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Abstract 1 

1. Non-native species can dominate plant communities by competitively displacing native 2 

species, or because environmental change creates conditions favourable to non-native species 3 

but unfavourable to native species. We need to disentangle these mechanisms so that 4 

management can target competitively dominant species and reduce their impacts.  5 

2. Joint-species distribution models (JSDMs) can potentially quantify competitive impacts 6 

by simultaneously modelling how species respond to environmental variation and to changes in 7 

community composition. We describe a JSDM to model variation in plant cover and show how 8 

this can be applied to compositional data to detect dominant competitors that cause other 9 

species to decline in abundance. 10 

3. We applied the model to an experiment in an invaded grassy-woodland community in 11 

Australia where we manipulated biomass removal (through slashing and fencing to prevent 12 

grazing by kangaroos) along a fertility gradient. Non-native species dominated plant cover at 13 

high fertility sites in the absence of biomass removal. Results from the JSDM identified three of 14 

the 72 non-native plant species (Bromus diandrus, Acetosella vulgaris and especially Avena 15 

fatua) as having a strong competitive impact on the community, driving changes in composition 16 

and reducing the cover of both native and non-native species, particularly in the absence of 17 

grazing. The dominant non-native grasses Bromus diandrus and Avena fatua were among the 18 

tallest species in the community and had the greatest impact on shorter-statured species, most 19 

likely through competition for light under conditions of high fertility and low grazing. 20 

4. Synthesis. We demonstrate a method to measure competitive impact using a JSDM, 21 

which allowed us to identify the species driving compositional change through competitive 22 

displacement, and where on the landscape competitive impacts were greatest. This information 23 

is central to managing plant invasions: by targeting dominant non-native species with large 24 

competitive impacts, management can reduce impacts where they are greatest. We provide 25 

details of the modelling procedure and reproducible code to encourage further application. 26 
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Introduction 27 

Dominance by non-native plant species is frequently associated with declines in the 28 

abundance and diversity of native species (Vilà et al., 2011). These changes can occur if non-29 

native species are superior competitors, such that increasing abundance of non-natives directly 30 

drives declines in native species through competitive displacement (Levine et al., 2003; 31 

MacDougall, Gilbert, & Levine, 2009). Alternatively, increasing dominance by non-native species 32 

could be a consequence of changing environmental conditions that favour non-natives over 33 

natives due to species in each group having different environmental tolerances 34 

(HilleRisLambers, Yelenik, Colman, & Levine, 2010; Shea & Chesson, 2002). As plant invasions 35 

are frequently accompanied by environmental perturbations (Pysek et al., 2010; Vellend et al., 36 

2017), it can be difficult to determine when non-native dominance is driven by competitive 37 

impact (Godsoe, Franklin, & Blanchet, 2017; Soberón, 2010). In fact, many non-native species 38 

appear to have little impact on the communities they invade (Lai, Mayfield, Gay-des-combes, 39 

Spiegelberger, & Dwyer, 2015; Williamson & Fitter, 1996). In order to manage non-native 40 

species appropriately, we need ways to identify which non-native species, if any, are having 41 

strong competitive impacts, and where those impacts are greatest (Gallien, Münkemüller, 42 

Albert, Boulangeat, & Thuiller, 2010; Ricciardi, Hoopes, Marchetti, & Lockwood, 2013). 43 

 44 

Joint species distribution models (JSDM) are extensions of standard species distribution 45 

models that have the potential to measure both competitive impact and species responses to 46 

environmental conditions using community composition data from sites along known 47 

environmental gradients (Kissling et al., 2012; Nieto-Lugilde, Maguire, Blois, Williams, & 48 

Fitzpatrick, 2018). JSDMs use data on species composition across multiple sites to jointly model 49 

individual species responses to environmental variation, interpreting residual among-species 50 

covariation as potentially resulting from interactions such as competition (Latimer, Banerjee, 51 

Sang, Mosher, & Silander, 2009; Ovaskainen, Hottola, & Shtonen, 2010; Pollock et al., 2014; 52 

Warton et al., 2015). To date, JSDMs have mostly been used to model presence-absence data, 53 
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where large negative residual covariance between two species could be interpreted as the 54 

competitive displacement of one species from sites that both could occupy. However, presence-55 

absence data can only detect competitive impacts that result in complete exclusion from a site, 56 

yet dominance without exclusion is an important component of species impact (Levine et al., 57 

2003; Seabloom et al., 2013). Here we use a method proposed by Clark et al. (2017) to model 58 

cover data in a JSDM that overcomes the problem of zero-inflation that is typically inherent in 59 

these data (see: Joint-species tobit modelling in Methods; Fig. 1). With this approach, we can 60 

detect declines in species abundance associated with the presence of competitors, which should 61 

provide greater resolution in quantifying competitive impacts.  62 

 63 

Even with these improvements to JSDMs, separating environmental responses from 64 

competitive impacts is challenging (Adler et al., 2018), suggesting we should apply JSDMs to 65 

systems where the primary environmental drivers of species abundances are well understood 66 

(Giannini, Chapman, Saraiva, Alves-dos-Santos, & Biesmeijer, 2013; Wisz et al., 2013; Zurell, 67 

Pollock, & Thuiller, 2018). In grasslands around the world, non-native plant species often 68 

increase in dominance at higher fertility sites and when grazing is excluded (Seabloom et al., 69 

2015). This shift in dominance has been attributed to the competitive displacement of native 70 

species by non-native species that are competitively superior under conditions of high resource 71 

availability and low grazing. This competitive superiority arises because, relative to native 72 

species, many non-native grassland species have traits associated with rapid growth and high 73 

biomass (Ordonez, Wright, & Olff, 2010; Van Kleunen, Weber, & Fischer, 2010), traits that are 74 

likely beneficial when there is little above ground disturbance and competition for light is 75 

intense (Borer et al., 2014; Hautier, Niklaus, & Hector, 2009). These trait differences between 76 

native and non-native species should be less important under herbivory where biomass 77 

removal may reduce any competitive advantage of fast growth (Lind et al., 2013). 78 

 79 
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We aim to test these ideas using data from a 7-year experiment that tracked changes in plant 80 

cover over time following herbivore exclusion (Driscoll, 2017). Sites were arrayed along a 81 

fertility gradient and we predicted that non-native species would dominate under high fertility 82 

and would increase in dominance following herbivore exclusion. We used JSDMs to model how 83 

species cover varied with fertility, grazing and rainfall, and identified species with strong 84 

negative residual covariances, suggestive of strong competitive impacts on the community. We 85 

predicted that: 1) competitive impacts, and hence the magnitude of negative residual 86 

covariances, would increase in the absence of grazing where competition for light would be 87 

most intense; and 2) if competition for light caused competitive displacement, the strength of 88 

negative covariances between species (reflecting the strength of competitive interactions) 89 

should correlate with trait differences associated with growth and light capture. 90 

 91 

Methods 92 

Study system 93 

This study was carried out in a box-gum grassy woodland reserve in south-eastern Australia 94 

(Pinnacle Reserve, ACT. 35° 15’ S, 149° 02’ E; 620 - 708 m a.s.l.). The vegetation of the reserve 95 

comprised a scattered overstorey of trees, predominantly Eucalyptus blakelyi and E. melliodora, 96 

with a dense understorey of grasses and forbs. The vegetation has been extensively modified 97 

over the last 150 years, primarily by tree clearance and livestock grazing. Livestock grazing 98 

ceased in the reserve in 1993 and the dominant herbivore is now the native eastern grey 99 

kangaroo (Macropus giganteus), which was at moderately high density over the course of the 100 

study (1.8 – 2.2 ha-1; Driscoll 2017). The understorey vegetation was dominated by a mix of 101 

native and non-native species, with many non-native species introduced for pasture 102 

improvement (e.g. Dactylis glomerata and Trifolium subterraneum) or as pasture contaminants 103 

(e.g. Avena fatua and Bromus diandrus). Mean annual precipitation in the area was ~660 mm 104 

year-1 and daily maximum temperatures range from 9 °C to 33 °C during the spring growing 105 

period and as low as 4 °C in the preceding winter months (Australian Government Bureau of 106 
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Meteorology, 2017). Soils are typically of relatively low fertility, shallow and rocky, although 107 

some deeper soils occur on slopes and in depressions.  108 

 109 

Data collection 110 

 We used data from an experiment that tested whether different management interventions 111 

can increase native grassland species richness (Driscoll, 2017). In 2010, ten sites were 112 

established in open, unshaded areas along a natural fertility gradient (see below). Sites ranged 113 

from relatively uninvaded communities to communities dominated by non-native species. Each 114 

site contained 10 permanently marked 5 m x 5 m plots separated by at least 1 m. One of 10 115 

different experimental treatments was applied to each plot, but we use only a subset of the 116 

treatments in this study (see Appendix 1, Fig S1). From 2011, five plots at each site were fenced 117 

in a single enclosure to exclude mammalian herbivores (predominantly kangaroos but also 118 

rabbits). One plot inside and one plot outside the fence had its above-ground biomass removed 119 

each year by slashing, and one plot inside and one plot outside the fence was left unmanipulated 120 

(unslashed). We analysed these four treatments at each site (grazed, unslashed; grazed, slashed; 121 

fenced, unslashed; and fenced, slashed), allowing us to test whether the competitive impact of 122 

non-native species was stronger in the absence of biomass removal by grazing and/or slashing, 123 

and to assess whether uniform biomass removal by slashing had similar effects to herbivore 124 

grazing. 125 

 126 

Vegetation surveys were conducted every year from 2010 to 2016, except for 2014. In late 127 

spring (October) of each year, the percent cover of all vascular plant species was visually 128 

estimated in four 1 m x 1 m quadrats placed in the corners of each plot (only three quadrats per 129 

plot were surveyed in 2013 due to time constraints). We use plant cover as a proxy for 130 

abundance. Our dataset thus comprised six years of vegetation cover data from 160 quadrats 131 

across 40 plots. In total, we had 920 quadrat level vegetation measurements, comprising 10,780 132 

cover estimates for 142 species (70 native and 72 non-natives; see Appendix 1, Fig. S2 for more 133 
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detail). In 2015 and 2016, we measured the traits of abundant species, defined as those 134 

comprising the first 80% of total recorded cover at each site. At each site, we measured traits 135 

associated with growth rate and light capture on 5-10 adult individuals in each of the unslashed 136 

plots following standard protocols (Pérez-Harguindeguy et al., 2013). These traits included 137 

canopy height (m), maximum height (m), canopy width (m), leaf length and width (cm) and 138 

specific leaf area (mm2 mg-1; SLA). To avoid the influence of outliers, we used 90th quantile 139 

values from all measured plants to estimate species maximum potential for each trait.  140 

 141 

Total extractable nitrogen at sites along the fertility gradient ranged from 615 ppm to 2420 142 

ppm (Driscoll & Strong, 2017). Total soil carbon, nitrogen and phosphorus levels, as well as 143 

extractable nitrogen and phosphorus, all covaried strongly across the 10 sites (Appendix 1), and 144 

we used total extractable nitrogen as a proxy for overall soil fertility. Grasslands in this region 145 

also respond strongly to variation in annual rainfall (Prober, Thiele, & Speijers, 2013; Fig. S3). 146 

We obtained data on total rainfall for the four months prior to each survey (August – 147 

November) from the Australian Bureau of Meteorology (BOM, Appendix 1) as a proxy for water 148 

availability. Total rainfall during these four months ranged from 185 – 414 mm over the seven 149 

years of the study. Both total nitrogen and spring rainfall were centred and scaled prior to 150 

model fitting. 151 

 152 

Analyses 153 

1) Relative dominance of non-native species. 154 

We examined how the dominance of non-native species changed over time, in relation to soil 155 

fertility and rainfall, and in response to the experimental treatments (fencing and slashing). Our 156 

response variable was the proportion of non-native species cover in each plot in each year. This 157 

was calculated by taking the average cover of each species across quadrats in each plot in each 158 

year, summing these averages to get the total average cover of all species in each plot in each 159 

year, and calculating the proportion of total cover comprising non-native species. We logit-160 
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transformed this proportion and modelled it as a linear function of soil fertility, fitting a 161 

separate intercept and slope for each experimental treatment (grazed/fenced and 162 

slashed/unslashed) and for each year. We included rainfall by specifying a single coefficient for 163 

the effect of inter-annual rainfall variation on the proportion of non-native cover. The model 164 

structure is described in detail in Appendix 2. 165 

 166 

2) Joint-species tobit modelling 167 

In order to test if dominance by non-native species was a consequence of environmental 168 

responses or competitive displacement, we specified a JSDM that modelled the cover of each 169 

species in response to variation in soil fertility, rainfall and experimental treatment (JSDM1). 170 

This model included a single covariance matrix to capture unexplained residual variation, with 171 

negative residual covariances potentially indicating competitive impacts. We fitted a second 172 

model (JSDM2) to test whether competitive impacts varied with grazing and slashing 173 

treatments. JSDM2 had the same structure as JSDM1, but we fitted separate residual covariance 174 

matrices for each experimental treatment, which allowed us to test if the magnitude of negative 175 

residual covariances were greater in the absence of biomass removal where light competition 176 

should be most intense. We analysed data for the years 2013-2016, which were the years during 177 

which the experimental treatments showed clear effects (see: Figs 2 & S4b), and restricted our 178 

analyses to species present in >20% of plots measured between 2013 and 2016 (N = 30, 14 179 

native and 16 non-native species; Fig S2.) These species were present at >50% of sites in each 180 

year and were thus sufficiently widespread that absences were more likely due to unsuitable 181 

environmental conditions or competitive displacement rather than dispersal limitation. We 182 

analysed cover data at the quadrat level because we expected species interactions to be most 183 

evident at this scale. Zero cover was recorded when a species was absent from a quadrat. Even 184 

after restricting our analysis to the 30 most common species, most of our data comprised zero 185 

values (~69%; 4,396 cover estimates, 10,004 absences). 186 
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We used tobit regression to accommodate zero inflation by treating absences as censored 187 

data (Clark et al., 2017; Tobin, 1958). Censored data occur when it is not possible to observe a 188 

value beyond some limit. In this case, we assume there is an unobserved latent variable that 189 

measures the ‘suitability’ of each quadrat for each species, where suitability encompasses all 190 

biotic and abiotic factors that might influence species cover. When a species is present in a 191 

quadrat we equate the latent suitability with cover, assuming that higher cover indicates higher 192 

suitability (Fig. 1). Quadrats where species are absent can be thought of as sufficiently low 193 

suitability that a species cannot persist but quadrats with zero cover can still vary in their 194 

underlying suitability. We model observations of zero cover as censored data arising from this 195 

latent suitability distribution, which can take values less than zero: 196 

 197 

𝑦 = {
𝑦∗, if 𝑦∗ > 0
0, if 𝑦∗ ≤ 0

 198 

 199 

where y is the observed cover and y* is the corresponding latent suitability value. To complete 200 

the model, we need to specify a distribution for the underlying latent variable. We specified the 201 

underlying distribution as multivariate normal with 30 dimensions, one for each species. 202 

 203 

We regressed latent suitability (y*) against the environmental variables soil fertility and 204 

rainfall, with residual variation captured in a single covariance matrix (JSDM1). We specified 205 

different regression coefficients for each experimental treatment, modelled hierarchically, and 206 

included normally distributed random effects to account for repeated measurements of plots 207 

nested within sites. The structure of JSDM1 was: 208 

 209 

JSDM 1: 210 

𝒚[𝑖𝑗𝑘𝑙]
∗ ∼ 𝑀𝑢𝑙𝑡𝑖𝑁𝑜𝑟𝑚𝑎𝑙(𝝁[𝑖𝑗𝑘𝑙], 𝚺) 211 
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𝝁[𝑖𝑗𝑘𝑙] = (

𝜇1[𝑖𝑗𝑘𝑙]

𝜇2[𝑖𝑗𝑘𝑙]

⋮
𝜇𝑁[𝑖𝑗𝑘𝑙]

) 212 

𝜇𝑠[𝑖𝑗𝑘𝑙]
= 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑆[𝑗]

+ 𝛽𝑠𝑙𝑜𝑝𝑒𝑆[𝑗]
⋅ 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦[𝑗𝑘] + 𝛽𝑟𝑎𝑖𝑛𝑆[𝑗]

⋅ 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙[𝑖] + 𝛽𝑝𝑙𝑜𝑡[𝑗𝑘]
 213 

𝛽𝑝𝑙𝑜𝑡[𝑗𝑘]
∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝛽𝑠𝑖𝑡𝑒[𝑘]

, 𝜎𝑝𝑙𝑜𝑡
2 ) 214 

𝛽𝑠𝑖𝑡𝑒[𝑘]
∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑠𝑖𝑡𝑒

2 ) 215 

where 𝒚[𝑖𝑗𝑘𝑙]
∗  is an N-length vector of latent suitability values in year i (1-3), under treatment j 216 

(1-4), at site k (1-10) in quadrat l (1-4). s indexes species (s = 1 … N) with intercept terms 217 

measuring average site suitability for each species in each treatment, and slope and rain terms 218 

measuring how site suitability varied with soil fertility and rainfall for each species in each 219 

treatment. Σ is an N x N covariance matrix with the diagonal containing the residual variances in 220 

suitability for each species, σ2, and the off-diagonals containing the residual covariances 221 

between each species pair, conditional on the value of 𝝁[𝑖𝑗𝑘𝑙] . This matrix has N * (N – 1) / 2 = 222 

435 unique elements, with the covariance between two species defined as: Σ12 = σ1 σ2 ρ12 = Σ21.  223 

The covariances describe how residual variation in the cover of one species is related to 224 

residual variation in the cover of a second species. If, having accounted for environmental 225 

effects, the cover of one species declined in quadrats when the cover of a second species 226 

increased, the residuals of the two species would covary negatively. We interpreted negative 227 

covariances as due to competition on the grounds that we had modelled species responses to 228 

the major environmental gradients in these grasslands (fertility and water availability) 229 

(Leishman & Thomson, 2005; Morgan et al., 2016; Prober, Thiele, & Speijers, 2016). Large 230 

negative covariances imply potentially strong competitive impacts, while species with low 231 

cover, or where cover is well explained by environment variables, will have smaller covariances 232 

because there is less residual variation that could be associated with co-occurring species. 233 

Moreover, if a dominant species caused several species to decline in cover, resulting in strong 234 
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negative covariances, this is likely to induce a pattern of positive covariances among the 235 

impacted species because they would all tend to have lower cover at sites where the dominant 236 

species was present and higher cover at sites where it was absent.  237 

 238 

3) Change in species covariances by treatment 239 

Specifying a single covariance matrix in JSDM1 meant the covariances were estimated from 240 

the data in all treatments. In JSDM2, we specified a separate covariance matrix for each of the 241 

four treatments: 242 

JSDM2: 243 

𝒚[𝑖𝑗𝑘𝑙]
∗ ∼ 𝑀𝑢𝑙𝑡𝑖𝑁𝑜𝑟𝑚𝑎𝑙(𝝁[𝑖𝑗𝑘𝑙], 𝚺[𝑗]) 244 

𝜇𝑠[𝑖𝑗𝑘𝑙]
= 𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑆[𝑗]

+ 𝛽𝑠𝑙𝑜𝑝𝑒𝑆[𝑗]
⋅ 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦[𝑗𝑘] + 𝛽𝑟𝑎𝑖𝑛𝑆[𝑗]

⋅ 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙[𝑖] + 𝛽𝑞𝑢𝑎𝑑𝑟𝑎𝑡[𝑗𝑘𝑙]
 245 

where both the coefficients for species s and the covariances Σ varied with treatment j (1-4). 246 

Comparing the covariance matrices for different treatments in JSDM2 allowed us to evaluate 247 

whether competitive interactions were stronger in plots without slashing or grazing. 248 

 249 

4) Predicting competitive impact from functional traits 250 

We predicted that competitive impacts, measured as the magnitude of negative covariance 251 

between species, should be linked to differences in traits associated with growth and light 252 

capture. To test this, we regressed the posterior mean of the negative covariance parameters 253 

estimated in JSDM2 against the absolute difference in measured trait values for each species 254 

pair. Trait values were normalised prior to analysis so that traits measured using different units 255 

could be compared directly. For the regression models, we specified separate intercept and 256 

slope coefficients for the covariance-trait relationships in each experimental treatment, with the 257 

slopes and intercepts modelled as drawn from normal distributions for each trait.  258 

 259 
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All models were fitted to the data in a Bayesian framework using adaptive Hamiltonian 260 

Monte Carlo with the probabilistic programming language Stan (Carpenter et al., 2017) and the 261 

rstan interface (Guo et al., 2016) in R, version 3.4 (R Core Team, 2016). Details of model fitting 262 

and prior specification are in Appendix 2 and online at https://github.com/aornugent/impact2. 263 

We took a conservative approach to identifying interactions in the data by specifying that we a 264 

priori expected covariances to be weak (see prior specification in Appendix 2), meaning that 265 

strong residual covariances required strong support from the data. 266 

 267 

Results  268 

1) Relative dominance of non-native species  269 

Overall, the proportion of total cover that comprised non-native species increased with 270 

increasing soil fertility (Figs 2, S4a). Prior to and immediately after fencing (2010 & 2011), the 271 

relationship between fertility and proportion of non-native cover was similar in the fenced and 272 

grazed, and in the slashed and unslashed treatments. However, from 2012 onwards the 273 

proportion of non-native cover increased substantially at higher fertility sites in the fenced, 274 

unslashed plots (i.e., in the absence of biomass removal). There was no clear change over time in 275 

the proportion of non-native cover along the fertility gradient in plots that were grazed, slashed 276 

or both (Figs 2, S4b). The proportion of non-native cover was higher in years with higher spring 277 

rainfall (Fig. S3a) 278 

 279 

2) Joint species tobit modelling 280 

Species responded differently to changes in soil fertility, with latent site suitability increasing 281 

strongly with higher soil fertility (i.e. total extractable nitrogen) for two native and five non-282 

native species (95% credible intervals above zero in at least one treatment; Fig. 3). The 283 

remaining species, both native and non-native, declined in cover with increasing fertility. 284 

Relationships between cover and fertility did not vary much between experimental treatments 285 

with three exceptions: relative to other species, the cover of the non-native species Avena fatua, 286 

https://github.com/aornugent/impact2
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Bromus diandrus and Acetosella vulgaris increased more strongly with fertility in the fenced, 287 

unslashed treatment. At high fertility, several fenced, unslashed plots were completely 288 

dominated by one or more these species. For most species, cover was positively related to 289 

rainfall across years (Fig. S3b).  290 

 291 

Figure 4 shows species’ residual covariances from JSDM1 as a pairwise covariance matrix 292 

(Fig. 4a) along with the median covariance for each species across all pairwise interactions (Fig. 293 

4b). We report the median covariance because covariance values could be highly skewed. One 294 

species, Avena fatua, stood out as having strong negative covariances, with high cover of A. fatua 295 

often associated with reduced cover of other species. Median covariance for the native grass 296 

Themeda triandra was the second most negative but of much smaller magnitude than A. fatua. 297 

Moreover, T. triandra covaried negatively with A. fatua (Fig. 4a), such that high cover of A. fatua 298 

was associated with low cover T. triandra and vice versa. Small-statured species, such as those 299 

in the genera Aira, Vulpia and Hypochaeris, tended to covary positively. 300 

 301 

3) Change in species covariances by treatment 302 

JSDM2 revealed that species’ residual covariances varied by grazing and slashing treatment 303 

(Fig. 5), suggesting that competitive interactions were altered by biomass removal. Covariances 304 

were weakest in the grazed, slashed treatment with the median close to zero for most species 305 

(mean median covariance with 95% confidence intervals = -0.4, CI -2.2 to 1.3), implying weak 306 

interactions. Covariances were larger but still relatively weak in the fenced, slashed treatment 307 

(mean = 0.2, CI -1.5 to 2). Median covariances were most negative in the grazed, unslashed 308 

treatment (mean = -1.3, CI -3 to 0.5) and especially the fenced, unslashed treatment (mean = -309 

3.2, CI = -4.9 to -1.5), suggesting stronger competitive interactions in the absence of slashing, 310 

and especially in the absence of both grazing and slashing. Relative to the natural situation in 311 

these grasslands (the grazed, unslashed treatment), the three species whose cover increased 312 

most strongly with fertility in the fenced, unslashed plots (Avena fatua, Bromus diandrus and 313 
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Acetosella vulgaris) showed a marked shift to more negative covariances in the same treatment, 314 

especially A. fatua (Fig. 5). This implies these species had a greater competitive impact on other 315 

species in the absence of biomass removal. 316 

 317 

4) Predicting impact from functional traits 318 

In the fenced, unslashed treatment, stronger negative covariances between species were 319 

associated with greater differences in plant height (Fig. 6). This relationship was evident, 320 

though weaker, in the grazed, unslashed treatment but largely absent in both slashed 321 

treatments. Covariances were less negative between species that had greater differences in SLA 322 

in all treatments, but the strength of this relationship was much weaker than for height. None of 323 

the remaining trait differences (canopy width and leaf dimensions) showed strong relationships 324 

with covariances. 325 

 326 

Discussion 327 

Measuring the strength of species interactions when these are confounded with 328 

environmental variation remains a major obstacle to studying the impact of non-native species 329 

in plant communities (HilleRisLambers et al., 2010; Levine et al., 2003; MacDougall & 330 

Turkington, 2005). We have shown how a joint-species-distribution model can be adapted to 331 

model plant cover and, when applied to our case study, could identify the non-native species 332 

having large competitive impacts on the community, along with the conditions under which 333 

those impacts were greatest. Globally, non-native species frequently dominate grasslands under 334 

conditions of high fertility in the absence of grazing (Seabloom et al., 2013, 2015). Our findings 335 

show this can result from displacement of native species by one or more competitively 336 

dominant non-native species. In our study, greater cover of three non-native species (Bromus 337 

diandrus, Acetosella vulgaris and especially the annual grass Avena fatua) was associated with 338 

strong declines in the cover of native species after accounting for differences in environmental 339 

responses. This outcome is consistent with previous studies that have measured the impact of 340 
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non-native species in Australian temperate grasslands (Driscoll & Strong, 2017; Prober, Thiele, 341 

Lunt, & Koen, 2005) and in grasslands globally (Chang & Smith, 2014; Flores-Moreno et al., 342 

2016; Harpole et al., 2016). 343 

 344 

Our results support the predictions outlined in the Introduction. First, competitive impacts, 345 

as revealed by the strength of negative covariances, were much stronger in the absence of 346 

biomass removal (Fig. 5). Second, under low or no biomass removal, the strength of negative 347 

covariances were linked to differences in plant height: in unslashed plots, taller species had 348 

greater impact on shorter species, implying a strong competitive advantage associated with 349 

plant height under these conditions (Fig. 6). This outcome most likely results from competition 350 

for light, which should favour taller, higher biomass species (Borer et al., 2014; Hautier et al., 351 

2009). While negative covariances were linked most strongly to height differences, negative 352 

covariances were smaller among species with greater differences in specific leaf area (Fig. 6). 353 

This implies that, while competitive dominance was due primarily to a trait advantage in height, 354 

this was partly offset by trait dissimilarity in SLA, potentially indicative of reduced competitive 355 

impact through niche differentiation (Gross, Börger, Duncan, & Hulme, 2013).  356 

 357 

Results from the JSDMs provide additional insights into interactions in these grasslands. For 358 

example, negative covariances, and hence competitive interactions, were weaker in the slashing 359 

treatments (Fig. 5). Annual biomass removal by slashing may prevent species from attaining 360 

cover sufficient to have a strong competitive impact (Mortensen et al., 2018). Grazing may also 361 

prevent competitive dominance, although interactions were stronger under grazing alone than 362 

when plots were slashed (Fig. 5), suggesting grazing removes less biomass than slashing, or 363 

selectively removes certain species allowing others to attain cover sufficient to have measurable 364 

impact (Evju, Austrheim, Halvorsen, & Mysterud, 2009). The most dominant species, Avena 365 

fatua had the greatest competitive impact, but also covaried negatively with two other species 366 

that had relatively high impact overall: the native grass Themeda triandra and non-native forb 367 
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Acetosella vulgaris (Fig. 4). Avena fatua and A. vulgaris both increased in cover at higher fertility 368 

in the absence of biomass removal, suggesting these species competed for site occupancy under 369 

those conditions. The ability of A. vulgaris to form dense rhizomatous mats may have excluded 370 

A. fatua from some sites (Fan & Harris, 1996). Themeda triandra, in contrast, had higher cover at 371 

lower fertility. Themeda triandra is known to dominate more intact native grasslands (Prober & 372 

Lunt, 2009), suggesting that A. fatua may be displacing an otherwise competitively dominant 373 

native grass at higher fertility sites. 374 

 375 

Other non-native species were abundant in these grasslands but had little or no competitive 376 

impact. Short-statured annual grasses in the genera Aira and Vulpia, for example, were 377 

widespread (Fig. S2) and had high average cover where they occurred (15% and 24% for Aira 378 

and Vulpia, respectively, compared with 30% for Avena fatua). Both Aira and Vulpia strongly 379 

negatively covaried with A. fatua and B. diandrus, and both covaried positively with other, 380 

typically short-statured, species that were also impacted by the competitive dominants. Hence, 381 

in addition to identifying the drivers of change in this community, we can identify non-native 382 

species that achieve moderate to large cover without impacting the community, most likely 383 

because they are ruderal-like species that exploit more marginal habitats. 384 

 385 

We have demonstrated how a JSDM can be applied to field data to measure impact and 386 

identify the species driving compositional change in a plant community. We emphasise that 387 

interpreting negative residual covariation as due to species interactions relies on having 388 

measured and correctly modelled the major environmental variables, fertility and rainfall in our 389 

case, that control species abundances (Hui, Taskinen, Pledger, Foster, & Warton, 2015). Our 390 

approach of crossing a natural fertility gradient with manipulation of biomass removal no doubt 391 

helped to disentangle competitive from environmental effects in this system, as it meant 392 

differences between the biomass treatments at each site were not confounded with 393 

environmental variation. Nevertheless, the model appeared successful in identifying species 394 
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having impact in the unmanipulated treatment alone (grazed, unslashed; Fig. 5), suggesting 395 

JSDMs can detect interactions in systems without experimental manipulation where the 396 

environmental drivers are well understood.  397 

 398 

Conclusion 399 

Quantifying the importance of competitive interactions is difficult when species abundance is 400 

confounded with environmental variation (Adler et al., 2018). We approached the problem by 401 

using a JSDM to model changes in the cover of Australian temperate grassland species in 402 

response to gradients of fertility and rainfall, biomass removal treatments, and variation in 403 

community composition. This identified the dominant non-native species driving compositional 404 

change through competitive displacement in this community, highlighting the utility of JSDMs in 405 

studies of plant invasion where it is often unclear which non-native species, if any, are directly 406 

impacting invaded communities (HilleRisLambers et al., 2010; Lai et al., 2015; MacDougall & 407 

Turkington, 2005). By experimentally altering grazing we were able to show that the 408 

competitive impact of the dominant non-native species increased in the absence of grazing and 409 

that species responses were mediated by trait-differences in height, consistent with the 410 

outcome we would expect due to competition for light (Borer et al., 2014). Hence, the modelling 411 

approach provided insights into the mechanisms underlying impact, paving the way for general 412 

tests of the drivers of community structure in other communities (Mortensen et al., 2018). We 413 

have provided the data and code in an R package (https://github.com/aornugent/impact2) to 414 

reproduce our analyses and encourage further application of the approach. 415 
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Figures: 602 

Figure 1. A simulated example of tobit regression. Black circles show observed cover for a 603 

species measured at points along an environmental gradient. Cover declines as environmental 604 

suitability decreases, eventually reaching a point where the environment is unsuitable for the 605 

species and cover is zero. Beyond that point, environmental suitability continues to decline but 606 

cover remains at zero. These zero values are censored in that zero cover provides partial 607 

information about the latent suitability (open circles): it tells us a site is unsuitable but, beyond 608 

that, does not measure how unsuitable. Tobit regression aims to estimate latent suitability (the 609 

open circles, which are uncensored) by fitting a regression line (red) to the cover data, treating 610 

the zero values as censored. 611 

 612 

Figure 2. Proportional cover of non-native species (logit-transformed) as a function of soil 613 

fertility at 10 sites measured over 7 years (2010-2016 with no measurement in 2014). There 614 

were four treatments at each site, which are plotted separately. Slashed plots are shown on the 615 

top line and unslashed plots on the lower line, with filled circles and solid lines for fenced plots, 616 

and open circles and dashed lines for grazed plots. Fertility is scaled and standardized as 617 

described in Appendix 1. 618 

 619 

Figure 3. Latent suitability with respect to soil fertility for 30 species estimated using a joint-620 

species-distribution model and tobit regression (see text). Separate relationships were fitted for 621 

each species in each of four treatments, shown as different panels. Native species are drawn 622 

with dashed lines (n = 14) and non-native species with solid lines (n = 16). Lines are coloured 623 

from dark blue to light yellow corresponding to a shift from negative to positive slopes, 624 

respectively. 625 

 626 
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Figure 4. a) The full residual covariance matrix for JSDM1 and b) the median residual 627 

covariance from all pairwise interactions for each species, with negative covariances indicative 628 

of competitive displacement (see text). The full matrix shows mean covariances from the 629 

posterior distributions shaded by magnitude and direction, ranging from large negative 630 

covariances (deep red) to large positive covariances (blue). A black dot indicates the 95% 631 

credible intervals for a covariance did not include zero. Non-native species are marked with 632 

asterisks. 633 

  634 

Figure 5. The median residual covariance from all pairwise interactions for each species from 635 

JSDM2, where a separate covariance matrix was fitted for each treatment (shown as separate 636 

panels). The median covariance summarises the magnitude of competitive displacement 637 

between a single species and the rest of the community. Names of non-native species are shown 638 

in black and native species in grey. Non-native species are marked with asterisks. 639 

 640 

Figure 6. Mean (circles) and 95% credible intervals for the slope of the relationship between 641 

covariance and trait differences among species. Negative values indicate that competitive 642 

displacement is associated with greater difference in trait values between species. The 643 

relationships are plotted separately for the four treatments, with filled circles for fenced plots, 644 

open circles for grazed plots, and slashed and unslashed plots in different panels. Trait 645 

differences were normalized before analysis to allow direct comparison of slope estimates for 646 

traits measured in different units. 647 
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