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Abstract—Atrial fibrillation (AF) is a common cardiac arrhyth-
mia that affects 1% of the population and is associated with high
levels of morbidity and all-cause mortality. Catheter ablation
(CA) has become one of the first line treatments for AF, but
the success rates of CA and other clinical treatments remain
suboptimal. The need to improve clinical outcomes warrants the
optimisation of CA therapy. In this study, we develop a novel
deep learning method to identify specific ablation patterns that
terminate AF efficiently. To achieve this, we simulate typical AF
ablation scenarios using computational models of 2D atrial tissue,
and use the simulation outcomes as inputs for a deep neural
network. The network is trained, validated and then applied
to classify the scenarios and predict the optimal CA pattern in
each scenario. For the validation dataset, the overall accuracy in
identifying the best CA strategy is recorded at 79%. The study
provides proof of concept that deep neural networks can learn
from computational models of AF and help optimise CA therapy.

Index Terms—atrial fibrillation, catheter ablation, tissue sim-
ulation, deep learning, therapy optimisation

I. INTRODUCTION

Atrial Fibrillation (AF) is the most common supra-
ventricular arrhythmia and is characterised by rapid and un-
coordinated contraction of the atria. It is associated with high
levels of morbidity and is the number one cause of stroke in
people over 75. [1] Although precise mechanisms underlying
AF are still unclear, it has been recognised that ectopic
electrical beats from the pulmonary veins (PV) can trigger
AF [2], and that electrical rotors generated by breakdown
of such ectopic waves provide self-sustained drivers for AF.
In addition, areas of fibrotic atrial tissue have been linked
with slow conduction of electrical waves, providing anchoring
points for the rotors, and thus arrhythmogenic locations in the
atria [3].

First line clinical treatments for AF include antiarrhythmic
drugs, electrical cardioversion and catheter ablation therapy.
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Radiofrequency Catheter Ablation (RFCA) involves controlled
destruction of arrhythmogenic locations via delivery of lo-
calised RF energy to atrial tissue through a catheter. RFCA
procedures have relatively high success rate in patients with
paroxysmal AF (about 70% for a single procedure) [4]. How-
ever, in persistent AF patients, the arrhythmia can recur after
RFCA in ~75% of cases [5]. This warrants the development
of novel, more efficient ablation strategies [6].

RFCA creates lines of conduction block on the atrial sur-
face, which ideally should have minimal length and allow for
quick recovery of the mechanical activity of both atria during
sinus rhythm [7]. The only clinically proven empirical strategy
is the Pulmonary Vein Isolation (PVI), which generates cir-
cumferential lesions around the right and left PVs. Promising
novel strategies include rotor- and the fibrosis- driven CA. The
former targets focal points of electrical activation to terminate
rotors [8], while the latter aims to minimise the effect of
fibrosis by applying box isolation of fibrotic areas (BIFA) [9]
or linear lesions across fibrotic tissue [10].

The heterogeneous results obtained by different studies sug-
gest that a single ablation strategy is unlikely to be successful
for all patients, and the improvement of CA therapy can
come from personalised approaches to each patient. We aim
to simulate various scenarios of AF and personalised CA
strategies using computational models on atrial tissue, and
use the model simulation data to train deep neural networks,
which have proven to be successful for time-series problems
in biology [11], [12]. Once the network is built, we will use it
to identify optimal patterns of CA lesions for each scenario.

II. METHODS

A. Atrial tissue model

Propagation of electrical activation waves in cardiac tissue
was simulated using the standard monodomain equation:

∂Vm

∂t
= ∇ · D∇Vm −

Iion
Cm

(1)



Here, Vm represents the membrane voltage, Cm is the specific
cell capacitance, and D is the diffusion tensor that characterises
electrical coupling in the tissue. For isotropic tissue the latter
is a constant and it was set to 0.05 mm2ms−1.

Equation 1 was solved using forward Euler integration
with a time step of 0.01 ms, combined with finite difference
approximation of the Laplacian with a spatial step of 0.3 mm.

For simulation of the ion current, the Fenton-Karma semi-
physiological model was used. This used three currents to
model the main ionic currents responsible for the electrical
activation and inactivation dynamics of atrial cells. These are
the fast inward (flow of Na+), the slow inward (flow of Ca2+)
and slow outward (flow of K+) currents.

Iion = Ifi + Iso + Isi (2)

All the currents were described using the standard equations
and parameters, as previously described [13], [14].

Equations 1 and 2 describe the propagation of electrical
waves through atrial tissue. To generate the wave breakdown
leading to rotors, the cross-field protocol was used [15]. To
simulate different AF scenarios, each 2D tissue model was
assigned 1) four circular areas of variable size and location
corresponding to the PVs (with the diffusion coefficient and
membrane potential both set to zero inside the area) and 2) a
fibrotic patch of variable size and location (with D = 0.0075
mm2ms−1 to simulate slow conduction). Ablation lesions were
simulated by setting values of the membrane potential and
diffusion coefficient to zero in small circular areas correspond-
ing to a catheter tip touching the tissue; zero-flux boundary
conditions were applied around such areas, as well as the PVs.

Tips of the rotors - a focal point of its rotations - was tracked
during the simulations. The tips were found as the intersection
of isolines of Vm and its time derivative [16]:

V (r, n∆t) = V (r, (n + 1)∆t) = Viso (3)

The value of Viso used in the tracking was 0.8 mV.

B. Data Collection

To train, test and validate our neural network classification
algorithm (see section C below), our input datasets consisted
of images from simulated electrical waves in 2D atrial tissue
(section A), which corresponds to a 2D cross section of the
upper left chamber of the heart, as shown in Fig. 1.

In total, 195 tissues were created with variable size and
locations of the PVs and fibrotic patches, and respective AF
scenarios were simulated in each tissue. The 2D tissues were
labelled to represent common CA strategies: PVI, fibrosis-
based and rotor-based ablation. Specifically, these were la-
belled according to success vs failure in 15 simulations for
each of 195 tissues, each of 2000 ms duration. In 6 simulations
fibrosis-based ablation was performed (2 for BIFA, 2 for
nuclear ablation of the entire fibrotic areas and 2 for lesions
across the fibrosis), then other 6 simulations PVI was per-
formed (2 around a single vein, 2 around 2 pairs of veins, and
2 around all 4 veins), and in the last 3 simulations the tissue

Fig. 1. Correspondence of 2D atrial tissue used in simulations with the 3D
heart (posterior view). The 2D tissue corresponds to the left atrium projected
on a plane, with the 4 pulmonary veins and a fibrotic patch present. This
tissue geometry was used to simulate PVI and fibrosis-based ablation.

was ablated following the rotor tip trajectories. Since PVI is
recognised as a standard successful treatment, simulations with
no success over 2000 ms were also labelled as PVI.

Allocation of labels is described in Fig. 2. From this
labelling method, we obtained a total of 73 tissues labelled
as Rotor, 74 labelled as PVI, and 48 labelled as Fibrosis. The
total number of 195 tissue images used as input for the network
was further subdivided into 156 images for training, 39 for
validation and 20 for testing.

Fig. 2. Simulations and label assignment for each 2D tissue. Before assigning
the label, the rotor-based CA strategy shown in part (a) was simulated 3 times;
the PVI (b) and fibrosis-based (c) strategies were each simulated 6 times.
The label was assigned based on the maximum number of successful AF
terminations across all the trials. Horizontal arrow shows the time axis and
five panels under it are the voltage distributions in 2D tissue for successive
moments of time. Green tick and red cross indicate CA success and failure,
respectively. In the example shown, the tissue shown on the right (red frame)
was assigned Fibrosis label. Part (d) shows several examples of labelled tissues
derived from this process, which represent a subset of the training data.

C. Convolutional Neural Network

To identify optimal CA patterns, a classification algorithm
was applied to the tissues. This was constructed using Tensor
Flow [17], in conjunction with the Python Keras library [18].

Pre-processing of the data consisted in resizing of the image
to a standard size of 64x64 pixels and normalization.

The Convolutional Neural Network (CNN) architecture con-
sisted of two 2D convolutions made of 32 filters, each of
size 3x3, followed by Rectified Linear Unit (ReLU) activation
and using maxnorm constraint. The convolution block was



followed by a MaxPooling with pool size 2x2, a Flatten layer,
and two Dense layers, the first of which was made of 512 units
and had ReLU activation and maxnorm kernel constraint. This
was followed by a Dropout layer of rate 0.5. The second Dense
Layer used softmax activation.

The optimizer chosen was a stochastic gradient descent
(sgd) with a learning rate of 0.01. The number of epochs was
set to 300. The algorithm was also tested for epoch values of
2000 and 5000, but no increase in accuracy was observed.

III. RESULTS

The value for the total accuracy in predicting the optimal CA
strategy reported by the algorithm for 39 validation images is
79.49%. The results are validated against CA success vs failure
seen in the respective simulations. Precision, Recall and f1-
score were calculated for each class, and these are summarised
in Table I. Precision seems to be relatively high for PVI and
Rotor classes, while decreasing to 50% for Fibrosis; this can be
due to the lower data available for this class. Recall value for
Fibrosis is not affected by this, therefore overall the algorithm
shows good sensitivity. The F1-score is an harmonic mean of
the previous two values; it shows a really high performance
of the Rotor class, giving an overall inter-class gap of 27%.

TABLE I
EVALUATION OF NETWORK THROUGH CLASSES

precision recall f1-score
Fibrosis 0.50 0.88 0.64

Pvi 1.0 0.70 0.82
Rotor 0.91 0.91 0.91

micro avg 0.79 0.79 0.79
macro avg 0.80 0.83 0.79

weighted avg 0.87 0.79 0.81

Fig. 3 shows the change in accuracy for the training and test
data over 300 epochs. When tested over the validation data,
the algorithm shows a high performance and stability (within
epoch 40 an accuracy of 0.86 is obtained).

Fig. 3. Classification accuracy over 300 epochs for training and test data.

When using the test data, it can be seen (Fig. 3) that longer
training doesn’t improve the accuracy significantly. In fact,
the maximum value is reached just before epoch 30, and then
it stabilises in the range of 0.7-0.8. A possible solution to
smooth this curve and increase the accuracy in the training set
could be to apply an adaptive learning rate; we also expect
that increasing the amount of training data would result in a
better performance of the classification algorithm.

Table II summarises results for predicted labels (CA strate-
gies) for the test set of 20 tissues. Some of the prediction
probabilities are very high, confirming the obtained precision
and recall seen in Table I.

TABLE II
ALGORITHM PREDICTIONS ON TEST DATA

test prediction probability test prediction probability
1 Rotor 0.99 11 Fibrosis 1
2 Rotor 0.54 12 Fibrosis 0.99
3 Rotor 0.99 13 Fibrosis 1
4 PVI 1 14 PVI 1
5 Rotor 0.55 15 Fibrosis 1
6 Rotor 1 16 Rotor 1
7 Fibrosis 0.99 17 Rotor 1
8 PVI 0.8 18 Rotor 0.54
9 Rotor 0.68 19 Rotor 0.99

10 PVI 0.99 20 PVI 1

All the labels predicted by the algorithm were confirmed
by the simulations, except from two test samples, number
2 and 8. Test number 2 is a tissue resulting in a very low
percentage of success over all the simulations, where only
1 PVI strategy succeeded. The same can be said for test
number 8 where only 1 rotor strategy had a positive result. It
is certainly less straightforward for the algorithm to predict a
suitable CA therapy of a specific tissue for which simulations
also produce a poor outcome. Ultimately, this issue can be
fixed by increasing the number of simulations for each tissue
in order to provide more accurate labels to each image.

It is worth noting that we would have expected to see more
Fibrosis labels misplaced but instead the tested subset gave
optimal predicted values for this class.

IV. CONCLUSION

This work has demonstrated proof of concept: deep neural
networks can be constructed to learn from computational
simulations of atrial electrical activations, to identify optimal
locations to administer ablations, thereby treating AF. More-
over, the method constructed enabled us to predict optimal
CA patterns for new tissues, with randomly assigned fibrotic
patch locations and topologies, which is currently one of the
ultimate aims of research in the field of AF. The results in
Table II show accurate predictions on a small subset of new
data, and therefore, provide confidence for the utility of further
algorithm development.

The main limitation of the current approach is the absence
of sufficient data for training. Moreover, a detailed analysis
should be conducted on interesting cases where PVI, Rotor



and Fibrosis patterns give the same rate of success for a tissue,
which here have all been labelled as PVI. A more effective
way to deal with these situations is to compare the percentage
of tissue ablated for each pattern, which for the simulations
carried out in this study never exceeded 42% of tissue ablated.

Successive steps would be to further tune the hyperparam-
eters used for the classification algorithm and to increase the
number of training data. Ultimately, our aim would be to
apply a similar research study to 3D data gathered through
simulations of real patient MRI scans, as suggested by Fig. 4.

Fig. 4. Proposed workflow for assigning labels to patient MR images based
on image-derived 3D simulations of atrial electrical activations. Similar to the
current study, labels would be given to each patient datasets according to the
rate of success for several AF ablation scenarios. Once passed through the
layers of a CNN, the output would be the best CA strategy for a given patient.

Despite of the current data volume limitations, this work
allowed us to highlight the importance of a patient-specific
approach to AF therapy, which is being increasingly recog-
nised [19]–[21]. Moreover, we identified CNNs as a new tool
to investigate different patterns for optimal CA therapy. The
results obtained show that a neural network can provide a
sensible approach to identify a suitable ablation strategy for
the considerably high number of people suffering from AF.
Specifically, it would be of significant importance if applied on
a detailed 3D image-based model that includes atrial geometry
and fibrosis [3], [14], as well as other MRI-derived structural
features such as the atrial wall thickness [22].
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