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Abstract 

Pericytes have been shown to act as precursors of resident adult stem cells in stromal 

tissues in vivo. When expanded in vitro these cells are capable of giving rise to multiple 

mesenchymal cell types, irrespective of their tissue of origin. This phenomenon of multi-

lineage differentiation is only observed in culture, whereas in vivo, stromal stem cell 

differentiation is restricted to tissue-specific cell types. An important unanswered question 

is how a single, widely distributed cell type (a pericyte), gives rise to stem cells with tissue-

specific functions and attributes. Using a combination of transcriptomics and epigenomics 

we have compared the molecular status of two populations of stromal stem cell precursors. 

By utilising a LacZ transgene insertion that is expressed in pericytes but not in stem cells, we 

were able to compare pericyte populations from two different tissues, mouse incisors and 

bone marrow. Pericytes, freshly isolated from mouse incisors and bone marrow exhibited 

transcriptomes and epigenetic landscapes that were extensively different, reflecting their 

tissue of origin and future in vivo differentiation potential.  Dspp, an odontoblast 

differentiation gene, as well as additional other odontogenic genes are shown to be 

expressed in dental pulp-derived pericytes. These genetic loci are also decorated with 

histone modifications indicative of a transcriptionally active chromatin state. In bone 

marrow pericytes a major osteogenic differentiation gene, Runx2 is not expressed but is 

marked by both active and repressive histones and therefore primed to be expressed. 

Polycomb Repressor Complex 1 (PRC1), analysis showed that key genes involved in the 

induction of adipogenesis, chondrogenesis and myogenesis are targeted by Ring1b and 

therefore stably repressed. This indicates that pericyte populations are molecularly 

obstructed from differentiating down certain lineages in vivo. 

 



Introduction 

Stem cells are present in the stroma of adult tissues and organs and are known by a variety 

of generic and tissue specific names, including, stromal stem cells, mesenchymal stem cells, 

skeletal stem cells, dental pulp stem cells etc. (Hematti & Keating, 2010; Jiang et al., 2002). 

Originally isolated from bone marrow, these cells have been extensively characterised in 

vitro where a set of criteria are used to define a cell population as having stem cell 

properties. Fundamental among these is the stimulation of differentiation in vitro down 

osteogenic, chondrogenic and adipogenic pathways. Addition of specific cocktails of factors 

to these stem cells in monolayer culture can stimulate differentiation down these three 

lineages that are conventionally assayed by marker gene expression and/or histological 

staining for mineral, proteoglycans and lipids (Huang, Gronthos, & Shi, 2009; Phinney & 

Sensebé, 2013). This tri-lineage differentiation property of the stem cells isolated from 

different tissues is however a uniquely in vitro property that has yet to be observed for any 

population in vivo. In vivo, differentiation is restricted to a single cell type, appropriate to 

their tissue of origin and inappropriate differentiation is considered a pathological/disease 

condition (Diaz-Flores et al., 2009; Jifan Feng et al., 2011; Vidovic et al., 2017). 

Numerous studies have implicated perivascular cells (hereafter referred to as pericytes), as 

a likely common source of stem cell precursors in multiple tissues (Crisan et al., 2008; da 

Silva Meirelles, Chagastelles, & Nardi, 2006; Shi & Gronthos, 2003). In vitro studies showed 

that cultured pericytes, from multiple organs showed some of the cardinal properties of 

stem cells including their immunophenotype and broad differentiation potential (Bexell et 

al., 2009; Brighton et al., 1992; Covas et al., 2008; Crisan et al., 2008). Crisan et al (2008) 

demonstrated that human perivascular cells, isolated and expanded in culture express 

typical markers ascribed to stromal/mesenchymal stem cells, including CD73, CD44, CD105, 



and CD90. Pericytes in vivo have been shown to express MSC markers including CD73, CD44, 

CD105, and CD90 (Feng-Juan lv, Tuan, Cheung, & Leung, 2014). In addition, perivascular cells 

have been detected in virtually all organs in vivo based on their close association with blood 

vessels, where they express a combination of markers such as CD146, NG2, PDGFR-Rβ, and 

-SMA. Several cre mouse lines for these markers have been used with reporter lines to 

trace pericytes during tissue/organ growth and repair. Using these lines a common origin of 

stem cells has been established in several tissues using the gold standard of genetic lineage 

tracing. Pericytes have been shown to act as MSC precursors and give rise to follicular 

dendritic cells (Krautler et al 2012), white adipocytes (Tang et al 2008) and skeletal muscle 

(Dellavalle et al 2007). In tooth pulp, NG2+  pericytes form a highly specialised tooth-specific 

cell type, odontoblasts during incisor growth and repair as do αSMA+ pericytes in molar 

repair (Jifan Feng et al., 2011; Vidovic et al., 2017). In bone marrow, lineage tracing of 

osteoblasts using an Osx-Cre during early development showed that their precursors in 

developing bone migrate into the primary ossification centre with invading blood vessels in 

a pericyte-like manner and these cells also express PDGFR- β (Maes et al. 2010). The 

ubiquitous nature of pericytes as cells required to maintain blood vessel wall integrity 

suggests that in their role as stem cell precursors their differentiation in vivo must be 

regulated in some way to ensure appropriate differentiation.  

Using a combination of transcriptomic profiling, and epigenetic characterisation of histone 

landscapes, we set out to determine the extent to which pericytes from different tissues are 

“molecularly programmed” to undergo restricted differentiation in vivo before they become 

stem cells. In order to do this we needed to separate pericytes from stem cells and since 

expression of the majority of surface markers is shared by both cell types we took 

advantage of a mouse transgene insert that drives -galactosidase expression in pericytes in 



multiple tissues but is not expressed in stem cells (Tidhar et al., 2001). We purified pericytes 

from two tissues bone marrow and incisor tooth pulp that share characteristics of high 

turnover rates and producing cells (osteoblasts and odontoblasts respectively) involved in 

mineralisation. These pericytes were subjected to RNA-Seq and epigenomic profiling 

without an in vitro cell culture step. Analysis of the datasets reveals extensive differences 

between the two cell populations that reflect their anatomical origins, in vivo function, and 

most importantly highlights mechanisms whereby pericytes are innately restricted in their 

available stem cell differentiation pathways depending on their tissue of origin. Thus 

pericytes contain a pre-programmed epigenetic landscape and transcriptome that 

anticipates their tissue specific function as stem cells. 

 

 

  



Materials and Methods 

Tissue Isolation. Homozygous XlacZ4 (JAX: 018625, B6.FVB-Tg(Fabp4-lacZ)4Mosh/J) pups 

were collected at postnatal days 5 to 7 and sacrificed. Incisors were extracted from the 

mandible and maxilla and the tibia and femurs removed and placed into  ice cold sterile 

phosphate buffered saline (PBS). The epithelium was removed from incisors using a fine 

needle and the remaining dental pulp placed in freshly made SB buffer (1% FBS, 10mM 

HEPES buffer pH7, PBS). The tissue was then isolated by centrifugation (1min x 12,000g), cut 

into small pieces using  fine scissors and re-suspended in 5ml of Collagenase D (Roche, 

11088866001) and Dispase (Stem cell technologies, 07923) . The tissue was allowed to 

dissociate by incubating the suspension in a cell culture incubator at 37o in 5% CO2. Cells 

from bone were extracted by flushing the marrow with SB buffer using a U100 insulin 

needle. Cells were then pelleted by centrifugation (5mins x 12,000g), the cell media 

removed and the pellet re-suspended in 200µl of ice cold SB buffer. 

Histology. Cryosections were processed for Xgal staining as described in (J Feng, Mantesso, 

De Bari, Nishiyama, & Sharpe, 2011). Primary antibodies were used at a concentration of 

1:1000, and biotinylated secondary antibodies used at a concentration of 1:500. Antibodies 

used were: rabbit anti CD146 (abcam, 75769), rabbit anti CD105 (abcam, 11414), rabbit anti 

α-smooth muscle actin (abcam, 5694), rabbit anti Collagen IV (abcam, 6586), rabbit anti NG2 

(abcam, 129051), biotinylated anti rabbit IgG (Vector laboratories, BA-1000). 

Flow Cytometry. The dissociated tissue suspension was stained for β-galactosidase activity 

using the Fluorescein Di-β-D-Galactopyranoside system (Invitrogen, D2920) as per the 

manufacturer’s instructions. Cells were then run through a BD FACS Aria III fusion machine, 

and flow cytometry analysis performed on a BD LSR Fortessa machine. Data analysis was 



done with FlowJo v10 software. For flow cytometry analysis, cells were re-suspended in 

100μl SB buffer (1% FBS, 10mM HEPES buffer pH7, PBS) and incubated with an appropriate 

antibody (1:100 concentration) for 60 minutes on ice. Antibodies used were the following: 

Rat mAb anti CD105 (ThermoFisher Scientific, 12-1051-82), Rat mAb anti CD90 (R&D, 

FAB7335P), Mouse mAb anti SSEA4 (R&D, FAB1435P), Rat mAb anti CD140b (eBioscience, 

17-1402-82), Mouse mAb abti CD146 (eBioscience, 12-1469-41) and Rabbit mAb anti 

Annexin V (Abcam, ab108194). 

RNA-isolation & RNA-seq analysis. Pericytes were isolated as previously described and total 

RNA was obtained using the “Quick- RNA MicroPrep” kit (Zymo Research, R1051) according 

to manufacturer’s instructions.  Following poly-A selection, cDNA libraries were generated 

using SMARTer (Clontech, 634925).  Barcoded libraries were then pooled and sequenced on 

an Illumina Hiseq 4000 (75bp, paired end) at the Wellcome Trust Centre for Human Genetics 

(Oxford, United Kingdom). Raw reads were mapped to GRCm38/mm10 using Hisat2, and 

Deseq2 together with the Cufflinks pipeline were used to identify genes with differential 

gene expression. Feature counts was also used to generate count tables for every sample. A 

gene was classified as being differentially expressed if it had a q-value <0.05.  All ChIP-seq 

and RNA-seq data are deposited under Bioproject number : PRJNA420442 in the NCBI (SRA) 

database. The following algorithms were used for RNA-seq and ChIP-seq data analysis: 

HISAT2 (D. Kim, Langmead, & Salzberg, 2015), DESeq2 (Love, Huber, & Anders, 2014), 

FeatureCounts (Liao, Smyth, & Shi, 2014), the Galaxy platform (Afgan et al., 2016), Cufflinks 

(Trapnell et al., 2012), DeepTools2 (Ramírez et al., 2016), Bowtie2 (Langmead, Trapnell, Pop, 

& Salzberg, 2009) and MACS2 (Zhang et al., 2008) 

Chromatin immunoprecipitation & ultra-low ChIP-Seq. Pericytes were FACS isolated from P5 

XLacZ4 pups as described above. Freshly isolated cells (~10,000) were crosslinked, their chromatin 



isolated, sheared and then precipitated using a suitable antibody for modified histones or chromatin 

binding protein of interest. ChIP-Seq libraries were generated using the “MicroPlex Library 

preparation Kit” (Diagenode, C05010012) and sequenced on an Illumina HiSeq 2000 sequencer 

(50bp paired-end). Sequencing was performed at the Wellcome Trust Centre for Human Genetics 

(Oxford, United Kingdom). The reads were firstly aligned to the mouse reference genome 

(GRCm38/mm10) using Bowtie2. Any reads not mapping uniquely to a locus were excluded from 

subsequent analysis. Peak calling was performed using MACS2 using a P-value cut-off of p< 0.005.  

For visualization purposes, ChIP-seq sample bedgraph files were normalized to input bedgraph files 

using DeepTools. The following antibodies were used for ChIP-seq: Rabbit pAb anti H3K27me3 

(Active motif, 39155), Rabbit pAb anti H3K4me3 (Active motif, 39915) and Rabbit mAb anti Ring1B 

(Active motif, 39663). 

In vitro pericyte culture and quantitative PCR. Pericytes from incisor pulp and bone marrow 

stroma were isolated as described. Tissue culture plates were coated with 0.1% gelatin 

(Sigma, G1393) and FACS isolated pericytes were seeded at a density of 1x104/cm2. RNA 

was collected from cells as previously described after 31 days in culture. cDNA was 

synthesized using the NanoScript2 Reverse transcription kit (PrimerDesign). Quantitative RT-

PCR was performed using the Precision qPCR master mix (PrimerDesign). The quantification 

cycle threshold values were normalized to the housekeeping gene (Gapdh) and ΔCq and 

ΔΔCq were calculated between samples and controls. The following Qiagen QuantiTect 

oligonucleotide primers were used: Dspp (QT00312228), Pparγ (QT00100296), Runx2 

(QT00102193), Gapdh (QT01658692), Ibsp (QT00115304), and Col2a1 (QT01055523). 

 

Results 



Characterisation of dental pulp and bone marrow XlacZ4+ cells confirms their identity as 

pericytes. In order to compare the expression of cell surface markers associated with 

pericytes, LacZ+ cells in XlacZ4 transgenic mice were isolated from dental pulp and bone 

marrow and assayed using flow cytometry. The XlacZ4 line contains a random integration of 

a β-galactosidase gene cassette downstream of the αSMA gene locus (Tidhar et al., 2001), 

making β-galactosidase expression highly restricted to pericytes (Fig. S4 A). When assayed, 

~1.3% of all cells derived from incisor pulp were LacZ+ pericytes and ~5.5% of all cells from 

bone marrow aspirate were LacZ+ (Fig. 1A & B). The percentages of LacZ+ cells expressing 

five commonly-used pericyte marker genes, PDGFR(Hellström, Kalén, Lindahl, Abramsson, 

& Betsholtz, 1999), CD146 (Feng-Juan lv et al., 2014), Endoglin (Dominici et al., 2006), 

Annexin A5 (Brachvogel et al., 2005) and SSEA4 (Gang, Bosnakovski, & Figueiredo, 2007) 

were found to be similar in LacZ+  cells of dental pulp and bone marrow (Fig. 1C & D). The 

percentage of cells positive for these markers were consistent between biological replicates 

(Fig. 1E). Although none of the markers used were present on 100% of the cells, as 

expected, the distributions between the two cell populations was suggestive of similar cell 

populations in the two different tissues. The only cells we could detect that were positive 

for LacZ were always attached to blood vessels in our organs of interest (Fig S1 A). LacZ+ cells 

were not found to express vascular endothelial markers such as Cdh5, Kdr, Pecam1 or Nos3 

(Wang, Chen, & Zhang, 2016) (Fig. S1 B), nor the more recently proposed pericyte markers 

Tbx18 (Guimarães-Camboa et al., 2017).  

 

RNA-seq profiling of pericytes reveals unique transcriptomic signatures in bone marrow 

and dental pulp pericytes. Bulk RNA-seq was performed on fresh LacZ+ pericytes collected 

from dental pulp and bone marrow and RNA isolated without a prior in vitro expansion step. 



Unsupervised hierarchal clustering which takes into account the transcriptome of cells as a 

whole, showed that biological replicates were more transcriptomically similar to pericytes 

from the same anatomical location than from different locations (Fig. 2A). DESeq2 analysis 

on the datasets showed that at an FDR < 0.05, 850 genes were significantly upregulated in 

dental pulp pericytes while 1000 genes were significantly upregulated in bone marrow 

pericytes (Fig. 2B). The majority of genes detected (approximately 3500) were transcribed in 

both populations and did not show any significant difference in their levels of transcription. 

Enrichment analysis on these shared genes showed that they encode proteins involved in 

regulation of mRNA processing, RNA splicing, translocation and various other homeostatic 

processes (Fig. 2C). 

When considering functional categories of genes that were over-represented, several 

significant differences became clear recognising the extent that gene expression in pericytes 

reflected functions as mesenchymal stromal cells. Enriched gene sets for pericytes isolated 

from incisor pulp included hedgehog signalling & regulation of signalling via Smoothened 

(Fig. 3A). Core enrichment was detected in a number of hedgehog related signalling genes 

including transcription factors: Gli1, Gli2, Gli3, and receptors Ptch2, Smo and others (Fig. 

3A’) that are driving this over-representation. In addition, we surprisingly detected over-

representation of genes that have been classically associated with odontogenesis (Fig. 3B). A 

significant number of genes were driving this core enrichment, 75 of which are shown with 

their relative expression values (Fig. 3B’). These included Gli1, Wnt10a, Bcor, Dlx2 and 

others. Perhaps the more intriguing gene showing expression in the incisor pulp pericyte 

population was Dspp, a bone fide odontoblast differentiation gene (Fig. 3C). We could not 

detect expression of Dspp or other odontoblast-associated genes in any of the bone marrow 

pericyte samples sequenced (Fig. 3C). In contrast to dental pulp, bone marrow pericytes did 



not show any expression of genes associated with osteogenic or other mesodermal cell 

differentiation. Thus expression of Runx2, Sox9, Myf5, Pax3, nor Pparg could be detected in 

bone marrow pericytes. Bone marrow pericytes did show over-representation of genes 

governing cell cycle progression and DNA replication (Fig. S3 A & B). A closer analysis of the 

datasets showed that core – enrichment was driven by genes encoding proteins that encode 

complexes involving cyclin dependent kinases, cyclins (Fig. S3 A’) and essential DNA 

replication machinery (Fig. S3 B’). Bone marrow pericytes appear to be involved in 

regulating multiple arms of the immune response as they showed over – representation of 

gene clusters encoding proteins that are classically involved in signalling to B-cells, 

leukocytes and natural killer cells (Fig. S3 C & D). In addition they showed enrichment for 

genes involved in the regulation of inflammatory processes, IFNγ production and IL-1-

mediated signalling (Fig. S3 E). Taking into account the strong enrichment of these bone 

marrow pericytes for haematopoietic and immune-related processes, we investigated if 

they correspond to the Nestin+ perivascular cells described by Mendez-Ferrer et al (del Toro 

et al., 2016; Méndez-Ferrer et al., 2010).  What was seen was that these bone marrow 

pericytes do not express Nestin (Nes), or other neural crest associated genes such as Snai1, 

Snai2, Sox9, Sox10 Pax3, or Foxd3. In contrast, dental pulp pericytes show expression of Nes, 

Snai1, Snai2 and Sox9 (Fig. S4). These results being consistent with the well-known fact that 

pericytes in craniofacial structures are derived from cephalic neural crest, whilst pericytes in 

the trunk and bone marrow are of mesodermal derivation (Dellavalle et al., 2011; Etchevers, 

Vincent, Le Douarin, & Couly, 2001).  

 

Epigenetic profiling identifies genomic loci in repressed, active or bivalent chromatin 

states. Having established that pericytes from different anatomical locations have dissimilar 



transcriptomic outputs, a subset of which are unrelated with their blood vessel maintenance 

function, we set out to identify the molecular cause driving these transcriptomic 

differences. Whole genome epigenetic profiling using ChIP-seq was used to compare active 

(H3K4me3) and repressive (H3K27me3) histone marks on chromatin of the two freshly 

isolated pericyte populations.  Global histone profiling confirmed the genome-wide 

distribution of enrichment peaks, with most peaks clustering within 500bp either side of the 

transcription start sites of protein coding genes (Fig. 4A). Gross comparisons of H3K4me3 

and H3K27me3 enriched loci showed higher numbers for both histone modifications in bone 

marrow (Fig. 4B).  Surprisingly, only 1050 loci of H3K4me3 and 1450 of H3K27me3 loci were 

shared by bone marrow and dental pulp pericytes (Fig. 4B). Gene ontology analysis of genes 

marked by H3K4me3 in the two cell populations showed common pathways enriched that 

confirmed the previously described RNA-seq datasets. These biological processes included 

basal metabolic regulation, ATP metabolism, transcriptional regulation and cell cycle 

progression (Fig. 4C). In addition, the bone marrow population showed higher enrichment of 

genes involved in the immune system, confirming status of genes previously identified to be 

expressed in the RNA-seq screen of these cells (Fig. 4C). H3K27me3 marked loci in both 

populations were enriched in genes modulating late stages of cell cycle progression, such as 

G2/M phase transition (Fig. 4C) and cytokinesis (Fig. 4D).  Analysis for biological process 

enrichment of loci marked by H3K4me3 in both pericyte populations unsurprisingly 

identified processes that can be thought of as homeostatic. These collectively include the 

basal metabolic regulation of cells, transcriptional output regulation, and mRNA processing 

and degradation. One of the most significant pathways identified was heterophilic cell to 

cell adhesion which is consistent with the attachment of these cells to blood vessels (Fig. 

4D). These H3K4me3 ChIP-seq results strongly mirrored the results obtained from the RNA-



seq datasets which conveyed the transcriptional status of these genes and identified them 

as being expressed in the pericyte populations from both organs (Fig. 2C). Contrastingly, 

repressive H3K27me3 marked loci shared by both populations targeted mitosis, cell growth 

and pro-apoptotic processes (Fig. 4D).  We next wanted to compare on a global scale the 

overlap between the active/repressive histone landscapes in our cells with their respective 

RNA-seq datasets. Using an RNAseq specific GTF, we compared the histone landscapes of 

protein coding genes to the expression these genes had in the RNAseq datasets. The 

resulting coverage plots show that genes found to be expressed in pericytes from both 

organs overlap with genes high in H3K4me3. Contrastingly, very few genes were found to be 

expressed that were enriched for H3K27me3 in pericytes of either organ (Fig. 5A). 

Many promoters and transcription start sites in the genome harbour both H3K4me3 and 

H3K27me3 and are termed bivalent (Voigt, Tee, & Reinberg, 2013). These chromatin marks 

localising at these genomic elements are thought to hold genes in a poised state that 

permits rapid gene activation, that in a cellular context might include genes involved in the 

initiation of cell differentiation (Roh, Cuddapah, Cui, & Zhao, 2006; Singh et al., 2015). 

Therefore, enrichment of loci marked by both histone modifications (bivalent loci) were 

analysed separately as such loci might identify “poised” genes that are ready to be 

transcribed as pericytes adopt a stromal stem cell identity. As with the monovalent loci, 

more bivalent enrichment peaks were observed in bone marrow cells compared to dental 

pulp, 1619 versus 1004 respectively (Fig. 5B) and only 385 of these were shared between 

the two cell populations (Fig. 5D). Enrichment analysis of bivalently marked genes in dental 

pulp showed that most of the genes marked are associated with regulating cell adhesion 

and transducing intracellular signals (Fig. 5C). Similarly, in bone marrow the same functional 

pathways were highlighted (albeit due to different genes) with the addition of genes 



involved in mitosis and regulation of cell to cell signalling, neither of which showed 

enrichment in the dental pulp bivalent gene cluster (Fig. 5C). When considered in isolation, 

the 384 bivalently marked genes in both populations were enriched for biological processes 

involving cell adhesion, intracellular signal transduction and reorganising the chromatin 

environment (Fig. 5D). Percentage breakdowns of these genes into different biological 

processes showed that approximately 27% were involved in cellular regulatory processes 

(Fig. 5E), 62% of which are specific for cell to cell communication (Fig. 5E’). Taken together 

the transcriptomic and epigenomic datasets revealed that the epigenome of pericytes from 

two different locations reflects the function of the cells as MSC precursors. 

 

Differential molecular programming drives in vitro differentiation in unstimulated 

monolayer cultures. The RNA-seq and ChIP-seq results outlined above argue that dental 

pulp-derived pericytes carry an odontogenic signature even before they have left blood 

vessels to become stromal stem cells. This conclusion was reached from the fact that not 

only do they express a number of genes known to be involved in odontogenesis, but also 

because of their low level expression of Dspp, an odontoblast differentiation gene (Chen et 

al., 2009; Wei, Ling, Wu, Liu, & Xiao, 2007). The low expression of Dspp was evident when 

investigating the ChIP-seq dataset for H3K4me3 which showed that dental pulp pericytes 

have a clear sharp peak of H3K4me3 at the Dspp transcription start site (*), indicating that 

transcription is taking place, something that is not observed in the bone marrow population 

(Fig. 6A). We next challenged these FACS sorted pericytes to see if they maintained a 

memory of origin when they were exposed to an in vitro environment under unstimulated 

culture conditions. After prolonged culture (31 days) we observed that Dspp expression was 

significantly upregulated in dental pulp pericytes as measured by qPCR (Fig. 6B). These bone 



marrow pericytes did not upregulate Runx2, Alp or Col2a1. Similarly, bone marrow pericytes 

were subjected to the same in vitro assay and showed significant upregulation of Runx2, but 

not Dspp (Fig. 6D). This did not coincide with an upregulation of the adipogenic indicative 

gene Pparg or the chondrogenic indicative gene Col2a1. These cells did not upregulate a late 

osteogenic mineralisation gene Ibsp (Fig. 6D). To further characterise the underlying 

molecular cause for this Runx2 specific upregulation, bone marrow pericyte ChIP-seq 

datasets were investigated. These showed that the Runx2 transcription start site is bivalent 

as shown by the high enrichment of both H3K4me3 and H3K27me3 at that genomic region 

(Fig. 6E). In line with it being bivalent,  Runx2 expression could not be detected in fresh bone 

marrow pericytes when assayed using qPCR (Fig. 6D) or when evaluating the corresponding 

RNA-seq datasets.  The ChIP-seq data indicated that this gene is held at a poised state, ready 

for subsequent activation when these cells are attached to blood vessels in vivo. 

Contrastingly, both Pparg and Col2a that were not upregulated in the in vitro assay are 

heavily enriched for repressive H3K27me3 in vivo (Fig. 6F). The late mineralization gene, 

Ibsp, whilst not expressed, is clear of any repressive H3K27me3 marks, suggesting that this 

gene is found in a chromatin environment making it amenable to transcription once the 

cognate transcription factors become available, whilst Col2a1 and Pparg genes which are of 

inappropriate cell fates, are not.  

 

PRC1 represses pericyte differentiation into inappropriate mesenchymal cell fates.  It is 

widely accepted that Polycomb and Trithorax complexes safeguard proper differentiation of 

not only embryonic stem cells but also adult stem cells (Steffen & Ringrose, 2014). The PRC1 

and PRC2 complexes play an active role in the deposition of repressive histone marks, 

namely H3K119u1 and H3K27me3 respectively via the Ring1b (PRC1) and Ezh2 (PRC2) 



subunits. Contrastingly, trithorax family, Ash2L and Mll-containing complexes have methyl 

transferase activity and catalyse trimethylation of lysine 4 of histone 3 at multiple loci, 

thereby antagonising polycomb group- containing complexes (Di Croce & Helin, 2013; 

Shilatifard, 2012; Steward et al., 2006). To further characterise the epigenomic landscapes 

of these cells, and to identify what is contributing to this differentiation specificity 

(odontoblast vs osteoblast) on a molecular level, ChIP-seq datasets were generated for both 

pericyte populations for Ring1b, Ezh2, Ash2l and Mll1. When investigating their genome 

wide localisation, all complexes showed strongest association with the transcription start 

sites of protein coding genes (-1kb ≤ TSS ≤ 1kb) as expected (Fig. 7A). We wanted to 

determine to what degree these components shared similarities in the genomic loci they 

targeted, and if this indicated dissimilar epigenetic identities in these pericyte populations.  

Using principal component analysis on the generated ChIP-seq datasets we identified 

divergent chromatin landscapes in these pericytes. The datasets generated from the 

repressive PRC1 (Ring1b)  and PRC2 (Ezh2) subunits in the dental pulp pericyte population 

clustered closely with the datasets of the H3K4me3 methyl transferases Ash2l and Mll1 

derived from the bone marrow pericyte population (Fig. 7B). This would indicate that a high 

proportion of genomic regions repressed in the dental pulp pericyte population are active in 

the bone marrow population and vice versa. Overall the datasets generated from these 

complexes did not cluster together when comparing the two pericyte populations, 

indicating dissimilar euchromatin/heterochromatin landscapes and by association, gene 

expression of these cells in vivo. 

PRC1 has been shown to bind H3K27me3 via its Cbx domain, whereby Ring1b can mono-

ubiquitinate H3K119 and bring about chromatin compaction resulting in transcriptional 

repression (Boyle et al., 2010; Leeb & Wutz, 2007). Moreover, Ring1b has been shown to 



participate in restricting cell differentiation by repressing inappropriate gene activation by 

localising to various lineage determining loci, and this repression is maintained during cell 

differentiation (Schuettengruber et al., 2009; van Arensbergen et al., 2013). A recent 

publication has shown that CD146+ pericytes sourced from bone marrow are unable to form 

myofibers in vitro even when stimulated appropriately (Sacchetti et al., 2016), something 

that challenges the general dogma that pericytes are able to differentiate down myogenic, 

osteogenic, adipogenic and chondrogenic lineages when stimulated appropriately. In 

support of the former observation, Ring1b enrichment was investigated at three key 

transcription factor loci necessary for myogenic differentiation, Myf5, Pax3 and Myod1 

(Cossu & Bianco, 2003; Montarras et al., 1991; Weintraub, 1993).  We observed strong 

Ring1b enrichment at the transcription start sites of all three genes, in both pericyte 

populations (Fig. 7C). Subsequently, we investigated if bone marrow pericytes were 

endorsed  to differentiate down chondrogenic or adipogenic pathways as widely described 

in the literature (Farrington-Rock et al., 2004). Surprisingly, a number of key chondrogenic 

induction genes show strong enrichment for Ring1b at their transcription start sites, 

including Sox9, Osr1, Osr3, Runx3, Nfib, and Scx (Briot et al., 2014; Gao, Lan, Liu, & Jiang, 

2011; E.-J. Kim et al., 2013; Liu et al., 2013; Ng et al., 1997) (Fig. 7D). Similar results were 

obtained when investigating Ring1b localisation at genes necessary for adipogenic 

differentiation, such as Cebp1 and Cebpb (Rosen & MacDougald, 2006) (Fig. 7E ). 

Interestingly, adipogenic repressors Cebpg, and Klf2 were devoid of a Ring1b localisation 

signal at their transcription start sites.  

These genes were also shown to be expressed in bone marrow pericytes when investigating 

the corresponding RNA-seq datasets (Fig. 7E) suggesting that these bone marrow pericytes 

are molecularly obstructed from differentiating into adipocytes in vivo. The above results 



indicate that neither of the pericyte populations analysed are readily myogenic in vivo, and 

in addition the bone marrow pericytes are molecularly restricted from differentiating down 

chondrogenic or adipogenic lineages.  

 

Discussion 

The XLacZ4 mouse line allowed us to efficiently isolate pericytes from bone marrow and 

dental pulp before they became stem cells since LacZ expression was never observed in 

stem cells or other cells not associated with blood vessels.  These cells show all the 

previously recognised characteristics of pericytes, including contact with endothelial cell 

basement membrane. These two cell populations that share characteristics of high cell 

turnover and mineralised cell differentiation but differ in their location, embryonic origin 

(neural crest v mesoderm) and in the function as tissue-specific precursors of stromal stem 

cells, showed remarkably similar molecular characteristics. They both expressed a number 

of classical stem cell/pericyte marker genes including Thy1, Endoglin, CD146, Pdgfr-β in 

addition to less traditional markers such as SSEA-4 and Annexin A5, supporting previous 

reports (Feng, Mantesso, & Sharpe, 2010; Trost et al., 2016; Winkler, Bell, & Zlokovic, 2010; 

Bondjers et al., 2003; Winkler et al., 2010 ). Pericytes isolated from neither organ were 

100% positive for any traditional pericyte markers, consistent with previous reports citing 

high heterogeneity of these cells in vivo, with respect to the cell surface markers they 

express (Kucia et al., 2007; Ozerdem, Grako, Dahlin-huppe, Monosov, & Stallcup, 2001). It 

still remains unclear to what extent differences in cell surface marker expression translate 

into functional heterogeneity in these cells. In all cases, similar percentages of LacZ+ 

expressing cells were present, indicative of each isolated population being representative of 

pericytes. These LacZ+ cells were always seen to be associated with blood vessels. 



Intriguingly, none of our experiments could detect Tbx18 expression in our pericytes and 

our data disagrees with the findings presented by Guimaraes-Camboa et al which identified 

Tbx18+  perivascular cells in brain, heart, and adipose. According to Guimaraes-Camboa et al 

these Tbx18+ pericytes do not behave as MSCs in vivo (Guimarães-Camboa et al., 2017). We 

agree with a growing body of evidence arguing that more stringent evaluation of Tbx18+  

pericytes (also its suitability as a marker) is needed, ideally in organs that naturally remodel 

with age, before such claims can be unequivocally made (Campagnolo, Katare, & Madeddu, 

2018; Cano, Gebala, & Gerhardt, 2017; Vishvanath, Long, Spiegelman, & Gupta, 2017; 

Wörsdörfer & Ergün, 2018). 

 

RNA-seq profiling and expression analysis was carried out on fresh pericytes without a prior 

in vitro expansion step to identify any gene expression differences that could be present in 

pericytes before they have detached from blood vessels. ChIP-seq was subsequently 

performed on chromatin isolated from these cells using antibodies targeted to H3K4me3 

and H3K27me3 to identify genomic loci that are found in euchromatin or heterochromatin 

enriched regions of the genome respectively. Not surprisingly, initial assessment of RNA-seq 

datasets showed that they were indicative of two cell populations with similar general 

features, as expected from the fact that they were isolated with the same specific marker. 

These features included, expression of housekeeping genes encoding proteins involved in 

mRNA production and degradation, cell adhesion and cell cycle regulation. Further 

characterisation of the gene expression profiles of pericytes from the two anatomical 

locations highlighted unexpected major differences. A major obvious difference between 

the two populations identified by both the RNA-seq and ChIP-seq datasets was that in the 

bone marrow pericyte population, there was a statistically strong over-representation for 



genes involved in immune processes and genes encoding molecules widely described as 

regulators of the immune system. GSEA enrichment analysis confirmed that they showed 

enrichment in processes such as leukocyte activation and differentiation, B-cell receptor 

signalling, and NK cell regulation, with the majority of these genes found in transcriptionally 

amenable genomic loci as indicated by their enrichment for H3K4me3 and lack of 

H3K27me3. Perivascular cells identified as being Nestin+ and having a role in crosstalk with 

immune processes have previously been identified (Mendez-Ferrer et al. 2010), but Nestin 

was not found to be transcribed, nor in a region of euchromatin, in our datasets. Although it 

is well established that bone marrow stromal stem cells play an essential role in the 

maintenance of HSC populations, the extent to which they modulate immune processes in 

vivo is poorly understood (Abe et al., 2003; da Silva Meirelles, Caplan, & Nardi, 2008; Le 

Blanc & Mougiakakos, 2012). Our results suggest that an additional population of pericytes 

found in bone marrow that are Nestin- may play an as of yet unidentified role in immune 

modulation. Something which cannot be said about their incisor dental pulp counterparts. A 

majority of these immune process governing genes were also identified as being in regions 

of euchromatin in the bone marrow pericyte population, as indicated by strong enrichment 

of H3K4me3 and lack of H3K27me3. In contrast, when analysing the RNA-seq datasets of 

incisor pericytes, we detected a clear odontogenic signature that was absent in their bone 

marrow counterparts. Gene ontology analysis on the upregulated genes showed that dental 

pulp pericytes express an overwhelming number of genes associated with odontogenesis 

none of which were expressed in bone marrow pericytes. This result was also confirmed 

when conducting a GSEA analysis on these datasets. One of the most significantly 

upregulated genes in the dental pulp pericyte population was Dspp, expression of which 

could not be detected in the bone marrow pericyte population using RNA-seq or qPCR. 



Molecularly, at the transcription start site of Dspp, a sharp enrichment peak for H3K4me3 

was identified in the corresponding dental pulp pericyte ChIP-seq dataset, something that 

was not observed in the bone marrow pericyte H3K4me3 dataset.  A low level of Dspp 

expression in dental pulp pericytes was confirmed using qPCR on freshly isolated cells. 

Expression of the odontoblast differentiation gene in cells attached to blood vessels is 

surprising but in keeping with the high turnover rate of the continuously growing mouse 

incisor where MSCs have to provide a constant and rapid supply of new odontoblasts during 

homeostasis. Having MSC precursors ready “primed” for odontoblast differentiation may be 

a way of achieving this. Significantly, we were unable to detect Dspp expression in molar 

pulp pericytes via qPCR or RNAseq which is consistent with these cells being in a quiescent 

state during homeostasis and only required to provide cells for new odontoblast formation 

following dentine damage (data not shown) (Babb, Chandrasekaran, Carvalho Moreno 

Neves, & Sharpe, 2017). Overall, what was seen was that not only did ChIP-seq results 

mirror the gene expression patterns observed in the RNA-seq profiling,  but also provided 

insight into the distinct chromatin architecture in these pericytes that is driving a 

corresponding transcriptional output. These major differences reflected aspects of pericyte 

identity as tissue resident MSC precursors.  

Detailed analysis of the datasets of Polycomb Ring1b, Ezh2 and Trithorax Mll1, and Ash2l 

further indicated dissimilar epigenetic landscapes of these cells, as principal component 

analysis of these datasets shows that they differentially bind to loci depending on the origin 

of pericyte population. Both pericyte populations showed Ring1b enrichment at 

transcription start sites of genes needed to initiate myogenic differentiation indicating that 

neither of these cells are readily myogenic in vivo. The inability of MSCs to differentiate 

down the myogenic lineage was shown in vitro using bone marrow CD146+ cells that failed 



to make myofibres, although a molecular mechanism was not suggested (Sacchetti et al., 

2016). In our bone marrow pericyte population Ring1b also localizes to transcription start 

sites of chondrogenic and adipogenic lineage specific genes, thereby mediating chromatin 

compaction of these loci. In contrast, adipogenic antagonists Cebpg and Klf2 are expressed 

in these cells as shown by RNAseq. Thus certain differentiation pathways are specifically 

repressed in bone marrow at the level of chromatin organisation. Unlike the Dspp promoter 

in incisor dental pulp pericytes, the Runx2 promoter in bone marrow pericytes is bound by 

both active and repressive histones and thus in a bivalent or poised state. This is supported 

by the absence of Runx2 transcripts (as assayed using RNA-seq and qPCR) in freshly isolated 

pericytes. However, when pericytes were isolated and placed in monolayer culture and 

expanded using unstimulating media, upregulation of Runx2 expression was evident after 31 

days.  Significantly however, in these conditions, expression of chondrogenic nor adipogenic 

genes could be detected, consistent with their loci being marked only with repressive 

histones.  

There has been a general belief that MSCs isolated from any tissue are equivalent, largely as 

a result of the definition proposed for MSCs (Castro-Malaspina et al., 1980; Moorman & 

Gerson, 2001; Prockop, 1997).  In vitro, MSCs from different tissues do share expression of a 

number of similar pericyte marker genes (CD90, CD140b, CD105 etc) and all respond to 

similar cocktails of stimulatory factors and differentiate into mineralising cells (osteoblast- 

and chondrocyte-like cells) and fat cells (Brooke, Tong, Levesque, & Atkinson, 2008; 

Meirelles et al., 2008; Psaltis, Harbuzariu, Delacroix, Holroyd, & Simari, 2011). However, the 

composition of mineral produced by MSCs from different tissues varies widely and the 

expression of the various defining markers genes is not reproduced in vivo (Peister et al., 

2004; Sacchetti et al., 2016; Sung et al., 2008; Volponi et al., 2015) The results presented 



here clearly demonstrate that pericytes as stem cell precursors contain an epigenetic 

programme related to their future function as stem cells in vivo. We propose these 

programmes provide the cells with an intrinsic “memory” of their anatomical location that 

forms the basis for their restricted differentiation in vivo. Stimulation of differentiation in 

vitro presumably progressively erases some of this memory but the wide variations in the 

composition of mineral produced suggests some aspects of the memory are maintained. 

These observations have important consequences for any clinical use of heterotypic stem 

cells as cell sources to promote tissue regeneration and repair. What is also needed is to 

identify to what extent different subpopulations of pericytes (from the same organ) 

represent a lineage hierarchy and/or have functionally different roles in vivo. (Hardy et al., 

2017) 
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Figures and figure legends 

 

Figure 1: Flow cytometry analysis of pericytes. Single cell suspension of Collagenase D & 

Dispase digested incisor pulp, and bone marrow aspirate were analysed using a cell 

cytometer (A & B). Cell suspensions were fluorescently stained using FDG reagent and LacZ+ 

pericytes were selected (A’ & B’). LacZ+ pericytes from both anatomical locations were 

analysed for a number of pericyte markers including Thy1, Pdgfrb, Endoglin, CD146, Annexin 

A5 and SSEA-4. Illustrative plots with percentages of positive and negative LacZ+ cells for 



each marker are displayed (C & D). These percentages were consistent between non-

littermates (n=5) as shown (E). 

  



 

 

Figure 2: Bulk RNA-seq on pericyte population reveals diverging transcriptional landscapes. 

Two independent biological replicates were sequenced from each location to be used in 

RNA-seq analysis. Replicates show high degree of similarity between samples isolated from 

the same anatomical location (A). DESeq2 analysis detects differentially expressed genes 

between fresh pericytes isolated from incisor pulp vs those isolated from bone marrow. 

Approximately 850 genes are expressed exclusively in incisor pulp derived pericytes and 

1000 in bone marrow derived pericytes. (C) Majority of genes detected (approximately 

3500) were expressed by all pericytes. GO biological process enrichment analysis shows that 



the top 10 hits for enriched pathways fall predominantly in regulating transcriptional output 

of cells and cell homeostatic processes.  

  



 

Figure 3: Pericytes isolated from incisor pulp are transcriptionally odontogenic like. GSEA 

analysis of genes detected using RNA-seq identifies an enrichment for genes involved in 

hedgehog signalling. This enrichment is detected only in pericytes isolated from dental pulp 

and not bone marrow (A). Top 10 genes driving this core enrichment are also shown with 

their respective normalised FPKM values as detected by RNA-seq (A’). GSEA analysis on 

significantly upregulated genes (q-value <0.05) detects core enrichment for genes involved 

in odontogenesis exclusively in the incisor pulp derived pericyte population (B) with the 

subsequent genes driving this enrichment shown (B’). Dspp expression was detected only in 

pericytes isolated from incisor pulp and not in those from bone marrow as shown by the 



RNA-seq sequencing reads mapping to the Dspp locus (C). No reads could be detected in the 

bone marrow pericyte datasets.  

  



 

 

Figure 4: Epigenetic profiling of fresh pericytes. (A) Venn diagrams illustrating the overlap 

between the number of genes identified to have an enrichment peak for either H3K4me3 

and H3K27me3 (TSS ± 500bp) in the two pericyte populations. Peak detection threshold was 

set to have a p-value < 0.005. (B) Global profiling of the selected histone marks shows that 

in both pericyte populations they enrich genomic regions overlapping and immediately 

upstream or downstream of gene transcription start sites (TSS ± 500bp). (C) Gene ontology 

analysis of genes marked by H3K4me3 in pericytes isolated from both anatomical locations 



shows the high enrichment for genes involved in basal metabolic process, transcription 

regulation and also cell cycle progression. In addition, exclusively in the bone marrow 

pericyte population high enrichment for genes involved in immune system regulation are 

detected. In both populations genes encoding proteins involved in the G2/M phase of the 

cell cycle are enriched for H3K27me3. (D) Genes marked with the active histone mark 

H3K4me3 in both pericyte populations cluster in pathways involved in basal metabolic 

processes and also cell adhesion. Contrastingly, genes marked by the repressive histone 

mark H3K27me3 in both populations have significant hits in cell growth and proliferation. 

(DP : Dental pulp derived pericytes, BM: Bone marrow derived pericytes). 

  



 

 



Figure 5: Bivalency in pericyte populations.  (A) Coverage plots overlapping the specified 

histone mark with the relevant RNAseq dataset. As can be seen from the coverage plots, for 

both populations genes found to be expressed greatly overlapped with those detected to be 

decorated in H3K4me3. Contrastingly, expressed genes did not overlap with H3K27me3. 

Only protein coding genes were assessed that were taken from a UCSC obtained GTF file for 

mm10. (B) Venn Diagrams illustrating number of bivalent genes in incisor pulp (DP) and 

bone marrow (BM) pericytes, defined as genes enriched for both H3K4me3 and H3K27me3 

at TSS±500bp. (C) Pericytes from incisor pulp and bone marrow share 384 bivalent genes. 

These genes cluster in biological processes regulating cell adhesion, signal transduction and 

chromatin organization (D). Percentage breakdown of shared bivalent gene contribution to 

different biological processes (E). Focusing on the cellular processes involved we see that 

~62% of bivalent genes are involved in regulating cell communication (E’). 

  



 

 

Figure 6: Pericytes as tissue specific, pre-programmed progenitors. The TSS of Dspp was 

investigated in the H3K4me3 ChIP-seq datasets, and a sharp peak was only detected in the 



dental pulp pericyte population (A). Expression of Dspp in fresh dental pulp derived 

pericytes was validated by qPCR. Upon culturing these cells for 31 days in non-inductive 

medium Dspp expression was significantly upregulated (B). No significant changes of 

expression were observed for Runx2, Alp or Col2a1 (C). Fresh pericytes isolated from bone 

marrow express low levels of Runx2 and Col2a1. Upon culturing them in non-inductive 

media for 31 days Runx2 expression levels significantly increase while Col2a1 levels remain 

unchanged. Ibsp and Pparγ could not be detected at the start or at the end point of the 

experiment (D). Investigating the Runx2- P2 TSS shows that it is bivalent with enrichment for 

both H3K4me3 and H3K27me3 histones (E). The TSS of Ibsp, Pparg and Col2a1 were 

investigated for repressive histone marks and only those of Pparg and Col2a1 were found to 

be enriched for H3K27me3. The Ibsp TSS was clear of this mark (F). (For qPCR data n=3 

biological replicates, error bars represent SEM).  

  



 

 



Figure 7: Dissimilar epigenetic landscapes in pericyte populations. 

ChIP-seq was performed on the polycomb proteins Ezh2 (PRC2), Ring1b (PRC1), Mll1 and 

Ash2l. Enrichment peaks for these complexes were predominantly detected at the TSS of 

protein coding genes irrespective of pericyte population (A). Principal component analysis 

on the detected peaks showed that these datasets are very dissimilar when compared 

between dental pulp and bone marrow pericytes. Datasets of the transcriptional repressive 

complexes in dental pulp pericytes (Ring1b & Ezh2) are more similar in terms of where they 

localise in the genome with datasets obtained from Ash2l and Mll1 complexes in bone 

marrow. Ring1b represses inappropriate cell fates in vivo. Ring1b was found to localise at 

the TSS of genes mediating myogenesis, chondrogenesis and adipogenesis. In both pericyte 

population Ring1b enrichment is strong at the TSS of myogenic genes Myf5, Pax3 and 

Myod1 (C). In bone marrow pericytes Ring1b localises to the TSS of a number of genes 

needed to initiate and propagate chondrogenesis, including Osr1, Runx3, Osr2, Nfib, Scx and 

Sox9 (D). Similarly, the same is true for adipogenic promoting genes Cebpa and Cebpb. 

Interestingly, Ring1b does not localise to adipogenic repressors Cebpg and Klf2.  RNA-seq 

profiling shows that these two adipogenic repressors are strongly expressed in fresh 

pericytes in vivo (E). 

  



 

 

Supplementary 1: XLacZ4+ cells express canonical pericyte markers in vivo. 



Tissue sections through incisor and bone marrow of XLacZ4 mice detecting LacZ expression 

using X-gal staining. LacZ+ cells are shown to be associated with blood vessels and co-

express a number of markers classically associated with pericytes, including NG2, Cd146, 

Endoglin and α-SMA (A).  Only very low of levels of NG2 could be detected in bone marrow 

LacZ+ cells. The expression of Collagen IV, a marker used to identify the basal lamina of 

endothelial cells was also visualised and found to localise adjacent to Xlaz4+ cells. We could 

not detect expression of traditional endothelial cell markers in these LacZ+ cells. Bulk RNA-

seq performed on FACS isolated LacZ+ cells revealed very few reads aligning to the loci of 

Cdh5, Kdr, Pecam1 or Nos3 (B). 

  



 

 

Supplementary Figure 2: Isolation of fresh pericytes for next generation sequencing.  

A simple protocol was developed whereby LacZ+ pericytes could be isolated from fresh 

tissue (incisors and tibia) of XLacZ4 transgenic mice at postnatal day 5 (A). Dental pulp was 

dissociated into a single cell suspension and bone marrow stroma was aspirated from the 

tibia (B). Cells were then incubated with FDG which fluorescently labels LacZ+ cells and 

samples were then FACS sorted to isolate pericytes (C). These were then processed 

downstream for ChIP-seq and RNA-seq (D).   

  



 

Supplementary Figure 3: GSEA analysis on bone marrow pericytes.  

(A & B) GSEA enrichment analysis on genes significantly upregulated (q-value < 0.05) in the 

bone marrow pericyte population identifies over-representation of genes driving cell cycle 

and DNA replication were identified to be overabundant together with those modulating 



various staged of the cell cycle. Those genes detected encode proteins that fall into a 

number of functionally important categories (A’ and B’). GSEA analysis also suggests 

pericytes from bone marrow as being regulators of various arms of the immune system (C & 

D). Classical gene ontology enrichment analysis for the biological processes these genes 

influence also detects immune related pathways as being significantly overrepresented (E). 

  



 

 

Supplementary 4: Neural crest gene profiling of pericyte populations. 

Genome browser view of TSS of neural crest genes showing reads mapping for H3K4me3 & 

H3K27me3 in the two pericyte populations (A) All genes are abundant in repressive 



H3K27me3 histone marks and absent of activating H3K4me3 histone marks in the bone 

marrow population. In contrast, dental pulp derived pericytes show enrichment of these 

marks at these TSS loci (A). Investigation of RNA-seq datasets showed that as expected, 

dental pulp derived pericytes express a number of these neural crest marker genes such as 

Snai1, Snai2, Nes, and Sox9, whilst their bone marrow counterparts do not (B).  

 


