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Abstract: 

The concept of “emergence” has become commonplace in the modelling of complex systems, both 
natural and man-made; a functional property” emerges” from a system when it cannot be readily 
explained by the properties of the system’s sub-units. A bewildering array of adaptive and 
sophisticated behaviours can be observed from large ensembles of elementary agents such as ant 
colonies, bird flocks or by the interactions of elementary material units such as molecules or 
weather elements. Ultimately, emergence has been adopted as the ontological support of a 
number of attempts to model brain function. This manuscript aims to clarify the ontology of 
emergence and delve into its many facets, particularly into its “strong” and “weak” versions that 
underpin two different approaches to the modelling of behaviour. The first group of models is 
here represented by the “free energy” principle of brain function and the “integrated information 
theory” of consciousness. The second group is instead represented by computational models such 
as oscillatory networks that use mathematical scalable representations to generate emergent 
behaviours and are then able to bridge neurobiology with higher mental functions. Drawing on 
the epistemological literature, we observe that due to their loose mechanistic links with the 
underlying biology, models based on strong forms of emergence are at risk of metaphysical 
implausibility. This, in practical terms, translates into the overdetermination that occurs when 
the proposed model becomes only one of a large set of possible explanations for the observable 
phenomena. On the other hand, computational models that start from biologically plausible 
elementary units, hence are weakly emergent, are not limited by ontological faults and, if scalable 
and able to realistically simulate the hierarchies of brain output, represent a powerful vehicle for 
future neuroscientific research programmes. 
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Prologue. 

In scientific inference, complex phenomena arise through interactions among simpler or 
elementary entities in a process termed “emergence”. In such a process, the properties of the 
aggregation of the elementary agents that generates the pattern of behaviour are not easily 
reducible to a combination of the properties of the primitive elements.  

Emergence has become a tantalizing topic because many examples of emergent phenomena 
abound in (but are not limited to) the natural sciences, for example the assembly of complex 
structures by ant colonies such as bridges and rafts, the swarming behaviours of bees, the flocking 
behaviour of birds and the murmurations of starlings [Video 1] (Burns et al., 2016; Mlot et al., 
2011; Reid et al., 2015). Emergent phenomena in nature can also be seen in weather systems, 
natural disasters (e.g. typhoons and forest fires), as well as in human-created communities (e.g. 
cities, the stock market); ultimately the concept of emergence has been offered as a model for 
human behaviour (Dennett; Miller; West). 

 

Video 1: Emergent properties of a murmeration of starlings, which follow simple rules in terms 
of their pair-wise interactions, but together form a complex and adaptive emergent pattern 
(Video reproduced under licence from Adobe Inc.) 

When studying the brain, we often examine it in a manner that highlights a hierarchy of scales 
that starts with the cellular milieu (e.g. blood vessels, neurons and glia) with its diverse molecular 
constituents [Figure 1A]. These building blocks are the elementary components of tissues, nuclei 
and cortical layers which ultimately are then further arranged into cyto-architectonic regions, 
often associated in the modern phrenological approach with functional networks [Figure 1B]. 
Within this hierarchy, each layer, or level of description, exhibits a function that seems 
autonomous with respect to the activity found at the higher (or perhaps more ‘macroscopic’) level, 
but that shows a clear dependency on those layers functionally below [Figure 1C]. It follows that 
the top level of this hierarchy, human behaviour, emerges from interactions within and between 
these different layers or spatial scales. 
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Alternatively one can adopt a top-down approach and capture the varieties of perception and 
action into some general overarching principle that can be assigned to brain tissue and scaled 
down to the intricacies of receptor systems, metabolism etc.  

 

Figure 1: Our overview of the brain reveals structure and function at multiple spatial and 
temporal scales A->B. Structural connectivity can be explored, both at the macroscopic scale, 
i.e. regions to region, and at the microscopic level by measuring interactions between cells 
within and between cortical layers. A,B -> C. Each of these macroscopic and microscopic 
descriptions of function, forms a hierarchy, which reveals different, yet complementary 
information about the function of the underlying tissue. For example, functional MRI reveals a 
temporally ‘slow’ time-course of activity over a wide region of the brain, whereas 
electrophysiological measures reveal highly detailed spiking time-courses of spatially highly 
localised tissue. However, these two levels of description are strongly interlinked.  

 

Irrespective of the approach, emergence has often been used as a conceptual framework to 
integrate seemingly distant phenomenologies. However, when “emergence” is called into action 
one can easily fall into logical fallacies that, while extensively debated in the epistemological 
literature, seem not to be fully recognized in the wealth of current modelling work in the 
neurosciences and psychology, both in terms of the formulation of traditional ‘box and arrow’ 
models of cognition, or in the more recent trend towards the building of large-scale computational 
simulations of neurobiological function. 

Here we review the concept and use of emergence in the experimental neurosciences focusing on 
two distinct “types” of phenomenological emergence, “strong” and “weak”, and their relation to 
some popular models of brain function: in particular the “free energy principle” (Friston, 2009, 
2010; Friston et al., 2006) and “integrated information theory” (Hoel et al., 2013b; Oizumi et al., 
2014; Tononi, 2012) as examples of “strong” emergence, and computational oscillatory models as 
representative of the “weak” emergence (Breakspear, 2017; Deco et al., 2011).  

Emergence 
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Emergence is a contemporary concept with a long history in evolutionary science (for a detailed 
narrative see Peter Corning ‘s essay (Corning, 2002)). The concept of emergence was first 
introduced by the physiologist George H. Lewes in his book Problems of Life and Mind (Lewes, 
1879, pp. 412) “  

… The emergent is unlike its components in so far as these are incommensurable, and it cannot 
be reduced to their sum or their difference…”.   

Through this definition, it was possible to form a framework that is generally able to make sense 
of widely observed leaps in the complexity of nature (Mill, 1874) – particularly in the formation 
of complex objects from relatively simple elementary parts.  For example, it can imaginatively 
relay how hydrogen and oxygen combined together make one very different molecule of water, 
convey the punctuated acceleration in taxonomic lineages or be extended to depict the almost 
unlimited possibilities of a game of chess. However, the ‘seeds’ of the concept of ‘emergence’ can 
be traced much further back in time. Aristotle (Aristotle, 1994) argued that quantitative, 
incremental changes to the elementary parts of a system or construction may lead to qualitative 
changes to the whole that are different from, and irreducible to, their parts. The problem is that, 
by their very nature, such wholes are unpredictable and ultimately their “emergence” is 
descriptive or richly allusive but fails to explain much if anything about how they come to be. Thus 
the concept of emergent phenomena rested for many decades on the forgotten shelves of scientific 
theories in search of a metaphysical foundation, until dynamical system theory produced 
nonlinear mathematical tools, cellular automata and agent-based models which breathed new life 
into the idea of modelling interactions within complex systems that were deterministic at the level 
of interactions among elementary components.  

Modern Emergence can be divided into two epistemological types:  strong and weak.  A system is 
said to exhibit strong emergence when its behaviour, or the consequence of its behaviour, exceeds 
the limits of its constituent parts. Thus the resulting behavioural properties of the system are 
caused by the interaction of the different layers of that system, but they cannot be derived simply 
by analysing the rules and individual parts that make up the system. Weak emergence on the other 
hand, differs in the sense that whilst the emergent behaviour of the system is the product of 
interactions between its various layers, that behaviour is entirely encapsulated by the confines of 
the system itself, and as such, can be fully explained simply though an analysis of interactions 
between its elemental units. 

The kind of emergence that surfaced first in the neurosciences was greatly shaped by the thinking 
of Roger W Sperry (1981 Nobel prize in physiology) who proposed a view of the brain 
characterized by a strong top-down organisational component (Sperry, 1980): 

 “…It is the idea, in brief, that conscious phenomena as emergent functional properties of brain 
processing exert an active control role as causal detents in shaping the flow patterns of cerebral 
excitation. Once generated from neural events, the higher order mental patterns and programs 
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have their own subjective qualities and progress, operate and interact by their own causal laws 
and principles which are different from and cannot be reduced to those of neurophysiology.”  

Note that Sperry was adamant that his model did not imply any form of mind brain dualism nor 
a parallel existence of neurobiological and mental processes but that, after emergence, mental 
processes would take over and exert control down to the cellular level (Sperry, 1980).  

Strong Emergence 

The directional dominance of higher versus lower processes makes Sperry’s model the 
paradigmatic exemplar of “Strong Emergence”; a paradigm that comes with epistemological 
consequences (see collated essays in (Clayton and Davies, 2006)). If the existence of a whole 
cannot be equated with facts about the distribution and interactions of its particles throughout 
space and time (along with the laws of physics), then new fundamental laws of nature are needed 
to explain these phenomena. Indeed in Sperry’s model, higher order mental patterns and 
programs have their own subjective qualities and dynamics and operate by their own laws and 
principles which are different from and cannot be reduced to those of neurophysiology - they exist 
and operate in a separate domain, that of psychology (Sperry, 1980).  

More recent propositions have followed this path. Predictive processing models  (Bubic et al., 
2010) argue that the existence of ‘expectation states’ within a number of cognitive domains of the 
brain, act in concert with the role of the brain to realise planned events – comparing the 
subsequent action which as a result of external factors that change expectation may violate the 
initial prediction of behaviour on a purely feed-forward expectation of cognitive function in the 
brain.  The Bayesian computational model of brain function, also called the “free energy principle” 
(FEP) (Friston, 2009, 2010; Friston et al., 2006) is an example of such an approach and a 
paradigmatic exemplar of strong emergence  (Lestienne, 2014). In this model, brain-environment 
interactions of an agent are represented as a loop in which the primary sensory inputs are first 
processed with prior knowledge of the most probable cause of these signals in a top-down fashion; 
the brain then combines prior and sensory information and calculates the posterior percept (this 
process is called Bayesian inversion) that is transmitted to the executive areas of the brain. Within 
the “executive control system” it is conceived that the feed-back percept is compared against the 
initial prediction with a gain function (which itself is a realised form of the prior belief set, i.e. 
learned) that gauges the return of various possible actions onto the environment. This model 
assumes that in the brain, signals directed from higher to lower levels of the neural hierarchy are 
more abundant than those directed upwards – a necessary consequence of the postulation that 
brain activity is dominated by the drive to progressively improve the inferred internal model of 
cause and effect (i.e. the activity -> behaviour coupling) though the modulation of synaptic 
connections. From a modelling perspective, the FEP assumes the existence of a number of brain 
states that parameterize the prior probabilities of the model as well as providing the basis of the 
gain/loss state function. This largely Bayesian hypothesis formulates perception as a constructive 
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process based on internal models. As FEP is operated by a set of rules that are treated 
independently of underlying neurobiology and only loosely constrained (inspired) by metabolic 
anatomical/neural constraints, FEP can be considered strongly emergent. 

Integrated Information Theory (IIT) is a theory of consciousness (Hoel et al., 2013b; Oizumi et 
al., 2014; Tononi, 2012) that has also been described as an example of ‘strong emergence’ (Hoel 
et al., 2013a). The theory’s core precept is that a system is conscious if it possesses high levels of 
a quantity called Φ (phi), which is a measure of the system’s capacity of integrating information. 
Tononi and Sporns (Tononi and Sporns, 2003) argue that this capacity supersedes any other 
micro-property of the system and is maximally irreducible to its individual components (Hoel et 
al., 2013a). In other words, IIT equates/conflates consciousness with the emergence of 
information in the brain surpassing and overriding the information which the brain's constituents 
already generate independently of one another. If one models the brain as a network of nodes 
exchanging information with a variety of directed connections, the system will exhibit 
specialization, if it contains highly connected modules, and integration if modules are highly 
connected. IIT argues that a high value of Φ for a network can be obtained if the connection 
patterns of its elements exhibit both high integration and a specialization that leads to activity 
patterns of the highest complexity from which conscious awareness emerges. Supporting this 
view, network analyses of fMRI data acquired during deep sleep (N3) indicate increased network 
modularity compared to conscious wakefulness, suggestive of diminished cortical integration 
(Spoormaker et al., 2010; Tagliazucchi et al., 2012).  Conversely, loss of consciousness also occurs 
during epileptic seizures when large portions of the cerebral cortex oscillate in synchrony, 
reflecting abnormally high integration (Blumenfeld, 2012; Cavanna et al., 2017).   Although IIT is 
inspired by cognitive science, it is only weakly constrained by a set of rules/principles that are 
invariant to the underlying neurobiology. Proponents of IIT have explicitly claimed to go beyond 
the constituent parts in terms of complexity/information exchange. For ITT, it is not just our 
current description of the brain that is irreducible to its constituent parts (e.g., because we lack 
measurement devices, empirical evidence or theoretical tools). Instead, the emergent phenomena 
are more accurate descriptions of underlying reality (e.g., by providing more accurate cause-effect 
description) (Marshal et al, 2018).  

 

From Strong to Weak Emergence 

The two examples considered above both highlight the two hallmarks of strongly emergent 
phenomena: (1) emergent phenomena are hypothetically generated from underlying processes 
and (2) they are somehow autonomous from them. However, this is problematic. Under these 
conditions, the paradigm of strong emergence seems not to have moved far from the perennial 
philosophical puzzle of emergent phenomena floating inconsistently over some unspecific 
physical substrate. The whole of the emergent phenomena still cannot be reduced or explained by 
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its parts; thus, it follows that no change in its components can have a predictable effect on the 
whole. If this is the case, it seems reasonable to argue that the science of complex organisms 
(mereology) is still supported by largely illegitimate metaphysics.  

 

Figure 2: An illustrative approach to Strong Emergence (Authorized reproduction – S. Harris 
– Science Cartoon Plus) 

 

To move the argument further it may be helpful to introduce some more stringent definitions of 
what actually constitutes strong emergence. The most commonly used are the four principles 
introduced by O’Connor (O'Connor, 1994): 

“A property M is an emergent property of a (mereologically-complex) object O if and only if: 

(1) M supervenes on properties of the parts of O; and 

(2) M is not had by any of the object's parts; and 

(3) M is distinct from any structural property of O, and 

(4) M has direct ("downward") determinative influence on the pattern of behaviour involving 
O's parts.”  

The problem of the above paradigm is that, in order to fulfil all these requirements, the analysis 
of emergence becomes rapidly unworkable. In the now classic example by Kim (Kim, 2006), one 

considers two emergent mental states (M and M∗) that supervene on physical states (Q and Q∗) 
of object O, respectively. Now it is legitimate to assume that, in the workings of object O, the 

mental state M is causal to M∗. According to O’Connor’s definition, the emergent property M 

would suffice to explain M∗ and this would not be reducible to any physical state of O. However if 

M emerges from Q then logically Q is also causal for M∗. If M and Q both explain M∗ then either 
they are the same thing or the whole paradigm is overdetermined hence implausible (Kim, 2006). 
Note in fact how, in the example above, the downward determinative influence fades away and 

physical properties Q and Q∗ become central to the scientific paradigm. 
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Are we therefore left with the conclusion that emergence is a concept that must be founded within 
illegitimate metaphysics and unworkable physics? Not necessarily. Good theoretical formulations 
that explain the underpinning of complexity and emergence have been around for a long time; 
Herbert Simon already in 1962 was the first to point out that, from an evolutionary perspective, 
efficient complex systems need be modular, e.g. composed of sub-systems, and they have to be 
hierarchically organized, e.g. systems are composed of subsystems that, in turn, have their own 
subsystems, and so on (Simon, 1962). What the complexities of these various natural or man-
made systems really are and what output they actually produce is an obviously more complicated 
question that, at least in part, may be investigated via simulation and generation of complex 
computational models. For example, recent complex theory has provided an abundance of cellular 
automata as demonstrable examples of artificial life mimicking the natural order. A cellular 
automaton is a collection of coloured cells on a grid that evolves through a number of discrete 
time steps according to a set of rules based on the states of neighbouring cells (Wolfram, 2002). 
The rules governing the behaviour of the cells are applied iteratively for as many time steps as 
desired.  Cellular automata have notably been used to model the complex dynamics underlying 
sensory information processing in the human central nervous system (Gobron et al., 2007; Kozma 
and Puljic, 2013). In this context, the term “emergence” conveys that these automata are able to 
evolve into complex spatial and/or temporal patterns that may well be unexpected but their 
formation is straightforwardly deducible from the rules of interaction of the automaton as well as 
from the initial conditions of the system and its environment. Importantly, the properties of these 
automata can be determined by observing or simulating the system with a fair amount of 
calculation but not by any (or at least any simple) process of a priori analysis.  

This alternative paradigm, which is significantly more computationally tractable and amenable to 
analysis, was introduced by Bedau as “weak emergence” (Bedau, 2011; Bedau, 1997). According 
to his definition: 

“A macrostate M of physical system O with microdynamic D is weakly emergent if and only if 
M can be derived from D and O’s external conditions but only by simulation. “ 

In other words, a description is weakly emergent if it can be modelled by a suitable computation 
and, conversely, computations are metaphysically “weak emergent” only if they contain the 
simulation of the emergent behaviour from its elementary constituents. 

What makes weak emergence especially interesting is its ubiquity. Starting with simple games, 
such as John Conway’s The Game of Life 1(Gardner, 1970)  and slime mould dynamics (Reid et 
al., 2012), the field of complexity science has been studying and developing a great variety of 
computational as well living and observable models that are by definition “weakly emergent” and 

                                                             
1 See (https://media.cognitron.co.uk/papers/game-of-life/index.html) for an example of the Game of Life. 
Note, even from this simple cellular automata model, differences in the initial state and connectivity of the 
model (See Patterns in the demo for static, dynamic and mechanistically useful examples), result in widely 
different emergent behavioural dynamics. 
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are allowing an increased understanding of complex phenomena (Dennett; Miller; West). The 
output of these models is extraordinary in the sense that they are unexpected, yet allow empirical 
investigations and comprehensive definitions of their emergent properties, generally in terms of 
stochastic distributions over a certain defined output space [Figure 2]. 

 

Computational Simulation of Brain Function 

Theoretically, simulation of weakly emergent systems though the generation of computational 
models, may be able to encompass some of the phenomena inherent within strong emergent 
models (Bedau, 2011).  

Hence main question is what computational approaches adopted in the modelling of brain 
function are “weakly” emergent. The literature contains a plethora of mathematical models that 
have been successful in modelling selective  brain functions, from vision (Landy and Movshon, 
1991) to working memory (Madl et al., 2015). However, in order to fulfil the weak emergence 
tenets outlined above, such models should be able to encompass the whole breadth of scales. 
Strictly speaking, these models should not resort to intermediate pseudo-representations or rely 
on meta-scale states and dynamics; they should rather be able to link across scales, e.g., from 
cellular events (i.e. metabolic processes, neurotransmission) to systems-level dynamics to 
cognition and, ultimately, behaviour. The task is clearly difficult but some whole-brain 
computational model classes have demonstrated the potential to support this ambitious scientific 
programme. 

One such class of models is coupled oscillators. A remarkable characteristic of this class of models, 
despite inherent reductive simplicity, is its ability to explain a large variety of phenomena which, 
regardless of their specific nature and constituents, seem to share common underlying principles 
that contribute to characteristic biological phenomena such as synchronization (Kuramoto, 1984; 
Winfree, 1980). In the  brain,  an oscillator represents the basic cellular computational unit that, 
at least in the cortex, is composed by the interaction of a pyramidal neuron and a GABA 
interneuron underpinning basic brain oscillations in gamma frequency (~80Hz) (Borgers and 
Kopell, 2003, 2005; Tiesinga and Sejnowski, 2009; Whittington et al., 2000) . The tuning of 
oscillatory activity by glutamate and GABA activity as well as plastic adaptations can be easily 
parameterized into oscillatory models (Hellyer et al., 2016; Womelsdorf et al., 2014). The effects 
of other neurotransmitters, such as dopamine and serotonin, can be also incorporated as the 
differential tuning of the local excitation/inhibition (E/I) ratio (Ciranna, 2006; SŚmiałowski and 
Bijak, 1987).  This basic oscillatory motif seems to replicate at various scales and evidence has 
been coalescing around the idea that brain activity self-organizes from local neuronal assemblies 
to cortical structures and lobes (Cabral et al., 2011; Cabral et al., 2014). Models of Kuramoto 
oscillators with spatial and temporal characteristics of the structural human white matter 
connectome (Cabral et al., 2014) and analogous variants of Wilson-Cowan mean-field neuronal 
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models (Deco et al., 2009) or of the Greenberg-Hastings (Haimovici et al., 2013) have been 
effectively utilized to generate macroscopic brain signals [For an overview of this approach, see 
Figure 3 A->B]. These are reminiscent of the time-averaged properties of EEG or fMRI data and 
replicate the dynamical functional connectivity patterns observed empirically    (Bhowmik and 
Shanahan, 2013; Cabral et al., 2014; Deco et al., 2009; Deco et al., 2013; Deco et al., 2017; Ghosh 
et al., 2008; Hansen et al., 2015). These models could properly incorporate accurate metabolic 
constrains such as energetic expenditure (Hillary and Grafman; Lord et al., 2013) or plasticity 
measures (Hellyer et al., 2016).  Similarly, the mappings of brain cellular components available 
either from mRNA (Sunkin et al., 2013) or PET (Rizzo et al., 2016) and noise elements collected 
from EEG data (Schirner et al., 2018) could be used to improve their biological validity. 
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Figure 3: The use of coupled oscillators to explore emergent properties of neural connectivity 
at the macroscopic scale. A) The generalised overview of experiments which aims to simulate 
from structural connectivity of the macroscopic brain, the overall functional activity of a 
putative neural network – such approaches often generate simulations of fMRI or MEG signals 
which are then correlated with empirical measures. B) The underlying dynamics at each node, 
can be simulated using a range of different underlying equations, here we show the simple 
Kuramoto oscillator system (left), which considers each node as a single reduced phase 
oscillator, or the more complex (right) Wilson-Cowan model, which exposes for each node, 4 
separate interconnections which represent localised (microscopic) connectivity. C) The 
dynamics of the brain however, do not live in isolation of interactions with the external world, 
but are a weakly emergent property of this interaction. In our previous work ((Hellyer et al., 
2017)), we demonstrated one approach for extending exploration of emergent dynamics into the 
behavioural space – inextricably linking the internal dynamics of the model to their emergent 
behavioural consequences (Portions of Figure 3, adapted with permission from (Hellyer et al., 
2016)& (Hellyer et al., 2017)) 

 

Scalability and biological plausibility are important but the key aspect of oscillatory models is that 
they not only replicate empirical signals but they also seem able to model effectively the 
emergence of functional properties of the system. For example, network oscillations can tune 
input selection, temporally aggregate neurons into assemblies, induce synaptic plasticity to create 
cooperative support of temporal representations and long-term consolidation of information 
(Beggs, 2008; Buzsaki and Draguhn, 2004; de Arcangelis and Herrmann, 2010; Kinouchi and 
Copelli, 2006; Moretti and Munoz, 2013; Shanahan, 2010; Shew et al., 2011; Urban et al., 2012). 
These models have now reached a level of maturity that enables predictions in the clinical realm 
(Deco and Kringelbach, 2014; Lord et al., 2017; Proix et al., 2017; Zimmermann et al., 2018) from 
allowing the evaluation of systemic effects of local injuries (Fagerholm et al., 2015) to linking 
primary sensory and cognitive dysfunctions in schizophrenia (Turkheimer et al., 2015) 

The majority of the simulation work so far has investigated spontaneous neural dynamics, in the 
absence of tasks, sensory input or motor output; the recent literature however has demonstrated 
the ability of these models to encompass task related activity such as learning and pattern 
recognition (Capano et al., 2015; van Kessenich et al., 2019). To further inform cognitive sciences, 
these models have also been constructed to project behaviour. We have recently embodied a 
computational model of spontaneous neural dynamics into a simulated agent, an avatar, with 
sensory input from and motor output to a simulated environment (Hellyer et al., 2017) and 
demonstrated in behavioural terms the results of plastic adaptation of the system. The modelling 
of interactions between a simulated brain and a simulated environment is still in its infancy but 
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has demonstrated the potential to explore the emergence of behaviour directly from 
neurobiologically plausible oscillatory models [Figure 3B->C]. 

 

Conclusion 

This manuscript is primarily concerned with the epistemological bases of emergence in models of 
higher cognitive function; this is relevant because the Neurosciences seem to be at an interesting 
yet familiar junction, reminiscent of the alchemy/chemistry paradigm shift. Despite the 
remarkable advances brought forward by the labour of healers, artists, clothiers and metal 
workers for more than 2000 years, it was the introduction of accurate quantitative experiments, 
explicit analytic thought and experimental verification, combined with an increasing understand 
of matter that transformed chemistry into a science (Cobb and Goldwhite, 2001).  

With the above in mind, we have focused this manuscript on the ontological foundations of 
wholistic analytical approaches to cognition on the one hand, such as but not limited to FEP and 
IIT, and, on the other, computational approaches that explore the emergence of higher mental 
function from the neurobiological micro-scale via simulation, as exemplified by systems of 
coupled oscillators in silico.   

We have reviewed the contemporary epistemological literature that suggests that strong 
emergence e.g. the use of overarching principles to model mental function can be helpful but, 
without an anchoring to the biological system, provides a merely descriptive tool that for practical 
(rather than epistemological) reasons is likely to be overdetermined, e.g. too many 
parameters/explanatory variables will suffice for explanations for the same phenomenon. For 
example, the Bayesian model of FEP is based on a probabilistic prior that is parameterized by 
internal states; if these states are not directly and uniquely discernible, so will be the parameters 
of the priors and the model becomes overdetermined. Overdetermination also undermines IIT 
when, for example, it postulates the emergence of consciousness out of a particular information 
flow in the neuronal circuitry inspired by thalamo-cortical circuits and their difference from 
cerebellar neuronal patterns (Tononi, 2003); as these two anatomical systems differ significantly 
in a number of other ways, these could equally be postulated as causative to the same 
phenomenon (Cerullo, 2015). Nevertheless these models would be anchored to a more credible 
ontology if shown to be valid stochastic approximations of the output of computational renditions 
anchored to brain biology; for example a Bayesian prior could be modelled out of the 
computational bottom-up modelling of anticipation (Stephen and Dixon, 2011). In the case of IIT, 
setting aside the ultimate ontological barrier faced by any model of consciousness (e.g. the “hard” 
problem of explaining the relationship between physical phenomena, such as brain processes, and 
personal experience (Chalmers, 1995)), its use of simple models of information flow could be 
helpful in furthering some intuitive understanding on the computational properties of variously 
interconnected brain systems (Marshall et al., 2018). Indeed very recent work points to the 
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amenability of IIT to its embedding in lower level computational models as well as biologically 
motivated networks (Marinazzo et al., 2014; Mediano et al., 2016; Tagliazucchi, 2017). 

 

On the other hand, the use of neurobiologically plausible, data-testable, generative renderings of 
higher mental states is ontologically solid but obviously a very challenging proposition. These 
models require biological fidelity, hence the capacity to be indexed and/or bounded by signalling 
and metabolic parameters, and they need to be scalable to demonstrate fidelity to brain macro-
signals (e.g. EEG, MEG and fMRI) and ultimately to generate credible behaviour.  

The incorporation of metabolic constraints, plasticity measures but also the mapping of cellular 
components available from mRNA studies are just a few of the methods used to introduce 
biological plausibility into the models (Hillary and Grafman; Lord et al., 2013; Hellyer et al., 2016; 
Rizzo et at., 2016). In order to do so, the basic element of the computational model needs to be at 
a micro-level low enough to enable the incorporation of the above-mentioned biological data. For 
example, in our recent proposal (Turkheimer et al., 2015) the elementary unit was selected as the 
PING ensemble (pyramidal-interneuron interaction) which is a key determinant of oscillatory 
activity in the superficial cortical layers, capable of generating beta and gamma oscillations. The 
modelling of large neural networks using this elementary unit may notably incorporate GABA and 
glutamate receptor expression data to further tune the local excitability of local neuronal 
populations into a biologically realistic range.  

Importantly, in order to avoid epistemologically “strong” leaps of faith in model construction, 
future descriptions of cognition should also carefully subdivide behaviour/consciousness in terms 
of the levels and hierarchies that may be hypothesised to produce a conscious experience (Seth, 
2010). Together with the aforementioned, the recent literature provides a number of examples of 
successful attempts to combine the brain micro and macro signals and brings realistic promise of 
a viable path for theoretical and computational neuroscience in the coming years. 

Finally, what about consciousness itself? Emergence, in its strong version, has been at the core of 
a number of proposals around consciousness that did not necessarily involve computation per se 
(for example see (Havlík, 2012) on John Searle theory). Although an informative account of these 
approaches is outside the scope of this report, it may be useful to report here some words of Bedau 
on the subject: “Weak emergence is no universal metaphysical solvent. For example, if 
(hypothetically, and perhaps per impossible) we were to acquire good evidence that human 
consciousness is weakly emergent, this would not immediately dissolve all of the philosophical 
puzzles about consciousness. Still, we would learn the answers to some questions: first, a precise 
notion of emergence is involved in consciousness; second, this notion of emergence is 
metaphysically benign. Thus, free from special distractions from emergence, we could focus on 
the remaining puzzles just about consciousness itself.” (Bedau, 1997) Hence, while 
neuroscientists address the problem of consciousness with novel hypotheses and experimental 
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paradigms (see (Seth, 2010) for a comprehensive account) it may transpire that emergence is not  
the pivot of a grand theory of consciousness, but just a distraction. 
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