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New Findings 37 

 38 

This review summarizes recent discoveries in mitochondria development and morphology 39 

studied with electron microscopy. 40 

 41 

Although mitochondria are generally considered as isolated from each other, this review 42 

highlights recently discovered evidence for the presence of inter-mitochondrial communication 43 

structures in cardiac and skeletal muscle, in animal models and humans. Even within striated 44 

muscles, means of inter-mitochondria exchanges and mitochondria reaction to external stimuli 45 

are uniquely dependent on the tissue, and we clearly differentiate between nanotunnels, the 46 

active protrusion of cardiac mitochondria, and the connecting ducts of skeletal muscle derived 47 

from fusion-fission and elongation events.  48 
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Abstract 49 

This review focuses on recent discoveries in skeletal and cardiac muscles indicating that 50 

mitochondria behave as an interactive cohort with inter-organelle communication and specific 51 

reactions to stress signals.  Our new finding is that inter-mitochondrial communications in 52 

cardiac and skeletal muscles rely on two distinct methods.  In cardiac muscle, mitochondria are 53 

discrete entities and are fairly well immobilized in a structural context.  The organelles have 54 

developed a unique method of communication, via nanotunnels, that allow temporary connection 55 

from one mitochondrion to another over distance of up to several microns, without overall 56 

movement of the individual organelles and loss of their identity.  Skeletal muscle mitochondria, 57 

on the other hand, are quite dynamic.  Through fusion, fission and elongation they form 58 

connections that include constrictions and connecting ducts (quite distinct from nanotunnels) and 59 

loose individual identity in the formation of extensive networks.  Connecting elements in skeletal 60 

muscle are distinct from nanotunnels in cardiac muscle.  61 
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Inter-mitochondria communication: interesting variety of means and structures  62 

The positioning, movements and overall behavior of mitochondria are dictated by 63 

requirements of the host cell, but are also influenced by independent mitochondrial activity 64 

(Zhang et al., 2016; Wang et al., 2018; Strzyz, 2019).  The direct cell influence on mitochondria 65 

is most obvious in skeletal and cardiac muscles, where tethering to the sarcoplasmic reticulum 66 

imposes an age-dependent stereotyped distribution of mitochondria relative to the sarcomeres 67 

(Boncompagni et al., 2009; Franzini-Armstrong & Boncompagni, 2011). This disposition is of 68 

course most obviously advantageous to the muscle cells because it provides well-distributed 69 

sources of ATP production. However, recent evidence shows that mitochondria are not entirely 70 

dependent on cell commands, but assert their independence as a group by organizing means of 71 

communication between themselves that seem to by-pass the other cell organelles, serving as 72 

mitochondria-related, rather than cell-dedicated functions. This intercommunication is essential 73 

to mitochondria well-being and may be of importance to the overall cell function but perhaps 74 

only indirectly, since in general good health of mitochondria is needed as a basis for cell 75 

metabolism and other functions. Mitochondria intercommunication occurs by a variety of means 76 

and via sets of structural features that are varied in their morphology and development, and thus 77 

are functionally not equivalent.  Here we present and discuss the differences between the 78 

recently described nanotunnels and a variety of other inter-mitochondrial bridging structures that 79 

form ducts or pathways with different origins. In order to emphasize the important distinction 80 

between nanotunnels and other connecting structures, nanotunnels are first described separately.  81 

Finally, we consider other proposed, more direct communications by means of fusion/fission 82 

events and at specialized “kissing junctions”.  Most of the evidence presented refers to skeletal 83 

and cardiac muscle.  84 
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 85 

 86 

Mitochondrial nanotunnels: definition, origin and positioning 87 

Mitochondrial nanotunnels were first described in cardiac myocytes and named on the 88 

basis of their structure as long thin extensions that are actively extruded from a single 89 

mitochondrion and extend to others over relatively long distances of up to several microns 90 

(Huang et al., 2013). Nanotunnels are narrow (90-210 nm in diameter), with matrix and cristae 91 

included in their lumen. In general nanotunnels are larger than T tubules, have a relatively 92 

straight orientation, are in direct continuity with the mitochondria at their origin and are clearly 93 

not associated with dyads, making them a distinct anatomical structure. Nanotunnels are 94 

responsible for active intermitochondrial share of matrix content and membrane components 95 

over long distances (Huang et al., 2013; Eisner et al., 2017; Lavorato et al., 2017). The flow of 96 

material along nanotunnels is relatively slow, requiring minutes for equilibrium, but sufficiently 97 

robust to allow distribution of mitochondrial components to all mitochondria over the whole 98 

length of cardiac myocytes, at distances of tens of millimeters within a period of time measured 99 

in hours (Huang et al., 2013).  Evidence for communication via nanotunnels is quite clear, direct 100 

and compelling. Live confocal imaging of communicating mitochondria, shows matrix targeted 101 

with photoactivatable green fluorescent protein (mtPAGFP) penetrating into narrow tunnels and 102 

moving along them from one mitochondrion to another (Fig.1, see also Fig. 3 in Huang et al. 103 

(2013) and Fig. 9B in Lavorato et al. (2017)). Figure 2 from thin section electron micrographs 104 

illustrates the fine structure of nanotunnels similar to those illustrated in a 3-D reconstruction 105 

from the same mouse myocardium (Lavorato et al., 2017).  106 

  107 
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So far, nanotunnels have been directly imaged by electron microscopy and clearly detected 108 

by functional probes exclusively in cardiac myocytes, but not in any other muscles. Indeed, 109 

nanotunnels are quite frequent in cardiac muscle. The reason for nanotunnels’ presence seems 110 

obvious in mammalian myocardium, where mitochondria are clearly discontinuous and have 111 

extremely limited mobility, being confined between the myofibrils. In 3-D scanning electron 112 

microscopy (SEM) images, cardiac mitochondria are well defined as short cylinders that extend 113 

for the length of one to a few sarcomeres between the myofibrils with no direct continuities with 114 

each other, except via the pathway provided by nanotunnels (Fig. 3). Movements of entire 115 

mitochondria have not been directly observed and matrix protein exchanges between well-116 

separated mitochondria are very slow (Huang et al., 2013; Eisner et al., 2017; Lavorato et al., 117 

2017) confirming that the organelles are normally trapped in a fixed position. Essentially, in the 118 

absence of nanotunnels, cardiac mitochondria would lead a life of royal isolation with few 119 

interactions with each other. Thus, we hypothesize that nanotunnels are a feature essential to the 120 

wellbeing of cardiac mitochondria as a population and of the heart as a whole. 121 

 122 

Nanotunnels extend over distances of several microns, so they clearly can facilitate 123 

exchanges over relatively long distances within the cell (Fig. 1). They originate as a funnel 124 

shaped extension from a donating mitochondrion and they become narrower as they get farther 125 

out, while maintaining the double external membrane and, in most cases, some cristae. They 126 

rarely have a totally clear matrix. At the distal end, they taper into a rounded shape but, despite 127 

considerable effort in this regard, we were not able to observe a direct continuity between the far 128 

end of a nanotunnels and a receiving mitochondrion. The image in Figure 2 is suggestive but not 129 

quite a proof of continuity.  Since an electron microscopy (EM) image is a snapshot in time, this 130 



7 

 

indicates that direct continuity between a nanotunnel and its receiving mitochondrion is either 131 

quite rare, or of very short duration, or of very small size, or, most likely, a combination of all 132 

factors. This leaves behind a currently unresolved lack of direct ultrastructural evidence for the 133 

exact nature of the nanotunnel-to-mitochondrion continuity at the receiving end of the exchange.    134 

 135 

Nanotunnels reach for some distances from their site of origin (Fig. 3). The frequent close 136 

proximity between nanotunnels and microtubules (Fig. 2) suggests that nanotunnels move along 137 

the microtubules as many membrane-limited cell organelles do.  138 

 139 

One essential question about nanotunnels has not been solved: does the active transport of 140 

proteins between two separate mitochondria make use of preexisting nanotunnels or does a new 141 

tunnel develop when transport is needed, leaving behind the structural framework to be 142 

visualized by EM? In other words, how dynamic are nanotunnels and what is their life span? 143 

Static EM snapshot of myocardial structures (such as in Fig. 2 and 3) reveal the presence of 144 

numerous nanotunnels in all stages of deployment at any given time, and video recordings of 145 

active matrix transfer (Fig. 1) illustrate the movement of components along nanotunnel structure.  146 

However, it is not known whether nanotunnels may increase in density and dimensions when 147 

exchanges are required. 148 

 149 

 150 

Mitochondrial constrictions, mitochondrial fission, intermitochondrial nanotubes, ducts or 151 

pathways. 152 

In contrast to cardiac muscle, skeletal muscle inter-myofibrillar mitochondria do not show 153 
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any tendency towards “nanotunneling”: no long thin mitochondrial extensions have been 154 

observed to freely extend from the organelle surface, although the main shape of the individual 155 

mitochondrion is quite elongated.  Additionally, skeletal muscle mitochondria in mammalian 156 

muscle differ from those in cardiac myocytes because they are part of extensive networks with 157 

branching in the transverse direction and longitudinal extensions (Amchenkova et al., 1988; 158 

Picard et al., 2013). The extraordinary extent of continuous mitochondria networks in 159 

mammalian muscles has been frequently noted (Franzini-Armstrong, 2007; Wei et al., 2011; 160 

Patel et al., 2016) and it is likely that exchanges over long distances can easily occur over the 161 

length of preexisting continuous mitochondria pathways. Additionally, although mitochondria 162 

are physically anchored to the sarcoplasmic reticulum (SR) by tethers connecting them to the SR 163 

at triads (Boncompagni et al., 2009) and is constrained by the cytoskeleton, the entire network is 164 

quite variable in shape. This arrangement suggests a dynamic structure with the occurrence of 165 

fission and temporary fusion events, which allow extension of one mitochondrion domain into 166 

that of its adjacent neighbour, and provide for physiological exchanges.  167 

 168 

Extensive mitochondrial networks are not a rule, if muscles other than mammalian muscle 169 

are considered (Franzini-Armstrong & Boncompagni, 2011). In lower vertebrates mitochondria 170 

are mostly present in small groups, where they are either separate from each other, or only partly 171 

connected.  It is important  to note that nanotunnels, as defined in this review, are not deployed 172 

in skeletal muscle, even where few mitochondria are present, indicating that exchanges are more 173 

likely to occur by other means, e.g. fusion events (Eisner et al., 2014), or  via short connecting 174 

tunnels of the type described in  free bacteria (Dubey & Ben-Yehuda, 2011) as well as in higher 175 

cells (Rustom et al., 2004) and detailed below.  176 
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  177 

3-D reconstructions of mitochondria in human muscles have revealed the presence of 178 

numerous connections between mitochondria via narrow ducts or pathways that directly join one 179 

mitochondrion to another (Vincent et al., 2019). We propose that the origin of these connecting 180 

structures and their ultrastructural details are quite different from those of nanotunnels, so for 181 

clarity we propose to restrict the term nanotunnels to the structures specific to cardiac 182 

mitochondria and to use alternative names for other intermitochondrial connections, e.g. 183 

nanotubes, connecting ducts. Some instances of connecting ducts have been detected in skeletal 184 

muscle, often associated with evidence of severe structural alterations. The direct role of such 185 

structures in the physiology and pathology of muscle are not well defined, because they occur 186 

under a variety of pathological conditions (Vincent et al., 2016; Vincent et al., 2017), and may 187 

also be present as part of the normal network of mitochondria (Vincent et al., 2019). 188 

 189 

Differently from nanotunnels, the connecting ducts do not arise as active projections from 190 

the borders of mitochondria, but may be the result of slow and/or partly arrested fission. The 191 

most striking demonstration of this effect is in the work by Zhang et al (2016), who illustrated 192 

the process in a brain model of Alzheimer’s disease. In this brain model, elongated mitochondria 193 

show multiple constrictions sites, the likely initial stages of multiple fission processes that would 194 

break the elongated mitochondria into many fragments.  However, the process is not completed 195 

and the connections between the fragments remain in situ for some time and become thinner and 196 

elongated thus forming ducts. 197 

 198 

Novel discoveries in skeletal muscle show that mitochondria in this tissue may behave 199 
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similarly to those in neuronal tissue under conditions of some stress and provide direct evidence 200 

for the derivation of intermitochondrial ducts from events involving the evolution of elongated 201 

zones that may or may not evolve into actual fission.  Fatigue in fast fibers of mouse is 202 

associated with greater frequency of elongated constrictions within the body of individual 203 

mitochondria, and the subsequent development into short connecting ducts (Fig. 4) (Lavorato et 204 

al., 2018). Moreover, in a novel, human genetic condition (Perrotta et al., under review) 205 

unusually thin and elongated mitochondrial tubes have been discovered (Fig. 5). Levels of the 206 

von Hippel-Lindau protein are reduced in this condition, leading to a largely hypoxic phenotype 207 

at multiple levels and exposing the mitochondria to metabolic stress. These findings suggest that 208 

the development of intermitochondrial connecting ducts may be a common response, worth 209 

investigating in other circumstances where the functioning of the hypoxia-inducible factor 210 

pathway is altered (Perrotta et al., 2006; Formenti et al., 2010; Formenti et al., 2011; Petousi et 211 

al., 2014; Thompson et al., 2014; Lenglet et al., 2018). 212 

 213 

The ducts and elongated constrictions significantly differ from nanotunnels in two major 214 

details.  First, they are located between two parts of an individual mitochondrion that have 215 

apparently moved apart extending a portion of the organelle into thinner elongated structures that 216 

remain associated with the two sides. Second, the connections on the two sides are always 217 

clearly patent, indicating an opening that is present over a period of time. By contrast, the 218 

nanotunnels evolve as projections from the edge of a mitochondrion and although are clearly 219 

connected on the side of the mitochondrion of origin, they are not visibly so on the side of the 220 

receiving mitochondrion. 221 

 222 
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 223 

Other mechanisms of intermitochondrial communication 224 

In the case of the mostly immobile mitochondria in cardiac muscle, it has been proposed 225 

that a means of exchange may be present at sites where two adjacent organelles closely abut 226 

against each other, in addition to the exchange that occurs via nanotunnels.  Structural 227 

specializations at these proximity sites were first described and very well illustrated by Bakeeva 228 

et al. (1983). They were later confirmed multiple times and named “kissing junctions” (Huang et 229 

al., 2013; Picard et al., 2015; Glancy et al., 2017; Lavorato et al., 2017). Despite the fact that the 230 

membranes of the two adjacent mitochondria seem to form very close punctate contacts, no 231 

direct evidence is so far available for the presence of connecting channels at these sites. These 232 

are necessary to provide a path for direct communication between adjacent mitochondria. The 233 

coordinated arrangement of cristae of two mitochondria at sites of kissing junctions (Picard et 234 

al., 2015) is certainly suggestive of some exchange of information, but there is no direct 235 

evidence to indicate that intermitochondrial exchanges do take place at kissing junctions. 236 

 237 

Finally, it has been proposed that mitochondria exchange matrix content in both skeletal 238 

and cardiac muscles by means of short-lived fusion events without loss of the organelles identity 239 

(Eisner et al., 2014; Eisner et al., 2017). This hypothesis is in keeping with the normal, 240 

continuous dynamic behaviour of mitochondria, as detected in cultured cells, that involves fusion 241 

and fission events and play a major role in maintenance of the organelles’ integrity 242 

(Westermann, 2010; Youle & van der Bliek, 2012). However, differently from mitochondria 243 

involved in these events in cultured cells, muscle mitochondria do not move out of position 244 

during presumed fusions, offering a more physiological perspective on their development and 245 
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function.  All exchange events involving mitochondria at short distances have been proposed to 246 

depend on either kissing junctions (in cardiac muscle), or fusion events (in both skeletal and 247 

cardiac muscles). However, it cannot be excluded that in cardiac muscle such exchanges at short 248 

distances may be carried out by short nanotubes that are not visualized in the fluorescent images.  249 

In skeletal muscle, exchanges may be simply a function of the network continuities, without need 250 

to assume an ad-hoc fusion. 251 

 252 

 Additionally, presumed fusion events in skeletal and cardiac muscle leave one unsolved 253 

mystery:  the exchange of organelles content at presumed sites of fusion is considerably slower 254 

than it is expected from free diffusion between two compartments that are presumably in open 255 

direct connection. Thus some regulation of the exchange rate must be present, either as a 256 

physical barrier (e.g. restricted sites for diffusion) or some direct regulation of diffusion, such as 257 

binding protein(s). This challenging question has not been explored in detail yet.  258 

 259 
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Figure legends 402 

Figure 1. Cardiac myocyte. Previously unpublished image of a cardiac myocyte expressing 403 

photoactivatable mtPA-GFP and photobleachable mtDsRed in the mitochondrion matrix (see 404 

Lavorato et al., 2017 for details).  The experiments involved activating the mtPA-GFP with a 405 

laser flash in a delimited area (within the square) and detecting its movement in time. In this 406 

image the activated green mtPA-GFP is seen to spread along narrow pathways (presumably 407 

nanotunnels, small arrows). In published work it was shown that the activated protein eventually 408 

diffuses into nearby mitochondria, again presumably via nanotunnels. Contributed by M.  409 

Lavorato. 410 

 411 

 412 

Figure 2.  Ultrathin section through a rapid frozen freeze-substituted cardiac myocyte 413 

showing nanotunnels that arise from the periphery of two donor mitochondria. Cristae and 414 

a dense matrix fill the interior of nanotunnels.  Note profiles of microtubules (arrows) that 415 

probably act as guides for nanotunnel movements. (M. Lavorato, unpublished. See also Lavorato 416 

et al., 2017). M: mitochondrion; Nt: nanotunnels. 417 

  418 

 419 

Figure 3.  Novel SEM image of mitochondria in a mouse cardiac myocyte, illustrating a 420 

long nanotunnel (arrow). Cardiac myocytes are the only striated muscle in which nanotunnels 421 

have been observed. They may be the main conduits for intermitochondrial communication in 422 

myocardium. The tissue was prepared following the protocol devised by Ogata and Yamasaki, 423 

1990.  M. Lavorato, unpublished. 424 
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 425 

 426 

Figure 4.  Elongated constrictions separating sections of mitochondria in fast skeletal 427 

muscle fibers of mouse. In both images (A and B) a mitochondrion shows a transition (at 428 

arrows) into a narrow region that remains associated at either end with the normal mitochondrial 429 

structure.  These events were observed in fatigued mice muscle and are similar to the ones 430 

detected as a response to stress and perhaps indicative of incipient fission in Fig. 5.  Note that in 431 

both cases SR elements are closely associated with the constricted section, perhaps contributing 432 

to development of the constriction. M. Lavorato, unpublished observations in collaboration with 433 

V. DeBattisti, from Jefferson University, Philadelphia, PA. (See also Lavorato et al. (2018)). 434 

 435 

 436 

Figure 5.  Intermitochondrial ducts in the muscle from a patient with a mutation leading to 437 

reduced von Hippel-Lindau protein levels. 438 

A) Mitochondria from a vastus lateralis biopsy of a patient with a mutation leading to reduced 439 

von Hippel-Lindau protein levels, associated with an abnormal metabolic phenotype and 440 

mitochondrial stress (Perrotta et al., under review). The mitochondrial response in this case is an 441 

extension of the organelles (A, at arrows) so that the wider regions are connected by long 442 

extended tunnels that follow the transversely oriented path occupied by mitochondria (Perrotta et 443 

al., under review). 444 

B) Elongated profiles are patently connected to mitochondria at either end, and so differ from the 445 

asymmetric nanotunnels illustrated in Fig. 2. The profiles are appropriately classified as 446 

“connecting ducts” rather than nanotunnels. They may have occurred as an extension in time and 447 
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space of the constrictions illustrated in Figure 4. These images are quite similar to those observed 448 

in the formation of connecting ducts in a model of Alzheimer’s disease (Zhang et al., 2016). 449 












