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Abstract
Causal mediation analysis aims to estimate natural direct and natural indirect effects under clearly
specified assumptions. Traditional mediation analysis based on Ordinary Least Squares (OLS)
assumes an absence of unmeasured causes to the putative mediator and outcome. When these
assumptions cannot be justified, Instrumental Variables (IV) estimators can be used in order to
produce an asymptotically unbiased estimator of the mediator-outcome link, commonly referred
to as a Two-Stage Least Squares (TSLS) estimator. Such bias removal, however, comes at the
cost of variance inflation. A Semi-Parametric Stein-Like (SPSL) estimator has been proposed in the
literature that strikes a natural trade-off between the unbiasedness of the TSLS procedure and the
relatively small variance of the OLS estimator. The SPSL has the advantage of allowing for a direct
estimation of its shrinkage parameter. In this paper, we demonstrate how this Stein-like estimator
can be implemented in the context of the estimation of natural direct and natural indirect effects of
treatments in randomized controlled trials. The performance of the competing methods is studied
in a simulation study, in which both the strength of hidden confounding and the strength of the
instruments are independently varied. These considerations are motivated by a trial in mental health
evaluating the impact of a primary care-based intervention to reduce depression in the elderly.
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Introduction
Mediation analysis has become a popular approach to data analysis in a variety of disciplines. This
approach permits to study alternative causal paths linking an experimental factor of interest with
a particular outcome1. It has been especially successful in the context of mental health, where
psychologists and psychiatrists are particularly interested in the mechanisms of action of a given
treatment. These mechanisms are usually studied with respect to certain intermediate variables that are
likely to be related to the personality, cognition and social environment of the individuals that are taking
part in the study.

In mental health, we are often concerned with evaluating the effect of psychological therapy on clinical
outcome, with respect to certain intermediate variables. When the indirect effect of the treatment through
the intermediate variable is of interest, such a variable is referred to as a target mediator. By contrast,
when we are controlling for the intermediate variable, and the primary interest of the study lies in
estimating the direct effect of treatment on the outcome; we refer to such a variable as a nuisance
mediator. Often, the distinction between a target and a nuisance mediator depends on whether or not
the mediator constitutes an alternative form of treatment. This is the case in the PROSPECT data set
that motivates this study, in which the effect of psychotherapy is mediated by adherence to a course of
anti-depressant medication.

Several theoretical frameworks have been proposed for studying mediation from a causal perspective.
Such approaches tend to build upon the foundational work of Baron and Kenny2 (1986), who have
established the basis of mediation analysis. This framework has then been formalized in order to allow
for causal inference. The first formalization of causal mediation analysis was given by Robins and
Greenland3 (1992); and several variants have been proposed in the literature, including the works of
Pearl4 (2001), Rubin5 (2004), and VanderWeele6 (2008). In the paper at hand, we will describe causal
mediation in terms of potential outcomes, using the notation and the set of assumptions adopted by
Imai, Keele and Yamamoto7 (2010). Throughout this article, we will assume that the outcome of interest
is continuous. In this setting, the main estimands of interest are the natural direct and natural indirect
effects, denoted NDE and NIE respectively. In trials, such quantities can be estimated without bias, under
the assumption that the intermediate variable is exogenous in the model for the outcome. (A predictor
of the outcome variable is said to be exogenous, whenever it is not correlated with the error term in the
model, and endogenous, otherwise.)

In practice however, this exogeneity assumption can be difficult to justify, due to the likely presence
of baseline variables that are common causes of the intermediate and the clinical outcome variable. One
of the proposed solutions to this problem has been the use of instrumental variables (IVs), which can be
combined with mediation analysis, in order to draw causal inference. (See Lynch et al.8 (2008) and Ten
Have et al.9 (2012) for a review of causal mediation analysis.) In this article, we will specifically focus
on the use of interaction terms as instruments, constructed by interacting the experimental factor with the
baseline covariates. Note, however, that our methods can readily be generalized to other IVs.

The most common estimator using IVs is the Two-Stage Least Squares (TSLS)10, which relies on
further assumptions about the behavior of the candidate instruments. Under these additional assumptions,
the asymptotic properties of the TSLS estimator are well-understood. Provided that the instruments solely
affect the outcome through the endogenous variable of interest, the TSLS estimator is guaranteed to be
asymptotically unbiased10. For finite sample sizes, however, the decrease in bias associated with the use
of this estimator, will lead to an increase in variance. In particular, there may be situations in which the
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variance increase of the TSLS estimator does not warrant preferring that estimator over the potentially
biased Ordinary Least Squares (OLS) estimator.

In this paper, we follow the lead of Judge and Mittelhammer11 (2004), who have constructed a
combined estimator, which strikes a trade-off between the OLS and the TSLS estimators, by minimizing
the Mean Squared Error (MSE) of the resulting combined estimator. This method closely resembles
the so-called Stein estimator, originally introduced by James and Stein12 (1961), and made popular by
Efron13 (1973). Stein estimators have anticipated some of the central ideas of Bayesian statistics, by
shifting the main focus of statistical analysis from minimizing an estimator’s unbiasedness to minimizing
an estimator’s MSE. These ideas are best articulated within the language of decision theory. (See
(author?) 14 , for an introduction to decision theory.) From this perspective, the MSE can be formalized
as a loss function, and the optimal estimator is the quantity that minimizes that function. These estimators
bear some similarities with other families of estimators that rely on loss functions, whether or not these
are articulated within a Bayesian framework. See, for instance, the minimum expected loss (MELO)
estimator15,16. From a decision-theoretic perspective, the MSE can be formalized as a loss function,
and the optimal estimator is the estimator that minimizes that function. The Semi-Parametric Stein-
Like (SPSL) estimator is defined as an affine combination of the OLS and TSLS estimators; where
the shrinkage parameter controlling the respective contributions of the OLS and TSLS estimators can be
estimated from the data, under the assumption that the TSLS estimator is asymptotically unbiased.

The main contributions of this paper are twofold. Firstly, we provide the first use of the SPSL
estimator in the context of causal mediation analysis. The SPSL will here be compared with standard
estimators, including the OLS and TSLS estimators for estimating the effect of endogenous intermediate
variables in causal mediation; where OLS estimation here corresponds to the standard Baron–Kenny
approach. The Baron–Kenny framework generally assumes that the mediators are continuous, whereas
our approach enables us to accommodate binary mediators. Note, however, that binary mediators can only
be incorporated at the cost of a loss in efficiency of the resulting estimators. The asymptotic behaviors
of the family of SPSL estimators have recently been well-studied17–20. The SPSL estimator has been
used to investigate Local Average Treatment Effects (LATEs) in dose-response models21. However, to
the best of the authors’ knowledge, this family of estimator has not been used in the context of causal
mediation analysis, when the estimation of the causal path from the intermediate variable to the outcome
is potentially biased, due to unmeasured confounding.

Secondly, we generalize the SPSL estimator by allowing for the selection of a subset of parameters
that affects the optimization of the shrinkage parameter. Indeed, in many circumstances, one is solely
interested in the estimation of a particular set of estimands, and it is therefore convenient to be able to
restrict the dependence of the shrinkage parameter on the MSE of a subset of target estimands. In this
paper, we implement such a restriction by introducing a projection matrix, which permits to restrain the
estimation of the shrinkage parameter to a subset of the parameters of interest, such as the direct effect of
treatment, for instance. This provides a generalization of the closed-form formula for the SPSL, originally
derived by Judge and Mittelhammer11.

Our use of the SPSL estimator for causal mediation analysis is motivated by a clinical trial in mental
health. The Prevention of Suicide in Primary Care Elderly: Collaborative Trial, more concisely referred to
as PROSPECT22, is a randomized controlled trial, which tested the effect of a primary care intervention
on major risk factors for suicide in an elderly population, and in which the intermediate variable is
whether or not patients are taking antidepressant medication. This particular study has served as a
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motivating example for several causal mediation analyses previously published in the literature, including
studies by Ten Have et al. (2007)23, Emsley et al. (2010)24, and Small (2012)25. In the paper at hand, we
replicate some of these previous results, and compare them with the performance of the SPSL estimator
for this data set.

The PROSPECT data set is an unusual example of a mediation analysis, since the main estimand of
interest is the NDE. That is, we wish to evaluate whether or not the psychotherapeutic intervention affects
the outcome, after having controlled for the effect of taking antidepressant medication. This should be
contrasted with most other mediation studies, in which one is typically interested in estimating the NIE
–that is, the effect of the target mediator on the outcome. In contradistinction, the intermediate variable
in the PROSPECT data may be regarded as a nuisance mediator, which is solely of secondary interest to
the trialists.

The paper is organized as follows. In the first section, we introduce the causal estimands of interest,
and describe how such parameters can be estimated using the OLS, the TSLS and the SPSL estimator.
The performance of our three competing estimators for causal mediation analysis is then evaluated by
means of a Monte Carlo simulation study, in the second section. The methods are then applied to a re-
analysis of the PROSPECT data set, in the third section; and we close with a discussion of the limitations
and further generalizations of such estimators in our final section. The proofs of the main results in the
paper are deferred to an appendix.

Causal Mediation Analysis

Causal Estimands
The sample data are assumed to have been collected as part of a clinical trial, in which Ri denotes
randomized treatment offer to the ith subject. The clinical outcome of interest, denoted by Yi, is a
continuous post-randomization variable, and Mi is the putative mediator under investigation, which is
also a post-randomization variable. The mediator is here assumed to have been measured before the
outcome. The mediator may be either binary or continuous, albeit note that the use of binary mediators in
our framework, entails a considerable loss in efficiency. In addition, there are also k pre-randomization
(or baseline) variables, denoted by a random vector, Xi, such that Xi := (Xi1, . . . , Xik)′. Without any
loss of generality, these baseline variables may also be either binary or continuous.

For every r ∈ {0, 1}, and for every m ∈ R, the potential outcome Yi(r,m) is defined as the outcome
that would be observed for the ith subject, ifRi andMi were to take values r andm, respectively. Several
possible mechanisms have been proposed in the literature that allow the potential outcomes, Yi(r,m),
to take different values according to different choices of r and m23,25. Similarly, the potential mediator,
Mi(r), is defined as the value taken by the mediator in the ith subject, when the value of R is r. The
aforementioned observed outcomes and observed mediators are then defined as a function of the potential
outcomes and potential mediators, such that we have Yi := Yi(Ri,Mi), andMi := Mi(Ri), respectively.

For every subject, every r, and every m, the potential outcomes are given the following structural
model,

Yi(r,m) := Yi(0, 0) + βR,ir + βM,im, (1)

with Yi(0, 0) := β′XXi + ωi, and E[ωi] = 0. and where the parameters, βM,i and βR,i, can vary between
subjects reflecting treatment effect and mediator effect heterogeneity, respectively.

4



R

X

Y

θR

θX

Figure 1. Graphical representation of the model of the total effect (TE) of R on Y , as described in equation
(4); where the empty circle denotes an error term. Since subjects have been randomly assigned to the different
levels of treatment allocation, R; it follows that R is an exogenous predictor of Y .

The parameters in model (1) can thus be interpreted in the following manner. Given a subject i, the
parameter, βM,i, denotes the effect caused by a unit increase in the mediator on the outcome, holding
treatment level at r. Similarly, βR,i should be interpreted as the effect of treatment on the outcome, while
holding the mediator constant at level m. Finally, we will respectively denote by βM := E[βM,i] and
βR := E[βR,i], the average causal effect of the mediator and the average effect of the treatment on the
outcome.

Using our definitions of the observed outcome, Yi, and of the counterfactual, Yi(0, 0); we obtain the
following linear model for the observed outcome,

Yi = β′XXi + βRRi + βMMi + εi, (2)

for every i = 1, . . . , n; in which βX is a k-dimensional column vector of unknown parameters containing
an intercept, and where the error terms comprise the individual deviations from the average causal effect,

εi := ωi +
(
βM,i − βM

)
Mi +

(
βR,i − βR

)
Ri. (3)

where recall that ωi = Yi(0, 0)− E[Yi(0, 0)|Xi].
Treating the mediator as unobserved, the potential outcomes can be described by the following

structural model,
Yi(r) = θ′XXi + θR,ir + ξi,

where as before, θR := E[θR,i] denotes the average effect of treatment offer on the outcome, and with
E[ξi] = 0. This then leads to the following model for the observed outcomes,

Yi = θ′XXi + θRRi + νi, with νi := ξi + (θR,i − θR)Ri. (4)

This model is represented in Figure 1. Observe that in this model, the parameter, θR, corresponds to the
Intention-To-Treat (ITT) effect, assuming no missing data.

For continuous mediators, we can translate our choice of notation, into the conventional Baron-Kenny
notation2. If we were to represent the average causal effect of R on M by γR; we could then adopt the
following notation, a := γR, b := βM , c′ := βR, and c := θR.

The main estimands of interest will be the natural direct effect (NDE) and the natural indirect effect
(NIE). For continuous outcomes, the total effect (TE) can be decomposed such that

TE := E
[
Yi(1)− Yi(0)

]
= E

[
Yi(1,Mi(1))− Yi(0,Mi(0))

]
.
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Figure 2. Graphical representation of the mediation model described in equation (2) in the presence of a
confounder, U ; where empty circles denote error terms. For continuous mediators, we have the following
correspondence between the above notation and the standard Baron-Kenny notation: a = γR, b = βM , and
c′ = βR; in which R and M denote treatment offer and the mediator, respectively. The three paths of interest
in mediation investigations, have been emphasized in bold.

In our notation, TE corresponds to effect of treatment offer on the outcome, according to the structural
model in equation (4), such that TE = θR. The NDE, on the other hand, is defined as follows,

NDE := E[Yi(1,Mi(0))− Yi(0,Mi(0))] = βR.

Finally, for continuous Yi’s, the NIE can be expressed as a difference between these two estimands.
Formally, this gives

NIE := E[Yi(1,Mi(1))− Yi(1,Mi(0))] = θR − βR.

This expression for the NIE with continuous outcomes is convenient, because it covers both continuous
and binary mediators, although binary mediators should be used with caution, as aforementioned.

OLS Estimator
Observe that since both the baseline covariates, Xi’s, and the randomization variable, Ri, are exogenous,
it follows that parameters, γR and θR, can be unbiasedly estimated using OLS. However, there is no
guarantee that the effect of the mediator on the outcome is not confounded by an unmeasured variable.
Therefore, a naive OLS estimator of the parameter, βM , may be biased. Similarly, the OLS estimator of
βR may also be biased due to the endogeneity of the mediator in Equation (2). A simplified version of
such a causal mediation model, in the presence of a confounder, Ui’s, has been represented in Figure 2.
In Figure 2, βR and βM are biased due to unmeasured confounding, since the intermediate variable, Mi,
is endogenous in the model of the Yi’s, in this figure.
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Various sets of assumptions can be used in order to conduct causal mediation analysis. For the OLS
estimator, we will use a set of assumptions referred to as sequential ignorability7. For every r ∈ {0, 1},
and every m ∈ R, sequential ignorability assumes that

(OLS–1) Yi(r,m) ⊥ Ri |Xi.

(OLS–2) Mi(r) ⊥ Ri |Xi.

(OLS–3) Yi(r,m) ⊥Mi |Xi.

These assumptions respectively state the following: ignorable treatment assignment in terms of the
outcome, given the covariates, (OLS–1); ignorable treatment assignment in terms of the mediator, given
covariates, (OLS–2); and ignorable mediator assignment, given covariates (OLS–3).

Observe that, whenever the Ri’s correspond to random allocation to treatment offer, as in our
motivating trial, it then follows that conditions (OLS–1) and (OLS–2) are automatically satisfied. The
fact that (OLS–1) holds in our setting, allows us to unbiasedly estimate the causal effect of treatment
offer on the outcome, denoted by θR; using an OLS estimator, denoted by θ̃R. Similarly, the fact that
(OLS–2) holds permits us to unbiasedly estimate the causal effect of treatment offer on the mediator,
denoted by γR, using an OLS estimator, denoted by γ̃R.

Moreover, it is additionally assumed, for regulatory reasons, that the following strict inequalities hold,
P(R = r|X = x) > 0, and P(M = m|R = r,X = x) > 0. Under the model for the potential outcomes
described in equation (1), the third assumption of sequential ignorability given in (OLS–3) can be
reformulated as follows,

Yi(0, 0), βM,i, βR,i ⊥Mi |Xi.

Therefore, under sequential ignorability, the three random variables on the RHS of equation (1) are
assumed to be conditionally independent of the mediator, given the values of the baseline covariates.

In the absence of unmeasured confounders between theMi’s and the Yi’s, sequential ignorability holds,
and one can estimate the NIE and NDE by computing the OLS estimator of the direct effect of treatment
offer on the outcome, denoted βR. For convenience, the parameters of interest in the model described in
equation (2) will be collectively denoted as a vector,

β := (β′X , βM , βR)′.

Similarly, all the variables in this model will be expressed as the random vector,

Vi := (X ′i,Mi, Ri)
′,

where recall that Xi represents a k-dimensional column vector of baseline covariates including an
intercept, whereasMi andRi are real-valued random variables, althoughMi is also allowed to be binary.
Thus, each Vi is a (k + 2)-dimensional random vector. In addition, a set of n observations from the Yi’s
will be denoted by the vector y, while a set of n realizations from the Vi’s will take the form of a matrix
of order n× (k + 2), denoted V.

Under the further assumption that the matrix E[ViV
′
i ] is full-rank, we can compute the OLS estimator.

(OLS–4) rank(E[ViV
′
i ]) = k + 2.
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The OLS estimator for β, which is uniquely given by the vector that minimizes the empirical MSE,
and takes the form, β̃ := (V′V)−1(V′y). Moreover, the empirical variance of this estimator is given
by σ̂2(V′V)−1, where σ̂2 is defined as (y− Vβ̃)′(y− Vβ̃)/(n− k − 2). Moreover, the vector of
parameters for the total effects, θ := (θ′X , θR)′, from equation (4) can also be estimated using OLS,
thereby producing the following estimators of the natural effects: ÑDE := β̃R, and ÑIE := θ̃R − β̃R.
(Hence, observe that albeit we are estimating the full vector of parameters, β; the sole element of interest
in this vector for estimating NDE and NIE is βR.)

TSLS Estimator
In the presence (or suspected presence) of unmeasured confounders, different assumptions are required
in order to estimate the parameters of interest without bias. In the data at hand, although allocation
to treatment has been randomized, both Mi and Yi are post-randomization variables, which may be
affected by common causes. Therefore, one cannot guarantee that the path from the mediator to the
outcome has not been confounded by an unobserved variable. When unmeasured confounders affect
the relationship between the outcome and the mediator, as illustrated in Figure 2, the third portion of
sequential ignorability, (OLS–3) does not hold, and further assumptions are hence required to ensure that
such a model is identifiable.

Several groups of researchers have used instruments that are defined as interactions between certain
baseline variables and random assignment to treatment23,26,27. Such choices of IVs require a particular
set of assumptions, which ensure that the resulting variables constitute valid instruments. In this paper,
we will consider a variant of the conditions described by Small25. These assumptions apply to general
mediation models that make use of such interaction terms as instruments. For consistency with the
previous literature on this topic, we will also adopt some of the notation used by Small25, throughout
the rest of this section. However, we should emphasize that SPSL estimation in causal mediation, is not
restricted to the use of interaction terms as instruments.

Here, we supplemented the model for the observed outcome, Yi’s, with a predictive model for the
observed continuous (or binary) mediator,Mi’s, such that we obtain the system of equations that has also
been illustrated graphically in Figure 3,

Yi = β′XXi + βRRi + βMMi + εi,

Mi = γ′XXi + γRRi + γ′RXRiXi + δi;
(5)

with δi := E[Mi|Xi, Ri, ]−Mi, and E[δi] = 0; and where the εi’s and the δi’s are assumed to be
independent. Furthermore, note that theMi’s are here modelled linearly, despite the fact that this variable
may be binary. This does not pose a problem per se, as long as the instruments, RiXi’s, are predictive
of the Mi’s. That is, mis-specification of the functional form of this model (e.g. as a linear regression,
when, in reality, this is a logistic regression), while leading to difficulties interpreting the gamma’s; does
not affect the estimation of the parameters of interest, which are the beta’s in the model for the Yi’s, since
TSLS estimation solely requires a correct specification of the model for the outcomes. Thus, the error
terms, δi’s, of the linear model for the mediator need not be normally distributed.

For convenience, we will define the set of instruments as the following vectors,

Zi := (X ′i, Ri, RiX
′
i)
′,
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Figure 3. Graphical representation of the instrumented mediation model described in equation (5), in which
the relationship between the mediator, M , and the outcome Y , is confounded by the presence of an unknown
variable U ; where, as before, empty circles denote error terms. The interaction instrument, RX, is here used
to handle the endogeneity of M ; while the randomization variable, R, and the baseline covariates, X, are all
assumed to be exogenous. As in Figure 2, the three links defining the main causal mediation model, have
been emphasized in bold.

where each such Zi is a (2k + 1)-dimensional column vector. Equipped with this notation, we can then
state the assumptions required to guarantee the validity of the RiXi’s as instruments. We will assume
that the model in Equation (5) is the true model, and that the following conditions hold for every subject,

(TSLS–1) Mi ⊥ βM,i|Ri, Xi.

(TSLS–2) βR = E[βR,i|Xi], and βM = E[βM,i|Xi], for every Xi.

(TSLS–3) E[ZiZ
′
i], and E[ZiV

′
i ] are full-rank.

(TSLS–4) Cov(Vi, Zi) 6= 0.

Here, (TSLS–1) should be interpreted as the independence of the individual mediator effects with the
mediator. Condition (TSLS–4) is commonly referred to in the literature on causal inference, as the
relevance of the IVs. In addition, observe that assumption (TSLS–2) is weaker than the ones made by
previous authors, who have used interaction terms as instruments, and who have assumed homogeneous
treatment effects23,26,27, such that the βM,i’s, and βR,i’s are assumed to be identical for all subjects. Here,
by contrast, we have only required these parameters to have identical conditional expectations given the
Xi’s, as stated in condition (TSLS–2).

Also, note that this set of assumptions slightly differs from the one described by Small25, since we
have replaced the assumption that this author refers to as (IV–A1), by an assumption on the ranks of the
matrices E[ZiZ

′
i], and E[ZiV

′
i ], which we refer to as (TSLS–3). The latter assumption is here expressed

in terms of the ranks of the expectations of the cross-products of the vector of instruments, and the vector
of covariates. This condition is a relatively weak requirement that guarantees the identifiability of the
resulting TSLS estimator10. However, further work will be needed to clarify whether an assumption of
the form (TSLS–3) is weaker, stronger or simply equivalent to the corresponding assumption made by
Small (2012).

9



We can now show that the corresponding TSLS estimator weakly converges to the target vector of
the parameters of interest. Firstly, following Small25, we demonstrate that the above assumptions are
sufficient to guarantee the exogeneity of the RiXi’s in model (5). A proof of this proposition has been
relegated to the appendix.

Proposition 1. Under assumptions (TSLS–1) and (TSLS–2), and under the assumption that the Ri’s are
exogenous with respect to the Yi’s in model (5), we have Cov(RiXi, εi) = 0.

In the context of trials, observe that the exogeneity of theRi’s is automatically satisfied. It then follows
that the TSLS estimator, β̂, can be computed with respect to the matrix V̂, such that β̂ := (V̂

′
V̂)−1(V̂

′
y),

where V̂ denotes the projected matrix of the variables in the second-stage equation with respect to
the matrix of instruments, Z. Analogously to the OLS, the variance of the estimator is then given by
σ̃2(V′V)−1, where σ̃2 is defined as (y− Vβ̂)′(y− Vβ̂)/(n− k − 2). The consistency of the TSLS
estimator, can then immediately be derived.

Proposition 2. Under conditions (TSLS–1) to (TSLS–4), and under the assumptions that both the Ri’s
and the Xi’s are exogenous with respect to the Yi’s in model (5); we have β̂

p→ β.

As before, the proof of this proposition is provided in the appendix. It then suffices to plug in this
estimator of β in our definitions of the natural effects, in order to construct the TSLS estimators for these
causal estimands, such that we obtain N̂DE := β̂R, and N̂IE := θ̃R − β̂R; where note that θ̃R is still
estimated using OLS, since the randomization variable, R, is assumed to be exogenous with respect to
the mediator, M . Moreover, observe that these TSLS estimators of the NDE and NIE solely rely on the
TSLS estimator of βR.

SPSL Estimator
As we have seen, the OLS and the TSLS estimators satisfy competing, yet complementary demands.
Under assumptions (OLS–1), (OLS–2), and (OLS–4), the OLS will be asymptotically efficient but
possibly biased, whereas under assumptions (TSLS–1) to (TSLS–4), the TSLS will be asymptotically
unbiased but relatively inefficient. Thus, it is natural to try to strike a trade-off between these two
estimators, by considering affine combinations of the form

β̄α := αβ̂ + (1− α)β̃,

where recall that β̂ and β̃ denote the TSLS and OLS estimators, respectively. and where α needs not
be comprised between 0 and 1, but may take any real values. This family of estimators are sometimes
referred to as semi-parametric Stein-like (SPSL) estimators, for reasons which will become clear in the
sequel11.

In this framework, the shrinkage parameter, α, is commonly selected as the value that minimizes an
empirical estimate of the MSE of β̄α. However, in many circumstances, it may be desirable to optimize
such a trade-off with respect to a subset of the parameters of interest. This may be achieved by pre-
multiplying the vectors of estimators and estimands with the matrix of an orthogonal projection, which
will select the particular subset of parameters that one wishes to emphasize. That is, given a projection,
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P, we may consider the MSE of the vector

P(β̄α − β) = (Pβ̄α − Pβ).

The shrinkage parameter, α, is defined as the value that minimizes the trace of the MSE of that projected
vector, which is given by

tr MSE(Pβ̄α) := trE
[
P(β̄α − β)(β̄α − β)′P′

]
.

The use of a projection in this setting can be regarded as a generalization of the original SPSL framework
introduced by Judge and Mittelhammer11. Before turning to the minimization of that quantity, we
describe a particular decomposition of the MSE of the SPSL estimator.

Using Pβ̄α = αPβ̂ + (1− α)Pβ̃, one can show that the MSE of Pβ̄α can be decomposed into a
weighted combination of the MSEs for the projected OLS and TSLS estimators. That is, for every α, and
every projection, P, we obtain,

MSE(Pβ̄α) = α2 MSE(Pβ̂) + α(1− α) CSE(Pβ̂,Pβ̃) + (1− α)2 MSE(Pβ̃), (6)

where the cross sum of squares, CSE(Pβ̂,Pβ̃) is defined as E[P(β̂ − β)(β̃ − β)′P′]. The theoretical
parameter, α, controlling the respective contribution of the OLS and TSLS estimators is then defined as
the following minimizer,

α := argmin
α∈R

tr MSE(Pβ̄α). (7)

This parameter can be shown to be available in closed-form. This follows from the fact that the MSE
of Pβ̄α is a convex function of α. In the following proposition, for every estimator β†, the quantity
(tr MSE(β†))1/2 is referred to as the trace RMSE of β†. A proof of this proposition is provided in the
appendix.

Proposition 3. For every n, and every P; the parameter α from equation (7) is

α =
tr(MSE(Pβ̂)− CSE(Pβ̂,Pβ̃))

tr(MSE(Pβ̂)− 2 CSE(Pβ̂,Pβ̃) + MSE(Pβ̃))
.

If, in addition, the random vectors, β̂ and β̃ are elementwise squared-integrable, then α is unique
whenever the trace RMSEs of Pβ̂ and Pβ̃ are not equal.

In order to estimate the shrinkage parameter from the data, we need to construct a consistent estimator
of the bias of Pβ̄α. Indeed, the MSE of that estimator can be decomposed as follows,

MSE(Pβ̄α) = Var(Pβ̄α) + Bias2(Pβ̄α),

where Bias2(Pβ̄α) := (E[Pβ̄α]− Pβ)(E[Pβ̄α]− Pβ)′. In general, the second term in the latter equation
will not be directly available. Nonetheless, one can show that the assumptions that were made to
guarantee the validity of the instruments, will also be sufficient to provide us with a consistent estimator
of the bias of Pβ̄α. Indeed, since by proposition 2, we have seen that the TSLS estimator converges in
probability to the true parameter, β; it follows that this particular estimator can be used in the place of
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the true parameter in order to produce a consistent estimator of the bias of Pβ̄α. That is, we can define
the empirical bias of the projected SPSL estimator as follows,

B̂ias(Pβ̄α) := Pβ̄α − Pβ̂.

The CSE from proposition 3 can be estimated in an analogous fashion. Therefore, the consistency of the
TSLS estimator guarantees the consistency of the SPSL estimator.

The choice of terminology for this family of estimator can be justified by observing that the expression
for α in proposition 3 bears some similarities with the theory of Stein estimators13. Indeed, the empirical
version of the formula for the shrinkage parameter can be expressed as follows,

α̂ =
tr(V̂ar(Pβ̂)− ĈSE(Pβ̂,Pβ̃))

||P(β̃ − β̂)||2
,

where || · || denotes the L2-norm on Rk+2, with respect to the empirical joint distribution of the data.
Using this expression, we can then formulate the SPSL estimator as a weighted deviation from the
unbiased TSLS estimator, shrunk toward the OLS estimator,

β̄α̂ = β̂ − τ̂

||P(β̂ − β̃)||2
(β̃ − β̂),

in which τ̂ := tr(V̂ar(Pβ̂)− ĈSE(Pβ̂,Pβ̃)), and where observe that we have made implicit the
dependence of the LHS in the latter equation on P. Indeed, β̄α̂ is solely dependent on the projection,
P, through the value of α̂, since we have α̂ = τ̂ /||P(β̂ − β̃)||2.

The relationship between the SPSL estimator and the traditional Stein estimators has been studied
by previous authors. See Judge and Mittelhammer20, for instance. One can also observe that under the
additional assumption that the random vectors, β̂ and β̃, are elementwise squared integrable; it follows
that we can obtain a central limit theorem for the SPSL estimator dependent on P. This would generalize
a previous result by Judge and Mittelhammer20 for the standard SPSL estimator.

As for the OLS and TSLS estimators, the natural causal effects of the experimental manipulation onto
the outcome, can be estimated using the components of the SPSL estimator, β̄α̂, such that we obtain
NDE := β̄R, and NIE := θ̃R − β̄R; where note that, as for the TSLS natural effects, the quantity θ̃R is
still estimated using the OLS estimator.

For the analysis of the PROSPECT data set, since the estimations of both the NDE and the NIE rely
on this quantity, it follows that the main parameter of interest is βR. We have here arranged the variables
in this model according to Vi = (X ′i,Mi, Ri)

′. Thus, the projection matrix, P, will be defined as a null
matrix with a single non-null value in the last element of its diagonal (that is, Pij = 0 holds every element
in P, apart from Pk+2,k+2 = 1); thereby estimating the shrinkage parameter solely on the basis of the
respective values taken by β̃R and β̂R.

Simulations
We now present a simulation study, which compares the OLS and TSLS with the combined estimator,
SPSL. We generate data from a confounded mediation model augmented with an instrumental variable.
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The design of this simulation experiment is partly motivated by the model fitted to the PROSPECT
data set analyzed in the sequel. Note, however, that in our simulations, the mediator is assumed to be
continuous, whereas that same variable is dichotomous in the PROSPECT data. The effect of treatment
on the endogenous mediator is allowed to vary according to the values taken by the baseline variables.
Apart from this source of variation, the effects are assumed to be homogeneous in these simulations.

Mediation Models
Our objective in constructing our simulation model is twofold. Firstly, we wish to be able to control the
degree of endogeneity of the mediator, as well as the strength of the instrument; such that both factors
can be varied independently of each other. Secondly, we will also require the variances of the response,
Yi’s, and of the intermediate variable, Mi’s, to be equal to 1, to be able to interpret the size of the effect
on a standardized scale.

As represented in Figure 3, we formulate the following structural model for the clinical outcome,

Yi = βXXi + βRRi + βMMi + βUUi + εi;

for every i = 1, . . . , n. (Note that, contrary to the model in Equation (2), the εi’s in this simulation
model are uncorrelated with the Ui’s.) As previously mentioned, in order facilitate interpretability, we
will fix the variance of the response variable to be equal to 1 for all scenarios. The variance of the
intermediate variable,Mi’s, will also be constrained to be unity. Both of these objectives will be achieved
by controlling the variances of the error terms, εi’s in the above model; and δi’s in the following model
for the intermediate variable,

Mi = γXXi + γRRi + γRXRiXi + γUU + δi.

(Note again that the δi’s in the above simulation model for the mediator are uncorrelated with the Ui’s.)
The variance of the δi’s is defined as a function of the parameters in the equation for the Mi’s, such
that σ2

δ (γX , γR, γRX , γU ) := Var(δ). This function will be defined in the sequel. For convenience, we
will simulate a single baseline covariate, denoted by Xi. This baseline covariate is given the following
distribution, Xi

iid∼ N(0, 2); where the variance was arbitrarily fixed to two, in order to simplify some
of our computations. In addition, the experimental factor is drawn from a Bernoulli distribution, taking
the form, Ri

iid∼ Bern(1/2). Finally, the unmeasured confounder is also generated from a unit normal
distribution, such that Ui

iid∼ N(0, 1).
In this model, the Xi’s are assumed to be independent of other observed baseline variables, such that

Xi ⊥ Ri; and the confounders, denoted by Ui’s, are assumed to solely affect the relationship between
the outcome and the mediator, such that we also have Ui ⊥ Xi, Ri, RiXi. These assumptions, combined
with our constraints on the variances of the Yi’s and the Mi’s, can be used to compute a range of possible
values for the parameters of interest. A description of the specific computations involved in this derivation
has been relegated to an appendix. (See Appendix B, for the details of the computation of the variance
of the error terms, σ2

ε and σ2
δ .) Throughout these simulations, the parameters controlling the effect of the

Xi’s and Ri’s have been set to γX := 1/4, and γR := 1/
√

2, respectively. These choices of parameters
correspond to small to moderate effect sizes. For convenience, we have further set the coefficients of the
structural model for the Yi’s to take the same value, βX = βR = βM = βU = 1/4. It then follows that in
order to guarantee σ2

ε > 0, we need to choose γU , as satisfying γU ≤ 1/2, as well as, γX + γRX ≤ 1/2.
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The two main factors that are manipulated in this simulation study are the degree of confounding of the
mediator, and the strength of the instrument. These simulation factors are respectively quantified using
the correlation of the intermediate variable, Mi’s, with the confounders, Ui’s; and with the instruments,
RiXi’s. Owing to our choice of normalization, these two correlations can be expressed as follows,

Cor(Mi, Ui) = η, and Cor(Mi, RiXi) = κ;

where it can be verified that η = γU , and κ = γX + γRX . Under the additional constraint that both σ2
ε

and σ2
δ are positive, it follows that we can select η to take values in the set {0.0, 0.25, 0.50}, which

represent different choices for the degree of confounding (none, moderate, and strong on a correlation
scale); and κ to take values in the set {0.01, 0.25, 0.50}, which represent different choices for the strength
of the instrument (weak, moderate, and strong also on a correlation scale). Observe that the correlation
between the mediator and its instrument, κ, must be non-zero; in order to ensure that the TSLS estimator
is well-identified in all scenarios. As a result of these choices of simulation parameters, the true NDE and
the true NIE were 1/4 and 1/2, respectively, throughout all our simulations.

Evaluation of the Estimators
We generated 105 Monte Carlo samples from the aforementioned model, under combinations of the three
values taken by η, the three values taken by κ; and the three different sample sizes typical of mental health
trials, n ∈ {100, 300, 500}. Altogether, this produced a total of 270, 000 distinct synthetic data sets.

The OLS, TSLS and SPSL estimators of the NIE and NDE were computed as follows. Firstly, for each
data set, we computed the OLS estimator, θ̃R of the total effect of R on the outcome Y . This corresponds
to estimating the non-mediated model presented in Equation (4), and illustrated in Figure 1. Observe that
the OLS estimator, θ̃R, is identical for all methods of estimation. Indeed, the estimation of the total effect
in this model is assumed to be unbiased, since subjects have been randomly allocated to the levels of the
experimental factor, R.

Secondly, we fitted the instrumented mediation model, corresponding to the diagram in Figure 3, for
the three different estimation procedures. This produced the OLS, TSLS and SPSL estimators for βR,
which corresponds to the estimator of the NDE. The NIE estimator could then be obtained by subtracting
that estimate from θ̃R. The performances of these estimators were compared by computing the empirical
root MSE over the 105 Monte Carlo samples generated in each scenario. These RMSEs are reported in
Figure 5.

Simulation Results
Consider the distribution of the values taken by the three estimators of interest in Figure 4. These are
reported for the two causal estimands under scrutiny: NIE, θ̃R − β†R, and NDE, β†R, in which β†R may
represent either the OLS, TSLS or SPSL estimators. As expected, for both the NIE and NDE, the OLS
was more likely to be biased when η was large, and the TSLS was more likely to exhibit a high variance
when κ was small. Increases in sample size tended to result in better precision for all estimators. This
trend was particularly noticeable for the TSLS estimator, using both continuous and binary mediators.
The overall performances of these estimators were also compared using their respective RMSEs. These
have been reported in Figure 5. There were substantial differences between the behavior of the TSLS and
SPSL in these two simulation models.
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Figure 4. Monte Carlo distributions of estimators’ values of the three estimators of interest under the
simulation scenarios described in Equation (5), for the NDE, βR, and NIE, θR − βR, in panels (A) and (B),
respectively. The simulations are reported for different degrees of confounding, and varying levels of
instrument’s strength, measured by η and κ, respectively. These results are based on 105 iterations in each
condition. The dashed lines indicate the values of the true NDE and NIE, in panels (A) and (B), respectively.
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(B) Natural Indirect Effect
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Figure 5. Continuous Mediator Model: Monte Carlo estimates of the root mean squared errors (RMSEs) of
the three estimators of interest under the simulation scenarios described in equation (5), for the NDE, βR, and
NIE, θR − βR, in panels (A) and (B), respectively. The simulations are reported for different degrees of
confounding, and varying levels of instrument’s strength, measured by η and κ, respectively. These results are
based on 105 iterations in each condition.
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Under the continuous mediator model, the patterns exhibited by the NDE and NIE were very similar.
For weak instrumental variables, i.e. κ = 0.01, the RMSE of the TSLS estimator was high in comparison
to the ones of the OLS and SPSL estimators, due to the large variance of the TSLS. In these scenarios,
the Stein-like estimator’s RMSE was almost identical to the one of the OLS. By contrast, when the
instrumental variables were strongly predictive of the endogenous variable, i.e. κ = 0.5, the RMSEs of
the different estimators varied with the amount of bias. This trend is particularly noticeable in the last row
of Figure 5(A). Fixing the correlation between the mediator, M , and the confounder, U , to be η = 0.5;
one can observe that for small values of κ, the RMSE of the OLS is optimal, whereas for large values of
κ, the RMSE of the TSLS is optimal; while the SPSL strikes a trade-off between these two counterparts
irrespective of the values taken by κ.

In practice, we can usually evaluate the strength of a set of instruments, by computing the F -test
of the equation for the Mi’s. In our simulation, this corresponds to having some knowledge of κ.
However, it is generally not possible to obtain any information about the degree of confounding, η. These
simulations have therefore demonstrated that the SPSL outperforms its counterparts in a global sense
–that is, when we ‘average’ the performances of these estimators over different values of η. Intuitively,
this approach bears some similarities with the Bayesian framework for model averaging, in which the
degree of unmeasured confounding, η, is treated as a source of uncertainty.

PROSPECT Study
We here re-analyze a randomized controlled trial known as PROSPECT22. This study tested the impact
of a primary care intervention on reducing major risk factors for suicide in late life. Patients were
recruited from 20 different primary care practices on the East coast of the United-States, over a 16-
month period. The intervention consisted in two major components22. Firstly, the physicians followed
a clinical algorithm specifically designed for treating geriatric depression. Secondly, the treatment was
managed and adjusted by depression care managers. This primary care intervention was compared to a
treatment as usual (TAU) condition.

Mediation Model
The main question of interest here is to investigate whether the intent-to-treat effect of the intervention
on the 4-month Hamilton Depression Rating Scale (HDRS) was due to a direct effect of treatment
allocation, after excluding the indirect effect mediated through taking antidepressant medication. Thus,
the intermediate variable in this study should be regarded as a nuisance mediator, since we are primarily
interested in the direct effect. The PROSPECT mediation study is therefore unusual, in the sense that
the main effect of interest in the present analysis, is not the indirect effect or NIE as in most mediation
studies.

The subjects’ scores on the HDRS after a four-month follow-up is the main outcome under scrutiny.
The instrumental variables for the mediator were defined as the set of interaction terms between the
randomized intervention and the baseline covariates. This particular choice of instruments has been
proposed previously23, and we are here following this choice for comparability; see also Small25 for
a discussion of the use of interaction terms as instruments in the context of causal mediation. The
instruments were found to be good predictors of the endogenous mediator; and explained about 50% of
the variance in that variable using theR2. Fitting a linear regression with taking prescribed antidepressant

17



0.00

0.02

0.04

0.06

−20 −10 0 10 20
HDRS(4) − HDRS(0)

D
en

si
ty Groups

Control

Treatment

(a)

0

25

50

75

100

125

Control Treatment
Group

N
um

be
r 

of
 S

ub
je

ct
s

Taking Antidepressants

Yes

No

(b)

Figure 6. Descriptive statistics for the PROSPECT data set. In panel (a), we have provided histograms of the
difference, HDRS(4)− HDRS(0), for both the control and treatment groups, where HDRS(0) and HDRS(4)
denote the Hamilton Depression Rating Scale (HDRS) at baseline and after a four-month follow-up. In panel
(b), the barplots represent the distribution of patients according to whether or not they have been taking
antidepressants, which here corresponds to the intermediate variable, M , reported by treatment groups, R.

medication as the response, and the instruments as predictors, resulted in a highly significant F -statistic
(F = 9.10, df1 = 6, df2 = 282, p < 0.001), thereby justifying our choice of instruments for this study.
See also a similar analysis of the weak instrument bias in this study in Emsley et al. (2010)24.

In order to compare the strength of the instruments in the PROSPECT data set, with the results of
the Monte Carlo simulations, we have additionally computed the value of κ for this data set. Contrary
to our simulation studies, however, note that we are here considering several instruments –that is, an
entire vector of baseline variables, interacted with the treatment under scrutiny. Therefore, the definition
used for the simulation study, Cor(Mi, RiXi) = κ, such that κ = γX + γRX , cannot be directly used.
Instead, we have calculated the multiple correlation of the mediator, Mi, with all the instruments used in
the study. This produced a large correlation coefficient, R = 0.436, which approximately corresponds to
the large κ values that we have investigated in the preceding simulations, and which we have described
as referring to a strong set of instruments.

The baseline variables included HDRS scores at baseline, denoted HDRS(0), a binary variable
denoting suicide ideation, past medication use (i.e. whether or not patients had been using past
medication for dementia and other conditions but excluding psychotropic treatment for depression), and
antidepressant use (i.e. specifically whether or not patients had been using antidepressant medication
in the past). Moreover, the model also included two dummy variables, which controlled for the three
different collection sites that were used in the study. Descriptive statistics for the main variables of interest
in this study, have been reported in Figure 6.

Results of Re-analysis
The results of this re-analysis are reported in Table 1. The natural direct and natural indirect effects
have been computed for the three estimators of interest. The OLS estimates and their standard errors
were found to be approximately identical to the ones reported by Ten Have and colleagues in a previous
analysis of the same data set23.
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Table 1. Re-analysis of the PROSPECT data seta, in which the outcome variable is the Hamilton Depression
Rating Scale at four-month, HDRS(4), the main intervention is the primary care intervention of interest,
whereas the mediator is taking antidepressant medication. Three estimators of interest are here compared.
These include the Ordinary Least Squares (OLS), Two-Stage Least Squares (TSLS), and the Semi-Parametric
Stein-Like (SPSL) estimators. Bootstrapped standard errorsb for all estimators are denoted in parentheses.

Variables in Model for Y OLS TSLS SPSL

Randomization & Mediator:
R : Primary Care Intervention −2.66 (0.96) −2.38 (1.41) −2.63 (1.17)
M : Antidepressant Medication −1.24 (1.11) −1.95 (2.60) −1.30 (1.84)

Baseline Covariates:
X1 : HDRS(0) 0.62 (0.07) 0.62 (0.07) 0.62 (0.07)
X2 : Suicide Ideation 1.25 (0.96) 1.25 (0.96) 1.25 (1.00)
X3 : Past Medication Use 1.48 (1.07) 1.59 (1.10) 1.49 (1.03)
X4 : Antidepressant Use −0.14 (0.40) −0.07 (0.44) −0.13 (0.43)
X5 : Second Collection Site −0.46 (0.98) −0.50 (0.97) −0.47 (0.99)
X6 : Third Collection Site −2.13 (1.05) −2.05 (1.16) −2.12 (1.13)

Causal Effects:
NDE: Natural Direct Effect −2.66 (0.96) −2.38 (1.41) −2.63 (1.17)
NIE: Natural Indirect Effect −0.48 (1.26) −0.76 (1.60) −0.51 (1.42)

Shrinkage Parameter:
SPSL’s α̂c −− −− 0.075

a Complete cases, for whom all measures were available, n = 296.
b The SEs for all estimators are based on 1,000 bootstrap iterations.
c The estimated shrinkage used in the computation of the SPSL estimator, where the optimal
shrinkage is estimated using a projection matrix, P, which is specified to be a unit matrix with
a single one in its diagonal, corresponding to the offer of treatment variable, βR.

In this paper, we have introduced a generalization of the SPSL estimator, which includes the use of
a projection matrix, P. Such a matrix permits to restrict the computation of the shrinkage parameter,
α, to a specific subset of variables. In the case of PROSPECT, the intermediate variable in this study
is treated as a nuisance mediator, in the sense that the main focus of the analysis lies in estimating the
NDE. Therefore, one can select a projection matrix, P, that emphasizes the estimation of the NDE, as
opposed to optimizing the estimator with respect to all the parameters in the model. This can be done by
specifying P to be a unit matrix with a single one in its diagonal, corresponding to the offer of treatment,
βR. The results for the projected SPSL estimator are reported in the third column of Table 1. The values
of the SPSL and associated shrinkage estimator did not markedly differ, when using an identity matrix
(results not shown); thereby indicating that the amount of shrinkage exerted by the SPSL estimator was
mostly determined by the OLS and TSLS estimates of βR, the main estimand of interest.
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As expected, the values taken by the NDE and NIE under the SPSL framework were located between
the ones of the OLS and TSLS estimators. Similarly, the standard errors (SEs) of the SPSL estimator was
also found to strike a trade-off between the SE of the OLS estimator and the SE of the TSLS estimator,
for both the NDE and NIE. The shrinkage parameter of the SPSL estimator was found to be close to zero,
α̂ = 0.075. Thus, the statistical properties of the OLS estimator were favored over the corresponding
properties of the TSLS estimator. This suggested that, despite the strength of the instruments used in this
study, these instruments generated an increase in the variance of the TSLS estimator, which penalized the
use of the TSLS. Consequently, the use of the TSLS was not deemed warranted for this model.

Conclusions

We have here demonstrated the usefulness of the SPSL estimator in the context of causal mediation
analysis. This implementation has also generalized some of the previous uses of this family of estimators,
by restricting the estimation of the shrinkage parameter to a subset of the parameters of interest. Although
weak instrument bias can usually be estimated from the data; the degree of unmeasured confounding is,
by definition, unknowable. In situations in which there is little or weak confidence in the instruments
used, the SPSL estimator can be employed to mitigate any detrimental increase in variance that would
result from a naive application of the TSLS. This appears to be especially true for binary mediators, since
these are likely to yield inefficient TSLS estimators.

Furthermore, the SPSL estimator possesses desirable asymptotic properties. Under standard
assumptions on the properties of the instruments, the SPSL estimator is indeed asymptotically unbiased. It
also has the advantage of being directly estimable from the data. Moreover, the shrinkage parameter used
in combining the OLS and TSLS estimators may be of special interest. This parameter can be interpreted
as a gauge that measures the usefulness of the instruments, in terms of gains in MSE. That is, a very
low value for α̂ indicates that the OLS is preferable over the TSLS, and therefore that the corresponding
instruments mostly contribute to increasing the variance of the combined estimator, without substantial
gains in terms of unbiasedness.

Throughout this paper, we have assumed that the IVs of interest were valid instruments. In particular,
we have required that each IV only affects the clinical outcome through the intermediate variable.
Moreover, these assumptions have been tailored to the case in which the instruments are constructed
by interacting some of the baseline variables with treatment offer, following the work of Small25. Such
assumptions are particularly important in our context, since the asymptotic unbiasedness of the SPSL
estimator solely holds, when the TSLS estimator is also guaranteed to be asymptotically unbiased. Note,
however, that the SPSL framework is more widely applicable, and could be used with instruments that
are not necessarily composed of interaction terms.

It is of special interest to consider the behavior of the SPSL estimator, when some of our assumptions
fail to be satisfied. Let us first focus on some of the aforementioned OLS and TSLS assumptions. We can
evaluate how the violation of these assumptions would impact on the behavior of the SPSL estimator.
In the first instance, consider condition (OLS–4), which requires that E[X ′iXi] should be full-rank; or
equivalently that the OLS estimator is identified. If such an assumption were to fail, then the condition
number of the matrix, E[X ′iXi], would be very high, and consequently the determinant of its inverse
would be very large. As a result, this would produce a large OLS variance, possibly tending towards
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infinity. Therefore, everything else being equal, the failure of (OLS–4) would be likely to put the OLS at
a disadvantage, in comparison to the TSLS, in the construction of SPSL.

Similarly, when considering the TSLS estimator, one can also predict the consequences of the violation
of certain assumptions. Consider (TSLS–3), for instance. This assumption requires that the matrices,
E[Z ′iZi] and E[Z ′iXi], are both full-rank; which guarantees that the TSLS estimator is identified. If this
condition were to fail, we would obtain a very large variance for the TSLS estimator. As a result, a
failure of assumption (TSLS–3) would then lead to the SPSL estimator being shrank toward the value
of the OLS estimator. Moreover, the TSLS would also suffer if condition (TSLS–4) were to fail. This
assumption requires that the instruments, Zi’s, are relevant, in the sense that they should be correlated
with the intermediate variables,Mi’s. If this assumption were to be violated, the instruments would solely
contribute to TSLS by increasing its variance; thereby making it more likely for the combined estimator
to favor the OLS estimator over its TSLS counterpart.

Observe that all of the assumptions that we have made in this paper have also been posited by Small
(2012)25, in his investigations of the properties of IVs which are defined as interaction terms between
baseline variables and the experimental variable. This choice of IVs corresponds to the instruments that
we have used in the PROSPECT data set. In this setting, the IV assumptions could be subjected to a
sensitivity analysis, as demonstrated by Small25; and we refer the reader to this paper for further details
on the type of sensitivity analysis that can be conducted, when using interaction terms as instruments.
However, further research will be needed to generalize these sensitivity analyses to the case of the SPSL
estimator.

The SPSL could straightforwardly be applied to other causal estimands. It has been used to optimize the
estimation of Local Average Treatment Effects (LATEs)21, and could be implemented in other settings.
Moreover, such methods could also accommodate other families of estimators, such as the jackknife IV
estimator (JIVE)28, for instance. Further research may also concentrate on improving the applicability of
the present methods to data sets with binary outcomes, by using a more sophisticated approach than the
one presented in the paper at hand. This may involve the use of generalized structural equation models
(gSEM), which would be expected to handle binary mediators as well as binary outcomes, with greater
efficiency. Several authors have proposed methodological frameworks for allowing the use of instruments
in this context29,30; and the Stein-like estimators could be adapted to generalized linear models using the
approaches advocated by these authors.

Appendix A: Proofs of Propositions

Proof of Proposition 1. The error term, εi, has been defined in equation (3), and can be seen to be the
sum of three distinct random variables centered at zero. Thus, we solely need to consider whether or not
the interaction terms,RiXi’s, are uncorrelated with each of the summands composing the εi’s in equation
(3). Indeed, whenever a random variable is pairwise uncorrelated with a set of random variables, it is also
uncorrelated with the sum of these variables. We will therefore consider the three summands of εi in turn.
These are Ai1 :=

(
Yi(0, 0)− E[Yi(0, 0)|Xi]

)
, Ai2 :=

(
βM,i − βM

)
Mi and Ai3 :=

(
βR,i − βR

)
Ri.

Furthermore, observe that the covariance of εi with the interaction term is a vector of order (k × 1).
Hence, the proposition is proved, if we are able to show that for each of the jth component of RiXi, we
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have

Cov(RiXij , εi) = Cov

(
RiXij ,

3∑
l=1

Ail

)
= 0,

where j = 1, . . . , k. Thus, we fix an arbitrary component, say RiXij , in the sequel; and consider its
covariance with each of the three summands of εi.

Firstly, for Ai1, observe that the covariance Cov(RiXij , Ai1) can be expressed as the difference,
E[RiXijAi1]− E[RiXij ] · E[Ai1]. Using the tower rule, we have

E[Ai1] = E
[
Y 0,0
i − E[Y 0,0

i |Xi]
]

= E
[
Y 0,0
i

]
− E

[
E[Y 0,0

i |Xi]
]

= 0,

where for convenience, we have defined the shorthand, Y 0,0
i := Yi(0, 0). It then suffices to consider the

quadratic term, E[RiXijAi1], which simplifies as follows,

E
[
RiXij(Y

0,0
i − E[Y 0,0

i |Xi])
]

= E
[
Ri
]
· E
[
Xij(Y

0,0
i − E[Y 0,0

i |Xi])
]
,

using the fact that the Ri’s have been randomized. Through another application of the tower rule, the
second term on the RHS of the latter equation gives

E
[
E[Xij(Y

0,0
i − E[Y 0,0

i |Xi])|Xi]
]

= E
[
Xij(E[Y 0,0

i |Xi]− E[Y 0,0
i |Xi])

]
= 0.

Secondly, considering the covariance of RiXij with the second summand of the error term, Ai2; we
can again apply the tower rule in order to obtain

E
[
(βM,i − βM )Mi

]
= E

[
E[(βM,i − βM )Mi|Ri, Xi]

]
= E

[
E[(βM,i − βM )|Ri, Xi] · E[Mi|Ri, Xi]

]
,

where the second equality is a consequence of assumption (A3). Moreover, the first term inside the
expectation on the RHS of the latter equation becomes,

E[(βM,i − βM )|Ri, Xi] = E[(βM,i − βM )|Xi] =
(
E[βM,i|Xi]− βM

)
= 0,

using in turn, the fact that the Ri’s are randomized, and assumption (A2). Thus, the covariance,
Cov(RiXij , Ai2), reduces to the quadratic term E[RiXijAi2]. However, using the tower rule, this
quantity can be expressed as

E[RiXij(βM,i − βM )Mi] = E
[
E[RiXij(βM,i − βM )Mi|Ri, Xi]

]
= E

[
RiXij · E[(βM,i − βM )Mi|Ri, Xi]

]
= E

[
RiXij · E[(βM,i − βM )|Ri, Xi] · E[Mi|Ri, Xi]

]
= 0,

where the third equality follows from assumption (A3).
Thirdly, the covariance, Cov(RiXij , Ai3) with Ai3 = (βR,i − βR)Ri, can similarly be simplified by

applying the fact that the Ri’s are randomized, such that

E[(βR,i − βR)Ri] = E[(βR,i − βR)] · E[Ri] =
(
E[βR,i]− βR]

)
· E[Ri] = 0,
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which follows from our definition of βR. Thus, the covariance, Cov(RiXij , Ai3), reduces to the quadratic
term, E[RiXijAi3], which can be expressed as

E[RiXij(βR,i − βR)Ri] = E[R2
i ] · E[Xij(βR,i − βR)]

= E[R2
i ] · E

[
E[Xij(βR,i − βR)|Xi]

]
= E[R2

i ] · E
[
XijE[(βR,i − βR)|Xi]

]
= 0,

where the last equality follows from the first part of assumption (A2).

Proof of Proposition 2. We can first invoke proposition 1, which guarantees that Cov(RiXi, εi) = 0,
for every subject. Moreover, since the baseline variables, Xi’s, are assumed to be exogenous, it also
follows that Cov(Zi, εi) = 0, since we have defined the Zi’s as (X ′i, Ri, RiX

′
i)
′. Then, the proof of the

consistency of β̂ proceeds in a standard fashion. See chapter 5 of Woodridge (2002)10 for details.

Proof of Proposition 3. The optimal value of α is obtained after minimizing fα := MSE(Pβ̄α). We will
expand the trace of this criterion as was done in equation (6), such that

tr fα = tr(α2M1 + 2α(1− α)C + (1− α)2M2),

with M1 := MSE(Pβ̃), C := CSE(Pβ̃,Pβ̂), and M2 := MSE(Pβ̂), respectively. Commuting the
derivative operator with the trace, we obtain

tr(∂f/∂α) = 2α tr(M2 − 2C +M1)− 2 tr(M2 − C).

Setting this expression to zero and solving for α, yields α := tr(M2 − C)/ tr(M2 − 2C +M1), as
required.

In addition, a second derivative test can be performed in order to show that such minimizer is, in fact,
a unique global minimizer.

tr(∂2f/∂α2) = 2 tr(M1 − 2C +M2). (8)

By assumption, the random vectors, β̃ and β̂, are elementwise squared-integrable. Thus, the components,
E[(β̃j − βj)2], ofM1 are finite. Hence, using the linearity of the trace, the MSE of Pβ̃ can be treated as a
sum of real numbers, thereby yielding the L2-norm on Rk+2, which we may denote by ||P(β̃ − β)||. The
latter quantity will be referred to as the (trace) RMSE of β̃. By the same reasoning, it can be shown thatC
and M2 corresponds to the inner product, 〈P(β̃ − β),P(β̂ − β)〉, and the squared norm, ||P(β̂ − β)||2
on Rk, respectively. Thus, equation (8) can now be expressed as follows,

tr(∂2f/∂α2) = 2
(
||P(β̃ − β)||2 − 2〈P(β̃ − β),P(β̂ − β)〉+ ||P(β̂ − β)||2

)
.

The Cauchy-Schwarz inequality can then be used to produce an upper bound,

〈P(β̃ − β),P(β̂ − β)〉 ≤ ||P(β̃ − β)|| · ||P(β̂ − β)||.
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Finally, by completing the square, we obtain the following lower bound,

tr(∂2f/∂α2) ≥ 2
(
||P(β̃ − β)|| − ||P(β̂ − β)||

)2
≥ 0,

for every P, and where equality solely holds when the RMSEs of the two estimators, β̃ and β̂, are
identical.

Appendix B: Simulation Model
This appendix demonstrates how the variances of the error terms, εi’s and δi’s, denoted by σ2

ε and σ2
δ

respectively; can be obtained in closed form, under the constraints imposed upon our simulation model.
We have here assumed the Xi’s to be exogenous, such that Xi ⊥ Ri. Moreover, the confounders,

denoted by Ui’s, have been assumed to solely affect the relationship between the outcome and the
mediator, such that we also have Ui ⊥ Xi, Ri, RiXi. Consequently, the variance of the Mi’s can be
decomposed as follows,

Var(Mi) = γ2X Var(Xi) + γ2R Var(Ri) + γ2RX Var(RiXi) + γ2U Var(Ui)

+ 2γXγRX Cov(Xi, RiXi) + 2γRγRX Cov(Ri, RiXi) + σ2
δ ;

(9)

usingXi ⊥ Ri, and the fact that theUi’s are independent of all the other variables on the RHS of equation
(9). It can also easily be seen that the mean and variance of the interaction variable RiXi are respectively
given by E[RiXi] = E[Ri]E[Xi] = 0 and Var(RiXi) = Var(Ri)Var(Xi) = 1, by using the exogeneity
of the Xi’s, and the fact that the Xi’s are centered at zero. By a similar argument, the two covariances in
equation (9) can be simplified as follows,

Cov(Xi, RiXi) = E[Ri]E[X2
i ] = 1, and Cov(Ri, RiXi) = E[R2

i ]E[Xi] = 0;

since Ri ∈ {0, 1}, and therefore E[Rki ] = E[Ri], for every k. Hence, after fixing the variance of the
Mi’s at 1, we can express the variance of the δi’s in terms of the remaining parameters in that structural
equation, such that

σ2
δ (γ) = 1−

(
2γ2X +

1

4
γ2R + γ2RX + γ2U + 2γRXγX

)
,

with γ := (γX , γR, γRX , γU )′; and after using the Bernoulli distribution of the Ri’s, which gives
Var(Ri) = 1/4. Throughout the simulations, the parameters controlling the effect of the Xi’s and Ri’s
have been set to γX := 1/4, and γR := 1/

√
2, respectively. This choice of parameters has been selected

in order to simplify the expression for σ2
δ , such that we obtain, σ2

δ = 0.75− γ2RX − 1
2γRX − γU .

Similarly, we can standardize the variance of the outcome variables, Yi’s. Given that theXi’s,Ri’s and
Mi’s are cross-correlated, this produces a convoluted formula given by the following,

Var(Yi) = β2
X Var(Xi) + β2

R Var(Ri) + β2
M Var(Mi) + β2

U Var(Ui)

+ 2βXβM Cov(Xi,Mi) + 2βRβM Cov(Ri,Mi)

+ 2βMβU Cov(Mi, Ui) + σ2
ε ;

(10)

after applying Ri ⊥ Xi, and using the fact that the Ui’s are independent of both the Ri’s, and the
Xi’s. Equation (10) can be further simplified by using our choice of parametrization, which gives
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Cov(Xi,Mi) = 2γX + γRX , Cov(Ri,Mi) = γR/4, and Cov(Ui,Mi) = γU . Altogether, we therefore
obtain a closed-form formula for the variance of the error terms of the Yi’s, expressed in terms of the
model parameters, β := (βX , βR, βM , βU ) and γ. That is,

σ2
ε(β,γ) = 1−

(
2β2

X +
1

4
β2
R + β2

M + β2
U + C

)
,

where C := 2βXβM (2γX + γRX) + βRβMγR/2 + 2βMβUγU . Therefore, we have obtained closed
form formulas for both σ2

δ and σ2
ε . These formulas have then be used to constrain the range of the

parameters of interest, in the different simulation scenarios.
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