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Abstract

This paper presents a methodology to investigate the observer-based control

for positive nonlinear systems with unknown time delay through analyzing

the stability and positivity of positive polynomial fuzzy-model-based (PPFMB)

observer-control systems with unknown time delay and unmeasurable premise

variables. In order to widen the application of research results and relax the re-

search results, the polynomial fuzzy observer-controller employs a membership

function depending on estimated premise variables and the observer system ma-

trix is treated as decision variable. This scenario will lead to non-convex stability

and positivity conditions when the stability and positivity are analyzed based

on the Lyapunov stability theory. To overcome this issue, some transformation

techniques and matrix decoupling techniques (MDT) are adopted to turn the

non-convex stability/positivity conditions into convex ones so that they can be

handled by convex programming techniques. Finally, two simulation examples

are presented to demonstrate the feasibility and validity of the analysis results.

Keywords: Polynomial fuzzy observer, polynomial fuzzy controller, positive

polynomial fuzzy-model-based (PPFMB) systems, unmeasurable premise

variables, unknown time delay
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1. Introduction

Takagi-Sugeno (T-S) fuzzy model [1, 2, 3] is a powerful mathematical tool

to represent the nonlinear systems as a collection of local linear subsystems

weighted by membership functions. The merit of this systematic form of non-

linear systems is that it allows the theoretical results of linear system to be5

employed in the study of T-S fuzzy-model-based (FMB) control systems. In

recent years, T-S fuzzy model has been widely applied in various topics, and

observer-based control is one of them. According to whether the premise vari-

ables and system matrix of model are the same as that of observer, this topic

can be divided into three cases. The first case is that the fuzzy system and10

fuzzy observer have same premise variables and system matrix, and the premise

variables must be measurable [4], which is referred to as matched framework

type in this paper. The second case is that the premise variables of model are

allowed to depend on the unmeasurable system state and the premise variables

of observer depend on estimated system state, while the observer system matrix15

is the same as the model system matrix [5, 6], which is referred to as partially

matched framework type. The third case is that the observer system matrix is

regarded as a decision variable which can be different from the model system

matrix [7] and the premise variables are allowed to be same as in the second

case. The third case is referred to as mismatched framework type. Comparing20

these three cases, the last case not only widens the applicability of the designed

system but gives more freedom to the observer design. However, it will lead

to more complicated non-convex stability conditions which need be handled by

more effective convexification method so that these conditions can be solved by

convex programming techniques.25

Positive systems are a class of systems whose states and outputs are non-

negative whenever the initial conditions are nonnegative. As positive systems

widely exist in industrial and natural environment, such as energy market [8],

DC-DC power converters [9], pharmacokinetics [10], the research on positive sys-

tems is very meaningful. In recent years, many theoretical results for positive30
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T-S FMB systems have been reported [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. For

the situation that only the output can be measured, the work [18] investigated

observer-based control for positive T-S FMB system.

Different from the general observer-based control systems [4, 5, 6, 21] and

positive state feedback control systems [22], when considering both positive35

constrains and observer-based feedback control, the non-convex conditions will

be more difficult to be handled due to the existence of positive constrains,

especially for partially matched framework type and mismatched framework

type, this issue will become very tricky. Therefor, until now, most references

investigated the matched framework type [23, 24] on the positive system, which40

adopted separation principle to handle non-convex conditions. In order to widen

the applicability of the designed system, the work [18] investigated partially

matched framework type, two-step procedures are used to handle the non-convex

positivity and stability conditions, which means the controller gains are obtained

in the first step and the observer gains are then obtained in the second step based45

on the obtained controller gains. However, this two-step procedures may lead to

the conservative result due to the reduced flexibility of the choice of controller

gains and observer gains. In the exiting works, there are some methods to

reduce the conservativeness of analysis result. The first method is to bring the

information of membership functions into the stability conditions [25], which50

can be implemented by using staircase membership functions [26], piecewise-

linear membership functions [27], Taylor series membership functions [28] and

other techniques [29]. The second method is to employ other types Lyapunov

functional, like copositive Lyapunov functional [20] and membership function

dependent Lyapunov-Krasovskii functional [30]. In this paper, we adopt the55

mismatched framework type to relax the analysis result and improve flexibility

of observer design, and handle the non-convex stability conditions and positive

conditions simultaneously by using an effective one-step procedure.

Time delays widely exist in various applications such as tele-operation [31],

biological embedded systems [32], and chemical reactor systems [33]. The time60

delay is a source of unstability and poor performance, so it cannot be ignored in
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stability analysis and control synthesis. At present, some works [30, 34, 35, 36]

investigated T-S fuzzy time delay system to enlarge the maximum delay bounds.

The work [30] designed a membership function dependent Lyapunov-Krasovskii

functional to obtain more relax result. However, it cannot eliminate the ef-65

fect of time delay on the stability region. In work [34], a global stabilization

region is obtained by improving the membership function dependent Lyapunov-

Krasovskii functional and innovating a method of dealing with the time deriva-

tive of membership function. The works [35, 36] provided more less conservative

results based on the analysis of [30, 34]. In this paper, we will give a more relaxed70

result by defining the observer system matrix as a decision variable.

Recently, T-S fuzzy model has been extended to polynomial fuzzy model [37,

38]. LMI-based analysis approach cannot be used directly for system analysis

due to the polynomial variables. Instead, sum of squares (SOS) based analysis

approach [39] was then utilized to derive conditions in terms of SOS, whose75

feasible solution can be found numerically, e.g., using the third-party MATLAB

toolbox SOSTOOLS [40]. Some papers [41, 42, 43, 44] investigated the design

of polynomial fuzzy observer or filter and observer-based control for polynomial

fuzzy system. However, to the best of our knowledge, there is no similar work

in the literature regarding this topic, that is the consideration of polynomial80

fuzzy system, positive system, observer-based control, unmeasurable premise

variables and time delay.

Motivated by the aforementioned discussion, in this paper, we present a

methodology to investigate the polynomial fuzzy observer-based control for pos-

itive polynomial fuzzy systems with unknown time delay and unmeasurable85

premise variables. When design the polynomial fuzzy observer and polynomial

fuzzy controller, the premise variables of them can be different from the those

of the polynomial fuzzy model, and the observer system matrix is designed as a

decision variable which can be different from the model system matrix, this is re-

ferred as mismatched framework type, which demonstrate potential to relax the90

stability analysis results. Moreover, compared with the matched framework type

[23, 24], it can handle more complicated case that full states and time delay both
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are not available. In order to handle the complex non-convex stability conditions

and positivity conditions caused by considering positive constraints, observer,

controller and unmeasurable premise variables simultaneously, some transforma-95

tion techniques are combined with matrix decoupling technique (MDT) [45]. As

a result, the controller gains and observer gains can be obtained simultaneously

rather than separately in two steps.

The rest of this paper is organized as follows. In Section 2, the details of

polynomial fuzzy model, polynomial fuzzy observer and polynomial fuzzy con-100

troller are described. Then, stability analysis and positivity analysis for PPFMB

observer-control system with unknown time delay are carried out in Section 3.

In section 4, simulation examples are provided to illustrate the viability and

feasibility of analysis results. In section 5, a conclusion is drawn.

The following notations are adopted. A monomial in x(t) = [x1(t), x2(t), . . . ,105

xn(t)]T is a function of form xd11 (t)xd22 (t) . . . xdnn (t), where di ≥ 0, i ∈ {1, 2, . . . , n}

are nonnegative integers. The degree of a monomial is d =
n∑
i=1

di. A polynomial

f(x (t)) is a SOS if there exist polynomials f1(x (t)), f2(x (t)), . . . , fm(x (t)) such

that f(x (t)) =
m∑
i=1

f2
i (x (t)), where fi(x (t)) is a polynomial and m is a nonneg-

ative integer. It is clear that f(x (t)) being a SOS naturally implies f(x (t)) ≥ 0110

for all x(t) ∈ <n. The expressions of A ≺ 0 and A � 0 mean that all elements

of A are negative and positive, respectively; B < 0 and B > 0 mean that B

is negative definite and positive definite, respectively. A(α̂,β̂) is the α̂-th row,

β̂-th column element of A. Matrix Q is called Metzler matrix [46], if its off

diagonal elements are all nonnegative. The notation ∗ in a matrix represents115

the transposed element in the symmetric position. diag{·} denotes a square

diagonal matrix with the elements of argument in the diagonal.

2. Preliminaries

In this section, the formulation of polynomial fuzzy model with unknown

time delay, polynomial fuzzy observer and polynomial fuzzy controller are de-120

scribed.
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2.1. Polynomial Fuzzy Model with Unknown Time Delay

The nonlinear system with unknown time delay is described by a polynomial

fuzzy model with unknown time delay of p rules. The ith rule is of the following

format:125

Rule i: IF f1(x (t)) is M i
1 AND· · ·AND fϕ(x (t)) is M i

ϕ,

THEN


ẋ(t) = Ai0(x(t))x(t) + Aiτ (x(t))x(t− τ) + Bi(x(t))u(t)

y(t) = Ci(x(t))x(t)

x(t) = φ(t), t ∈ [−τ, 0]

, (1)

where x(t) ∈ <n, u(t) ∈ <m and y(t) ∈ <l are the state vector, control in-

put vector and output vector of the system, respectively; n,m and l are their

dimensions; fη(x (t)) is the premise variable and M i
η is the fuzzy set correspond-

ing to its premise variable in rule i, i ∈ {1, 2, . . . , p}, η ∈ {1, 2, . . . ϕ}, and ϕ

is a positive integer; Ai0(x(t)) ∈ <n×n, Aiτ (x(t)) ∈ <n×n, Bi(x(t)) ∈ <n×m,130

Ci(x(t)) ∈ <l×n are the known polynomial system, time delay, input and output

matrices, respectively. φ(t) � 0 is the initial states. τ is the unknown constant

time delay which satisfies 0 < τ ≤ τ̄ where τ̄ is the estimate of the unknown

time delay.

The dynamics of the nonlinear system is defined as follows:

ẋ(t) =

p∑
i=1

wi(x(t))(Ai0(x(t))x(t) + Aiτ (x(t))x(t− τ) + Bi(x(t))u(t))

y(t) =

p∑
i=1

wi(x(t))Ci(x(t))x(t)

x(t) = φ(t), t ∈ [−τ, 0]

, (2)

where wi(x(t)) is the normalized grade of membership, wi(x(t)) ≥ 0,
p∑
i=1

wi(x(t)) =135

1, and wi(x(t)) = (
ϕ∏
η=1

µMi
η
(fη(x (t))))/(

p∑
k=1

ϕ∏
η=1

µMk
η

(fη(x (t)))) ; µMi
η
(fη(x (t)))

is the grade of membership corresponding to the fuzzy term M i
η.

Definition 1. The polynomial fuzzy system (2) is said to be positive only if for

every nonnegative initial states, its states and outputs are nonnegative [46].
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Lemma 1. A polynomial fuzzy system with unknown time delay (2) is guar-140

anteed to be positive if
p∑
i=1

wi(x(t))Ai0(x(t)) is a Metzler matrix; time delay,

input and output matrices satisfy the conditions that
p∑
i=1

wi(x(t))Aiτ (x(t)) � 0,

p∑
i=1

wi(x(t))Bi(x(t)) � 0 and
p∑
i=1

wi(x(t))Ci(x(t)) � 0 when u(t) is nonnegative.

2.2. Polynomial Fuzzy Observer with Unknown Time Delay

In this paper, we consider the case that all system states are immeasurable.145

The jth rule of the polynomial fuzzy observer with unknown time delay is as

follows:

Rule j: IF f1(x̂ (t)) is M j
1 AND· · ·AND fϕ(x̂ (t)) is M j

ϕ,

THEN


˙̂x(t) = Fj0(x̂(t))x̂(t) + Bj(x̂(t))u(t) + Lj(x̂(t))(y(t)− ŷ(t))

ŷ(t) = Cj(x̂(t))x̂(t)

x̂(t) = φ̂(t), t ∈ [−τ, 0]

, (3)

where x̂(t) ∈ <n is the estimated state vector; ŷ(t) ∈ <l is the estimated

output vector; Fj0(x̂(t)) ∈ <n×n is polynomial observer system matrix to be

determined, j ∈ {1, 2, . . . , p}, Bj(x̂(t)) ∈ <n×m and Cj(x̂(t)) ∈ <l×n are the

known input and output matrices of observer, respectively, from the polynomial

fuzzy model but are a function of estimated states x̂. Lj(x̂(t)) ∈ <n×l is the

polynomial observer gain to be determined. The polynomial fuzzy observer is

defined as follows:

˙̂x(t) =

p∑
j=1

wj(x̂(t))(Fj0(x̂(t))x̂(t) + Bj(x̂(t))u(t) + Lj(x̂(t))(y(t)− ŷ(t)))

ŷ(t) =

p∑
j=1

wj(x̂(t))Cj(x̂(t))x̂(t)

x̂(t) = φ̂(t), t ∈ [−τ, 0]

,

(4)

where the membership function wj(x̂(t)) from the polynomial fuzzy model but

are function of estimate states x̂.
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Remark 1. Different from the existing literature in which the observer system150

matrix is predefined and the coefficients of observer are the same as that of

model, polynomial observer system matrix Fj0(x̂(t)) are designed in (4) as de-

cision variables but not predefined variables in this paper, which provides more

freedom to the observer design.

2.3. Polynomial Fuzzy Controller155

We adopt the PDC design approach for the design of the polynomial fuzzy

controller as follow:

Rule k: IF f1(x̂ (t)) is Mk
1 AND· · ·AND fϕ(x̂ (t)) is Mk

ϕ,

THEN u(t) = Gk(x̂(t))x̂(t),

where Gk(x̂(t)) ∈ <m×n is the polynomial controller gain to be determined,

k ∈ {1, 2, . . . , p}. The polynomial fuzzy controller is given by

u(t) =

p∑
k=1

wk(x̂(t))Gk(x̂(t))x̂(t). (5)

where the membership function wk(x̂(t)) is the same as the membership function

of the polynomial fuzzy observer.160

3. Stability Analysis and Positivity Analysis

In this section, we investigate the stability and positivity of PPFMB observer-

control system with unknown time delay. First, the augmented PPFMB observer-

control system with unknown time delay is obtained in Subsection 3.1. Then,

the stability analysis and positivity analysis are carried out in Subsection 3.2165

and Subsection 3.3, respectively. Finally, the stability and positivity analysis

results are summarized in a theorem in Subsection 3.4.

3.1. Augmented PPFMB Observer-Control Systems with Unknown Time Delay

In this paper, we define e(t) = x(t) − x̂(t), z(t) = [x̂T (t) eT (t)]T and e(t −

τ) = x(t−τ)−x̂(t−τ), z(t−τ) = [x̂T (t−τ) eT (t−τ)]T . In the following analysis,

for simplicity, the time t is dropped for the situation without ambiguity, e.g.,

8



x(t), x̂(t), e(t) and z(t) are denoted by x, x̂, e and z, respectively. In addition,

x̂(t − τ), e(t − τ) and z(t − τ) are denoted by x̂τ , eτ and zτ , respectively.

From (2), (4) and (5), the PPFMB observer-control system with unknown time

delay is obtained which contains the polynomial fuzzy model, polynomial fuzzy

observer and polynomial fuzzy controller as follows:

ẋ =

p∑
i=1

p∑
k=1

wi(x)wk(x̂)((Ai0(x) + Bi(x)Gk(x̂))x̂ + Ai0(x)e + Aiτ (x̂τ + eτ )),

(6)

˙̂x =

p∑
i=1

p∑
j=1

p∑
k=1

wi(x)wj(x̂)wk(x̂)((Fj0(x̂) + Bj(x̂)Gk(x̂) + Lj(x̂)(Ci(x)−Cj(x̂)))x̂

+ Lj(x̂)Ci(x)e), (7)

ė =

p∑
i=1

p∑
j=1

p∑
k=1

wi(x)wj(x̂)wk(x̂)(((Ai0(x)− Fj0(x̂)) + (Bi(x)−Bj(x̂))Gk(x̂)

− Lj(x̂)(Ci(x)−Cj(x̂)))x̂ + (Ai0(x)− Lj(x̂)Ci(x))e + Aiτ (x)(x̂τ + eτ )).

(8)

To lighten the notations, we define
p∑

i,j=1

wx,x̂
ij ≡

p∑
i=1

p∑
j=1

wi(x)wj(x̂),
p∑

j,k=1

wx̂
jk ≡

p∑
j=1

p∑
k=1

wj(x̂)wk(x̂),
p∑

i,j,k=1

wx,x̂
ijk ≡

p∑
i=1

p∑
j=1

p∑
k=1

wi(x)wj(x̂)wk(x̂). The augmented

PPFMB observer-control system ((7) and (8)) is given as follows:

ż =

 ˙̂x

ė

 =

p∑
i,j,k=1

wx,x̂
ijk

(
Ξijk(x, x̂)z + Ξ̆i(x)zτ

)
, (9)

where

Ξijk(x, x̂) =

 Ξ1,1
ijk(x, x̂) Lj(x̂)Ci(x)

Ξ2,1
ijk(x, x̂) Ai0(x)− Lj(x̂)Ci(x)

 , (10)

Ξ1,1
ijk(x, x̂) = Fj0(x̂) + Bj(x̂)Gk(x̂) + Lj(x̂)(Ci(x)−Cj(x̂)), (11)

Ξ2,1
ijk(x, x̂) = (Ai0(x)− Fj0(x̂)) + (Bi(x)−Bj(x̂))Gk(x̂)− Lj(x̂)(Ci(x)−Cj(x̂)),

(12)

Ξ̆i(x) =

 0 0

Aiτ (x) Aiτ (x)

 . (13)

9



In this paper, the objective is to stabilize the PPFMB observer-control sys-170

tem ((6), (7) and (8)), and guarantee its positivity, simultaneously. Due to the

definition that x = e + x̂, system state x is positive and asymptotically stable,

i.e., x � 0 and x→ 0 as time t→∞, as long as augmented PPFMB observer-

control system (9) is asymptotically stable and positive. Thus, the objective

can be achieved by designing a polynomial observer and a polynomial controller175

to stabilize the augmented PPFMB observer-control system (9), and guarantee

its positivity, simultaneously.

3.2. Stability Analysis of Augmented PPFMB Observer-Control Systems with

Unknown Time Delay

In this part, we use the Lyapunov stability theory to investigate the stability180

of (9), which leads to non-convex stability conditions. Then, MDT and some

transformation techniques are employed to obtain convex stability conditions

with the support of the following lemmas.

Lemma 2. With X and Y of appropriate dimensions and a scalar β > 0, the

following inequality holds [47]:

XTY + YTX ≤ βXTX + β−1YTY.

Lemma 3. With symmetric matrices P and R of appropriate dimensions, R >

0 and a scalar γ, the following inequality holds [47]:

−PR−1P ≤ γ2R− 2γP.

To proceed with the stability analysis, we choose the Lyapunov-Krasovskii

functional as:

V = V1 + V2 + V3, (14)

where V1 = zTPz, V2 =
∫ t
t−τ z(α)TSz(α)dα, V3 =

∫ 0

−τ
∫ t
t+β

ż(α)TRż(α)dαdβ,P =

diag(P−1
1 ,P2), diagonal matrices P−1

1 > 0, P2 > 0; symmetric matrices S > 0,185
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R > 0. Thus, Lyapunov functional V > 0. If it can be shown that V̇ is negative,

the augmented PPFMB observer-control system with unknown time delay (9)

is asymptotically stable.

We define ξ(t, τ, α) =
[
zT zTτ ż(α)T

]T
and use the fact that

p∑
i,j,k=1

wx,x̂
ijk =

p∑
r,s,l=1

wx,x̂
rsl =

p∑
i,j,k=1

p∑
r,s,l=1

wx,x̂
ijkw

x,x̂
rsl = 1. The Leibniz-Newton formula provides

z− zτ =
∫ t
t−τ ż(α)dα. Introducing slack symmetric matrices W1 and W2, and

applying Leibniz-Newton formula to V̇ , we can obtain (15) and (17) as follows:

V̇1 + V̇2 = żTPz + zTPż + zTSz− zTτ Szτ

=

p∑
i,j,k=1

wx,x̂
ijk

(
(Ξijk(x, x̂)z + Ξ̆i(x)zτ )TPz + zTP(Ξijk(x, x̂)z + Ξ̆i(x)zτ )

)
+ zTW1(z− zτ ) + (z− zτ )TWT

1 z− zTW1

∫ t

t−τ
ż(α)dα

− (

∫ t

t−τ
ż(α)dα)TWT

1 z + zTτ W2(z− zτ ) + (z− zτ )TWT
2 zτ

− zTτ W2

∫ t

t−τ
ż(α)dα− (

∫ t

t−τ
ż(α)dα)TWT

2 zτ +
1

τ

∫ t

t−τ

(
zTSz− zTτ Szτ

)
dα

=
1

τ

∫ t

t−τ
ξT (t, τ, α)

p∑
i,j,k=1

wx,x̂
ijkΨijk(x, x̂)ξ(t, τ, α)dα, (15)

where

Ψijk(x, x̂) =


ΞT
ijk(x, x̂)P + PΞijk(x, x̂)

+W1 + WT
1 + S

PΞ̆i(x)−W1 + WT
2 −τW1

∗ −W2 −WT
2 − S −τW2

∗ ∗ 0

 .

(16)

V̇3 =

∫ 0

−τ

(
żTRż− ż(t+ β)TRż(t+ β)

)
dβ

=
1

τ

∫ t

t−τ
τ


p∑

i,j,k=1

wx,x̂
ijk

(
Ξijk(x, x̂)z + Ξ̆i(x)zτ

)T
R×

p∑
r,s,l=1

wx,x̂
rsl

(
Ξrsl(x, x̂)z + Ξ̆r(x)zτ

)
− ż(α)TRż(α)

 dα.

(17)

11



Remark 2. For simplicity, we will remove (x), (x̂) and (x, x̂) e.g., Ψi(x),

Ψj(x̂) and Ψijk(x, x̂) are denoted as Ψi,Ψj and Ψijk, respectively. For situa-190

tion without ambiguity, the subscript i implies that the variable is function of x;

the subscript j, k or jk implies that the variable is function of x̂; the subscript

ijk, ij, ik or rsl, rs implies that the variable is function of both x and x̂; no

subscript or the subscript is a number implies that the variable is a constant

variable.195

According to (15) and (17), V̇ can be obtained as follows:

V̇ =
1

τ

∫ t

t−τ
ξT (t, τ, α)(

p∑
i,j,k=1

wx,x̂
ijkΨ1ijk + τ(

p∑
i,j,k=1

wx,x̂
ijkΨ2ijk)R×

(

p∑
r,s,l=1

wx,x̂
rsl Ψ

T
2rsl))ξ(t, τ, α)dα, (18)

where Ψ1ijk =


Ψ1,1
ijk Ψ1,2

i
−τW1

∗ Ψ2,2 −τW2

∗ ∗ −τR

, Ψ2ijk = [Ξijk Ξ̆i 02n×2n]T ,

Ψ1,1
ijk = ΞT

ijkP + PΞijk + W1 + WT
1 + S, Ψ1,2

i = PΞ̆i −W1 + WT
2 , Ψ2,2 =

−W2 −WT
2 − S, Ξijk and Ξ̆i are defined in (10) and (13).

Then, from (18), V̇ < 0 holds if:

p∑
i,j,k=1

wx,x̂
ijkΨ1ijk + τ(

p∑
i,j,k=1

wx,x̂
ijkΨ2ijkP)P−1RP−1(

p∑
r,s,l=1

wx,x̂
rsl PΨT

2rsl) < 0.

(19)

In order to avoid the existence of unknown time delay τ in (19), Schur

complement is applied to replace unknown time delay τ with the estimated200

time delay τ̄ .

Firstly, applying Schur complement to (19), we have:

p∑
i,j,k=1

wx,x̂
ijk Ψ̄ijk < 0, (20)
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where Ψ̄ijk =


Ψ1,1
ijk Ψ1,2

i −τW1 τΞT
ijk(x, x̂)P

∗ Ψ2,2 −τW2 τΞ̆T
i P

∗ ∗ −τR 02n×2n

∗ ∗ ∗ −τPR−1P

.

Then, applying the Schur complement reversely to (20) meanwhile extracting

all the time delay τ , we have:

p∑
i,j,k=1

wx,x̂
ijk Ψ̄1ijk

+ τ(

p∑
i,j,k=1

wx,x̂
ijk Ψ̄2ijk)

 R−1 02n×2n

02n×2n P−1RP−1

 (

p∑
r,s,l=1

wx,x̂
rsl Ψ̄

T
2rsl) < 0, (21)

where Ψ̄1ijk =

 Ψ1,1
ijk Ψ1,2

i

∗ Ψ2,2

 , Ψ̄2ijk =

 −WT
1 −WT

2

PΞijk PΞ̆i

T .

Using the fact that 0 < τ ≤ τ̄ , the holding of (21) is implied by the following

inequality:

p∑
i,j,k=1

wx,x̂
ijk Ψ̄1ijk

+ τ̄(

p∑
i,j,k=1

wx,x̂
ijk Ψ̄2ijk)

 R−1 02n×2n

02n×2n P−1RP−1

 (

p∑
r,s,l=1

wx,x̂
rsl Ψ̄

T
2rsl) < 0. (22)

Finally, applying Schur complement to (22), V̇ < 0 holds if

p∑
i,j,k=1

wx,x̂
ijk Ψ̃ijk < 0, (23)

where Ψ̃ijk =


Ψ1,1
ijk Ψ1,2

i −W1 ΞT
ijkP

∗ Ψ2,2 −W2 Ξ̆T
i P

∗ ∗ − 1
τ̄R 02n×2n

∗ ∗ ∗ − 1
τ̄PR−1P

. Ψ1,1
ijk, Ψ1,2

i and Ψ2,2 have

been defined below (18).205

After the above transformations, the unknown time delay τ has been replaced

by the estimated time delay τ̄ in stability condition (23). However, there is

another crucial problem that the non-convex terms of (23) should be dealt with,

13



because the non-convex terms hinder the use of convex programming techniques

to find the decision variables P1, P2, S, R, W1, W2, observer system matrices210

Fj0, controller gains Gk and observer gains Lj simultaneously.

In order to handle the non-convex terms P−1
1 BjGk and P−1

1 (Bi −Bj)Gk,

congruence transformation is applied to Ψ̃ijk by pre- and post-multiplying E =

diag(P−1,P−1,P−1,P−1) with the definition Mk = GkP1 and Tj0 = Fj0P1.

Also, in order to avoid R−1 appearing in the stability conditions, applying215

Lemma 3 to PR−1P before pre-multiplying and post-multiplying Ψ̃ijk by E.

After performing the above transformations on (23), we have the following

expression:

Ψ̂ijk =



Ψ̂1,1
ijk Ψ̂1,2

i −Ŵ1 (ΞijkP
−1)T

∗
−Ŵ2 − ŴT

2

−Ŝ
−Ŵ2 (Ξ̆iP

−1)T

∗ ∗ − 1
τ̄ R̂ 02n×2n

∗ ∗ ∗ Ψ̂4,4
i


, (24)

where

Ψ̂1,1
ijk = (ΞijkP

−1)T + ΞijkP
−1 + Ŵ1 + ŴT

1 + Ŝ, (25)

Ψ̂1,2
i = Ξ̆iP

−1 − Ŵ1 + ŴT
2 , Ψ̂4,4

i =
1

τ̄
(λ2R̂− 2λP−1), (26)

Ŵ1 = P−1W1P
−1, Ŵ2 = P−1W2P

−1, R̂ = P−1RP−1, Ŝ = P−1SP−1,

(27)

ΞijkP
−1 =

 Θ1,1
jk + OijP1 Θ1,2

ij

Θ2,1
ijk −OijP1 Θ2,2

ij

 , Ξ̆iP
−1 =

 0 0

AiτP1 AiτP
−1
2

 ,
(28)

Θ1,1
jk = Tj0 + BjMk, Θ1,2

ij = LjCiP
−1
2 , Oij = Lj(Ci −Cj), (29)

Θ2,1
ijk = Ai0P1 −Tj0 + (Bi −Bj)Mk, Θ2,2

ij = Ai0P
−1
2 − LjCiP

−1
2 . (30)

As a result,
p∑

i,j,k=1

wx,x̂
ijk Ψ̂ijk < 0 implies

p∑
i,j,k=1

wx,x̂
ijk Ψ̃ijk < 0.

In (24), the polynomial fuzzy controller gains Gk appear in convex terms

BjMk and (Bi−Bj)Mk with Mk = GkP1, but the polynomial fuzzy observer
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gains Lj appear in non-convex terms LjCiP
−1
2 and Lj(Ci − Cj)P1. In order

to handle the non-convex term Lj(Ci −Cj)P1, applying Lemma 2 on (24) to

separate decision variables Lj and P1, we have

p∑
i,j,k=1

wx,x̂
ijk Ψ̂ijk =

p∑
i,j,k=1

wx,x̂
ijk Ψ̆ijk + XT (

p∑
r,s=1

wx,x̂
rs Yrs) + (

p∑
i,j=1

wx,x̂
ij YT

ij)X

≤
p∑

i,j,k=1

wx,x̂
ijk Ψ̆ijk + βXTX + β−1(

p∑
i,j=1

wx,x̂
ij YT

ij)(

p∑
r,s=1

wx,x̂
rs Yrs), (31)

where

Ψ̆ijk =


Ψ̆1,1
ijk Ψ̂1,2

i −Ŵ1 (Πijk)T

∗ −Ŵ2 − ŴT
2 − Ŝ −Ŵ2 (Ξ̆iP

−1)T

∗ ∗ − 1
τ̄ R̂ 02n×2n

∗ ∗ ∗ Ψ̂4,4
i

 , (32)

Ψ̆1,1
ijk = (Πijk)T + Πijk + Ŵ1 + ŴT

1 + Ŝ, Πijk =

 Θ1,1
jk Θ1,2

ij

Θ2,1
ijk Θ2,2

ij

 , (33)

X = [[P1,0] 0n×2n 0n×2n 0n×2n] , (34)

Yij =
[[

OT
ij ,−OT

ij

]
0n×2n 0n×2n

[
OT
ij ,−OT

ij

]]
, (35)

Ψ̂1,2
i , Ψ̂4,4

i , Ŵ1, Ŵ2, R̂, Ŝ and Ξ̆iP
−1 are defined in (26)-(27) and (28); Θ1,1

jk ,

Oij , Θ1,2
ij , Θ2,1

ijk, Θ2,2
ij are defined in (29)-(30).

In (31), the non-convex term LjCiP
−1
2 still needs to be handled. To avoid220

affecting the convex terms Tj0, BjMk and (Bi − Bj)Mk when transforming

the non-convex term LjCiP
−1
2 , MDT [45] is applied to separate (31) into two

parts, one part is related to polynomial controller gains and observer system

matrices, another part is related to polynomial observer gains.

Then, from (31), V̇ < 0 holds if

p∑
i,j=1

wx,x̂
ij Λij + β−1(

p∑
i,j=1

wx,x̂
ij YT

ij)(

p∑
r,s=1

wx,x̂
rs Yrs) < 0, (36)

p∑
i,j,k=1

wx,x̂
ijk (Υijk + βXTX) < 0. (37)
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where Ψ̆ijk = Λij + Υijk; X, Yij are defined in (34) and (35),

Λij =


Λ1,1
ij Λ1,2

i −Ŵ1 Λ1,4
ij

∗ Λ2,2 −Ŵ2 Λ2,4
i

∗ ∗ − 1
τ̄ R̂ 02n×2n

∗ ∗ ∗ Λ4,4

 , (38)

Υijk =


Υ1,1
ijk Υ1,2

i 02n×2n Υ1,4
ijk

∗ Υ2,2 02n×2n Υ2,4
i

∗ ∗ 02n×2n 02n×2n

∗ ∗ ∗ Υ4,4

 , (39)

Λ1,1
ij = Ŵ1 + ŴT

1 + Ŝ +

 0 Θ1,2
ij

∗ Θ2,2
ij + (Θ2,2

ij )T

+

 −κ5P
−1
2 0

0 κ1I

 , (40)

Υ1,1
ijk =

 Θ1,1
jk + (Θ1,1

jk )T (Θ2,1
ijk)T

∗ 0

+

 κ5P
−1
2 0

0 −κ1I

 , (41)

Λ1,2
i = −Ŵ1 + ŴT

2 +

 0 0

0 AiτP
−1
2

 , Υ1,2
i =

 0 0

AiτP1 0

 , (42)

Λ2,2 = −Ŵ2 − ŴT
2 − Ŝ +

 κ2I 0

0 0

 , Υ2,2 =

 −κ2I 0

0 0

 , (43)

Λ1,4
ij =

 0 0

(Θ1,2
ij )T (Θ2,2

ij )T

 , Υ1,4
ijk =

 (Θ1,1
jk )T (Θ2,1

ijk)T

0 0

 , (44)

Λ2,4
i =

 0 0

0 (AiτP
−1
2 )T

 , Υ2,4
i =

 0 (AiτP1)T

0 0

 , (45)

Λ4,4
i =

1

τ̄
λ2R̂ +

1

τ̄

 0 0

0 −2λP−1
2

+

 −κ3P
−1
2 0

0 κ4I

 , (46)

Υ4,4
i =

1

τ̄

 −2λP1 0

0 0

+

 κ3P
−1
2 0

0 −κ4I

 , (47)

Θ1,1
jk , Θ1,2

ij , Θ2,1
ijk, Θ2,2

ij are defined in (29)-(30); κ1, κ2, κ3, κ4 and κ5 all are225

positive definite, which are introduced into (36) and (37) to relax the stability

conditions.
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Congruence transformation is applied by pre- and post-multiplying diag(P2,P2,

P2,P2,P2,P2,P2,P2) to both sides of (36), meanwhile Nj = P2Lj is defined,

we have
p∑

i,j=1

wx,x̂
ij Λ̆ij + β−1(

p∑
i,j=1

wx,x̂
ij Y̆T

ij)(

p∑
r,s=1

wx,x̂
rs Y̆rs) < 0, (48)

where

Λ̆ij =


Λ̆1,1
ij Λ̆1,2

i −W̆1 Λ̆1,4
ij

∗ Λ̆2,2 −W̆2 Λ̆2,4
i

∗ ∗ − 1
τ̄ R̆ 02n×2n

∗ ∗ ∗ Λ̆4,4

 , (49)

Y̆ij =
[[

ŎT
ij ,−ŎT

ij

]
0n×2n 0n×2n

[
ŎT
ij ,−ŎT

ij

]]
, (50)

Λ̆1,1
ij = W̆1 + W̆T

1 + S̆ +

 0 Θ̆1,2
ij

∗ Θ̆2,2
ij + (Θ̆2,2

ij )T

+

 −κ5P2 0

∗ κ1P
2
2

 ,
(51)

Λ̆1,2
i =

 0 0

0 P2Aiτ

− W̆1 + W̆T
2 , (52)

Λ̆2,2 =

 κ2P
2
2 0

0 0

− W̆2 − W̆T
2 − S̆, (53)

Λ̆1,4
ij =

 0 0

(Θ̆1,2
ij )T (Θ̆2,2

ij )T

 , Λ̆2,4
i =

 0 0

0 (P2Aiτ )T

 , (54)

Λ̆4,4
i =

1

τ̄
λ2R̆ +

1

τ̄

0 0

0 −2λP2

+

−κ3P2 0

0 κ4P
2
2

, (55)

Θ̆1,2
ij = NjCi, Θ̆2,2

ij = P2Ai0 −NjCi, Ŏij = Nj(Ci −Cj), (56)

W̆1 = diag(P2,P2)Ŵ1diag(P2,P2), W̆2 = diag(P2,P2)Ŵ2diag(P2,P2),

(57)

R̆ = diag(P2,P2)R̂diag(P2,P2), S̆ = diag(P2,P2)Ŝdiag(P2,P2). (58)

Applying Schur Complement on both (37) and (48) to handle the squared

terms βXTX, β−1(
p∑

i,j=1

wx,x̂
ij Y̆T

ij)(
p∑

r,s=1
wx,x̂
rs Y̆rs). Also, the non-convex terms
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P2
2 and P−1

2 are transformed into P2 by using Schur Complement. Then, V̇ < 0

holds if
p∑

i,j=1

wx,x̂
ij Ω1ij < 0;

p∑
i,j,k=1

wx,x̂
ijkΩ2ijk < 0, (59)

where

Ω1ij =



Λ̃ij Ω1,2
1 Ω1,3

1 Ω1,4
1 Y̆T

ij

∗ −κ−1
1 I 0 0 0

∗ ∗ −κ−1
2 I 0 0

∗ ∗ ∗ −κ−1
4 I 0

∗ ∗ ∗ ∗ −βI


, (60)

Ω2ijk =


Υ̃ijk Ω1,2

2 Ω1,3
2 X̆T

∗ −κ−1
5 P2 0 0

∗ ∗ −κ−1
3 P2 0

∗ ∗ ∗ −β−1I

 , (61)

Λ̃ij =


Λ̃1,1
ij Λ̆1,2

i −W̆1 Λ̆1,4
ij

∗ Λ̃2,2 −W̆2 Λ̆2,4
i

∗ ∗ − 1
τ̄ R̆ 02n×2n

∗ ∗ ∗ Λ̃4,4

 , Υ̃ijk =


Υ̃1,1
ijk Υ̃1,2

i Υ1,4
ijk

∗ −κ2I Υ̃2,4
i

∗ ∗ Υ̃4,4

 ,

(62)

Λ̃1,1
ij = W̆1 + W̆T

1 + S̆ +

 0 Θ̆1,2
ij

∗ Θ̆2,2
ij + (Θ̆2,2

ij )T

+

 −κ5P2 0

0 0

 , (63)

Λ̃2,2 = −W̆2 − W̆T
2 − S̆, (64)

Λ̃4,4 =
1

τ̄
λ2R̆ +

1

τ̄

 0 0

0 −2λP2

+

 −κ3P2 0

0 0

 , (65)

Υ̃1,1
ijk =

 Θ1,1
jk + (Θ1,1

jk )T (Θ2,1
ijk)T

0 0

+

 0 0

0 −κ1I

 , (66)

Υ̃1,2 = (Υ̃2,4)T =
[

0 (AiτP1)T
]T
, (67)

Υ̃4,4 =
1

τ̄

 (−2λP1) 0

0 0

+

 0 0

0 −κ4I

 , (68)
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Ω1,2
1 = [[0,P2] 0n×6n]T ,Ω1,3

1 = [0n×2n [P2,0] 0n×4n]T , (69)

Ω1,4
1 = [0n×6n [0,P2]]T ,Ω1,2

2 = [[I,0] 0n×3n]T , (70)

Ω1,3
2 = [0n×3n [I,0]]T , X̃T = [[P1,0] 0n×3n]T , (71)

Y̆ij is defined in (50); Λ̆1,2
i , Λ̆1,4

ij , Λ̆2,4
i and Υ1,4

ijk are defined in (52), (54) and

(44), respectively; Θ̆1,2
ij , Θ̆2,2

ij , Ŏij , W̆1, W̆2, R̆ and S̆ are defined in (56)-(58);

Θ1,1
jk and Θ2,1

ijk are defined in (29) and (30).230

In this paper, polynomial fuzzy observer shares the same premise variables

and membership functions with the polynomial fuzzy controller. By grouping

terms with the same membership functions for (59), we can obtain more relaxed

stability conditions as follow:

p∑
i,j=1

wx,x̂
ij Ω1ij < 0;

p∑
i,k=1;j≤k

wx,x̂
ijk (Ω2ijk + Ω2ikj) < 0, (72)

where Ω1ij and Ω2ijk are defined in (60) and (61).

3.3. Positivity Analysis of Augmented PPFMB Observer-Control Systems with

Unknown Time Delay

In this part, we shall conduct positivity analysis for the augmented PPFMB

observer-control systems with unknown time delay (9). First, the non-convex235

positivity conditions are obtained, which is expressed by the following lemma.

Then, we use the MDT [45] to obtain convex positivity conditions.

Lemma 4. The system (9) is a positive system if and only if
p∑

i,j,k=1

wx,x̂
ijkΞijk

is Metzler matrix and
p∑
i=1

wiΞ̆i � 0, where Ξijk and Ξ̆i are defined in (10) and

(13).240

Proof 1. In order to simplify the analysis, the system (9) can be regarded as

a polynomial fuzzy time delay system without control input matrix and output

matrix, where
p∑

i,j,k=1

wx,x̂
ijkΞijk is system matrix and

p∑
i=1

wiΞ̆i � 0 is time delay

matrix. Thus, the system (9) can be regarded as the specific case of the system

(2). According to the same line of Lemma 1, Lemma 4 is obtained.245
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First, the positivity condition
p∑
i=1

wiΞ̆i � 0 in Lemma 4 is guaranteed if

p∑
i=1

wiAiτ � 0. (73)

Second, we should constrain that
p∑

i,j,k=1

wx,x̂
ijkΞijk is Metzler matrix. How-

ever, this positivity condition cannot be solved by using convex programming

techniques because it is a non-convex condition when putting it together with

the stability conditions (72), thus, some transformations need to be imposed on
p∑

i,j,k=1

wx,x̂
ijkΞijk to handle this issue.250

In order to transform polynomial observer gains Lj and polynomial controller

gains Gk without affecting each other, MDT [45] is employed to separate the

matrix
p∑

i,j,k=1

wx,x̂
ijkΞijk into two, namely,

p∑
i,j=1

wx,x̂
ij Ξ1ij and

p∑
i,j,k=1

wx,x̂
ijkΞ2ijk

through the introduction of predefined matrix $1 � 0 and predefined Metzler

matrix $2. Then, we have

p∑
i,j,k=1

wx,x̂
ijkΞijk =

p∑
i,j=1

wx,x̂
ij Ξ1ij +

p∑
i,j,k=1

wx,x̂
ijkΞ2ijk, (74)

where

Ξ1ij =

 Lj(Ci −Cj) +$2 LjCi −$1

−Lj(Ci −Cj) +$1 −LjCi +$2

 ,

Ξ2ijk =


Fj0 + BjGk −$2 $1

Ai0 − Fj0

+(Bi −Bj)Gk −$1

Ai0 −$2

 .
If both

p∑
i,j=1

wx,x̂
ij Ξ1ij and

p∑
i,j,k=1

wx,x̂
ijkΞ2ijk are Metzler matrices, then

p∑
i,j,k=1

wx,x̂
ijkΞijk

is a Metzler matrix.255

Pre-multiplying diag(P2,P2) to
p∑

i,j=1

wx,x̂
ij Ξ1ij and post-multiplying diag(P1,P1)

to
p∑

i,j,k=1

wx,x̂
ijkΞ2ijk, we obtain:

p∑
i,j=1

wx,x̂
ij Ξ̃1ij ,

p∑
i,j,k=1

wx,x̂
ijk Ξ̃2ijk, (75)
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where

Ξ̃1ij =

 P2 0

0 P2

Ξ1ij =

 Nj(Ci −Cj) + P2$2 NjCi −P2$1

−Nj(Ci −Cj) + P2$1 −NjCi + P2$2

 ,

Ξ̃2ijk = Ξ2ijk

 P1 0

0 P1

 =


Tj0 + BjMk −$2P1 $1P1

Ai0P1 −Tj0

+(Bi −Bj)Mk −$1P1

Ai0P1 −$2P1

 .
Then, the following conditions can guarantee that

p∑
i,j=1

wx,x̂
ij Ξ̃1ij ,

p∑
i,j,k=1

wx,x̂
ijk Ξ̃2ijk

are Metzler matrices,

p∑
i,j=1

wx,x̂
ij ∆

(α̂,β̂)
qij � 0; ∀q = 1, 2,∀1 ≤ α̂ 6= β̂ ≤ n; (76)

p∑
i,j=1

wx,x̂
ij ∆

(α̂,β̂)
qij � 0; ∀q = 3, 4,∀1 ≤ α̂, β̂ ≤ n; (77)

p∑
j,k

wx̂
jk∆

(α̂,β̂)
5jk � 0; ∀1 ≤ α̂ 6= β̂ ≤ n; (78)

p∑
i,j,k=1

wx,x̂
ijk∆

(α̂,β̂)
6ijk � 0; ∀1 ≤ α̂, β̂ ≤ n; (79)

p∑
i

wx
i ∆

(α̂,β̂)
7i � 0; ∀1 ≤ α̂ 6= β̂ ≤ n (80)

∆
(α̂,β̂)
8 � 0; ∀1 ≤ α̂, β̂ ≤ n; (81)

where

∆
(α̂,β̂)
1ij = N

(α̂,s)
j (C

(s,β̂)
i −C

(s,β̂)
j ) + P

(α̂,α̂)
2 $

(α̂,β̂)
2 ,

∆
(α̂,β̂)
2ij = −N

(α̂,s)
j C

(s,β̂)
i + P

(α̂,α̂)
2 $

(α̂,β̂)
2 ,

∆
(α̂,β̂)
3ij = N

(α̂,s)
j C

(s,β̂)
i −P

(α̂,α̂)
2 $

(α̂,β̂)
1 ,

∆
(α̂,β̂)
4ij = −N

(α̂,s)
j (C

(s,β̂)
i −C

(s,β̂)
j ) + P

(α̂,α̂)
2 $

(α̂,β̂)
1 ,

∆
(α̂,β̂)
5jk = T

(α̂,β̂)
j0 + B

(α̂,r)
j M

(r,β̂)
k −$(α̂,β̂)

2 P̆
(β̂,β̂)
1 ,

∆
(α̂,β̂)
6ijk = A

(α̂,β̂)
i0 P

(β̂,β̂)
1 −T

(α̂,β̂)
j0 +

(
B

(α̂,r)
i −B

(α̂,r)
j

)
M

(r,β̂)
k −$(α̂,β̂)

1 P
(β̂,β̂)
1 ,

∆
(α̂,β̂)
7i = A

(α̂,β̂)
i0 P

(β̂,β̂)
1 −$(α̂,β̂)

2 P
(β̂,β̂)
1 , ∆

(α̂,β̂)
8 = $

(α̂,β̂)
1 P

(β̂,β̂)
1 .
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The conditions (76) and (77) are to make sure that
p∑

i,j=1

wx,x̂
ij Ξ̃1ij is a Met-

zler matrix meanwhile the conditions from (78) to (81) are to make sure that
p∑

i,j,k=1

wx,x̂
ijk Ξ̃2ijk is a Metzler matrix. As all elements of diagonal positive definite

matrices P1 and P2 are positive, pre-multiplying diag(P2,P2) to
p∑

i,j=1

wx,x̂
ij Ξ1ij

and post-multiplying diag(P1,P1) to
p∑

i,j,k=1

wx,x̂
ijkΞ2ijk does not alter the Metzler

property of
p∑

i,j=1

wx,x̂
ij Ξ1ij and

p∑
i,j,k=1

wx,x̂
ijkΞ2ijk. Therefore, conditions from (76)

to (81) imply that
p∑

i,j=1

wx,x̂
ij Ξ1ij and

p∑
i,j,k=1

wx,x̂
ijkΞ2ijk are Metzler matrices. By

grouping terms with the same membership functions, more relaxed positivity

conditions for (78) and (79) are obtained as follow:

p∑
k=1;j≤k

wx̂
jk(∆

(α̂,β̂)
5jk + ∆

(α̂,β̂)
5kj ) � 0; ∀1 ≤ α̂ 6= β̂ ≤ n; (82)

p∑
i,k=1;j≤k

wx,x̂
ijk (∆

(α̂,β̂)
6ijk + ∆

(α̂,β̂)
6ijk ) � 0;∀1 ≤ α̂, β̂ ≤ n. (83)

Remark 3. For the system (2), when φ(·) � 0 cannot be satisfied, x may not

stay in the positive orthant even if the conditions of Lemma 1 holds. Similar to260

the constrain of system (2), for the augmented system (9), the initial condition

must satisfy φ̂(·) � 0 and φ(·) � φ̂(·), then the augmented system (9) are

guaranteed to be positive when Lemma 4 is satisfied.

3.4. Stability and Positivity Conditions of Closed-Loop PPFMB Observer-Control

Systems with Unknown Time Delay265

In this subsection, the results of stability analysis presented in Subsection 3.2

and the results of positivity analysis presented in Subsection 3.3 are summarized

below.

Theorem 1. Given the open-loop positive system (2), which is guaranteed to be

positive by satisfying the conditions in Lemma 1, the polynomial fuzzy observer

(4) and the polynomial fuzzy controller (5) can make sure that the augmented

PPFMB observer-control system with unknown time delay (9) is asymptotically
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stable and positive for any φ̂(·) � 0 and the initial condition φ(·) � φ̂(·) if

there exist diagonal matrices P1 ∈ <n×n, P2 ∈ <n×n; symmetric matrices

S̆ ∈ <2n×2n, R̆ ∈ <2n×2n, W̆1 ∈ <2n×2n, W̆2 ∈ <2n×2n; polynomial matrices

Mk ∈ <m×n, Nj ∈ <n×l, Tj0 ∈ <n×n, for ∀(j, k) ∈ {1, 2, . . . , p} such that the

following SOS-based conditions are satisfied:

νT (P1 − ε1I)ν is SOS; νT (P2 − ε2I)ν is SOS; (84)

νT (S̆− ε3I)ν is SOS; νT (R̆− ε4I)ν is SOS; (85)

 −νT (Ω1ij + ε5ijI)ν is SOS, ∀i, j;

−νT (Ω2ijk + Ω2ikj + ε6ijkI) ν is SOS, ∀i, j ≤ k;
(86)



νT
(
∆

(α̂,β̂)
1ij − ε7ij

)
ν is SOS, ∀i, j, ∀1 ≤ α̂ 6= β̂ ≤ n;

νT
(
∆

(α̂,β̂)
2ij − ε8ij

)
ν is SOS, ∀i, j;∀1 ≤ α̂ 6= β̂ ≤ n;

νT
(
∆

(α̂,β̂)
3ij − ε9ij

)
ν is SOS, ∀i, j;∀1 ≤ α̂, β̂ ≤ n;

νT
(
∆

(α̂,β̂)
4ij − ε10ij

)
ν is SOS, ∀i, j;∀1 ≤ α̂, β̂ ≤ n;

νT
(
∆

(α̂,β̂)
5jk + ∆

(α̂,β̂)
5kj − ε11jk

)
ν is SOS, ∀j ≤ k,∀1 ≤ α̂ 6= β̂ ≤ n;

νT
(
∆

(α̂,β̂)
6ijk + ∆

(α̂,β̂)
6ikj − ε12ijk

)
ν is SOS,∀i, j ≤ k, ∀1 ≤ α̂, β̂ ≤ n;

(87)

where ν is an arbitrary vector independent of x with appropriate dimension;

τ̄ ≥ τ > 0 is the estimated time delay; κ1 > 0, κ2 > 0, κ3 > 0, κ4 > 0,270

κ5 > 0, λ > 0, β > 0, ε1 > 0, . . . , ε4 > 0 are arbitrary predefined scalars and

ε5ij > 0, . . . , ε12ijk > 0 are predefined scalar polynomials; $1 � 0 and Metzler

matrix $2 are predefined ; the decision polynomial observer system matrix is

given by Fj0 = Tj0P
−1
1 ; the polynomial controller and observer gains are given

by Gk = MkP
−1
1 , Lj = P−1

2 Nj.275

Remark 4. In Theorem 1, the predefined scalars κ1 > 0, κ2 > 0, κ3 > 0,

κ4 > 0, κ5 > 0, λ > 0, β > 0, $1 and $2 are the relax matrices introduced in

the process of convexification, they can be searched by using, e.g., grid search,

iterative search or genetic algorithms. Since the diagonal elements of $2 do not

affect the analysis result, they are fixed to 1 to reduce the numbers of pre-defined280
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variables. The purpose of the introduce of predefined scalar or predefined scalar

polynomials ε1 > 0, . . . , ε4 > 0, ε5ij > 0, . . . , ε12ijk > 0 are to make sure that

the SOS-based conditions in Theorem 1 are strictly positive definite. Usually,

they are small scalars or scalar polynomials chosen by the user .

Remark 5. The convex stability conditions of system (9) are (72) in which di-285

agonal matrices P1, P2 and symmetric matrices S̆, R̆ all are positive definite

matrices. The convex positivity conditions for system (9) are (73), (76), (77),

(80), (81), (82) and (83) in which diagonal matrices P1, P2 from conditions

(72). Conditions (72), (76), (77), (82) and (83) are summarized as SOS condi-

tions (84)-(87) in Theorem 1. In Theorem 1, the SOS-based conditions (84)-(86)290

are to make sure that system (9) is asymptotically stable meanwhile (84) and

(87) are to make sure that system (9) is positive. It should be noted that the

positivity conditions (73), (80) and (81) are not summarized in the form of SOS

to Theorem 1. Because (80) and (81) can be guaranteed by predefined matrix

$1 � 0, predefined Metzler matrix $2 and predefined Metzler matrix
p∑
i=1

wiAi0295

with any value of diagonal positive definite matrices P1, positivity condition (73)

is guaranteed by predefined matrix
p∑
i=1

wiAiτ � 0. According to the Lemma 1, it

is required that
p∑
i=1

wiAi0 is a Metzler matrix and
p∑
i=1

wiAiτ � 0 for open-loop

positive system.

4. Simulation Examples300

In this section, two examples are provided to demonstrate the effectiveness

and applicability of the analysis results.

4.1. Example 1: Numerical Example

A two-rule polynomial fuzzy system with unknown time delay is considered,

which is a numerical example. The system matrices, time delay matrices, input

and output matrices in each rule are given as follows:

A10(x2) =

 (−0.2454 + a)x2
2 − 3.7002 2.0504

2.2673 −0.1428x2
2 − 1.8012

 ,
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A20(x2) =

 −0.1602x2
2 − 3.0854 2.0689

2.2926 −0.0619x2
2 − 1.4132

 ,
A1τ (x2) =

 0.0542 0.0136

0.1521x2
2 0.0141x2

2 + 0.0659

 ,
A2τ (x2) =

 0.0483 0.0076

0.0514x2
2 0.0084x2

2 + 0.0587

 ,
B1 = B2 =

 1 0

0 1

 ,
C1(x2) = [2.1653 + 0.1451x2

2 + b 0], C2(x2) = [1.9740 + 0.0686x2
2 0].

The observer system matrices F10(x̂2) and F20(x̂2) are decision variables to

be determined. The input and output matrices in each rule are given as follows:

B1 = B2 =

 1 0

0 1

 ,
C1(x̂2) = [2.1653 + 0.1451x̂2

2 + b 0], C2(x̂2) = [1.9740 + 0.0686x̂2
2 0].

The observer matrices depend on the estimate premise variable and the

model matrices depend on the unmeasurable premise variable, but the co-305

efficients of input and output matrices between the model and observer are
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Figure 1: Time responses of system state x1(t) with different initial conditions
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Figure 2: Time responses of system state x2(t) with 4 different initial conditions
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Figure 3: Time responses of system state x1(t) and estimated state x̂1(t) for x (0) = [1 0.7]T

same. Meanwhile, the membership functions of polynomial fuzzy system are

chosen as w1(x2) = 1 − sin(x2)2 and w2(x2) = 1 − w1(x2). The membership

functions of observer and controller are chosen as w1(x̂2) = 1 − sin(x̂2)2 and

w2(x̂2) = 1− w1(x̂2).310

According to Lemma 1, A10,A20 are Metzler matrices; A1τ � 0,A2τ � 0;

B1 � 0,B2 � 0; C1 � 0,C2 � 0 which suggests that the open-loop polynomial

fuzzy system is positive when u is nonnegative.

To demonstrate the effectiveness of our method, Theorem 1 is adopted to de-
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Figure 4: Time responses of system state x2(t) and estimated state x̂2(t) for x (0) = [1 0.7]T
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Figure 5: Time responses of control input u(t) for x (0) = [1 0.7]T

sign polynomial observer and controller to stabilize the unstable positive system315

with unknown time delay and guarantee the system states always in positive or-

thant. We choose ε1 = ε2 = · · · = ε12ijk = 1× 10−3, κ1 = κ2 = κ4 = 1× 10−3,

κ3 = κ5 = 1 × 10−4, β = 1 × 10−5, λ = 1 × 10−1, $1 =

 0.2 0.01

0.01 0.2

,

$2 =

 1 0.01

0.01 1

, Tj0(x̂2) of degree 0 and 2, Mk(x̂2) of degree 0 and 2,

Nj(x̂2) of degree 0 and 2; τ̄ = 0.1, τ = 0.1.320
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Figure 6: Time responses of estimation error e(t) of system states for x (0) = [1 0.7]T
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Figure 7: Phase plots of x1(t) and x2(t), the initial system states are indicated by ”◦”

The Lyapunov function matrices are obtained as follows:

P1 =

 0.0354 0

0 0.0644

, P2 =

 0.0113 0

0 0.0135

,

R =


0.2926 −0.0034 0.0222 −0.0102

−0.0034 0.2906 0.0168 −0.0068

0.0222 0.0168 0.3665 0.0454

−0.0102 −0.0068 0.0454 0.4483

,
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Figure 8: Stability regions for Case I(“◦”), Case II(“×”) and Case III(“�”) in Example 1.

S =


0.1521 −0.0017 −0.0089 −0.0044

−0.0017 0.1526 −0.0052 −0.0028

−0.0089 −0.0052 0.2182 0.0315

−0.0044 −0.0028 0.0315 0.2727

.

The observer system matrices in each rules are obtained as follows:325

F10(x̂2) =

 −0.2735x̂2
2 − 3.7649 1.9299

2.1130 −0.1504x̂2
2 − 1.9004

 ,

F20(x̂2) =

 −0.1200x̂2
2 − 3.6025 1.9199

2.1201 −0.6594x̂2
2 − 1.8037

 .
The controller gains and observer gains are obtained as follows:

G1(x̂2) =

 −0.3932x̂2
2 + 0.8751 0.1239x̂2

2 − 1.3369

0.2254x̂2
2 − 0.9083 −0.2161x̂2

2 − 0.6498

,

G2(x̂2) =

 −0.5499x̂2
2 + 0.7811 0.2445x̂2

2 − 0.9415

0.4449x̂2
2 − 0.1656 −0.3023x̂2

2 − 0.6951

, L1(x̂2) = [1.0297x̂2
2+330

0.5406 3.0533 × 10−9x̂2
2 + 0.2776]T , L2(x̂2) = [0.9850x̂2

2 + 0.4945 3.0412 ×

10−9x̂2
2 + 0.2516]T .

The above controller and observer gains are applied to control the system.

Considering four different initial conditions, the system is stabilized and its sys-

tem states are remained in the positive quadrant as shown in Figs. 1 and 2.335

To illustrate that the designed observer can estimate the system states effec-
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tively, from Remark 3, we choose the initial conditions x(0) = [1 0.7]T and

x̂(0) = [0.8 0.5]T , the time response of the system states and the estimated

system states are shown in Figs. 3 and 4 meanwhile the control signal is shown

in Fig. 5. In Fig. 6, it can be seen that the estimation error of system states340

are positive and asymptotically stable. Furthermore, in order to further demon-

strate the stability and positivity results, with the various initial conditions

indicated by “◦”, the phase plots of x1 and x2 are shown in Fig. 7.

In this paper, mismatched framework type is employed, which means the

premise variables of model are different from the premise variables of observer-345

controller and the observer system matrix is designed as a decision variable

which can be different from the model system matrix. The difference between

the premise variables of the model and the premise variables of the observer-

controller widens the application of research results, because it can handle the

case that the premise variables are unmeasurable. In order to demonstrate350

that defining the observer system matrix as a decision variable can relax the

stability region and the large delay causes a small stability region, we consider

four cases: (I) τ̄ = 0.1, the observer system matrix is designed as a decision

variable which is allowed to be different from the model system matix; (II)

τ̄ = 0.1, the coefficients of observer system matrix are set to be the same as the355

coefficients of model system matrix; (III) τ̄ = 0.2, the observer system matrix is

designed as a decision variable; (IV) τ̄ = 0.2, the coefficients of observer system

matrix are set to be the same as the coefficients of model system matrix. When

Theorem 1 is applied to this example in these four different cases, different

stability regions are obtained and are shown in Fig. 8 indicated by “×”(Case360

I), “◦”(Case II) and “�”(Case III), where 1 ≤ a ≤ 10 and 1 ≤ b ≤ 9 (both at

the interval of 1) characterizing the floating range of system parameters. Since

the conditions of Case IV are too conservative, no stability region is obtained.

4.2. Example 2: Application to a Real Pest Population System

In the following, we consider a real-world example to show the validity of365

the design results. Firstly, we establish a polynomial model for this real-world
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positive nonlinear system by using the sector nonlinearity technique. Then, the

Theorem 1 is applied on this PPFMB system.

An epidemic model of real pest population system with a control variable

[48] is described as follows:

ẋ1(t) = −γx1(t)x2(t),

ẋ2(t) = γx1(t)x2(t)− ωx2(t) + u(t), (88)

where x1(t) represents the number of susceptible insects and x2(t) represents

the number of infective insects at time t, respectively; γ > 0 is the transmission370

coefficient from susceptible insects to infective ones; ω > 0 is called the death

coefficient of x2(t); u(t) is a control variable which is used to control the pest

population.

Assuming that natural enemies only feed on mature pests, and the time

spent by immature insects growing to maturity cannot be ignored, an epidemic

model of real pest population system with time delay is represented as follows:

ẋ1(t) = −γx1(t)x2(t) + αx1(t− τ),

ẋ2(t) = γx1(t)x2(t)− ωx2(t) + u(t), (89)

where α > 0 is a coefficient which relates to the proportionality coefficient of

existing mature pest population and immature pest population.375

Defining the region of interest as x2 ∈ [0, 20], the above nonlinear system is

modeled by sector nonlinearity technique [49], f1(x2) = x2 = uM1
1
(x2)f1max +

uM2
1
(x2)f1min, where uM1

1
(x2) = (f1(x2)− f1min)/(f1max − f1min), uM2

1
(x2) =

1− uM1
1
(x2), f1max = 20, f1min = 0. Then, the nonlinear positive system (89)

can be modeled as a 2-rule T-S fuzzy model which is the special polynomial

fuzzy model with degree of 0. The positive polynomial fuzzy model is described

as follows:

ẋ(t) =

2∑
i=1

wi(x(t)) (Ai0x(t) + Aiτx(t− τ) + Biu(t)) , (90)
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where w1(x(t)) = x2/20 and w2(x(t)) = 1− w1(x(t)),

A10 =

 −γf1max 0

γf1max −ω

 ,A20 =

 −γf1min 0

γf1min −ω

 ,
A1τ = A2τ =

 α 0

0 0

 ,B1 = B2 =

 0

1

 .
Assume that the output is the function of system states: y = x1. Then

the output matrices are C1 = C2 = [1 0]. The membership functions are

w1(x(t)) = x2/20 and w2(x(t)) = 1 − w1(x(t)). Then the output is described

as follows:

y(t) =

2∑
i=1

wi(x(t))Cix(t). (91)

The polynomial fuzzy observer is described as follows:

˙̂x(t) =

2∑
j=1

wj(x̂(t)) (Fj0x̂(t) + Bju(t) + Lj(x̂(t))(y(t)− ŷ(t))) ,

ŷ(t) =

2∑
j=1

wj(x̂(t))Cjx̂(t), (92)

where the membership functions are chosen as w1(x̂(t)) = x̂2/20 and w2(x̂(t)) =

1−w1(x̂(t)), Fj0 is the observer system matrix to be determined, the coefficients

of observer input matrix Bj and observer output matrix Cj are the same as that

of the system input matrix Bi and the system output matrix Ci, respectively.

So the observer input matrices B1 = B2 = [0 1]T and observer output matrices380

C1 = C2 = [1 0] are obtained.

The polynomial fuzzy controller is described as follows:

u(t) =

2∑
k=1

wk(x̂(t))Gk(x̂(t))x̂(t), (93)

where the membership functions are chosen as w1(x̂(t)) = x̂2/20 and w2(x̂(t)) =

1−w1(x̂(t)) which are the same as the membership functions of polynomial fuzzy

observer.

The system state variable x2 is unmeasurable. γ = 2.5, ω = 6, α = 0.5,385

A10,A20 are Metzler matrices; A1τ � 0,A2τ � 0; B1 � 0,B2 � 0; C1 �
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0,C2 � 0 which mean that the pest population system is positive when u is

nonnegative. Also, it can be seen that the membership functions of model

depend on the unmeasurable premise variable x2 and the membership functions

of fuzzy observer and fuzzy controller depend on the estimated premise variable390

x̂2. So the PPFMB observer-control pest population system can be an example

to verify the effectiveness of the design results. Now, Theorem 1 is applied to

design polynomial fuzzy controller and observer for the pest population system

((90) and (91)). We choose ε1 = ε2 = ε3 = ε4 = 1×10−3, ε5ij = ε6ijk = 1×10−4,

ε7ij = · · · = ε12ijk = 1×10−3, κ1 = κ2 = κ4 = 1×10−4, κ3 = κ5 = β = 1×10−5,395

λ = 1× 10−2, $1 =

 8 0

8 0.1

, $2 =

 1 0

8 1

, Mk(x̂2) of degree 0; Nj(x̂2)

of degree 0 and 2; τ̄ = 1, τ = 1.

The Lyapunov function matrices are obtained as follows: P1 =

 0.007608 0

0 2.236

,

P2 =

 0.0419 0

0 0.04501

, S =


118.6 0.2695 −23.2 0.5833

0.2695 120.0 −9.141 −0.1305

−23.2 −9.141 116.9 −11.29

0.5833 −0.1305 −11.29 127.3

,

R =


1.097× 105 93.96 4828.0 74.95

93.96 1.084× 105 468.3 27.74

4828.0 468.3 1.135× 105 481.1

74.95 27.74 481.1 1.081× 105

. The observer400

system matrices in each rules are obtained as follows: F10(x̂2) =

 −68.8862 0

68.8862 −6.2800

 ,
F20(x̂2) =

 −60.5518 0

60.5518 −6.2827

 . The controller gains and observer gains

are obtained as follows: G1(x̂2) = [30.0448 5.5308], G2(x̂2) = [38.1042 5.5272],

L1(x̂2) = [12.3801x̂2
2 + 1.1392 − 4.7596 × 10−10x̂2

2 + 30.3335]T , L2(x̂2) =

[12.3801x̂2
2 + 1.1392 2.9984× 10−11x̂2

2 + 30.3335]T .405

These fuzzy controller and fuzzy observer are applied to the pest population

system ((90) and (91)). Considering two different initial conditions, the sys-
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Figure 9: Time responses of system state x1(t) with two different initial conditions. Solid lines

represents the time response of system state x1(t) with initial conditions x1(0) = 5; dashed

lines represents the time response of system state x1(t) with initial conditions x1(0) = 4.
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Figure 10: Time responses of system state x2(t) with two different initial conditions. Solid lines

represents the time response of system state x2(t) with initial conditions x2(0) = 10; dashed

lines represents the time response of system state x2(t) with initial conditions x2(0) = 6.

tem is stabilized and its state variables x1 and x2 are remained in the positive

quadrant, the time response of system states x1 and x2 are shown in Fig. 9 and

Fig. 10. To prove that the designed observer can estimate the system states410

effectively, we choose the initial conditions x(0) = [5 10]T and x̂(0) = [4 5]T .

The time response of system states x1 and the corresponding estimated system
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Figure 11: Time responses of system state x1(t) and estimated state x̂1(t) with initial condi-

tions x1(0) = 5 and x̂1(0) = 4.
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Figure 12: Time responses of system state x2(t) and estimated state x̂2(t) with initial condi-

tions x2(0) = 10 and x̂2(0) = 5.

states x̂1 are shown in Fig. 11; the time response of system states x2 and the

corresponding estimated system states x̂2 are shown in Fig. 12. Meanwhile, the

estimation error of system states are positive and asymptotically converges to415

zero as shown in Fig. 13. The control input signal is shown in Fig. 17. In Fig.

9, Fig. 11 and Fig. 13, in order to provide a clearer result, the time response

curve for a certain period of time is enlarged and is placed in the corresponding

small rectangle windows.
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Figure 13: Time responses of estimated error e(t) with initial conditions x(0) = [5 10]T and

x̂(0) = [4 5]T .
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Figure 14: Time response of control input u(t) with initial conditions x(0) = [5 10]T and

x̂(0) = [4 5]T .

Remark 6. In this example, the observer system matrix Fj0 is defined as a420

decision variable, and the above solution and figures are obtained by using The-

orem 1. If the coefficient of observer system matrix Fj0 is defined to be the same

as the system matrix Ai0, no feasible solution can be obtained, which indicates

that the observer system matrix is defined as a decision variable rather than a

predefined variable can relax the conditions of PPFMB observer-control system.425
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5. Conclusion

This paper investigated the stability and positivity of PPFMB observer-

control system with unknown time delay based on the Lyapunov stability theory.

In the stability and positivity analysis, the scenario that mismatched framework

and unknown time delay have been considered, which widens the applicability430

of the research results and improves the flexibility of observer design, although

it will lead to more complicated analysis and non-convex conditions. MDT

[45] has been employed to turn the non-convex positivity and stability condi-

tions into convex ones. Two simulation examples have been given to verify

the effectiveness of the proposed PPFMB observer-control scheme. In this pa-435

per, we only provide an effective methodology to control the nonlinear system

at the complicated situation that both full system states and time delay are

not available and there is positive constraint on the system states, but not ex-

plore novel Lyapunov function candidates to relax results. In the future, some

other Lyapunov functions such as fuzzy Lyapunov function, quadratic coposi-440

tive lyapunov function and linear copositive lyapunov function, can be applied

to offer more relaxed stability conditions and positivity conditions for PPFMB

observer-control system. In addition, in order to reduce the computational cost,

copositive Lyapunov functional can be applied in the future to simplify the sta-

bility conditions. Also, if some system states are measurable, reduced order445

observer can replace full order observer to reduce the computational cost.
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