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ABSTRACT 

Psoriasis is an immune-mediated skin disorder associated with severe systemic co-morbidities. While 

IL-36 is a key disease driver, the pathogenic role of this cytokine has mainly been investigated in skin. 

Thus, its effects on systemic immunity and extra-cutaneous disease manifestations remain poorly 

understood.  

To address this issue, we investigated the consequences of excessive IL-36 activity in circulating 

immune cells. We initially focused our attention on generalised pustular psoriasis (GPP), a clinical 

variant associated with pervasive up-regulation of IL-36 signalling. By undertaking blood and 

neutrophil RNA-sequencing, we demonstrated that affected individuals display a prominent Type-I IFN 

signature, which correlates with abnormal IL-36 activity. We then validated the association between 

IL-36 de-regulation and Type-I IFN over-expression in patients with severe psoriasis vulgaris (PsV). 

We also found that the activation of Type-I IFN genes was associated with extra-cutaneous morbidity, 

in both GPP and PsV. Finally, we undertook mechanistic experiments, demonstrating that IL-36 acts 

directly on plasmacytoid dendritic cells (pDCs), where it potentiates Toll-like Receptor (TLR)-9 

activation and IFN-α production. This effect was mediated by the up-regulation of PLSCR1, a 

phospholipid scramblase mediating endosomal TLR-9 translocation.  

These findings identify an IL-36/Type-I IFN axis contributing to extra-cutaneous inflammation in 

psoriasis. 

 

Key words:  

Generalized pustular psoriasis, psoriasis vulgaris, systemic inflammation, IL-36, Type-I IFN, PLSCR1 

 

Abbreviations: CAPS, cryopyrin associated periodic syndrome; DEG, differentially expressed genes; 

FC, fold change; GPP, generalised pustular psoriasis; IFN, interferon; IL-36, interleukin-36; IL36R, IL-

36 receptor; IL36RN: IL-36 receptor antagonist; MAPK, mitogen-activated protein kinases; pDCs, 

plasmacytoid dendritic cells; PLSCR1, Phospholipid Scramblase 1; PsV: psoriasis vulgaris; TLR- 9: 

Toll-like receptor- 9 
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INTRODUCTION 

Interleukin-36α, -β and -γ (hence IL-36) are group of IL-1 family cytokines that are mainly produced 

by keratinocytes, monocytes and dendritic cells (Bassoy et al., 2018). IL-36 signalling plays an 

important role in epithelial immune homeostasis and its de-regulation has been repeatedly implicated 

in the pathogenesis of psoriasis vulgaris (PsV), a common and chronic, immune-mediated skin disorder 

(Bassoy et al., 2018).  

Numerous studies have shown that IL-36 responses are elevated in PsV skin (Mahil et al., 2017, 

Quaranta et al., 2014, Swindell et al., 2015) where they stimulate chemokine production and amplify 

the effects of IL-17 signalling (Mahil et al., 2017). Animal studies have also demonstrated that IL-36 

promotes the activation of dendritic cells and the polarization of T lymphocytes into Th17 cells (Tortola 

et al., 2012). Thus, the mechanisms whereby IL-36 contributes to cutaneous inflammation have been 

extensively investigated. Its effects on circulating leukocytes, however, remain poorly understood. 

We and others have shown that recessive mutations of the IL-36 receptor antagonist (IL36RN) are 

associated with generalised pustular psoriasis (GPP), a disease variant characterized by severe extra-

cutaneous symptoms (Marrakchi et al., 2011, Onoufriadis et al., 2011). In fact, GPP patients suffer from 

flares of skin pustulation that are often accompanied by systemic upset (fever, elevation of acute phase 

reactants and neutrophilia) (Burden and Kirby, 2016). This suggests that IL-36 signalling is likely to 

influence immune responses beyond skin. 

Extra-cutaneous co-morbidities are also well documented in PsV, as individuals suffering from severe 

disease are at high risk of psoriatic arthritis, metabolic syndrome and atherosclerosis (Burden and Kirby, 

2016, Fang et al., 2016, Shah et al., 2017). It has therefore been proposed that PsV is a systemic disease, 

manifesting with skin, joint and vascular inflammation (Davidovici et al., 2010, Reich, 2012).  

In this context, we hypothesise that abnormal IL-36 signalling has extra-cutaneous effects in both GPP 

and PsV, driving acute systemic flares in the former and contributing to a state of chronic systemic 

inflammation in the latter. To explore this model, we integrated the transcription profiling of patient 

leukocytes with ex-vivo IL-36 stimulations. We show that IL-36 potentiates Toll-like receptor (TLR)- 

9 activation and enhances the production of Type-I IFN, a cytokine that contributes to systemic 

immunity, arthritis and atherosclerosis. 
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RESULTS 

Expression profiling identifies a Type-I IFN signature in GPP and PsV whole-blood samples 

We reasoned that GPP would represent an ideal model in which to investigate the systemic effects of 

IL-36, given the well-established link with IL36RN mutations (Marrakchi et al., 2011, Onoufriadis et 

al., 2011) and enhanced IL-36 activity (Johnston et al., 2016). We therefore undertook whole-blood 

RNA-sequencing in 9 affected individuals and 7 healthy controls (Supplementary Table S1 a). While 

the deconvolution of transcription profiles showed that leukocyte frequencies were comparable in cases 

vs. controls (Supplementary Table S1 b), differential expression analysis identified 111 genes that were 

over-expressed (fold change≥1.5; FDR< 0.05) in patients (Figure 1 a, Supplementary Table S2 a). As 

expected, genes that can be induced by IL-36 (IL1B, PI3, VNN2, TNFAIP6, SERPINB1) were 

collectively up-regulated in cases vs. controls (P=0.019) (Figure 1 b). Of note, the analysis of a publicly 

available PsV dataset (Wang et al., 2014) identified a moderate, but statistically significant, over-

expression of the same genes in patient whole-blood (P=0.001) (Figure 1 b), suggesting that IL-36 may 

have systemic effects in PsV.  

To further explore the biological significance of our findings, we mapped the genes up-regulated in 

GPP to the blood co-expression modules described by Li et al (Li et al., 2014). We found that the over-

expressed genes were significantly enriched among modules related to innate immune activation (e.g. 

enriched in activated dendritic cells, FDR<0.005) and antiviral responses (e.g. type I IFN response; 

FDR<0.05) (Figure 1 c). These findings were validated by Ingenuity Pathway Analysis (IPA), which 

identified interferon signalling as the most significantly enriched pathway (FDR<5x10-6) (Figure 1 d). 

An upstream regulator analysis also highlighted IRF7, STAT1 and STAT3 as the transcriptional 

activators that are most strongly associated with gene over-expression (FDR<10-10 for all) (Figure 1 e, 

Supplementary Table S2 c). This is of interest since proteins are critical mediators of IFN signal 

transduction and IFN-α production by pDCs (Honda et al., 2005). 

Finally, the analysis of two publicly available datasets (Liu et al., 2012, Rodero et al., 2017) 

demonstrated a significant overlap (P<10-10) between the genes that are up-regulated in GPP and those 

that are over-expressed in autoinflammatory syndromes caused by abnormal activation of Type-I IFN 
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responses (Figure 1 f). Of note, no overlap was found with the up-regulated genes detected in cryopyrin 

associated periodic syndrome (CAPS), a disease caused by excessive IL-1 activity, which was analysed 

as a negative control (Supplementary Figure S1). Thus, the presence of a Type-I IFN signature in GPP 

leukocytes is supported by several lines of evidence.  

To further investigate the relevance of these observations we built an interferon score by measuring the 

aggregate expression of 5 genes (IFI6, IFIT3, IFITM3, OASL, PLSCR1), which were up-regulated in 

the GPP dataset and annotated as Type-I IFN dependent in the interferome database (Rusinova et al., 

2013). As expected, the score was elevated in GPP cases, compared to controls. A similar increase was 

observed in the publicly available PsV dataset (Figure 1 g). Importantly, we found that the interferon 

score documented in GPP and PsV significantly correlated with the up-regulation of IL-36 related genes 

(P<0.01) (Figure 1 h). Thus, we have shown that systemic Type-I IFN responses are abnormally active 

in psoriasis, which may be linked to increased IL-36 production. 

 

The Type-I IFN signature is driven by gene up-regulation in neutrophils 

The presence of heterogeneous cell populations in whole-blood can complicate the interpretation of 

transcription profiling experiments. We therefore sought to validate our results through an independent 

analysis of a single cell type. We focused our attention on neutrophils, as they play a critical role in 

systemic inflammation and can be activated by Type-I IFN (Zimmermann et al., 2016).  

We obtained fresh blood samples from 8 GPP cases and 11 controls (Supplementary Table S1 a). 

Following neutrophil isolation and RNA-sequencing, we detected 200 up-regulated genes (Figure 2 a, 

Supplementary Table S2 b). The analysis of transcriptional networks identified Type-I interferon 

response as the most significantly enriched module (FDR<10-12), followed by innate antiviral response 

and antiviral interferon signature (FDR<10-10) (Figure 2 b). IPA also demonstrated a marked 

enrichment of pathways related to interferon signalling (FDR<10-11) (Figure 2 c) and highlighted IRF7 

and STAT1 as the most likely drivers of gene up-regulation (FDR<10-30) (Figure 2 d, Supplementary 

Table S2 d). In keeping with these findings, interferon scores were elevated in GPP cases compared to 

controls (P=0.02) (Figure 2 e). These observations validate the results obtained in whole-blood and 

suggest that the Type-I IFN signature is driven at least in part, by gene up-regulation in neutrophils. 
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The Type-I IFN signature can be validated in extended PsV and GPP datasets 

We next sought to validate the type I IFN signature through the analysis of further affected individuals.  

We examined neutrophils obtained from 17 GPP cases (including 8 newly recruited cases) and 16 PsV 

patients suffering from severe disease (average Psoriasis Area and Severity Index: 17.9). We also 

analysed two control groups including 9 individuals affected by CAPS and 26 healthy volunteers. Real-

time PCR demonstrated that the interferon score was significantly increased in GPP and PsV cases 

compared to healthy controls (P<0.005). Conversely, and in keeping with the specificity of our 

observations, the scores of CAPS patients were within the normal range defined in unaffected 

individuals (Figure 3 a).   

Of note, medical records showed that GPP patients with high IFN scores were more likely to experience 

systemic flares than those with low scores (88% vs 33%; P=0.049). Likewise, the prevalence of 

psoriatic arthritis was higher among PsV subjects with high IFN scores (67% vs 18%; P=0.03) (Figure 

3 b).   

Thus, the Type-I IFN signature detected by RNA-sequencing can be validated in independent PsV and 

GPP samples, where it is associated with extra-cutaneous morbidity. 

 

The IL-36 receptor is expressed on the surface of plasmacytoid dendritic cells  

We next hypothesised that IL-36 has a direct effect on Type-I IFN producing cells. To investigate this 

possibility, we systematically examined the surface expression of the IL-36 receptor (IL36R) in innate 

immune cells. In keeping with published findings (Foster et al., 2014), we found that IL36R was barely 

detectable on the surface of healthy neutrophils (Figure 4 a), suggesting that the effects of IL-36 on 

these cells are mediated by the activation of different immune population(s). 

We also showed that IL36R+ cell numbers were low among innate lymphoid cells (Figure 4 b) and in 

monocytes (Figure 4 c). Higher IL36R levels were observed in myeloid (mDC) and plasmacytoid 

dendritic cells (pDCs) (Figure 4 d, Supplementary Figure S2), with the largest percentage of IL36R+ 

cells detected in the pDCs of GPP patients (Figure 4 e). Thus, we have shown that IL-36R is robustly 
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expressed in pDCs, which are the main producers of IFN-α (a member of the Type-I IFN family) in the 

immune system. 

 

IL-36 potentiates IFN-α production in response to Toll-like receptor 9 stimulation 

Based on the results obtained in the above experiments, we hypothesised that IL-36 potentiates Type-I 

IFN production by pDCs. To investigate this possibility, we pre-treated PBMCs obtained from healthy 

donors with IL-36 or vehicle. We then stimulated the cells with CpG-containing DNA (hence CpG), a 

TLR-9 ligand which induces IFN-α release by pDCs. Finally, we measured the up-regulation of the IFN 

signature genes as a readout of Type-I IFN production. While CpG increased the expression of most 

signature genes, its effect was more pronounced in cells that had been pre-incubated with IL-36 (P<0.05 

for IFIT3, OASL and PLSCR1) (Figure 5 a). This observation was validated by direct measurements of 

IFN-α production, showing increased cytokine release following IL-36 pre-treatment (Figure 5 b). 

Finally, flow cytometry documented an increased proportion of IFNα+ pDCs among the cells that had 

been stimulated with IL-36 and CpG, compared to those that had been exposed to CpG alone (Figure 5 

c). Thus, multiple experimental readouts support the notion that IL-36 up-regulates TLR-9 dependent 

IFN-α release. 

 

IL-36 up-regulates PLSCR1, a known TLR-9 transporter  

We next sought to define the mechanisms whereby IL-36 enhances cytokine production downstream of 

TLR-9. A closer inspection of the PBMC stimulation results showed that IL-36 treatment up-regulates 

PLSCR1, even in the absence of CpG. This is of interest, as the gene encodes phospholipid scramblase 

1, a protein which regulates TLR-9 trafficking to the endosomal compartment (Talukder et al., 2012). 

To further explore the link between IL-36 and PLSCR1, we first validated our initial observation in 

additional donors (Figure 6 a). Next, we demonstrated that IL-36 treatment increases PLSCR1 protein 

levels in isolated pDCs, showing a direct effect of the cytokine on these cells (P<0.05) (Figure 6 b). 

Finally, we investigated the mechanism whereby IL-36 up-regulates PLSCR1. As expected for an IFN 

signature gene, an analysis of the PLSCR1 promoter uncovered a STAT1 binding site. Given that IL-

36 can signal through mitogen-activated protein kinases (MAPK) (Bassoy et al., 2018), and that there 
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have been reports of cross-talk between STAT1 and MAPK signalling (Zhang et al., 2004), we reasoned 

that the latter pathway was likely to be involved. Real-time PCR experiments confirmed this hypothesis, 

as the SB-203580 MAPK inhibitor abolished the effect of IL-36 on PLSCR1 expression (Figure 6 c). 

Thus, we have demonstrated that IL-36 can act directly on pDCs, where it up-regulates PLSCR1, in a 

MAPK-dependent fashion. 

 

DISCUSSION 

While PsV has been historically described as a dermatological condition, the importance of extra-

cutaneous co-morbidities is increasingly recognised (Armstrong et al., 2013). Of note, the prevalence 

of most co-morbid conditions increases with the severity and the duration of the disease (Burden and 

Kirby, 2016, Egeberg et al., 2017). There is therefore a dose-dependent association between cutaneous 

and extra-cutaneous inflammation, which suggests a shared systemic pathogenesis. The underlying 

pathways, however, remain poorly understood. 

Here, we demonstrated that IL-36 signalling is enhanced in the leukocytes of PsV patients, where 

abnormal IL-36 activity correlates with Type-I IFN over-expression. While many of the genes that are 

induced by IL-36 are also up-regulated by IL-1, this set of shared targets does not include mediators of 

Type-I IFN production (Swindell et al., 2018). Accordingly, we found that IFN signature genes are not 

over-expressed in CAPS, a condition caused by excessive IL-1 signalling. Thus, IL-1 is unlikely to play 

a significant role in promoting Type-I IFN responses in psoriasis.  

Several studies have found that Type-I IFN is a mediator of vascular inflammation, which promotes the 

recruitment of leukocytes to atherosclerotic plaques (Goossens et al., 2010, Niessner et al., 2007). 

Experiments carried out in animal models have also shown that TLR-9 dependent Type-I IFN 

production is a key driver of systemic autoimmunity (Di Domizio et al., 2012). 

In keeping with these observations, signatures of excessive Type-I IFN activity have been documented 

in various diseases presenting with prominent systemic involvement. One notable example is systemic 

lupus erythematosus (SLE), a disorder associated with skin and joint inflammation, accelerated 

atherosclerosis and up-regulation of genes such as IFI6 and OASL (El-Sherbiny et al., 2018). Of interest, 

three independent studies have reported that IL-36 serum levels correlate with disease activity in SLE 
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(Chu et al., 2015, Ismail et al., 2018, Mai et al., 2018), which further reinforces the link between IL-36 

and Type-I IFN. Our work adds to these observations and provides mechanistic insights into the 

underlying pathways. 

Our computational and experimental results implicate pDCs as the most likely mediators of IL-36 

activity. First, we identified IRF7 as one of the most significant drivers of differential gene expression 

in GPP. Second, we demonstrated that IL-36R levels are highest in pDCs, especially among GPP 

patients. Of note, it has long been established that pDCs accumulate within psoriatic skin lesions, where 

they contribute to early disease processes alongside slanDC (Hansel et al., 2011, Nestle et al., 2005). It 

has also been reported that IL36R is abundantly expressed in various classes of skin-resident DC 

(Dietrich et al., 2016). Thus, it is tempting to speculate that IL-36 mediated pDC activation may also 

have a pathogenic role in skin. 

Our results show that the effects of IL-36 on pDCs are mediated at least in part by PLSCR1 up-

regulation. Interestingly, PLSCR1 siRNA knockout inhibits Type I IFN production by human pDCs 

(Talukder et al., 2012), so it is reasonable to hypothesise that an increase in gene expression would have 

the opposite effect. While the PLSCR1 induction observed in our IL-36 stimulation experiments was 

modest (1.5-2.0 fold), it might be sufficient to activate a feed-forward loop whereby up-regulated 

PLSCR1 promotes the production of Type-I IFN, which in turn induces further PLSCR1 transcription. 

In fact, self-amplifying loops are a key feature of Type-I IFN signalling, as they are required for robust 

antiviral responses (Hall and Rosen, 2010). 

We cannot exclude the possibility that additional IL-36 responsive genes or cell types may also 

contribute to the up-regulation of Type-I IFN. However, we have found that IL-36 does not affect the 

expression of TLR9 or that of key downstream genes (IRF1, IRF3, IRF7; data not shown). We have also 

observed that genes driving other antiviral pathways (DDX58/RIG-I, IFIH1/MDA5, 

TMEM173/STING) are not up-regulated in PsV or GPP whole-blood.  

While our pDC stimulations were carried out with a synthetic TLR-9 agonist, the identity of the agents 

that cause IFN-α production in patients remains to be determined. In lesional skin, pDCs are activated 

by self-nucleic acids released by apoptotic keratinocytes and bound to the LL-37 antimicrobial peptide 

(Lande et al., 2007). Our transcriptomic data, however, suggests that this mechanism is unlikely to be 
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relevant at the systemic level. While CAMP (the gene encoding LL-37) was up-regulated in psoriatic 

skin, it was not over-expressed in GPP or PsV whole-blood. Moreover, there was no correlation between 

CAMP whole-blood expression and the up-regulation of Type-I IFN genes (r<0.1). Thus, the agents that 

activate the circulating pDC of psoriatic patients may be different from those that are present in skin.    

In conclusion, we have identified an IL-36/TLR-9 axis which up-regulates systemic Type-I IFN 

production in psoriasis (Figure 6 d). In GPP patients, the effects of IL-36 signalling are amplified by 

inherited IL36RN mutations, a phenomenon which is likely to account for the severe nature of systemic 

flares. In PsV, the Th17-dependent up-regulation of IL-36 cytokines is associated with a less 

pronounced transcriptional signature and with signs of chronic systemic inflammation.  

Given that IL-36 is down-regulated by IL-17 inhibitors such as secukinumab (Kolbinger et al., 2017), 

it is possible that treatment of psoriasis with IL-17 antagonists might also modulate Type-I IFN 

production. Of note, the effects of direct IL-36 inhibition are currently being investigated in clinical 

trials, with promising results obtained in a Phase I study (Bachelez, 2018). In this context, our work 

suggests that IL-36 antagonists have the potential to improve systemic Type I IFN up-regulation and 

extra-cutaneous manifestations of psoriasis.    

 

METHODS 

Human subjects 

The study was performed according to the principles of the Declaration of Helsinki. Patients were 

ascertained at St John’s Institute of Dermatology and Royal Free Hospital (London, UK), Glasgow 

Western Infirmary (Glasgow, UK), Salford Royal Foundation Trust (Manchester, UK) and Hospital 

Sultanah Aminah (Johor Bahru, Malaysia). The study was approved by the ethics committees of 

participating institutions and written informed consent was obtained from all participants.  

Nine unrelated GPP patients and 7 healthy controls were recruited for whole-blood RNA-sequencing, 

while neutrophil RNA-sequencing was carried out in 8 GPP patients and 11 healthy controls. Five 

controls and six cases were common to both studies (Supplementary Table S1 a). For the validation of 

neutrophil RNA-sequencing results, fresh blood was obtained from 17 GPP, 26 control, 9 CAPS and 

17 PsV individuals (Supplementary Table S3). All PsV patients suffered from moderate-to-severe 
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disease (Psoriasis Area Severity Index >10) and were recruited from the same centre (Severe psoriasis 

service, St John’s Institute of Dermatology). Patients presenting with joint pain were referred to an 

expert rheumatologist, who diagnosed PsA, when applicable. The IL36RN gene was screened in all GPP 

cases and mutations were identified in 4 individuals (Supplementary Table S1 a).  

 

RNA sequencing data analysis 

The raw sequence data generated in house and that retrieved from public repositories (Supplementary 

Table S4) were processed with the same computational pipeline (described in supplementary methods), 

in order to standardise the data analysis process. Genes were considered up-regulated if the fold change 

exceeded 1.5 (FDR<0.05). When RNA-sequencing and microarray data were compared, the analysis 

focused on the 100 genes that were most significantly up-regulated in each sample, in order to account 

for the different sensitivity of the two platforms. 

Genes up-regulated in GPP were used as input for pathway and upstream regulator enrichment analyses 

(IPA, Qiagen). STAT1- STAT3- and IRF7-centered networks were visualised with the igraph v1.0.1 R 

Package. 

The transcriptional modules that were active in our datasets were selected from the library published by 

Li et al (Li et al., 2014). The enrichment_test function was then applied to the lists of up-regulated 

genes.  

The interferon score was built using the five Type-I IFN dependent genes that were most up-regulated 

in GPP whole-blood (PLSCR1, OALS, IFI6, IFIT3, IFITM3). As IL-36 dependent genes have not been 

systematically characterised in leukocytes, the IL-36 score was based on the analysis of five genes 

which were strongly induced by IL-36 in keratinocytes (Mahil et al., 2017) and robustly expressed in 

whole-blood (IL1B, PI3, VNN2, TNFAIP6, SERPINB1). Both scores were derived by normalising 

RPKM values to a calibrator sample and then computing the median expression of the five genes.  

 

Statistics 

Differences between patient and control cytokine scores were assessed using an unpaired t-test or one-

way ANOVA, as appropriate. To account for donor variability in cytokine responses, IL-36/CpG 
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stimulations were analysed with non-parametric methods (Wilcoxon signed-rank test for comparisons 

between two groups and Friedman’s test for comparison between three groups), as these do not assume 

equal variance among samples. The correlation between cytokine scores was calculated using Spearman 

method. The significance of overlaps observed in Venn diagrams was computed with a hyper-geometric 

test and confirmed by bootstrap analysis. Fisher’s exact test was used to compare the clinical features 

of patients with high and low IFN scores.  
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FIGURE LEGENDS 

Figure 1. Transcription profiling of GPP and PsV whole-blood uncovers a Type-I IFN signature 

that correlates with IL-36 activity. (a) Identification of genes that are differentially expressed in GPP. 

Horizontal and vertical lines represent significance and fold change thresholds, respectively. The genes 

underlying the IFN score are in red. (b) Higher expression of IL-36 dependent genes in whole-blood of 

GPP and PsV patients, compared to controls (CTR). (c) Transcriptional modules enriched among genes 

up-regulated in GPP. The FDR for each module is reported, with the underlying up-regulated genes 

shown as grey cells. (d) Enriched pathways detected among genes over-expressed in GPP. (e) Key 

transcriptional factors driving gene over-expression in GPP. (f) Overlap between the genes that are up-

regulated in GPP and IFNpathies. (g) Elevated IFN score in whole-blood samples of GPP and PsV 

patients, compared to controls (CTR). (h) IL-36 and IFN scores are significantly correlated, in both 

GPP and PsV patients. Dashed regression lines are plotted with 95% confidence intervals (grey areas). 

The data in (b) and (g) are presented as mean +/- SD; *P<0.05, **P<0.01 (unpaired t-test). 

 

Figure 2. Transcription profiling of GPP neutrophils confirms the presence of a Type-I IFN 

signature (a) Identification of genes that are differentially expressed in GPP. Horizontal and vertical 

lines represent significance and fold change thresholds, respectively. (b) Transcriptional modules 

enriched among the genes that are up-regulated in GPP. The FDR for each module is reported, with the 

underlying up-regulated genes shown as grey cells. (c) Enriched pathways detected among the genes 

that are up-regulated in GPP. IFN-related pathways are highlighted in bold (d) Upstream regulator 

analysis showing that IRF7 and STAT1 drive the up-regulation of numerous genes that are over-

expressed in GPP. (e) Elevated IFN score in the neutrophils of GPP patients, compared to controls. The 

data are presented as mean +/- SD; *P<0.05 (unpaired t-test).  

 

Figure 3. Validation of the Type-I IFN signature in extended datasets (a) Elevated IFN score in the 

neutrophils of GPP and PsV patients, compared to healthy individuals. CAPS cases were analysed as 

negative controls. The data are presented as mean +/- standard deviation; **P<0.01 and ***P<0.001 

(one-way ANOVA followed by Dunnett’s post-test). (b) Left: systemic flares are more prevalent in 
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GPP patients with high interferon scores (n=8) compared to those with low interferon scores (n=9). 

Right: psoriatic arthritis (PsA) is more prevalent in PsV patients with high interferon scores (n=6) 

compared to those with low interferon scores (n=11). In both groups, the cut-off between high and low 

scores was defined as the median +2SD of the values observed in healthy controls. *P<0.05 (Fisher’s 

exact test).  

 

Figure 4. The IL-36 receptor is preferentially expressed by pDCs. (a-e) Representative flow 

cytometry plots showing IL36R surface expression, compared to fluorescence minus one (FMO) 

controls. (a) neutrophils (gated as CD14+, CD15+, CD16+ cells); (b) innate lymphoid cells (lineage- 

(CD3-, CD4-, CD19-, CD20-, CD56-), CD127+); (c) monocytes (CD3-, CD20-, CD19-, CD56-) separated 

into classical (CD16-, CD14high), intermediate (CD16+, CD14+) and pro-inflammatory (CD16high, 

CD14-) populations; (d) pDCs (lineage-, HLADR+, CD123+, CD11c-) and mDCs (lineage-, HLADR+, 

CD123-, CD11c+). (e) Histogram showing the percentage IL36R+ cells in each leukocyte population. 

Data were obtained in at least 3 GPP cases and 3 sex-matched controls. Results are presented as mean 

+/- SEM. No significant differences were observed between GPP cases and healthy donors. 

 

Figure 5. IL-36 enhances the production of IFN-α downstream of Toll-like receptor 9. (a) PBMCs 

were stimulated with CpG for 6h, in the presence or absence of IL-36 pre-treatment (6h). The expression 

of interferon signature genes was measured by real-time PCR. Data represent the mean +/- SEM of 

results obtained in three independent donors, each stimulated in triplicate. (b) Following PBMC 

stimulation, IFN-α production was measured by ELISA. Data represent the mean +/- SEM of results 

obtained in two independent donors, each stimulated in triplicate. (c) Following PBMC stimulation, the 

percentage of IFNα+ pDCs was determined by flow cytometry.  A representative set of plots is shown 

(left), together with the data obtained in 3 independent healthy donors (right). *P<0.05; **P<0.01 

(Friedman’s test, with Dunn’s post-test).  
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Figure 6. IL-36 up-regulates PLSCR1 (a) Following treatment of PBMCs with IL-36, PLSCR1 

expression was measured by real-time PCR. (b) Following IL-36 treatment of pDCs, PLSCR1 mean 

fluorescence intensity (MFI) was measured by flow-cytometry, in gated PSLCR1+ pDCs. A 

representative histogram is shown on the left. (c) Following pre-treatment with SB203580 (MAPKi), 

PBMCs where stimulated with IL-36. PLSCR1 expression was then determined by real-time PCR. (d) 

Proposed pathogenic model.  Interleukin-36 produced by mDC up-regulates PLSCR1 in pDCs, 

potentiating TLR-9 dependent IFN-α release. IFN-α induces further PLSCR1 transcription, thus 

propagating an inflammatory feed-forward loop. All data are shown as mean +/- SEM of results 

obtained in at least 3 donors, each stimulated in triplicate. *P<0.05 (Wilcoxon signed-rank test (a, b) 

and Friedman’s test with Dunn’s post-test (c))  

 

 

 


