TRD patients, because part of them is expected to develop TRD. In 

the GSRD testing sample, both gene- and pathway-based models showed significant prediction of 

TRD vs. response (Table 2). The genes/pathways included in these models (Supplementary Table 9) 

are mostly involved in cell survival, cell growth and replication, cell migration, neurodegenerative 
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processes, neuroplasticity, immune system, hormonal regulation (sex and thyroid hormones) and 

second messenger cascades. Predictive performance was often improved by adding clinical risk 

factors and in the extreme percentiles of the score distribution. However, none of the genetic or 

genetic-clinical models showed a significantly better ROC AUC compared to the model including 

the clinical risk score only. We hypothesized two possible scenarios which could make the genetic 

predictors useful: 1) in patients with no clinical risk factors; 2) in patients having genetic scores at 

the extremes of the distribution. We preliminary tested the first hypothesis in GSRD whole testing 

sample: the pathway-based model showed AUC of 0.67 (0.54-0.81) in patients with no clinical risk 

factors (n=64) vs. AUC=0.61 (0.54-0.69) in the whole testing sample. The number of patients was 

limited (for this reason we did not explore this hypothesis in other subsamples), but the result supports 

the hypothesis that our genetic predictors perform slightly worse in patients with clinical risk factors, 

presumably because they are largely independent from them (i.e. genetic factors are not able to predict 

TRD cases caused by clinical variables having a distinct genetic or environmental basis). In line with 

this, there was no correlation between the cumulative genetic score (for any model) and the clinical 

risk score and genetic models were not able to predict TRD classification according to the clinical 

risk score. We hypothesized that the high impact of clinical risk factors in GSRD (most patients were 

complex cases of MDD, recruited in tertiary health care centres) may have led to a relative down-

weighting of genetic predictors in the clinical-genetic models (Supplementary Figure 6), explaining 

the fact that they did not show better performance in predicting TRD compared to the models 

including only the clinical risk score. We could not explore the contribution of the individual risk 

variables included in the risk score, because we used a cumulative score aimed to avoid the exclusion 

of subjects with partially missing data. 

The fact that genetic models developed in patients treated with 5-HT AD had better AUC point 

estimates (Table 2) may be explained by the fact that these patients had significantly lower clinical 

risk factors compared to the others (p=9.73e-09), since treatment prescription was naturalistic in 

GSRD. This means that the different gene/pathways selected in the whole sample compared to those 

selected in patients treated with 5-HT ADs may reflect their different clinical characteristics rather 

than differences due to distinctive biological mechanisms implicated in response to different drug 

classes. None of the analyses performed in the group treated with NA ADs was significant, a probable 

consequence of the small size of this group. In this regard, we also underline that polypharmacy was 

frequent in this sample, including combination and augmentation strategies (10), thus our 

classification according to the antidepressants pharmacology represented a simplified approach.  

The second scenario in which genetic predictors may be more relevant is in subjects with genetic risk 

scores at the extremes of the distribution. This case is exemplified by the clear improvement of 
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prediction in subjects with genetic scores £ 10 or ³ 90 percentiles in STAR*D (Table 3), the largest 

available sample in our study, which allowed to test more extreme percentiles compared to GSRD 

and GENDEP (at least the top 5% of the distribution was suggested to be meaningful for increased 

risk when using polygenic risk scores (43), but we had no power for this). The corresponding model 

was the only one showing replication of genetic predictors only and superiority over the clinical risk 

score, while prediction in other models showing replication in STAR*D or GENDEP was driven by 

the clinical score. Unfortunately, the genetic data available in the replication samples were poorly 

comparable with those available in GSRD (only arrays, with low coverage of coding regions) and 

there were also clinical differences between STAR*D, GENDEP and GSRD. For example, patients 

in STAR*D had very long depressive episodes of relatively mild severity, while in GENDEP there 

were no patients with chronic MDD according to the standard definition (>=2 years) and they had on 

average a lower number of previous episodes (Supplementary Table 11). Unlike the other samples, 

MADRS was not available in STAR*D and equivalent scores were calculated using the QIDS-C16 

scale (Supplementary Methods). The definition of the phenotype was performed slightly differently 

in each sample, because of the differences in study design. 

Bearing in mind the discussed limitations, our results contributed to clarify the genetic factors 

involved in TRD and it was the first study to assess the contribution of rare genetic variants through 

whole exome sequencing, if we exclude a very small pilot study performed on 10 subjects (9). No 

individual gene or pathway probably plays a major role in TRD, thus models including multiple 

genes/pathways and able to account for their interactions are probably the best strategy. Theoretically, 

pathway-based models are more suitable to take into account the complex genetic component of 

antidepressant response compared to gene-based models and they are expected to be more replicable, 

as confirmed by our top replication results. Our study represents a new approach to the prediction of 

treatment resistance in MDD and future improvements in larger samples may lead to clinical 

applications, at least in patients with extreme genetic scores or those with no clinical risk factors. In 

patients having genetic risk for TRD, treatment strategies with demonstrated higher efficacy (e.g. 

pharmacotherapy combined with psychotherapy (44)) but limited availability for cost constraints 

could be implemented as first line treatment, when these patients first seek treatment and there are 

still no clinical signs of severe MDD and no clinical risk factors for TRD, reducing the proportion of 

patients at risk who progresses towards resistance. 
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Figure 1: representation of exome-wide distribution of variants with Sequence Ontology (SO) 

functional score ³ 0.90, SIFT deleterious variants, PolyPhen damaging/probably damaging variants. 

The examined phenotypic groups (x axis) were treatment-resistant depression (TRD), non-response 

and response. The number of variants in each phenotypic group is reported on the y axis. 
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Figure 2: ROC curves of the non-random predictive models in GSRD testing sample and relative 

importance of the genetic predictors included in the models. When more than 20 predictors were 

included, only the first 20 are shown. 5-HT=serotonergic. The AUC values reached including only 

subjects with genetic scores £ 30 or ³ 70 percentiles. A. Genetic predictors only. B. Genetic and 

clinical predictors.  
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Table 1: main clinical-demographic characteristics of the training sample (n=847) and testing sample 

(n=362). The baseline MADRS score is referred to the beginning of the current depressive episode. 

MADRS=Montgomery and Åsberg Depression Rating Scale. TRD=treatment-resistant depression. 

Mean ± standard deviation is reported for continuous variables and distribution for dichotomous ones. 

For a more comprehensive overview of patients’ characteristics and results of comparisons between 

the characteristics of the two subsamples see Supplementary Table 1. 
Variable Training sample (n=847) Testing sample (n=362) 
Age 51.44±13.94 51.87±14.16 
Gender (F/M) 566/281 235/127 
Phenotype of interest TRD n=353 

Non-Responders n=291 
Responders=203 

TRD=151 
Non-responders n=125 
Responders=86 

Baseline MADRS score 34.56±7.36 33.85±7.69 
Current MADRS score  24.73±11.13 24.78±11.60 
Treatment Serotonergic n=421 

Noradrenergic n=271 
Serotonergic-noradrenergic n=128 
Other n=27 

Serotonergic n=192 
Noradrenergic n=93 
Serotonergic-noradrenergic n=59 
Other n=18 
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Table 2: characteristics of the models showing significant prediction in the testing sample for the phenotype TRD vs. response. The results of the 

other tested models are shown in Supplementary Table 9. A. Pathway-based scores including rare variants; B. Gene-based scores including common 

and rare vairants. Sens=sensitivity; spec=specificity; PPV=positive predictive value; NPV=negative predictive value. 5-HT=serotonergic drugs. AUC 

95% confidence intervals are reported within parenthesis. * including only subjects with a genetic score £ 30 percentile or ³ 70 percentile see paragraph 

2.4.3 of the main manuscript for more details. 

A 
Subsample Genetic predictors only Genetic predictors + clinical 

risk score 
Extreme genetic percentiles*, 
genetic predictors only 

Extreme genetic percentiles*, 
genetic predictors + clinical score 

Whole 
testing set 

AUC 0.61 (0.54-0.69) 
Sens=0.42; spec=0.77; 
PPV=0.76; NPV=0.43 

AUC 0.73 (0.66-0.79) 
Sens=0.79; spec=0.57; 
PPV=0.76; NPV=0.60 

AUC 0.66 (0.56-0.75) 
Sens=0.53; spec=0.76; 
PPV=0.78; NPV=0.51 

AUC 0.75 (0.67-0.83) 
Sens=0.79; spec=0.60; 
PPV=0.76; NPV=0.65 

5-HT drugs 
only 

AUC 0.62 (0.52-0.73) 
Sens=0.48; spec=0.77; 
PPV=0.76; NPV=0.49 

AUC 0.65 (0.55-0.76) 
Sens=0.73; spec=0.53; 
PPV=0.70; NPV=0.57 

AUC 0.60 (0.45-0.74) AUC 0.68 (0.55-0.82) 
Sens=0.75; spec=0.61; 
PPV=0.75; NPV=0.61 

B 
Subsample Genetic predictors only Genetic predictors + clinical 

risk score 
Extreme genetic percentiles*, 
genetic predictors only 

Extreme genetic percentiles*, 
genetic predictors + clinical score 

Whole 
testing set 

AUC 0.61 (0.53-0.69) 
Sens=0.68; spec=0.55; 
PPV=0.72; NPV=0.49 

AUC 0.72 (0.65-0.79) 
Sens=0.67; spec=0.70; 
PPV=0.80; NPV=0.55 

AUC 0.61 (0.51-0.71) 
Sens=0.54; spec=0.70; 
PPV=0.72; NPV=0.52 

AUC=0.72 (0.63-0.81) 
Sens=0.57; spec=0.82; 
PPV=0.82; NPV=0.57 

5-HT drugs 
only 

AUC 0.65 (0.55-0.76) 
Sens=0.72; spec=0.59; 
PPV=0.72; NPV=0.59 

AUC 0.73 (0.63-0.83) 
Sens=0.72; spec=0.67; 
PPV=0.76; NPV=0.62 

AUC 0.66 (0.52-0.80) 
Sens=0.76; spec=0.59; 
PPV=0.74; NPV=0.62 

AUC 0.69(0.56-0.83) 
Sens=0.70; spec=0.67; 
PPV=0.76; NPV=0.60 
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Table 3: best predictive models of treatment-resistant depression (TRD) vs. response in the 

replication samples. For a detailed overview of all results in the replication samples see 

Supplementary Table 12. In STAR*D, more extreme percentiles of the genetic predictors were 

considered compared to other samples because of the larger sample size (for details see paragraph 

3.5). 5-HT antidepressants=serotonergic antidepressants. CI=confidence intervals. 

Sample Genetic 
predictors 

Genetic predictors 
AUC (95% CI) 

Clinical and genetic predictors 
AUC (95% CI) 

GENDEP, whole 
sample (n=321) 

Pathways, rare 
variants 

0.54 (0.47-0.60) 0.60 (0.54-0.65) 

GENDEP, 5-HT 
antidepressants 
(n=188) 

Genes, rare and 
common variants 

0.58 (0.49-0.68) 0.62 (0.53-0.72) 

STAR*D, whole 
sample (n=807)  

Genes, rare and 
common variants 

0.51 (0.46-0.55) 0.55 (0.51-0.59) 

STAR*D, 5-HT 
antidepressants, £ 20 
or ³ 80 percentiles 
(n=266) 

Pathways, rare 
variants 

0.59 (0.48-0.69) 0.61 (0.51-0.71) 

STAR*D, 5-HT 
antidepressants, £ 10 
or ³ 90 percentiles 
(n=134) 

Pathways, rare 
variants 

0.73 (0.61-0.86) 0.72 (0.58-0.86) 

 

 


