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Abstract

Motivation: The datasets generated by DNA methylation analyses are getting bigger. With the

release of the HumanMethylationEPIC micro-array and datasets containing thousands of samples,

analyses of these large datasets using R are becoming impractical due to large memory require-

ments. As a result there is an increasing need for computationally efficient methodologies to

perform meaningful analysis on high dimensional data.

Results: Here we introduce the bigmelon R package, which provides a memory efficient workflow

that enables users to perform the complex, large scale analyses required in epigenome wide asso-

ciation studies (EWAS) without the need for large RAM. Building on top of the CoreArray Genomic

Data Structure file format and libraries packaged in the gdsfmt package, we provide a practical

workflow that facilitates the reading-in, preprocessing, quality control and statistical analysis of

DNA methylation data.

We demonstrate the capabilities of the bigmelon package using a large dataset consisting of

1193 human blood samples from the Understanding Society: UK Household Longitudinal Study,

assayed on the EPIC micro-array platform.

Availability and implementation: The bigmelon package is available on Bioconductor (http://bio

conductor.org/packages/bigmelon/). The Understanding Society dataset is available at https://

www.understandingsociety.ac.uk/about/health/data upon request.

Contact: tgorri@essex.ac.uk or lschal@essex.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is the most easily analyzed, and probably the

most stable epigenetic mark. There are multiple site-specific assay

methods for DNA methylation based on bisulfite conversion, and

currently the most used genome-wide method are micro-arrays

made by Illumina, based upon genotyping technology. This has

made Epigenome-Wide Association Studies (EWAS) (Rakyan

et al., 2011) possible, analogous to genome-wide association studies
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(GWAS). EWAS have been dominated by the use of the Illumina

Infinium HumanMethylation450 BeadChip micro-array, or 450K

array (Bibikova et al., 2011), which allows for the interrogation of

DNA methylation levels of more than 450 000 loci at a relatively

low-cost. The 450K has been used widely and as of July 2017, data

from more than 60 000 arrays have been deposited onto the Gene

Expression Omnibus (under GPL13534). The 450K has since been

superseded by the HumanMethylationEPIC BeadChip micro-array

(EPIC). The EPIC array has substantial overlap with the 450K and

extends genome coverage to almost twice the number of loci

(Moran et al., 2016). With this increase in size of data it is apparent

that current methodologies are not suitable for handling the large

memory requirements necessary for analysis.

Analysis of DNA methylation array data is usually performed

using one of three software packages: Minfi (Aryee et al., 2014),

ChAMP (Morris et al., 2014) and RnBeads (Assenov et al., 2014),

all available on Bioconductor (Gentleman et al., 2004). Minfi pro-

vides tools for the reading-in of raw data files, normalization, map-

ping of DNA methylation data to the genome and the identification

of differentially methylation positions and regions. The ChAMP

package extends the minfi package but also seeks to integrate other

analyses and incorporates a selection of useful tools such as batch

correction and gene enrichment analysis into a rigid workflow.

RnBeads also offers a similar workflow to ChAMP but is not limited

to DNA methylation micro-array data and can additionally analyze

sequencing data. RnBeads also seeks to guide users through analyses

with sequential functions and can even perform an entire analysis

pipeline within a single function. Other packages worth mentioning

include MethylAid (van Iterson et al., 2014) and wateRmelon

(Pidsley et al., 2013), which focus on the quality control and prepro-

cessing of DNA methylation data respectively. WateRmelon is ex-

tremely compatible with minfi, ChAMP and RnBeads and provides

a variety of useful normalization methods and quality control tools.

MethylAid thoroughly examines the control probes located on DNA

methylation micro-arrays and presents users with a collection of

graphics that help diagnose problematic samples. Downstream ana-

lysis of any resultant processed data is performed on a probe-by-

probe basis with tools such as limma (Ritchie et al., 2015) or with a

variety of methods to identify differentially methylated regions such

as bumphunter (Jaffe et al., 2012) or block-finding (Hansen

et al., 2011).

Analysis of DNA methylation data from the raw format (.idat

files) first requires the parsing of data using the illuminaio package

(Smith et al., 2013) and conversion into a useful format. Using the

minfi package as an example: idat files are read into R, into mem-

ory, as an RGChannelSet object and subsequently can be converted

into a MethylSet object using a specified normalization method-

ology or left unprocessed whilst simultaneously matching probes to

identifiers. This MethylSet object essentially contains two matrices

corresponding to methylated (M) and unmethylated (U) intensities.

Statistical analysis of DNA methylation data mostly involves b val-

ues which are the ratio between the Methylated and total signals,

defined as b ¼ M
ðMþUþaÞ, where a is an arbitrary value to offset low in-

tensity values (usually 100). Assuming all three steps

(RGChannelSet ! MethylSet ! b matrix) are performed within a

single R session it would not be unreasonable to assume that there

are three copies of the same information stored in memory. If such

analysis was performed on a dataset consisting of 1000 450K arrays

we can expect to require at least 16 GB of memory (Supplementary

Materials S1) to simply load and convert data from raw format to a

biologically interpretable output before any statistical analysis has

been performed. The memory requirements may be mitigated

through careful memory management and garbage-collection how-

ever taking such steps would require reloading data into memory if

they are needed at a later point in time.

All the R packages described require data to be first loaded into

memory prior to any analysis. This can become an issue when han-

dling particularly large datasets as this would take up a considerable

amount of time and memory (depending on the computer) to load

into R. Presently, this is not an issue as the average size of an experi-

ment using 450K arrays is around 100 samples (400 Mb b matrix

size). Out of the 900 experiments deposited onto GEO (as of July

2017), only 27 of these have sample sizes larger than 500 and these

larger studies (Hannon et al., 2016; Jaffe et al., 2016; Liu

et al., 2013) may have been presented with analytical challenges

during down-stream analysis. Furthermore, large-scale analyses that

involved the aggregation of numerous datasets such as the ones used

in creating the epigenetic clock (Horvath, 2013) or exploring reposi-

tories such as Marmal-Aid (Lowe and Rakyan, 2013) may have

been severely limited by the need to load all the data into memory as

this would have made analysis computationally expensive.

Recent efforts have been made to handle this problem, notably

with the release of the meffil R package (Min et al., 2017). The mef-

fil R package allows the parsing of data one sample at a time and

offers a single form of normalization (functional normalization) but

is still limited by the fact that end result, b values, are stored in mem-

ory. In addition to this, meffil does not permit for the (raw) methy-

lated and unmethylated intensities to available alongside the b
values which can be useful in certain analyses. Furthermore meffil

does not allow for interactive preprocessing of data prior to normal-

ization, a feature that is highly important in our experience of

EWAS studies.

This feature of analysis, coupled with the release of the EPIC

array means that data will be increasing in size and current method-

ologies may not be suitable for the analysis of large datasets. To

combat potential memory constraints imposed by DNA methylation

analysis we introduce the bigmelon R package which includes

memory-efficient tools for reading-in, quality control, exploring

data and provides a practical workflow. In a well-run large-scale

genomics project the data is examined, quality-controlled and stored

as experimental batches are produced, rather than at the end.

Bigmelon is the only existing package that is designed to facilitate a

workflow of incremental data addition and analysis.

2 Approach

The bigmelon package makes use of the genomic data structure file

format (.gds format) implemented in the gdsfmt package (Zheng

et al., 2012). Originally designed for the storage of SNP micro-

arrays used in GWAS, the.gds format is a hard-disk representation

of data with libraries that support efficient access. The gdsfmt pack-

age is also used by the GWASTools package (Gogarten et al., 2012)

and the SNPRelate package (Zheng et al., 2012) which provide tools

for principal components analysis and identity-by-descent algo-

rithms that are integral in GWAS for adjusting for population struc-

ture and cryptic relatedness. In a similar manner, bigmelon is an

extension of both gdsfmt and wateRmelon that enables the analysis

of high dimensional DNA methylation data. The design objective of

bigmelon is to provide the tools necessary for a complete workflow,

these include quality control, normalization and statistical testing

but also provide methods for further evaluation and analysis. Tools

are additionally provided for estimating covariates such as age

(Horvath, 2013), sex and whole blood cell-type proportions
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(Houseman et al., 2012). Another heavily used tool for evaluating

and exploring data is principal components analysis, and an efficient

sampling approach to doing this on a large datasets is provided.

Finally, the package is designed to facilitate incremental analysis, so

that small batches of data can be readily looked at for quality con-

trol and even allow for first pass analyses as data is produced.

3 Materials and methods

A summary of the bigmelon workflow is described in Figure 1, the

workflow can be broken down into three main parts: data import,

quality control & preprocessing and analysis. Further descriptions

of each section are as follows:

1. Data import:

Much like other packages described, bigmelon offers the ability

to read data into R into the gds file format using the iadd or

iadd2 functions. The output of these functions is a hard-disk rep-

resentation of an object that closely resembles the methylumiset

object from the methylumi package (Triche et al., 2013). For

large data-sets these functions support memory-efficient batch

processing. minfi (RGChannelSet, MethylSet) and methylumi

(MethyLumiSet) objects can also be converted into gds format

using the eset2gds function.

2. QC & preprocessing:

Once data is in a gds file, it is possible to do thorough quality

control using a number of memory-efficient tools. These include

checking for outliers (outlyx), array quality (bscon), principal

components analysis and age predictions, which can reveal mis-

labelling and other problems. After problematic samples are

removed the data can be normalized. A range of quantile nor-

malization methods are available as in wateRmelon. We intro-

duce (qual), a quality measure based on the magnitude of

changes introduced by the normalizer. This can identify further

problematic samples which can degrade the quality of the data-

set, for example introducing test-statistic inflation.

3. Analysis:

One way to analyze the data is to extract the b values or subsets

of them from the gdsfmt object and analyze them with any of

the conventional methods. Bigmelon also facilitates conversion

to MethylSet and MethyLumiSet objects using the gds2mset or

gds2mlumi functions. This of course will be limited by the avail-

able memory. The core of EWAS analysis probewise analysis,

and this is can be done relatively fast using minimal memory

with apply.gdsn, and can also be parallelized using

clusterApply.gdsn More complex analysis methods can be

adapted for use with bigmelon objects. We provide a guide to

doing this using bumphunter, and a bumphunter method is pro-

vided in the package.

3.1 Datasets
To demonstrate the capability of the bigmelon package we analyze

two large datasets. The first consists of 1193 individuals from the

Understanding Society: UK Household Longitudinal Survey. The

goal of Understanding Society is to assess long-term and short-term

effects of social and economic change on a variety of outcomes.

Social and economic data are recorded through questionnaires and

additional information including biomarker data and genotyping

micro-arrays have also been obtained. Biomarker and relevant ques-

tionnaire data are available at https://www.understandingsociety.ac.

uk/about/health/data upon request. 500Ng of whole blood DNA

from each individual was treated with sodium bisulfite using the

EZ96 DNA methylation kit (Zymo Research, CA, USA) following

manufacturer’s standard protocol. DNA methylation intensities

were assess using Illumina Infinium HumanMethylationEPIC

BeadChips (Illumina Inc, CA, USA) in the Laboratory of Professor

Jon Mill (University of Exeter). DNA methylation levels were

assessed on an Illumina HiScan System (Illumina). This data-set is

used to demonstrate the complete workflow described in Figure 1.

The second dataset is the Marmal-aid database (Lowe and

Rakyan, 2013). Marmal-aid is the largest, most readily available

dataset for DNA methylation consisting of 14 586 450K arrays.

Originally it was collated to be used as a reference database for

many cancerous and noncancerous tissues as it contains rich detail

about each array (Tissue, Disease State, Sex and Age) but it can also

serve as a useful resource for software performance on very large

datasets.

3.2 Comparisons of memory usage
To test the difference in memory usage during analysis we the

normalizeQuantiles function from limma (used on the Marmal-Aid

dataset) with the bigmelon optimized versions (qn.gdsn). Bigmelon

contains many optimized versions of functions used to normalize

data and reproduce the results of the analysis precisely but differ in

how the computations are handled. The aim of testing the difference

in memory usage is to demonstrate that it is possible to execute

memory expensive computations without much cost of speed.

Memory usage was recording using an in-house bash script

(Supplementary Materials S2) to monitor the memory usage of a

specified R process at regular intervals during the normalization

process.

3.3 Data accession
To estimate how much time it takes to retrieve that data from the

hard disk into memory, the time taken to retrieve random portions

of data from the Marmal-Aid dataset using the microbenchmark

package (Mersmann, 2015).

All analyses were performed using R 3.4.0 on a machine with

500GB RAM (necessary for conventional analysis).

4 Results

4.1 Bigmelon provides a convenient workflow
Data import: the functions iadd and iadd2 conveniently read in raw

data (idat files), and can append new data to an existing gdsfile,

which is the key mechanism allowing an incremental workflow. We

go through an analysis of Understanding Society data-set to demon-

strate the steps shown in Figure 1.

Quality Control: The outlyx function is a robust outlier detec-

tion tool that identifies outlying samples without supervision

(Fig. 2). Within the original 1193 samples it can be seen that 6

samples are outlying (Fig. 2A), and removal of the most-outlying

sample yields no change in the results for the remaining samples

(Fig. 2B), suggesting that the tool is not susceptible to swamping/

masking effects. Similarly, removal of all outlying samples does

not unmask further candidates. (Fig. 2C) further demonstrating

the robustness of the quality-control procedure. Due to the un-

supervised nature of this tool, it can also be used to check data-

sets after quality control.

Atypical arrays are most likely the result of DNA quality or

processing faults, and the control probes on the array offer some in-

formation on this. bscon calculates a bisulfite conversion value,

which would ideally be 100%. In some datasets this may be lower,
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but certainly particularly low samples are an indication of trouble.

Supplementary Figure S1 shows the output of bscon on the

Understanding Society dataset. Here we select a conservative thresh-

old of 85% bisulfite conversion, and six samples were identified as

having low-quality, from these only one of these was also identified

as being atypical using outlyx.

Minor systematic differences between arrays introduced by sam-

ple quantity or other technical variations are readily normalized

away, and quantile normalization based methods are excellent for

imposing identical distributions on vectors that are similar in the

first place. The objective of EWAS is to detect a relatively small

number of true differences on a homogeneous background. We

introduce a function qual that measures ’normalisation violence’

required to bring an individual array into line. The properties of the

measure have not been fully explored, but a reasonable cutoff of

0.05 for root mean squared deviation identifies 6 potentially bad

arrays in this dataset (Supplementary Fig. S2).

In summary, out of 1193 samples we began with, 18 were

removed for failing qc criteria, 6 from outlyx, 7 from qual and 5

from bscon as detailed above. Each of these involve thresholds that

may need to be that may need to be adjusted in some cases but in

the main they can be used as automated filters. Additional qc and

sanity checks are equally important but require more human inter-

vention. Principal component analysis often reveals stratification,

samples with the wrong labelled sex and other problems. In

Supplementary Figure S3 we present the first and second principal

component loading values which clearly show two clusters which

can be used to guess the sex of samples, in our experience we have

found that the number of probes required to produce such a plot is

small and in some cases <1% of the total number of probes on a

micro-array will produce a biologically interpretable result. It is for

that reason the principal components method packaged in bigmelon

allows for a random selection of probes to be used instead of the full

data-set. Age prediction (Supplementary Fig. S4) can also be used to

check whether or not samples aligned with their supposed phenotyp-

ic data. In addition to offering age prediction using Horvath’s coeffi-

cients we also allow the option to compute ages using Hannum’s

coefficients (not shown) (Hannum et al., 2013).

Cell-Type composition estimation (Supplementary Fig. S5) has

been optimized by imposing methylated and unmethylated quantiles

onto the reference dataset instead of normalizing the reference and

biological dataset together as it was felt that given a large enough

number of samples, the addition of the reference dataset would not

have an effect on the precision of the cell-type estimates. When com-

pared to minfi it can be seen that the cell counts calculated using by

normalizing data together do not vary much from the cell counts

calculated from the alternative method and correlated highly

Fig. 1. Example of bigmelon workflow. The workflow is broken up into three

parts: Data Import, Quality Control and Analysis. Quality-control and analysis

boxes propose examples that can be used at each stage of the analysis

A B C

Fig. 2. Demonstration of outlyx on Understanding Society Dataset (n¼1193). (A) The results of outlyx used on all samples, (B) The results of outlyx with an obvi-

ous outlier removed and (C) the results of outlyx with all outliers removed
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together (Root Mean Squared Differences between minfi and bigme-

lon estimated cell counts range from 0.020 to 0.006).

4.2 Bigmelon uses less memory
When comparing the memory usage of bigmelon to other software

(limma and wateRmelon) it can be seen that there is at least a

hundred-fold difference in memory usage at any given time through-

out analysis (Fig. 3). These improvements in memory efficiency are

mostly dependent on the size of the data that are being analyzed

however this demonstrates that there is vast improvement using two

large biological data-sets. This improvement suggests it may be pos-

sible to carry out a complete analysis workflow on a low-end com-

puter (e.g. a workstation with just over 2 GB memory) as a full

analysis only requires 600 MB of memory at any given time. In this

comparison the performance of limma is identical to that of

wateRmelon and minfi, as all use the same normalizeQuantiles func-

tion. This is further demonstrated in Supplementary Figure S6 where

we assess the time it takes to quantile normalize varying data-sizes

on a modest workstation where it quickly runs out of memory and

resorts to thrashing to complete analysis. This reflects how both

minfi, wateRmelon and other R packages would perform.

4.3 Random access is fast
Despite being stored on the hard-disk access is still relatively fast

(Fig. 4). The median seek-time, using the Marmal-Aid dataset as a

benchmark, ranged from 6.2 ms when seeking a single data-point

randomly from the gds file to 13 min, when seeking all the data (458

877 rows, 14 586 columns). Additionally, accessing full rows and

columns from hard-disk take on average 14 and 0.3 s respectively. It

however must be noted that it appears the time required for access-

ing any amount of data is dependent on the number of samples being

accessed at the time, for example accessing all data for a 500 sample

dataset will only take 22 s.

5 Discussion

We have demonstrated how the bigmelon package resolves a severe

limitation that is associated with current methodologies in EWAS.

The bigmelon package facilitates the reading-in, quality-control,

preprocessing and statistical analysis of DNA methylation micro-

array data with an additional selection of useful tools. Through stor-

age of data on the hard-disk it is possible to circumvent majority of

memory constraints and allow the analysis to be performed on most

computers. Additionally, due to the nature of the workflow (Fig. 1)

it is possible to append data to pre-existing gds files allowing users

to analyze data as it is produced. The workflow has similarities to

the workflows presented in minfi and ChAMP, and there is a reason-

ably simple transition path from these to bigmelon.

Currently, bigmelon does not support all of the generalized clus-

tering methodologies used for the identification of differentially

methylated regions, although we do have an implementation of

bumphunter. Bigmelon allows for the seamless transition to and

from minfi or methylumi data structures (MethylSet and

MethyLumiSet objects), offering a route to using specialized tools if

enough memory is available. To assist in the writing optimized func-

tions for users with highly specific analyses we have provided a

guide to writing functions for bigmelon that covers most of the im-

portant aspects to writing memory efficient code (Supplementary

Materials S3). We plan to implement as many analyses as we see fit

and will strive towards implementing many existing methodologies

in the future.

6 Conclusion

The bigmelon package offers users the ability to easily handle and

analyze large DNA methylation datasets (both 450K and EPIC)

without the need of huge RAM or powerful computers however can

reap the benefits of powerful computers as the gds file format sup-

ports parallel computing. The bigmelon package trivializes the

Fig. 3. Comparison of quantile normalization on 52 GB b matrix from Marmal-

aid dataset (n¼ 14 586) using limma::normalizeQuantiles function and bigme-

lon::qn.gdsn, computation was performed on a single core computer with

500GB of memory

Fig. 4. Median time spent randomly accessing different sized portions of data

from the Marmal-Aid data-set (n¼14 586) stored in.gds file format
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compilation, exploration and analysis of extremely large datasets

and should prove integral for the analysis of DNA methylation data

in the future.
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