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ABSTRACT 

AIM: Few personalized medicine investigations have been conducted for mental health. We aimed to generate and 

validate a risk tool that predicts adult Attention-Deficit/Hyperactivity Disorder (ADHD). 

 

METHODS: Using logistic regression models, we generated a risk tool in a representative population cohort 

(ALSPAC – UK, 5113 participants, followed from birth to age 17) using childhood clinical and sociodemographic 

data with internal validation. Predictors included sex, socioeconomic status, single-parent family, ADHD symptoms, 

comorbid disruptive disorders, childhood maltreatment, ADHD symptoms, depressive symptoms, mother's 

Depression, and intelligence quotient. The outcome was defined as a categorical diagnosis of ADHD in young 

adulthood without requiring age at onset criteria. We also tested Machine Learning approaches for developing the 

risk models: Random Forest, Stochastic Gradient Boosting, and Artificial Neural Network. The risk tool was 

externally validated in the E-Risk cohort (UK, 2040 participants, birth to age 18), the 1993 Pelotas Birth Cohort 

(Brazil, 3911 participants, birth to age 18), and the MTA clinical sample (US, 476 children with ADHD and 241 

controls followed for 16 years from a minimum of 8 and a maximum of 26 years old).  

 

RESULTS: The overall prevalence of adult ADHD ranged from 8.1% to 12% in the population-based samples, and 

was 28.6% in the clinical sample. The internal performance of the model in the generating sample was good, with an 

Area Under the Curve (AUC) for predicting adult ADHD of .82 (95% confidence interval [CI], .79 to .83). 

Calibration plots showed good agreement between predicted and observed event frequencies from 0 to 60% 

probability. In the UK birth cohort test sample, the AUC was .75 (95% CI, .71 to .78). In the Brazilian birth cohort 

test sample, the AUC was significantly lower – 57 (95% CI, .54 to .60). In the clinical trial test sample, the AUC 

was .76 (95% CI, .73 to .80). The risk model did not predict adult Anxiety or Major Depressive Disorder. Machine 

learning approaches did not outperform logistic regression models. An open-source and free risk calculator was 

generated for clinical use and is available on-line at https://ufrgs.br/prodah/adhd-calculator/. 

 

CONCLUSIONS: The risk tool based on childhood characteristics specifically predicts adult ADHD in European 

and North-American population-based and clinical samples with comparable discrimination to commonly used 

clinical tools in internal medicine and higher than most previous attempts for mental and neurological disorders. 

However, its use in middle-income settings requires caution.   
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Introduction  

Attention-deficit/hyperactivity disorder (ADHD) is consistently associated with an increased risk of several adverse 

health and social outcomes, including poor education achievement, risky sexual behaviors and premature mortality  

(Cortese et al., 2013, Chang et al., 2014, Dalsgaard et al., 2015, Faraone et al., 2015). ADHD might begin in 

childhood and persist throughout adulthood, or it may remit spontaneously in around half of the cases (Caye et al., 

2016b). Recent evidence suggested that subthreshold symptoms can get worse over time, causing the emergence of a 

full-blown syndrome only in adulthood (Caye et al., 2017), although the topic is still under debate in the literature 

(Cooper et al., 2018, Manfro et al., 2018). Although some risk factors for the persistence or emergence of adult 

ADHD are known (Caye et al., 2016b, Caye et al., 2016c), the attending psychiatrist is currently unable to correctly 

predict the course of the disorder based on clinical assessments of children or to propose a preventive intervention 

for those at risk. 

One issue might be the inability to combine what is already known about risk factors. Although mental disorders 

arise from multiple risk factors, previous studies frequently define risk for targeted preventive interventions on the 

basis of a single risk factor, for instance, an affected first-degree relative or presence of subthreshold symptoms 

(Brent et al., 2015, Taylor et al., 2015, Buntrock et al., 2016). Meanwhile, multivariable risk scores such as the 

Framingham risk score for cardiovascular disease have been one of the main frameworks for the study of preventive 

strategies in other areas of medicine. 

Our aim was to develop and validate a multivariable risk calculator that estimates the individual risk of ADHD in 

late adolescence/young adulthood based on childhood characteristics. ADHD lends itself easily to the development 

of a risk calculator for the following reasons: First, its adverse health and social consequences are well established 

(Asherson et al., 2016). Second, it is widely accepted that its roots are in early childhood, although some argue the 

full syndrome might develop later in some individuals (Moffitt et al., 2015, Agnew-Blais et al., 2016, Caye et al., 

2016a). Third, being a neurodevelopmental disorder, early intervention has the potential to change brain 

development and improve later clinical outcomes (Shaw et al., 2006). Fourth, there is substantive evidence to 

support a priori hypotheses about specific childhood risk factors (Caye et al., 2016b). 

Method 

Our methods follow well-established probability models in medicine and recommendations of the Transparent 

Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement (Collins 

et al., 2015). We developed the predictive model in one a priori selected sample and validated it independently in 

three external samples (TRIPOD analysis type 3). We selected the Avon Longitudinal Study of Parents and Children 

(ALSPAC) cohort as the generating sample based on the following a priori defined criteria: population-based 

sample, largest sample.  

Samples and participants  

ALSPAC 

The (ALSPAC) is a prospective birth cohort study in the UK. Pregnant women with expected delivery dates 

between April 1st, 1991 and December 31st, 1992, were invited to participate. Ethical approval for the study was 

obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Further details 

on assessments can be found elsewhere (Boyd et al., 2013). Please note that the study website contains details of all 

the data that is available through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary/). For the current study, we included 5113 subjects that were assessed for ADHD in 

childhood (age 7 or 10) and in the last available assessment (age 17).  

E-Risk 

The Environmental Risk (E-Risk) Longitudinal Twin Study is a prospective birth cohort study designed to represent 

the UK population. In 1999-2000, investigators enrolled 1116 families with same-sex 5-year-old twins (N=2232) 

born from January 1st, 1994 to December 4th,1995 (Moffitt and Team, 2002). The study was approved by the Joint 
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South London and Maudsley and the Institute of Psychiatry Research Ethics Committee, and parents gave informed 

written consent. Further details can be found elsewhere (Moffitt and Team, 2002). For the analyses, we included 

2040 subjects with data on ADHD in childhood (ages 5, 7, 10 or 12) and in young adulthood (age 18). 

 

Pelotas 1993 

 

The 1993 Pelotas Birth Cohort is a prospective longitudinal birth cohort set in Brazil. In 1993, mothers of all 

children born in the city of Pelotas were contacted and 5249 children were enrolled. The study was approved by the 

institutional review board of the Federal University of Pelotas, and participants provided written informed consent. 

Further information on the cohort design can be found elsewhere (Goncalves et al., 2014). For the current study, we 

included 4039 participants that had complete ADHD assessment at age 18 to 19 years old. 

 

MTA 

 

The Multimodal Treatment Study of Children with ADHD (MTA) is the largest clinical trial and observational 

follow up conducted with children with ADHD. In the first phase of the study, investigators enrolled 579 children 

aged 7 to 10 years old with ADHD and assigned them to 14 months of one of four groups of management. Two 

years after baseline, 515 consented to enter an observational follow-up and a local normative comparison group of 

289 classmates (258 without ADHD) was added. Assessments were conducted at 12, 14, and 16 years after baseline. 

Informed consent (parental permission and child assent) was obtained for all participating families, using forms 

approved by both local institutional review boards and the NIH. Detailed design and methods have been presented in 

previous publications (1999). We included 717 subjects with any complete ADHD assessment in young adulthood 

(mean age 24). 

 

Assessment and definition of the outcome variable 

In each sample, the outcome was a dichotomous ADHD definition in late adolescence or young adulthood. In 

ALSPAC, participants’ parents completed the hyperactive subscale of the Strengths and Difficulties Questionnaire 

(SDQ-HS) at 17 years of age. The scale showed excellent discrimination against a DSM-IV diagnosis derived from 

the Development and Well-Being Assessment (DAWBA) conducted in a subsample of 1673 participants (AUC = 

89, 95% CI 81 to 96). The best cut-off score to define diagnosis was at least 6 points on the SDQ-HS (sensitivity = 

833%, and specificity = 833%). In the E-Risk, ADHD was ascertained at age 18 years using structured interviews 

based on full DSM-5 criteria (Agnew-Blais et al., 2016). In the MTA sample, ADHD symptoms were derived from 

the parents´ Conners Adult ADHD Rating Scale (CAARS). At least five DSM-5 symptoms of inattention and/or 

hyperactivity were required for the symptom criteria. Impairment was evaluated with the Impairment Rating Scale 

(IRS), which has strong psychometrics and accurately identifies impairment in adults with ADHD (Sibley et al., 

2012). This diagnostic approach was chosen because it has better diagnostic accuracy than a semi-structured 

interview in this sample (Sibley et al., 2017b). In the Pelotas cohort, trained psychologists interviewed the 

participants at 18 to 19 years old with a structured interview for ADHD based on DSM-5 criteria (Caye et al., 

2016a). A strict age-at-onset criterion was not required to define ADHD in young adulthood to take into account 

recent evidence suggesting a significant prevalence of late onset ADHD presentation (Moffitt et al., 2015, Agnew-

Blais et al., 2016, Caye et al., 2016a). 

Assessment and definition of predictor variables 

We selected the following predictor variables assessed in childhood: female sex, socioeconomic status (SES), 

mother’s depression, intelligence quotient, maltreatment, ADHD symptoms, depressive symptoms, oppositional 

defiant behavior and conduct disorders, and single parent family. All predictors were collected before age 12, with 

the exception of intelligence in Pelotas, which was measured at age 18. Their selection was based on extensive 

review of previous reports in the literature and a meta-analysis conducted by our group (Moffitt et al., 2015, Agnew-

Blais et al., 2016, Caye et al., 2016a, Caye et al., 2016b). We have included all variables that were available across 

the four samples with some level of comparability, without performing univariate analysis or stepwise techniques 

for variable selection. Definition of predictors was defined a priori according to relevant literature in the field. 

Further details are provided in on-line eTable 1. 

 

file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_29
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_23
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_1
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_2
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_33
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_33
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_35
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_10
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_10
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_28
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_2
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_2
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_10
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_28
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_2
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_2
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_10
file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_12


 

Statistical analysis 

When developing a predictive model in multiple samples, a recommended approach consists in selecting and tuning 

the best model in one a priori selected sample and assessing its performance fo in the remaining independent 

samples for external validity. Because the evaluation of internal performance within the same sample where the 

model was derived is affected by overfitting, internal validation optimism correction should be performed. Among 

the most accepted techniques for internal validation is bootstrap resampling. 

We have developed the predictive model in the ALSPAC cohort. We ran a logistic regression including outcome 

(ADHD at last assessment) as the dependent variable and all eligible predictor variables as covariates. We inspected 

linearity assumptions of continuous variables by plotting the predictor and the logit of the outcome, and trough Box-

Tidwell regressions. We derived the model using linear splines of equal sample sizes (with knots at 25 th, 50th, and 

75th percentiles) in the ADHD symptoms variable, and this model had better fit indexes (AIC, BIC). Multiple 

imputation with chained equations (10 imputations) using the remaining predictors was used to deal with missing 

values in the predictor variables. We used a fixed number of 10 iterations and assessed convergence with trace plots. 

In the ALSPAC cohort, for each of the 1000 bootstrap resamples, we have performed pooled regression coefficient 

estimates and variance across imputations with the command mi estimate in Stata (Rubin, 1987). We evaluated the 

predictive discrimination of the probability model calculating the area under the receiver operating characteristic 

curve (c statistic) of the estimated probability against the actual outcome as an index of model performance. We 

have assessed optimism of internal validation with bootstrap inference using 1000 replications with the R package 

rms (Harrell et al., 1996). We have assessed internal and external model calibration with calibration curves, plotting 

predicted probabilities against observed frequencies. Extreme predictions at the right end of the distribution (highest 

risk) including less than 1% of the sample at risk were excluded of the calibration analyses to avoid instability of the 

estimates, and these ranges are not shown in each graph. Multiple imputation and model generation were conducted 

in Stata MP 13.0. Finally, we tested the predictive discrimination of the same predictors using Machine Learning 

approaches with the R package caret (see eMethods).  

We performed several sensitivity analyses to assess the robustness of our findings. We analyzed the performance 

(measured by the c-statistic) of the model among individuals who endorsed a very low number of ADHD symptoms 

at baseline (operationalized as equal or below the median of each population) in ALSPAC, E-Risk and Pelotas 

samples. We had also analyzed the performance (measured by the c-statistic) of the model excluding one variable at 

each time. Finally, we present the variation of the predicted probability within fixed levels of ADHD symptoms to 

assess the contribution of the remaining variables to the model. 

Results 

The number of participants with a dichotomous definition of adult ADHD and the frequency of childhood predictors 

in each sample can be found in Table 1.   

Performance of the predictive model in the generating sample 

All variables entered in the probabilistic model were used for the calculation of the estimated risk of the individual 

(Table 2). Only ADHD symptoms were corrected with splines. The predictive model discriminated between adult 

ADHD vs. no adult ADHD with an AUC of 82 (Bootstrap-corrected 95% CI, 80 to 83, p < .001), which indicates 

very good discrimination (Figure 1). Correction for optimism with bootstrapping yielded an AUC of 81. The 

calibration plot showed that predicted probability and observed frequency of adult ADHD closely agreed throughout 

the entire range of risk (0 to around 50% - Figure 2). The bias-corrected calibration curve was nearly identical 

(eFigure 1). The AUC varied within a range of 74 to 82 in sensitivity analyses taking out one predictor at a time 

(eTable 2 in Supplemental material). Proposed probability cut-offs are presented with sensitivity, specificity, 

positive predictive value and negative predictive value in eTable 3 in Supplemental material. 

Performance of the predictive model in a validating cohort sample in the same country 

In the E-Risk study, the predictive model discriminated between adult ADHD vs. no adult ADHD with an AUC of 

75 (Bootstrap-corrected 95% CI, 71 to 78, p < .001), which indicates fair discrimination (Figure 1). The 
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calibration plot showed reasonable agreement between predicted and observed event frequencies, especially in the 

lower range of risk (Figure 2). The discrimination was the same when restricting the sample to randomly selected 

non-siblings (eTable 4 in Supplemental material).  

Performance of the predictive model in a validating sample in a middle-income country 

In the Pelotas cohort, the predictive model discriminated between adult ADHD vs. no adult ADHD with an AUC of 

57 (Bootstrap-corrected 95% CI, 55  to 60, p < .001), which indicates poor discrimination (Figure 1). There was 

low agreement between estimated probability and observed frequency of the outcome (Figure 2). 

Performance of the predictive model in a validating clinical sample in a country with similar income 

In the MTA, the predictive model discriminated between adult ADHD vs. no adult ADHD with an AUC of 76 

(Bootstrap-corrected 95% CI, 73 to 80, p < .001) (Figure 1). The calibration plot showed that predicted probability 

and observed frequency of adult ADHD closely agreed throughout the entire range of risk (0 to around 70% - Figure 

2), although the model had underestimated event frequency consistently. 

Performance of the predictive model within participants with very low endorsement of ADHD symptoms in 

childhood 

We tested the performance of the model for predicting late-onset ADHD in population samples, among only 

participants that endorsed few ADHD symptoms in childhood – the median or lower number of symptoms in their 

respective populations. The model had fair discrimination in these subgroups, except for the Pelotas sample in which 

the model already had poor discrimination (Table 3).  

Performance of the predictive model removing one predictor at a time 

We tested the model taking out one predictor at a time (eTable 2). The most relevant individual predictor was the 

level of ADHD symptoms in childhood. However, the model still had fair performance in the model without ADHD 

symptoms in childhood, with an AUC of 74 (95% CI, 72 to 76, p < .001).  

Variation of the predicted probability within fixed levels of ADHD symptoms 

We assessed the predicted probabilities of an adult ADHD diagnosis at any fixed level of ADHD symptoms, 

considering maximum variation of the remaining factors (see eFigure 2). The observed variance indicates that 

ADHD symptoms are not the only relevant predictive factor in the model. These findings analyzed together clearly 

indicate that this is not a model based on just one variable.     

Specificity of the predictive model in predicting ADHD 

Considering that E-risk is the population cohort with the most comprehensive assessment of comorbid mental 

disorders, we tested model’s discrimination predicting adult Anxiety and Major Depressive Disorder. The 

performance was significantly lower than for ADHD, showing specificity for ADHD compared to other forms of 

adult psychopathology (eTable 5 in Supplemental material). 

Risk calculator and robustness of findings  

Predictive discrimination estimates using three different machine-learning approaches were almost the same (see 

eTable 6 in Supplemental material). In a secondary analysis, we also have developed one comprehensive predictive 

model with all samples at once, using site as one more predictor variable (see eTable 7; eFigure 3). A risk calculator 

can be found at http://www.ufrgs.br/prodah/adhd-calculator/.  

Discussion 

The widespread use of tools that predict clinical outcomes in medical practice has promoted development and 

testing of preventive interventions, but this approach has been rarely attempted for mental health (Bitton and 

Gaziano, 2010). We generated a probability model to predict adult ADHD in a large birth cohort in the UK, with 

very good discrimination – AUC of 81 after optimism correction – and calibration. This performance compares to 
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the most used clinical tools in Medicine (Morrow et al., 2000). Recent attempts for mental health reported risk 

scores with good calibration (Fusar-Poli et al., 2017, Hafeman et al., 2017). These studies lacked, however, a 

consistent external validation with completely independent samples.  

Our next step was to validate the score in independent samples. First, we tested the score in another UK birth cohort, 

the E-Risk. Its performance for predicting adult ADHD was similar. This is an important finding because several 

risk models in mental health did not replicate well even in samples from similar settings (Kivipelto et al., 2006, 

Anstey et al., 2014). Since data generated in population samples frequently do not translate to clinical samples 

(Weissman et al., 2011), we tested the performance of the score in the MTA study, the largest clinical trial ever 

conducted for ADHD. As for ALSPAC and E-risk, the score worked well with good discrimination and calibration.  

We then tested the score in a third birth cohort from Brazil. We observed that the score was much less accurate with 

an AUC of 57. This finding is not surprising, since previous evidence suggests that the predictive discrimination of 

risk tools is lower in diverse sociocultural and ethnic populations (Chia et al., 2015). However, since predictor 

factors assessment in Pelotas was the most heterogeneous, observed low discrimination might have been an effect of 

measurement error.  

Models that predict a diagnosis of chronic disorders often include premorbid signs and symptoms of the disease as 

predictive factors. For example, the factor that increased discrimination the most in the recently published calculator 

for psychosis was the index diagnosis when presenting to secondary care, where Psychotic disorders had the greatest 

weight compared to other disorders such as mood disorders (Fusar-Poli et al., 2017). Although this is a valid 

approach, other variables must also add to prediction, otherwise models would be tautological. Therefore, we also 

validated the score in subjects with low endorsement of ADHD symptoms in childhood. The performance was good 

even in this sensitivity analysis. In addition, we assessed probabilities of an adult ADHD diagnosis at any fixed level 

of ADHD symptoms, allowing maximum variation of the remaining factors. Finally, we checked discrimination of 

the model removing each factor at once. Findings suggested that although ADHD symptoms are the most important 

overall predictor, the complete model works as a necessary refinement and a model without ADHD symptoms has 

good discrimination as well.  

We also conducted other secondary analyses to assess robustness of our findings. We tested the impact of using 

other statistical methods on our results. We observed that the discrimination of the prediction models remained 

stable regardless of chosen statistical methods. Finally, we tested the hypothesis of whether the score was specific 

for the prediction of ADHD. This is an important proof-of-concept: personalized medicine has always been a 

challenge for the area of psychiatry, as it has been shown consistently that most identified biomarkers and risk 

factors associated with one mental disorder are also associated with several others (Cross-Disorder Group of the 

Psychiatric Genomics et al., 2013). We observed that the score was specific for ADHD, not predicting Major 

Depressive Disorder or Anxiety Disorders.  

Previous cohort investigations included in the present study did not find significant childhood DSM dichotomous 

ADHD diagnosis in the trajectory of late onset ADHD (Agnew-Blais et al., 2016, Caye et al., 2016a). Thus, it might 

seem surprising that childhood ADHD symptoms predict adult ADHD. The MTA report also highlighted the 

importance of child ADHD subthreshold symptoms in adult ADHD in cases where formal DSM diagnosis were not 

found in childhood (Sibley et al., 2017a). Since this approach was not the main focus of previous cohort studies 

(ADHD subthreshold symptoms), this might explain why childhood ADHD symptoms predict adult ADHD even in 

cohorts where childhood dichotomous diagnosis was not relevant for adult ADHD.  

Our findings should be interpreted considering a set of limitations. First, the design and assessments of different 

samples were not uniform, limiting the discrimination of the score in the validating samples. Adult ADHD, for 

instance, was measured with a scale rather than with a structured interview in the generating sample, but not in the 

validating samples. It is possible, therefore, that the proposed estimated predictive discrimination in validating 

samples might actually be an underestimation. Further validating efforts with assessments that more closely 

resemble those of the generating sample might observe higher AUCs. However, this could also be seen as strength 

of the study, since observed discrimination indices are considered good, even with different methodologies 

implemented in individual studies. Second, there was attrition in the generating sample’s assessments. Nevertheless, 

potential selection bias does not appear to affect the prediction of outcomes in this cohort, as shown in previous 

publications (Boyd et al., 2013). Also, we have used multiple imputation techniques to deal with missing values. 

Third, the observed positive predictive value in selected cut-offs reaches a maximum of 618%, while the negative 
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predictive value is much higher throughout prediction. Although this might be considered insufficient, we ought to 

remember that the positive predictive value depends much on the prevalence of the studied condition, and we are 

working with population-based samples where the base rate of the condition is low. As a comparison, the 

Framingham risk score, that is also a tool developed in the general population, yields a positive predictive value of 

up to 30-40%. The risk score for Bipolar Disorder reports a positive predictive value of up to 32%, even among 

offspring of Bipolar patients (a high-risk sample). Fifth, it is important to note that other variables that are related to 

ADHD could have been part of the risk score like prematurity and ADHD in first degree relatives. However, they 

were not available for testing in the 4 data sets and our guide for risk factors was evidence-based guided by a 

previous meta-analysis (Caye et al., 2016b). Accordingly, the predicted probability provided by the model should be 

considered an estimate probability obtained with a pre-specified set of variables. 

What is the clinical utility of this score, provided that previous literature already has shown that most variables 

included in our model that are non-specific risk factors for mental disorders and ADHD symptoms in childhood, as 

expected, are key predicted risk factor for adult ADHD? No previous effort combined all these variables in a single 

risk calculator. Therefore, the only information that clinicians could offer was that some variables, like comorbidity 

with CD/ODD in childhood, increase the risk of persistence of ADHD. By using this calculator, attending clinicians 

can identify high-risk individuals to inform parents and guide decisions.  

Thus, we propose a multivariable risk model to predict ADHD in young adulthood based on childhood factors that 

has good discrimination in both population and clinical settings. Clinicians can use the model to guide long-term 

decisions based on identification of children at high risk for future adult ADHD diagnosis. Also, it provides a 

framework for testing the effectiveness of preventive interventions focused on high-risk individuals. Furthermore, 

the score might be used to identify at-risk individuals for investigating neurobiological features including brain 

development. The lower discrimination observed in a middle-income country urges the discussion of how globally 

generalizable are the risk models that are currently being widely used in clinical practice.  Indeed, even the well-

established Framingham cardiovascular risk model is being subjected to criticism for its wide variation in 

performance across different populations. Therefore, future attempts to improve the current model should include 

setting-specific recalibration analyses that should then be translated to specific risk calculators to be used across 

different settings. Also, we suggest that cohorts use more standardized methods of collection of predictors and 

outcomes in Psychiatry for the study of risk factors, so that we can disentangle whether failure to replicate is due to 

heterogeneity of methods or population. Hence, our work adds to the need for validation of risk models in low and 

middle-income countries. 

 

 

 

 

 

 

 

 

file://///kclad.ds.kcl.ac.uk/Groups/SGDP%20-%20DPPP/ERisk_Papers%20and%20Concept%20Papers/J_Published/Caye/Caye_E&amp;PS_2019/articlefile.docx%23_ENREF_12


Acknowledgments 

Funding sources: ALSPAC: The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the 

University of Bristol provide core support for ALSPAC. E-Risk: The Environmental Risk (E-Risk) Longitudinal 

Twin Study is funded by grant G1002190 from the United Kingdom Medical Research Council UKMRC. 

Additional support was provided by grant HD077482 from the National Institute of Child Health and Human 

Development and the Jacobs Foundation. Pelotas 1993: funded by the National Council for Scientific and 

Technological Development (CNPq, Brazil) and the Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, 

Brazil. This article is based on data from the study "Pelotas Birth Cohort, 1993" conducted by Postgraduate Program 

in Epidemiology at Universidade Federal de Pelotas with the collaboration of the Brazilian Public Health 

Association (ABRASCO). MTA: The Multimodal Treatment Study of Children with ADHD (MTA) was an NIMH 

cooperative agreement randomized clinical trial, continued under an NIMH contract as a follow-up study and finally 

under a NIDA contract. 

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting 

them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical 

workers, research scientists, volunteers, managers, receptionists and nurses. 

Contributions: All authors equally contributed for the conceptual design and planning the analyses of the current 

study. AC, TBM and ICP analyzed the data and the remaining authors interpreted and supervised the analyses. AC 

wrote the first draft, and the remaining authors revised until the final version of the manuscript was submitted. LAR 

coordinated the work and was the main supervisor of all the steps of this work.  

Conflicts of Interest: James. M. Swanson acknowledges research support, advisory board membership, speaker´s 

bureau membership, and/or consulting for Alza, Richwood, Shire, Celgene, Novartis, Celltech, Gliatech, Cephalon, 

Watson, CIBA, UCB, Jansen-Cilag, McNeil and Eli-Lilly. Christian Kieling receives authorship royalties from 

ArtMed and Manole. Luis A. Rohde has received Honoraria, has been on the speakers' bureau/advisory board and/or 

has acted as a consultant for Eli-Lilly, Janssen-Cilag, Novartis and Shire in the last three years. He receives 

authorship royalties from Oxford Press and ArtMed. He also received travel awards for taking part of 2014 APA and 

2015 WFADHD meetings from Shire. The ADHD and Juvenile Bipolar Disorder Outpatient Programs chaired by 

him received unrestricted educational and research support from the following pharmaceutical companies in the last 

three years: Eli-Lilly, Janssen-Cilag, Novartis, and Shire. Other authors report no conflict of interest.  

2  

Availability of data and material: Due to constraints on the data sharing permissions of the samples included in 

this study, we are not allowed to share the data for public use.  

 



References 

The MTA Cooperative Group (1999). A 14-month randomized clinical trial of treatment strategies for 
attention-deficit/hyperactivity disorder. The MTA Cooperative Group. Multimodal Treatment Study of 
Children with ADHD. Archives of General Psychiatry 56, 1073-86. 
Agnew-Blais, J. C., Polanczyk, G. V., Danese, A., Wertz, J., Moffitt, T. E. & Arseneault, L. (2016). 
Evaluation of the Persistence, Remission, and Emergence of Attention-Deficit/Hyperactivity Disorder in 
Young Adulthood. JAMA Psychiatry 73, 713-20. 
Anstey, K. J., Cherbuin, N., Herath, P. M., Qiu, C., Kuller, L. H., Lopez, O. L., Wilson, R. S. & Fratiglioni, L. 
(2014). A self-report risk index to predict occurrence of dementia in three independent cohorts of older 
adults: the ANU-ADRI. PLoS One 9, e86141. 
Asherson, P., Buitelaar, J., Faraone, S. V. & Rohde, L. A. (2016). Adult attention-deficit hyperactivity 
disorder: key conceptual issues. Lancet Psychiatry 3, 568-78. 
Bitton, A. & Gaziano, T. A. (2010). The Framingham Heart Study's impact on global risk assessment. 
Progress in Cardiovascular Diseases 53, 68-78. 
Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, J., Molloy, L., Ness, A., Ring, S. 
& Davey Smith, G. (2013). Cohort Profile: the 'children of the 90s'--the index offspring of the Avon 
Longitudinal Study of Parents and Children. International Journal of Epidemiology 42, 111-27. 
Brent, D. A., Brunwasser, S. M., Hollon, S. D., Weersing, V. R., Clarke, G. N., Dickerson, J. F., Beardslee, 
W. R., Gladstone, T. R., Porta, G., Lynch, F. L., Iyengar, S. & Garber, J. (2015). Effect of a Cognitive-
Behavioral Prevention Program on Depression 6 Years After Implementation Among At-Risk 
Adolescents: A Randomized Clinical Trial. JAMA Psychiatry 72, 1110-8. 
Buntrock, C., Ebert, D. D., Lehr, D., Smit, F., Riper, H., Berking, M. & Cuijpers, P. (2016). Effect of a 
Web-Based Guided Self-help Intervention for Prevention of Major Depression in Adults With 
Subthreshold Depression: A Randomized Clinical Trial. JAMA 315, 1854-63. 
Caye, A., Rocha, T. B., Anselmi, L., Murray, J., Menezes, A. M., Barros, F. C., Goncalves, H., 
Wehrmeister, F., Jensen, C. M., Steinhausen, H. C., Swanson, J. M., Kieling, C. & Rohde, L. A. (2016a). 
Attention-Deficit/Hyperactivity Disorder Trajectories From Childhood to Young Adulthood: Evidence 
From a Birth Cohort Supporting a Late-Onset Syndrome. JAMA Psychiatry 73, 705-12. 
Caye, A., Sibley, M. H., Swanson, J. M. & Rohde, L. A. (2017). Late-Onset ADHD: Understanding the 
Evidence and Building Theoretical Frameworks. Current Psychiatry Reports 19, 106. 
Caye, A., Spadini, A. V., Karam, R. G., Grevet, E. H., Rovaris, D. L., Bau, C. H., Rohde, L. A. & Kieling, C. 
(2016b). Predictors of persistence of ADHD into adulthood: a systematic review of the literature and 
meta-analysis. European Child & Adolescesnt Psychiatry. 
Caye, A., Swanson, J., Thapar, A., Sibley, M., Arseneault, L., Hechtman, L., Arnold, L. E., Niclasen, J., 
Moffitt, T. & Rohde, L. A. (2016c). Life Span Studies of ADHD-Conceptual Challenges and Predictors of 
Persistence and Outcome. Current Psychiatry Reports 18, 111. 
Chang, Z., Lichtenstein, P., D'Onofrio, B. M., Sjolander, A. & Larsson, H. (2014). Serious transport 
accidents in adults with attention-deficit/hyperactivity disorder and the effect of medication: a 
population-based study. JAMA Psychiatry 71, 319-25. 
Chia, Y. C., Gray, S. Y., Ching, S. M., Lim, H. M. & Chinna, K. (2015). Validation of the Framingham 
general cardiovascular risk score in a multiethnic Asian population: a retrospective cohort study. BMJ 
Open 5, e007324. 
Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. (2015). Transparent Reporting of a 
multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD). Annals of Internal 
Medicine 162, 735-6. 
Cooper, M., Hammerton, G., Collishaw, S., Langley, K., Thapar, A., Dalsgaard, S., Stergiakouli, E., 
Tilling, K., Davey Smith, G., Maughan, B., O'Donovan, M., Thapar, A. & Riglin, L. (2018). Investigating 



late-onset ADHD: a population cohort investigation. Journal of Child Psychology and Psychiatry 59, 1105-
1113. 
Cortese, S., Faraone, S. V., Bernardi, S., Wang, S. & Blanco, C. (2013). Adult attention-deficit 
hyperactivity disorder and obesity: epidemiological study. British Journal of Psychiatry 203, 24-34. 
Cross-Disorder Group of the Psychiatric Genomics, C., Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V., 
Purcell, S. M., Perlis, R. H., Mowry, B. J., Thapar, A., Goddard, M. E., Witte, J. S., Absher, D., Agartz, I., 
Akil, H., Amin, F., Andreassen, O. A., Anjorin, A., Anney, R., Anttila, V., Arking, D. E., Asherson, P., 
Azevedo, M. H., Backlund, L., Badner, J. A., Bailey, A. J., Banaschewski, T., Barchas, J. D., Barnes, M. R., 
Barrett, T. B., Bass, N., Battaglia, A., Bauer, M., Bayes, M., Bellivier, F., Bergen, S. E., Berrettini, W., 
Betancur, C., Bettecken, T., Biederman, J., Binder, E. B., Black, D. W., Blackwood, D. H., Bloss, C. S., 
Boehnke, M., Boomsma, D. I., Breen, G., Breuer, R., Bruggeman, R., Cormican, P., Buccola, N. G., 
Buitelaar, J. K., Bunney, W. E., Buxbaum, J. D., Byerley, W. F., Byrne, E. M., Caesar, S., Cahn, W., 
Cantor, R. M., Casas, M., Chakravarti, A., Chambert, K., Choudhury, K., Cichon, S., Cloninger, C. R., 
Collier, D. A., Cook, E. H., Coon, H., Cormand, B., Corvin, A., Coryell, W. H., Craig, D. W., Craig, I. W., 
Crosbie, J., Cuccaro, M. L., Curtis, D., Czamara, D., Datta, S., Dawson, G., Day, R., De Geus, E. J., 
Degenhardt, F., Djurovic, S., Donohoe, G. J., Doyle, A. E., Duan, J., Dudbridge, F., Duketis, E., Ebstein, 
R. P., Edenberg, H. J., Elia, J., Ennis, S., Etain, B., Fanous, A., Farmer, A. E., Ferrier, I. N., Flickinger, M., 
Fombonne, E., Foroud, T., Frank, J., Franke, B., Fraser, C., Freedman, R., Freimer, N. B., Freitag, C. M., 
Friedl, M., Frisen, L., Gallagher, L., Gejman, P. V., Georgieva, L., Gershon, E. S., Geschwind, D. H., 
Giegling, I., Gill, M., Gordon, S. D., Gordon-Smith, K., Green, E. K., Greenwood, T. A., Grice, D. E., 
Gross, M., Grozeva, D., Guan, W., Gurling, H., De Haan, L., Haines, J. L., Hakonarson, H., Hallmayer, J., 
Hamilton, S. P., Hamshere, M. L., Hansen, T. F., Hartmann, A. M., Hautzinger, M., Heath, A. C., 
Henders, A. K., Herms, S., Hickie, I. B., Hipolito, M., Hoefels, S., Holmans, P. A., Holsboer, F., 
Hoogendijk, W. J., Hottenga, J. J., Hultman, C. M., Hus, V., Ingason, A., Ising, M., Jamain, S., Jones, E. 
G., Jones, I., Jones, L., Tzeng, J. Y., Kahler, A. K., Kahn, R. S., Kandaswamy, R., Keller, M. C., Kennedy, J. 
L., Kenny, E., Kent, L., Kim, Y., Kirov, G. K., Klauck, S. M., Klei, L., Knowles, J. A., Kohli, M. A., Koller, D. 
L., Konte, B., Korszun, A., Krabbendam, L., Krasucki, R., Kuntsi, J., Kwan, P., Landen, M., Langstrom, N., 
Lathrop, M., Lawrence, J., Lawson, W. B., Leboyer, M., Ledbetter, D. H., Lee, P. H., Lencz, T., Lesch, K. 
P., Levinson, D. F., Lewis, C. M., Li, J., Lichtenstein, P., Lieberman, J. A., Lin, D. Y., Linszen, D. H., Liu, C., 
Lohoff, F. W., Loo, S. K., Lord, C., Lowe, J. K., Lucae, S., MacIntyre, D. J., Madden, P. A., Maestrini, E., 
Magnusson, P. K., Mahon, P. B., Maier, W., Malhotra, A. K., Mane, S. M., Martin, C. L., Martin, N. G., 
Mattheisen, M., Matthews, K., Mattingsdal, M., McCarroll, S. A., McGhee, K. A., McGough, J. J., 
McGrath, P. J., McGuffin, P., McInnis, M. G., McIntosh, A., McKinney, R., McLean, A. W., McMahon, F. 
J., McMahon, W. M., McQuillin, A., Medeiros, H., Medland, S. E., Meier, S., Melle, I., Meng, F., Meyer, 
J., Middeldorp, C. M., Middleton, L., Milanova, V., Miranda, A., Monaco, A. P., Montgomery, G. W., 
Moran, J. L., Moreno-De-Luca, D., Morken, G., Morris, D. W., Morrow, E. M., Moskvina, V., Muglia, P., 
Muhleisen, T. W., Muir, W. J., Muller-Myhsok, B., Murtha, M., Myers, R. M., Myin-Germeys, I., Neale, 
M. C., Nelson, S. F., Nievergelt, C. M., Nikolov, I., Nimgaonkar, V., Nolen, W. A., Nothen, M. M., 
Nurnberger, J. I., Nwulia, E. A., Nyholt, D. R., O'Dushlaine, C., Oades, R. D., Olincy, A., Oliveira, G., 
Olsen, L., Ophoff, R. A., Osby, U., Owen, M. J., Palotie, A., Parr, J. R., Paterson, A. D., Pato, C. N., Pato, 
M. T., Penninx, B. W., Pergadia, M. L., Pericak-Vance, M. A., Pickard, B. S., Pimm, J., Piven, J., 
Posthuma, D., Potash, J. B., Poustka, F., Propping, P., Puri, V., Quested, D. J., Quinn, E. M., Ramos-
Quiroga, J. A., Rasmussen, H. B., Raychaudhuri, S., Rehnstrom, K., Reif, A., Ribases, M., Rice, J. P., 
Rietschel, M., Roeder, K., Roeyers, H., Rossin, L., Rothenberger, A., Rouleau, G., Ruderfer, D., Rujescu, 
D., Sanders, A. R., Sanders, S. J., Santangelo, S. L., Sergeant, J. A., Schachar, R., Schalling, M., 
Schatzberg, A. F., Scheftner, W. A., Schellenberg, G. D., Scherer, S. W., Schork, N. J., Schulze, T. G., 
Schumacher, J., Schwarz, M., Scolnick, E., Scott, L. J., Shi, J., Shilling, P. D., Shyn, S. I., Silverman, J. M., 
Slager, S. L., Smalley, S. L., Smit, J. H., Smith, E. N., Sonuga-Barke, E. J., St Clair, D., State, M., Steffens, 



M., Steinhausen, H. C., Strauss, J. S., Strohmaier, J., Stroup, T. S., Sutcliffe, J. S., Szatmari, P., Szelinger, 
S., Thirumalai, S., Thompson, R. C., Todorov, A. A., Tozzi, F., Treutlein, J., Uhr, M., van den Oord, E. J., 
Van Grootheest, G., Van Os, J., Vicente, A. M., Vieland, V. J., Vincent, J. B., Visscher, P. M., Walsh, C. 
A., Wassink, T. H., Watson, S. J., Weissman, M. M., Werge, T., Wienker, T. F., Wijsman, E. M., 
Willemsen, G., Williams, N., Willsey, A. J., Witt, S. H., Xu, W., Young, A. H., Yu, T. W., Zammit, S., 
Zandi, P. P., Zhang, P., Zitman, F. G., Zollner, S., Devlin, B., Kelsoe, J. R., Sklar, P., Daly, M. J., 
O'Donovan, M. C., Craddock, N., Sullivan, P. F., Smoller, J. W., Kendler, K. S., Wray, N. R. & 
International Inflammatory Bowel Disease Genetics, C. (2013). Genetic relationship between five 
psychiatric disorders estimated from genome-wide SNPs. Nature Genetics 45, 984-94. 
Dalsgaard, S., Ostergaard, S. D., Leckman, J. F., Mortensen, P. B. & Pedersen, M. G. (2015). Mortality in 
children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort 
study. Lancet. 
Faraone, S. V., Asherson, P., Banaschewski, T., Biederman, J., Buitelaar, J. K., Ramos-Quiroga, J. A., 
Rohde, L. A., Sonuga-Barke, E. J., Tannock, R. & Franke, B. (2015). Attention-deficit/hyperactivity 
disorder. Nature Reviews Disease Primers 1, 15020. 
Fusar-Poli, P., Rutigliano, G., Stahl, D., Davies, C., Bonoldi, I., Reilly, T. & McGuire, P. (2017). 
Development and Validation of a Clinically Based Risk Calculator for the Transdiagnostic Prediction of 
Psychosis. JAMA Psychiatry 74, 493-500. 
Goncalves, H., Assuncao, M. C., Wehrmeister, F. C., Oliveira, I. O., Barros, F. C., Victora, C. G., Hallal, P. 
C. & Menezes, A. M. (2014). Cohort profile update: The 1993 Pelotas (Brazil) birth cohort follow-up 
visits in adolescence. International Journal of Epidemiology 43, 1082-8. 
Hafeman, D. M., Merranko, J., Goldstein, T. R., Axelson, D., Goldstein, B. I., Monk, K., Hickey, M. B., 
Sakolsky, D., Diler, R., Iyengar, S., Brent, D. A., Kupfer, D. J., Kattan, M. W. & Birmaher, B. (2017). 
Assessment of a Person-Level Risk Calculator to Predict New-Onset Bipolar Spectrum Disorder in Youth 
at Familial Risk. JAMA Psychiatry 74, 841-847. 
Harrell, F. E., Jr., Lee, K. L. & Mark, D. B. (1996). Multivariable prognostic models: issues in developing 
models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistical Medicine 
15, 361-87. 
Kivipelto, M., Ngandu, T., Laatikainen, T., Winblad, B., Soininen, H. & Tuomilehto, J. (2006). Risk score 
for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-
based study. Lancet Neurology 5, 735-41. 
Manfro, A. G., Santoro, M., Polanczyk, G. V., Gadelha, A., Pan, P. M., Bressan, R. A., Brietzke, E., 
Talarico, F., Belangero, S., Rohde, L. A. & Salum, G. A. (2018). Heterotypic trajectories of dimensional 
psychopathology across the lifespan: the case of youth-onset attention deficit/hyperactivity disorder. 
Journal of Child Psychology and Psychiatry. 
Moffitt, T. E., Houts, R., Asherson, P., Belsky, D. W., Corcoran, D. L., Hammerle, M., Harrington, H., 
Hogan, S., Meier, M. H., Polanczyk, G. V., Poulton, R., Ramrakha, S., Sugden, K., Williams, B., Rohde, L. 
A. & Caspi, A. (2015). Is Adult ADHD a Childhood-Onset Neurodevelopmental Disorder? Evidence From a 
Four-Decade Longitudinal Cohort Study. American Journal of Psychiatry 172, 967-77. 
Moffitt, T. E. & Team, E. R. S. (2002). Teen-aged mothers in contemporary Britain. Journal of Child 
Psychology and Psychiatry 43, 727-42. 
Morrow, D. A., Antman, E. M., Charlesworth, A., Cairns, R., Murphy, S. A., de Lemos, J. A., Giugliano, 
R. P., McCabe, C. H. & Braunwald, E. (2000). TIMI risk score for ST-elevation myocardial infarction: A 
convenient, bedside, clinical score for risk assessment at presentation: An intravenous nPA for 
treatment of infarcting myocardium early II trial substudy. Circulation 102, 2031-7. 
Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley: New York. 



Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., Giedd, J., Castellanos, F. X. & 
Rapoport, J. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and 
adolescents with attention-deficit/hyperactivity disorder. Archives of General Psychiatry 63, 540-9. 
Sibley, M. H., Pelham, W. E., Molina, B. S., Gnagy, E. M., Waxmonsky, J. G., Waschbusch, D. A., 
Derefinko, K. J., Wymbs, B. T., Garefino, A. C., Babinski, D. E. & Kuriyan, A. B. (2012). When diagnosing 
ADHD in young adults emphasize informant reports, DSM items, and impairment. Journal of Consultant 
and Clinical Psychology 80, 1052-61. 
Sibley, M. H., Rohde, L. A., Swanson, J. M., Hechtman, L. T., Molina, B. S. G., Mitchell, J. T., Arnold, L. 
E., Caye, A., Kennedy, T. M., Roy, A., Stehli, A. & Multimodal Treatment Study of Children with, A. C. 
G. (2017a). Late-Onset ADHD Reconsidered With Comprehensive Repeated Assessments Between Ages 
10 and 25. American Journal of Psychiatry, appiajp201717030298. 
Sibley, M. H., Swanson, J. M., Arnold, L. E., Hechtman, L. T., Owens, E. B., Stehli, A., Abikoff, H., 
Hinshaw, S. P., Molina, B. S. G., Mitchell, J. T., Jensen, P. S., Howard, A. L., Lakes, K. D., Pelham, W. E. 
& Group, M. T. A. C. (2017b). Defining ADHD symptom persistence in adulthood: optimizing sensitivity 
and specificity. Journal of Child Psychology and Psychiatry 58, 655-662. 
Taylor, J. A., Valentine, A. Z., Sellman, E., Bransby-Adams, K., Daley, D. & Sayal, K. (2015). A qualitative 
process evaluation of a randomised controlled trial of a parenting intervention in community (school) 
settings for children at risk of attention deficit hyperactivity disorder (ADHD). BMC Psychiatry 15, 290. 
Weissman, M. M., Brown, A. S. & Talati, A. (2011). Translational epidemiology in psychiatry: linking 
population to clinical and basic sciences. Archives of General Psychiatry 68, 600-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Frequency of young adulthood ADHD and of childhood predictors across the four samples 

 ALSPAC 

(n = 5113) 

E-Risk 

(n = 2040) 

MTA  

(n = 717) 

Pelotas 

(n = 4039) 

Adult ADHD 486 (95%) 166 (81%) 205 (286%) 492 (122%) 

Female sex 2619 (512%) 1071 (525%) 153 (213%) 2061 (510%) 

Socioeconomic status     

Upper 868 (186%) 401 (197%) 136 (189%) 763 (196%) 

Middle 2172 (464%) 966 (475%) 356 (507%) 1775 (456%) 

Lower 1637 (350%) 665 (327%) 210 (299%) 1358 (349%) 

Single parent 519 (118%) 450 (226%) 190 (265%) 882 (227%) 

ODD or CD 157 (34%) 602 (295%) 304 (436%) 275 (70%) 

Maltreatment     

Not detected 2084 (410%) 1609 (789%) 384 (553%) 2475 (670%) 

Probable 2568 (505%) 312 (153%) 279 (401%) 672 (183%) 

Severe 430 (85%) 119 (58%) 32 (46%) 548 (148%) 

Lifetime Depression of 

the mothera 
1850 (363%) 990 (485%) 326 (482%) 1881 (484%) 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

IQ 1069 (163) 989 (156) 1031 (195) 965 (125) 

 Median (IQR) Median (IQR) Median (IQR) Median (IQR) 

Depressive Symptomsb 0 (1) 1 (2.5) 54 (67) 4 (4) 

Number of ADHD 

symptomsc 

2 (6) 15 (33) 83 (96) 4 (5) 

 

 

ADHD Attention-deficit hyperactivity disorder ODD Oppositional Defiant Disorder CD Conduct disorder 

SD Standard deviation IQR Interquartile range IQ Intelligence quotient 

a. Definition of lifetime depression of the mother was designed to be very sensitive, either by multiple 

assessments and/or by applying a very low threshold (further details on Table S1 of Supplementary 

material). 

b. ALSPAC: Number of DSM-IV depressive items endorsed. E-Risk, MTA: Children’s Depressive Inventory 

(CDI) score. Pelotas: Emotional subscale score of the SDQ. 

c. ALSPAC, E-Risk, MTA: number of DSM-IV ADHD items endorsed. Pelotas: Hyperactivity subscale score 

of the SDQ. 

Note: reported values before multiple imputation. Because each factor may have missing values, we report total 

number of participants and a proportion where the denominator is the total number of valid subjects. 



Table 2. The probability model in the generating sample (n = 5113) 

Predictors OR (BC 95% CI) BC p-value 

Female sex 72 (58 - 89) 003 

Socioeconomic status - - 

Upper social class reference - 

Middle social class 158 (115 – 216) 004 

Lower social class 155 (111 – 215) 010 

Single parent family 119 (90 – 158) 215 

ADHD symptoms – 0-25th  377 (209 – 679) < 001 

ADHD symptoms – 25-50th 119 (102 – 140) 031 

ADHD symptoms – 50-75th 113 (105 – 122) 001 

ADHD symptoms – 75-100th  118 (112 – 125) < 001 

ODD or CD 181 (121 – 271) 004 

Childhood maltreatment - - 

No detected maltreatment reference - 

Probable maltreatment 128 (101 – 164) 045 

Severe maltreatment 135 (93 – 195) 115 

Depression of the mother 141 (113 – 175) 002 

Intelligence quotienta  89 (85 -  95) < 001 

Depressive symptoms (z-score)b 100 (92 – 110) 940 

 

OR Odds Ratio; ODD Oppositional Defiant Disorder; CD Conduct Disorder; ADHD 

Attention-deficit hyperactivity disorder 

BC Bootstrap-corrected 

a. We report the OR for a 10-point change in the intelligence quotient scale. 

b. Due to the OR of 100 for depressive symptoms, we have omitted this variable from the 

on-line calculator. 

 

 

 

 

 

 

 

Table 3. Performance of the score for individuals with very low ADHD childhood symptoms. 

 AUC BC 95% CI BC p-value 



ALSPAC (n = 2688) 77 72 – 82 < 001 

E-Risk (n = 1099) 78 71 - 86 < 001 

Pelotas (n = 2135) 56 52 - 60 < 001 

 

BC Bootstrap-corrected  

ROC analyses were done only in participants with low endorsement of ADHD symptoms in childhood. Low 

endorsement was defined as median number of symptoms or below the median of their respective population 

(ALSPAC: 2 or less ADHD symptoms; E-Risk: 1 or 0 ADHD symptoms; Pelotas: the median or less than 

median (4) in the hyperactivity subscale of the SDQ). 

 

 

 

 

 


