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Multi-Tenant C-RAN With Spectrum Pooling:

Downlink Optimization Under

Privacy Constraints

Seok-Hwan Park, Member, IEEE, Osvaldo Simeone, Fellow, IEEE,

and Shlomo Shamai (Shitz), Fellow, IEEE

Abstract

Spectrum pooling allows multiple operators, or tenants, to share the same frequency bands. This

work studies the optimization of spectrum pooling for the downlink of a multi-tenant Cloud Radio Access

Network (C-RAN) system in the presence of inter-tenant privacy constraints. The spectrum available for

downlink transmission is partitioned into private and shared subbands, and the participating operators

cooperate to serve the user equipments (UEs) on the shared subband. The network of each operator

consists of a cloud processor (CP) that is connected to proprietary radio units (RUs) by means of

finite-capacity fronthaul links. In order to enable inter-operator cooperation, the CPs of the participating

operators are also connected by finite-capacity backhaul links. Inter-operator cooperation may hence

result in loss of privacy. Fronthaul and backhaul links are used to transfer quantized baseband signals.

Standard quantization is considered first. Then, a novel approach based on the idea of correlating

quantization noise signals across RUs of different operators is proposed to control the trade-off between

distortion at UEs and inter-operator privacy. The problem of optimizing the bandwidth allocation,

precoding, and fronthaul/backhaul compression strategies is tackled under constraints on backhaul and
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fronthaul capacity, as well as on per-RU transmit power and inter-operator privacy. For both cases, the

optimization problems are tackled using the concave convex procedure (CCCP), and extensive numerical

results are provided.

Index Terms

C-RAN, multi-tenant, spectrum pooling, RAN sharing, privacy constraint, precoding, fronthaul

compression, multivariate compression.

I. INTRODUCTION

Spectrum pooling among multiple network operators, or tenants, is an emerging technique for

meeting the rapidly increasing traffic demands over the available scarce spectrum resources [1]-

[6]. Spectrum pooling can be implemented by means of orthogonal or non-orthogonal resource

allocation. In orthogonal spectrum pooling, the frequency channels are exclusively, but dynam-

ically, allocated to the participating operators [2]. In contrast, with non-orthogonal spectrum

pooling, parts of the spectrum can be shared between operators. In addition to spectrum pooling,

radio access network (RAN) sharing, whereby RAN infrastructure nodes are shared by the

tenants, has also been considered [4][5]. RAN sharing and spectrum pooling are two examples

of network slicing, a key technology for the upcoming 5G wireless systems [3][7].

In a Cloud RAN (C-RAN) architecture, a Cloud Processor (CP) carries out centralized base-

band signal processing on behalf of a number of the connected Radio Units (RUs). The CP

communicates quantized baseband signals over fronthaul links, while the RUs only perform radio

frequency functionalities [8][9]. Motivated by the promised reduction in capital and operational

expenditures, the C-RAN technology is currently being deployed for testing. In this paper, we

focus on the optimization of spectrum pooling across multiple tenants in a C-RAN architecture,

as illustrated in Fig. 1.

Existing papers on C-RAN downlink optimization, such as [10]-[16], have focused on single-

tenant systems. These works, and related references, study the design of coordinated precoding

and fronthaul compression strategies. Specifically, references [10][15][16] consider the use of

standard point-to-point fronthaul compression and quantization strategies, whereas [11][12][14]

investigate a more advanced approach based on multivariate compression and quantization. These

perform the joint compression and quantization of baseband signals across multiple RUs, with

the aim of controlling the impact of quantization distortion at the user equipments (UEs). Dual

October 18, 2017 DRAFT



3

Figure 1. Illustration of the downlink of a multi-tenant C-RAN system.

approaches for the uplink of C-RAN were studied in, e.g., [17][18]. We refer to [8][9] for a

comprehensive review.

Tackling the optimization of C-RAN systems in the presence of multiple operators presents

novel optimization degrees of freedom and technical challenges. As a key novel design dimen-

sion, the available bandwidth may be optimally split into private and shared subbands, where the

private subbands are exclusively used by the respective operators while the shared subband is

shared by all the participating operators (see Fig. 2). Furthermore, cooperation and coordination

on the shared subband are facilitated by communication between the CPs, which requires the

design of the signals exchanged on the inter-CP interface as a function of the inter-CP capacity.

Finally, the optimization problem entails a trade-off between the benefits accrued from inter-

operator cooperation and the amount of information exchanged about the respective users’ data.

In this paper, we study the design of the mult-tenant C-RAN system illustrated in Fig. 1 under

the assumption that fronthaul and inter-CP backhaul links carry quantized baseband signals.

Note that this is the standard mode of operation for C-RAN CP-toRUs links. We tackle the

joint optimization of bandwidth allocation and of precoding and quantization strategies under

constraints on fronthaul and backhaul capacity and privacy for the inter-CP communications.

To this end, we first consider standard point-to-point quantization as in most prior work on C-

October 18, 2017 DRAFT



4

RAN. Then, a novel quantizatoin scheme based on multivariate compression [11][14] is proposed.

Through this approach, the CP of an operator is able to correlate the quantization noise signals

across the RUs of both operators, so as to better control the trade-off between the distortion

observed by the UEs and inter-operator privacy. Note that the crucial element of inter-operator

privacy was not present in prior works [11][12][14]. In this regard, we note that the CP and

RUs of one operator act as untrusted relays for the other operators, and hence the proposed

technique can also be applied for the relay channels with untrusted relays studied in [19][20].

The formulated optimization problems, albeit non-convex, can be tackled via the concave convex

procedure (CCCP) upon rank relaxation [11][13].

The rest of the paper is organized as follows. The system model is described in Sec. II, and

Sec. III presents the operation of the multi-tenant C-RAN system with spectrum pooling. We

discuss the optimization of the multi-tenant C-RAN system in Sec. IV. The novel multivariate

compression scheme is introduced in Sec. V. We provide numerical results that validate the

advantages of optimized spectrum pooling and of multivariate compression in Sec. VI, and the

paper is concluded in Sec. VII.

Some notations used throughout the paper are summarized as follows. The mutual information

between the random variables X and Y is denoted as I(X;Y ), and h(X|Y ) denotes the

conditional differential entropy of X given Y . We use the notation CN (µ,R) to denote the

circularly symmetric complex Gaussian distribution with mean µ and covariance matrix R. The

set of all M × N complex matrices is denoted by CM×N , and E(·) represents the expectation

operator. The operation (·)† denotes Hermitian transpose of a matrix or vector.

II. SYSTEM MODEL

We consider the downlink of a multi-tenant C-RAN with NO operators. As shown in Fig. 1,

we focus on the case of NO = 2 operators, but the treatment could be generalized for any NO

at the cost of a more cumbersome notation. We assume that each operator has a single CP, NR

RUs and NU UEs. We denote the rth RU and the kth UE of the ith operator as RU (i, r) and

UE (i, k), respectively. We consider a general MIMO set-up in which RU (i, r) and UE (i, k)

have nR,i,r and nU,i,k antennas, respectively, and define the number nR,i ,
∑

r∈NR
nR,i,r of total

RU antennas of each operator. The sets of RU and UE indices for either operator are denoted

as NR , {1, 2, . . . , NR} and NU , {1, 2, . . . , NU}, respectively, while NO , {1, 2} is the set

of operator indices.
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The CP of each operator i, indicated as CP i, has a message Mi,k ∈ {1, 2, . . . , 2nRi,k} to

deliver to UE (i, k), where n is the coding block length, assumed to be sufficiently large, and

Ri,k denotes the rate of the message Mi,k in bits per second (bit/s).

As in related works for C-RAN systems (see, e.g., [10]-[12]), we assume that CP i is connected

to RU (i, r) by a fronthaul link of capacity CF,i,r bit/s. In addition, in order to enable inter-operator

cooperation, we assume that, as suggested in [4], the CPs of two operators are connected to each

other. Specifically, CP i can send information to the other CP ī on a backhaul link of capacity

CB,i bit/s, where ī indicates ī = 3− i, i.e., 1̄ = 2 and 2̄ = 1. We note that it would be generally

useful to deploy interfaces between the RUs of different operators [4], but this work focuses on

investigating the advantages of inter-CP connections only.

Inter-operator cooperation via RAN sharing, as enabled by the inter-CP backhaul links, may

cause information leakage from one operator to the other, which may degrade the confidentiality

of the UE messages. When designing the multi-tenant C-RAN system, we will hence impose

privacy constraints such that the inter-operator information leakage rate does not exceed a given

tolerable threshold value.

We assume flat-fading channel models, and divide the downlink bandwidth as shown in Fig.

2 into private and shared subbands. The signal y
(i)
i,k ∈ CnU,i,k×1 received by UE (i, k) on private

subband i can be written as

y
(i)
i,k =

∑
r∈NR

Hi,r
i,kx

(i)
i,r + z

(i)
i,k, (1)

where Hj,r
i,k ∈ CnU,i,k×nR,j,r represents the channel matrix from RU (j, r) to UE (i, k); x

(i)
i,r ∈

CnR,i,r×1 is the signal transmitted by RU (i, r) on the private subband i; and z
(i)
i,k ∼ CN (0, I)

denotes the additive noise. Similarly, the signal y
(S)
i,k ∈ CnU,i,k×1 received by UE (i, k) on the

shared subband is given as

y
(S)
i,k =

∑
r∈NR

Hi,r
i,kx

(S)
i,r +

∑
r∈NR

Hī,r
i,kx

(S)

ī,r
+ z

(S)
i,k , (2)

where x
(S)
i,r ∈ CnR,i,r×1 is the signal transmitted by RU (i, r) on the shared subband; and z

(S)
i,k ∼

CN (0, I) is the additive noise.

III. MULTI-TENANT C-RAN WITH SPECTRUM POOLING

In this section, we describe the operation of the multi-tenant C-RAN system with spectrum

pooling and RAN infrastructure sharing by means of inter-CP connections.

October 18, 2017 DRAFT
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Figure 2. Illustration of frequency band splitting for the downlink transmission into private and shared bands.

A. Overview

As illustrated in Fig. 2, we split the frequency band of bandwidth W [Hz] into three subbands,

where the first two subbands are exclusively used by the respective operators, while the last

subband is shared by both operators. Accordingly, the bandwidth W is decomposed as

W = WP,1 +WP,2 +WS, (3)

where WP,i is the bandwidth of the private subband assigned to operator i, and WS is the

bandwidth of the shared subband.

The private subbands are used by each operator to communicate to their respective UEs

with no interference from the other operators’ RUs using standard fronthaul-enabled C-RAN

transmission [8]. In contrast, the shared subband is used simultaneously by the two operators,

which can coordinate their transmission through the inter-CP links. In the following, we detail

the operation of CPs, RUs and UEs.

B. Encoding at CPs

In order to enable transmission over the private and shared subbands, we split the message Mi,k

intended for each UE (i, k) into two submessages Mi,k,P and Mi,k,S of rates Ri,k,P and Ri,k,S ,

respectively, with Ri,k,P +Ri,k,S = Ri,k. The submessages Mi,k,P and Mi,k,S are communicated

to the UE (i, k) on the private and shared subbands, respectively. Each submessage Mi,k,m,

m ∈ {P, S}, is encoded by CP i in a baseband signal si,k,m ∈ Cdi,k,m×1. We consider standard

random coding with Gaussian codebooks, and hence each symbol si,k,m is distributed as si,k,m ∼

CN (0, I).

1) Linear Precoding for Private Subband: CP i linearly precodes the signals {si,k,P}k∈NU
to

be transmitted on the private subband as

x̃
(i)
i =

[
x̃

(i)†
i,1 · · · x̃

(i)†
i,NR

]†
=
∑
k∈NU

V
(i)
i,ksi,k,P , (4)

October 18, 2017 DRAFT
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Figure 3. Illustration of fronthaul and backhaul quantization at CP 1.

where the subvector x̃
(P )
i,r ∈ CnR,i,r×1 is to be transferred to RU (i, r) on the fronthaul link, and

V
(i)
i,k ∈ CnR,i×di,k,P is the precoding matrix for the signal si,k,P .

2) Linear Precoding for Shared Subband: On the shared subband, the CPs and RUs of both

operators are activated to cooperatively serve all the UEs. To this end, CP i precodes the signal

si,k,S for each UE (i, k) into two precoded signals: signal x̃
(S)
i ∈ CnR,i×1 to be transmitted by

its RUs and signal r̃
(S)

ī
∈ CnR,̄i×1 to be sent by the other operator ī. This is illustrated in Fig.

3. As we will discuss, the transmission through the RUs of the other operator is enabled by the

inter-CP backhaul link and is subject to privacy constraints.

Mathematically, we write the precoded signals in the shared subband as

x̃
(S)
i =

[
x̃

(S)†
i,1 · · · x̃

(S)†
i,NR

]†
=
∑
k∈NU

V
(S)
i,k si,k,S, (5)

r̃
(S)

ī
=
[
r̃

(S)†
ī,1
· · · r̃(S)†

ī,NR

]†
=
∑
k∈NU

T
(S)

ī,k
si,k,S, (6)

where the subvectors x̃
(S)
i,r ∈ CnR,i,r×1 and r̃

(S)

ī,r
∈ CnR,̄i,r×1 are communicated to the RUs (i, r)

and (̄i, r), respectively; and V
(S)
i,k ∈ CnR,i×di,k,S and T

(S)

ī,k
∈ CnR,̄i×di,k,S are the precoding matrices

for the signal si,k,S associated with the RUs (i, r) and (̄i, r), respectively.

3) Fronthaul Compression: CP i is directly connected to the RUs (i, r) in its network via

fronthaul links. Therefore, following the standard C-RAN operation, the CP i quantizes the

precoded signals x̃
(i)
i,r and x̃

(S)
i,r for transmission on the fronthaul link to RU (i, r) on private

and shared subbands. Assuming vector quantization, we model the quantized signals x̂
(m)
i,r , m ∈

{i, S}, as

x̂
(m)
i,r = x̃

(m)
i,r + q

(m)
i,r , (7)

October 18, 2017 DRAFT
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where q
(m)
i,r represents the quantization noise. Adopting a Gaussian test channel as in [10]-

[12], the quantization noise q
(m)
i,r is independent of the precoded signal x̃

(m)
i,r and distributed as

q
(m)
i,r ∼ CN (0,Ω

(m)
i,r ). We recall that a Gaussian test channel can be well approximated by vector

lattice quantizers [21].

We first adopt standard point-to-point compression, whereby the signals {x̃(m)
i,r }r∈NR,m∈{i,S}

for different RUs and subbands are compressed independently. A more sophisticated approach

based on multivariate compression will be discussed in Sec. V. Accordingly, with point-to-point

compression, the rate, in bit/s, needed to send x̂
(m)
i,r to RU (i, r) is given as Wi,mI(x̃

(m)
i,r ; x̂

(m)
i,r )

[22, Ch. 3], where the mutual information I(x̃
(m)
i,r ; x̂

(m)
i,r ) can be written as

I(x̃
(m)
i,r ; x̂

(m)
i,r ) = g

(m)
i,r (V,Ω) (8)

= Φ

(∑
k∈NU

K
(
E†i,rV

(m)
i,k

)
, Ω

(m)
i,r

)
.

Here we defined the functions

Φ(A,B) = log2 det(A + B)− log2 det(B), (9)

and K(A) = AA†; the shaping matrix Ei,r ∈ CnR,i×nR,i,r that has all-zero elements except the

rows from
∑r−1

q=1 nR,i,q + 1 to
∑r

q=1 nR,i,q which contains an identity matrix; and the notation

Wi,m = WP,i · 1(m = i) +WS · 1(m = S).

4) Backhaul Compression: As seen in Fig. 3, since there is no direct link between CP i and

the RUs (̄i, r) of the other tenant, CP i sends the precoded signal r̃
(S)

ī,r
to the RU (̄i, r) through

CP ī. The CP ī forwards the received bit stream from CP i to RU (̄i, r). Since both the backhaul

link from CP i to CP ī and the fronthaul link from CP i to RU (̄i, r) have finite capacities, CP

i quantizes the signal r̃
(S)

ī,r
to obtain the quantized signal

r
(S)

ī,r
= r̃

(S)

ī,r
+ e

(S)

ī,r
, (10)

where e
(S)

ī,r
represents the quantization noise. Using the same quantization model discussed above,

this is distributed as e
(S)

ī,r
∼ CN (0,Σ

(S)

ī,r
). As mentioned, we assume here the independent

compression of the signals {r̃(S)

ī,r
}r∈NR

for different RUs, so that the rate needed to convey

each signal r
(S)

ī,r
is given as WSI(r̃

(S)

ī,r
; r

(S)

ī,r
), with

I(r̃
(S)

ī,r
; r

(S)

ī,r
) = γ

(S)

ī,r
(T,Σ) (11)

= Φ

(∑
k∈NU

K
(
E†
ī,r

T
(S)

ī,k

)
, Σ

(S)

ī,r

)
.
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The capacity constraint for the backhaul link from CP i to CP ī can be written as∑
r∈NR

WSγ
(S)

ī,r
(T,Σ) ≤ CB,i, i ∈ NO, (12)

since the backhaul link needs to carry the baseband signals for all the RUs. Similarly, the capacity

constraint for the fronhtaul link from CP i to RU (i, r) can be expressed as∑
m∈{i,S}

Wi,mg
(m)
i,r (V,Ω) +WSγ

(S)
i,r (T,Σ) ≤ CF,i,r, i ∈ NO, r ∈ NR, (13)

since the fronthaul link needs to support transmission of the signals for both private and shared

subbands.

5) Power Constraints: The signals x
(i)
i,r and x

(S)
i,r transmitted by RU (i, r) on the private and

shared subbands are given as x
(i)
i,r = x̂

(i)
i,r and x

(S)
i,r = x̂

(S)
i,r + r

(S)
i,r , respectively. We impose per-RU

transmission power constraints as

WP,ip
(i)
i,r (V,Ω) +WSp

(S)
i,r (V,T,Ω) ≤ Pi,r, i ∈ NO, r ∈ NR, (14)

where Pi,r represents the maximum transmission power allowed for RU (i, r), and the functions

p
(i)
i,r(V,Ω,W) and p

(S)
i,r (V,T,Ω,W) measure the transmission powers per unit bandwidth on

the private and shared subbands, respectively, as

p
(i)
i,r (V,Ω,W) ,E

∥∥∥x(i)
i,r

∥∥∥2

(15)

=

(∑
k∈NU

tr
(
K
(
E†i,rV

(i)
i,k

))
+ tr

(
Ω

(i)
i,r

))
,

p
(S)
i,r (V,T,Ω,W) ,E

∥∥∥x(S)
i,r

∥∥∥2

(16)

=

 ∑
k∈NU

tr
(
K
(
E†i,rV

(S)
i,k

))
+ tr

(
Ω

(S)
i,r

)
+
∑

k∈NU
tr
(
K
(
E†i,rT

(S)
i,k

))
+ tr

(
Σ

(S)
i,r

)
 .

C. Decoding at UEs and Achievable Rates

Each UE (i, k) decodes the the submessage Mi,k,P transmitted on the private subband based

on the received signal y
(i)
i,k, while treating the interference signals as additive noise. Then, the

maximum achievable rate Ri,k,P of the submessage Mi,k,P can be written as

Ri,k,P =WP,iI(si,k,P ; y
(i)
i,k), (17)
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where

I(si,k,P ; y
(i)
i,k) = fi,k,P (V,Ω) (18)

= Φ

K
(
Hi
i,kV

(i)
i,k

)
,
∑

l∈NU\{k}

K
(
Hi
i,kV

(i)
i,l

)
+ Hi

i,kΩ
(i)
i Hi †

i,k + I

 .

Here we defined the channel matrix Hj
i,k = [Hj,1

i,k Hj,2
i,k · · · H

j,NR

i,k ] from all the RUs of operator

j to UE (i, k), and the matrix Ω
(i)
i = diag(Ω

(i)
i,1, . . . ,Ω

(i)
i,NR

).

In a similar manner, we assume that UE (i, k) decodes the submessage Mi,k,S sent on the

shared subband from the received signal y
(S)
i,k by treating the interference signals as noise, so

that the maximum achievable rate Ri,k,S is given as

Ri,k,S =WSI(si,k,S; y
(S)
i,k ), (19)

with the mutual information I(si,k,S; y
(S)
i,k ) given as

I(si,k,S; y
(S)
i,k ) = fi,k,S (V,T,Ω) (20)

= Φ

K

 Hi
i,kV

(S)
i,k

+Hī
i,kT

(S)

ī,k

 ,



∑
l∈NU\{k}K

(
Hi
i,kV

(S)
i,l + Hī

i,kT
(S)

ī,l

)
+
∑

l∈NU
K
(
Hi
i,kT

(S)
i,l + Hī

i,kV
(S)

ī,l

)
+Hi

i,kΩ
(S)
i Hi †

i,k + Hi
i,kΣ

(S)
i Hi †

i,k

+Hī
i,kΩ

(S)

ī
Hī †
i,k + Hī

i,kΣ
(S)

ī
Hī †
i,k + I



 ,

where we defined the matrices Ω
(S)
i = diag(Ω

(S)
i,1 , . . . ,Ω

(S)
i,NR

) and Σ
(S)
i = diag(Σ

(S)
i,1 , . . . ,Σ

(S)
i,NR

).

D. Privacy Constraints

As discussed, inter-operator cooperation on the shared subband requires the transmission of

precoded and quantized signals {r(S)

ī,r
}r∈NR

between CP i and CP ī on the backhaul link. As a

result, CP ī can infer some information about the messages {Mi,k,S}k∈NU
intended for the UEs

(i, k), k ∈ NU of the operator i. In order to ensure that this leakage of information is limited,

one can design both the precoding matrices T and the quantization covariance matrices Σ under

the information-theoretic privacy constraint

WSI(si,k,S; {r(S)

ī,r
}r∈NR

) ≤ Γprivacy. (21)
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In (21), the mutual information I(si,k,S; {r(S)

ī,r
}r∈NR

) measures the amount of the information

that can be inferred about each signal si,k,S by the CP ī of the other operator based on the

observation of {r(S)

ī,r
}r∈NR

. This mutual information can be written as

I(si,k,S; {r(S)

ī,r
}r∈NR

) = βi,k,S (T,Ω) (22)

= Φ

K
(
T

(S)

ī,k

)
,
∑

l∈NU\{k}

K
(
T

(S)

ī,l

)
+ Σ

(S)

ī

 .

The condition (21) imposes that the amount of leaked information does not exceed a prede-

termined threshold value Γprivacy. This value has a specific operational meaning according to

standard information-theoretic results [23, Ch. 4, Problem 33]. In particular, a privacy level of

Γprivacy implies that, if a user receives at rate R (bit/s) on shared subband, a bit stream of rate

min(Γprivacy, R) can be received securely, while the remaining rate (R − Γprivacy)+ (bit/s) can

be eavesdropped by the other operator.

In ensuring the satisfaction of the privacy constraint (21), the quantization noise introduced

by the fronthaul quantization plays an important role. In fact, the fronthaul quantization noise

is instrumental in masking information about the UE messages at the cost of a more significant

degradation of the signals received by the UEs. A more advanced quantization scheme will be

considered in Sec. V.

IV. OPTIMIZATION OF MULTI-TENANT C-RAN

We aim at jointly optimizing the bandwidth allocation W, the precoding matrices {V,T} and

the quantization noise covariance matrices {Ω,Σ}, with the goal of maximizing the sum-rate

RΣ ,
∑

i∈NO

∑
k∈NU

(Ri,k,P +Ri,k,S) of all the UEs, under constraints on backhaul and fronthaul
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capacity, per-RU transmit power and inter-operator privacy levels. The problem can be stated as

maximize
V,T,Ω,Σ,W,R

∑
i∈NO

∑
k∈NU

(Ri,k,P +Ri,k,S) (23a)

s.t. Ri,k,P ≤ WP,ifi,k,P (V,Ω) , i ∈ NO, k ∈ NU , (23b)

Ri,k,S ≤ WSfi,k,S (V,T,Ω) , i ∈ NO, k ∈ NU , (23c)∑
r∈NR

WSγ
(S)

ī,r
(T,Σ) ≤ CB,i, i ∈ NO, (23d)

∑
m∈{i,S}

Wi,mg
(m)
i,r (V,Ω)+WSγ

(S)
i,r (T,Σ)≤CF,i,r, i ∈ NO, r ∈ NR, (23e)

WSβi,k,S (T,Ω) ≤ Γprivacy, i ∈ NO, k ∈ NU , (23f)

WP,ip
(i)
i,r (V,Ω) +WSp

(S)
i,r (V,T,Ω) ≤ Pi,r, i ∈ NO, r ∈ NR, (23g)

WP,1 +WP,2 +WS = W. (23h)

In (23), constraints (23b)-(23c) follow from the achievable rates (17) and (19); (23d)-(23e)

are the backhaul and fronthaul capacity constraints (12) and (13); (23f) is the inter-operator

privacy constraint (21); (23g) is the per-RU transmit power constraint (14); and (23h) is the

sum-bandwidth constraint (3).

Since the problem (23) is non-convex, we adopt a Successive Convex Approximation (SCA)

approach to obtain an efficient local optimization algorithm. To this end, we equivalently rewrite

the constraints (23b) and (23c) using the epigraph form as

logRi,k,P ≤ logWP,i + log tf,i,k,P , i ∈ NO, k ∈ NU , (24)

tf,i,k,P ≤ fi,k,P (V,Ω) , i ∈ NO, k ∈ NU , (25)

and logRi,k,S ≤ logWS + log tf,i,k,S, i ∈ NO, k ∈ NU , (26)

tf,i,k,S ≤ fi,k,S (V,T,Ω) i ∈ NO, k ∈ NU , (27)

respectively. We note that the conditions (24) and (26) are difference-of-convex (DC) constraints

(see, e.g., [11][13]), and that the conditions (25) and (27) can be converted into DC constraints

by expressing them with respect to the variables Ṽ
(i)
i,k = V

(i)
i,kV

(i)†
i,k and Ũ

(S)
i,k = U

(S)
i,k U

(S)†
i,k

with U
(S)
i,k = [V

(S)†
i,k T

(S)†
i,k ]†. Similarly, the other non-convex constraints (23e)-(23g) can also be

transformed into DC conditions by relaxing the non-convex rank constraints rank(Ṽ
(i)
i,k) ≤ di,k,P

and rank(Ũ
(S)
i,k ) ≤ di,k,S . As a result of these manipulations, we finally obtain the DC problem

(31) reported in Appendix A.
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Algorithm 1 CCCP algorithm for problem (31)
1. Initialize the variables Ṽ′, Ũ′, Ω′, Σ′, W′ and R′ to arbitrary feasible values that satisfy the

constraints (31b) and (31r) and set q = 1.

2. Update the variables Ṽ′′, Ũ′′, Ω′′, Σ′′, W′′ and R′′ as a solution of the convex problem (32)

in Appendix A.

3. Stop if a convergence criterion is satisfied. Otherwise, set Ṽ′ ← Ṽ′′, Ũ′ ← Ũ′′, Ω′ ← Ω′′,

Σ′ ← Σ′′, W′ ←W′′ and R′ ← R′′ and go back to Step 2.

We tackle the obtained DC problem by deriving an iterative algorithm based on the standard

CCCP approach [11][13]. The detailed algorithm is described in Algorithm 1. In our simulations,

we used the CVX software [24] to solve the convex problem (32) (see Appendix A) at Step

2. After the convergence of the algorithm, we need to project the variables Ṽ
(i)′′
i,k and Ũ

(S)′′
i,k

onto the spaces of limited-rank matrices satisfying rank(Ṽ
(i)
i,k) ≤ di,k,P and rank(Ũ

(S)
i,k ) ≤ di,k,S ,

respectively. Without claim of optimality, we use the standard approach of obtaining the variables

Ṽ
(i)
i,k and Ũ

(S)
i,k by including the di,k,P and di,k,S leading eigenvectors of the matrices Ṽ

(i)′′
i,k and

Ũ
(S)′′
i,k , respectively, as columns.

V. MULTIVARIATE COMPRESSION

In this section, we propose a novel quantization approach for inter-CP communication that

aims at controlling the trade-off between the distortion at the UEs and inter-operator privacy.

The approach is based on multivariate compression, first studied for single-tenant systems in

[11][14]. To highlight the idea, we focus on the case of single RU per operator, i.e., NR = 1,

but extensions follow in the same way, albeit at the cost of a more cumbersome notation.

The key idea is for each CP i to jointly quantize the precoded signals to be transmitted by

the tenants’ RUs. In so doing, one can better control the impact of the quantization noise on the

UEs’ decoders, while still ensuring a given level of privacy with respect to CP ī.

Mathematically, CP i produces the linearly precoded signals x̃
(S)
i,1 and r̃

(S)

ī,1
according to (5)

and (6), respectively, and obtains the quantized signals x̂
(S)
i,1 = x̃

(S)
i,1 + q

(S)
i,1 and r

(S)

ī,1
= r̃

(S)

ī,1
+ e

(S)

ī,1

that are transferred to RUs (i, 1) and (̄i, 1), respectively. With multivariate compression of the

precoded signals x̃
(S)
i,1 and r̃

(S)

ī,1
, CP i can ensure that the quantization noise signals q

(S)
i,1 and

e
(S)

ī,1
have a correlation matrix Θ

(S)
i = E[q

(S)
i,1 e

(S)†
ī,1

]. As a result, the effective quantization noise
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signal that affects the received signal y
(S)
j,k of UE (j, k) on the shared subband is given as

q̃
(S)
j,k = Hi

j,kq
(S)
i,1 + Hī

j,ke
(S)

ī,1
, whose covariance matrix depends on the correlation matrix Θ

(S)
i as

E
[
q̃

(S)
j,k q̃

(S)†
j,k

]
= Gi

j,kΛiG
i †
j,k, (28)

where the matrix Λi represents the covariance matrix of the stacked quantization noise signals

[q
(S)†
i,1 e

(S)†
ī,1

]† as

Λi = E

 q
(S)
i,1

e
(S)

ī,1

[q(S)†
i,1 e

(S)†
ī,1

] =

 Ω
(S)
i,1 Θ

(S)
i

Θ
(S)†
i Σ

(S)

ī,1

 � 0. (29)

Designing Θ
(S)
i hence allows us to control the effective noise observed by the UE, while also

affecting the inter-operator privacy constraint (21).

For the optimization under multivariate compression, it was shown in [22, Ch. 9] that corre-

lating the quantization noise signals imposes the following additional constraint on the variables

tg,i,1,S and tγ,̄i,r,S in the DC problem (31) detailed in Appendix A:

h(x̂
(S)
i,1 ) + h(r

(S)

ī,1
)− h(x̂

(S)
i,1 , r

(S)

ī,1
|x̃(S)
i,1 , r̃

(S)

ī,1
)

= log2 det

(∑
k∈NU

Ẽ†i,1Ũ
(S)
i,k Ẽi,1 + Ω

(S)
i,1

)
+ log2 det

(∑
k∈NU

Ē†i,1Ũ
(S)
i,k Ēi,1 + Σ

(S)

ī,1

)

− log2 det (Λi) ≤ tg,i,1,S + tγ,̄i,r,S. (30)

The optimization under multivariate quantization is stated as the problem (31) in Appendix A

with the constraint (30) added. We can handle the problem following Algorithm 1 since the

added condition is a DC constraint.

VI. NUMERICAL RESULTS

In this section, we present numerical results that validate the performance of multi-tenant

C-RAN systems with spectrum pooling in the presence of the proposed optimization and quan-

tization strategies. We assume that the positions of the RUs and UEs are uniformly distributed

within a circular area of radius 100 m. For given positions of the RUs and the UEs, the

channel matrix Hj,r
i,k from RU (j, r) to UE (i, k) is modeled as Hj,r

i,k =
√
ρj,ri,kH̃

j,r
i,k, where

ρj,ri,k = 1/(1 + (Dj,r
i,k/D0)α) represents the path-loss, Dj,r

i,k is the distance between the RU (j, r)

to UE (i, k), and the elements of H̃j,r
i,k are independent and identically distributed (i.i.d.) as

CN (0, 1). In the simulation, we set α = 3 and D0 = 50 m. Except for Fig. 7, we focus on the

point-to-point compression strategy studied in Sec. III and Sec. IV.
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Figure 4. Average per-UE rate RU versus average per-UE secrecy rate RU,sec (NR = NU = 1, nR,i,r = nU,i,k = 1, CB,i = 100

Mbit/s, CF,i,r = 50 Mbit/s and W = 10 MHz).

To validate the effectiveness of the proposed designs, we compare the following three schemes:

• Spectrum pooling with optimized bandwidth allocation WP,1, WP,2 and WS;

• Spectrum pooling with equal bandwidth allocation WP,1 = WP,2 = WS = W/3;

• No spectrum pooling with equal bandwidth allocation WP,1 = WP,2 = W/2 and WS = 0.

The first approach adopts the proposed optimization algorithm (see Algorithm 1) discussed in

Sec. IV. Instead, the other two baseline approaches are obtained by using the proposed algorithm

with the added linear equality constraints WP,1 = WP,2 = WS = W/3, or WP,1 = WP,2 = W/2

and WS = 0, respectively. Except for the last scheme with no spectrum pooling, all schemes

exhibit a trade-off between the achievable sum-rate and the guaranteed privacy level Γprivacy. A

smaller Γprivacy, i.e., a stricter privacy constraint, generally entails a smaller sum-rate, and vice

versa for a larger Γprivacy. To quantify this effect, we define the per-UE secrecy rate RU,sec as

RU,sec = [RU −Γprivacy]+, where RU is the average per-UE achievable rate and [·]+ is defined as

[a]+ = max{a, 0}. The rate RU is given by the total sum-rate RΣ divided by the number of total

UEs, i.e., RU = RΣ/(2NU). Following the discussion in Sec. III-D, the quantity RU,sec measures

the rate at which information is transmitted privately to each UE. In contrast, RU represents the
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Figure 5. Bandwidth allocation versus average per-UE secrecy rate RU,sec (NR = NU = 1, nR,i,r = nU,i,k = 1, CB,i = 100

Mbit/s, CF,i,r = 50 Mbit/s and W = 10 MHz).

overall transmission rate, including both secure and insecure data streams.

Fig. 4 plots the average per-UE rate RU versus the average per-UE secrecy rate RU,sec for a

multi-tenant C-RAN with NR = NU = 1, nR,i,r = nU,i,k = 1, CB,i = 100 Mbit/s, CF,i,r = 50

Mbit/s, W = 10 MHz and 10, 15 and 20 dB signal-to-noise ratios (SNRs). The curves are

obtained by varying the privacy threshold levels ranging from 5 Mbit/s to 60 Mbit/s in the

constraints (23f). In the figure, the multi-tenant C-RAN system with the proposed optimization

achieves a significantly improved rate-privacy trade-off as compared to the other two strategies

with no spectrum pooling or uniform spectrum allocation. The gain becomes more significant at

lower SNR levels, since the impact of inter-operator cooperation in the shared subband is more

pronounced in this regime. As an example, in order to guarantee the per-UE secrecy rate of 2

Mbit/s, the proposed multi-tenant C-RAN system achieves a gain of about 69% gain in terms

of per-UE rates at 10 dB SNR with respect to the traditional C-RAN system without spectrum

pooling.

Fig. 5 plots the average bandwidth allocation between the private and shared subbands versus

October 18, 2017 DRAFT



17

0 5 10 15 20 25 30 35
Average per-UE secrecy rate RU,sec [Mbit/s]

15

20

25

30

35

40

45

A
v
er
a
g
e
p
er
-U

E
ra
te

R
U
[M

b
it
/
s]

Spect. pool. (Optimized WP,1, WP,2, WS)
Spect. pool. (WP,1 = WP,2 = WS = W/3)
No Spect. pool. (WP,1 = WP,2 = W/2,WS = 0)

20 dB SNR

15 dB SNR

10 dB SNR

Figure 6. Average per-UE rate RU versus average per-UE secrecy rate RU,sec (NR = NU = 1, nR,i,r = nU,i,k = 2, CB,i = 100

Mbit/s, CF,i,r = 50 Mbit/s and W = 10 MHz).

the average per-UE secrecy rate RU,sec for the set-up considered in Fig. 4. Consistently with the

discussion above, as the SNR decreases, it is seen that more spectrum resources are allocated

to the shared subband in order to leverage the opportunity of inter-operator cooperation.

In Fig. 6, we elaborate on the effect of the number of antennas. To this end, we show the

average per-UE rate RU versus the average per-UE secrecy rate RU,sec for a multi-tenant C-RAN

with the same set-up discussed above except for nR,i,r = nU,i,k = 2 instead of nR,i,r = nU,i,k = 1.

We can see that, compared to the single-antenna case, all the three schemes become more robust

to the privacy constraint with the increased number of RU and UE antennas. This is due to the

additional degrees of freedom in the precoding design that is afforded by the larger number of

antennas.

We now study the impact of correlating the quantization noise signals across the RUs of

operators by means of the multivariate compression strategy proposed in Sec. V. In Fig. 7(a), we

plot the average per-UE rate RU versus the average per-UE secrecy rate RU,sec for the same multi-

tenant C-RAN set-up considered in Fig. 4 assuming spectrum pooling with optimized bandwidths
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Figure 7. (a) Average per-UE rate RU and (b) bandwidth allocation versus average per-UE secrecy rate RU,sec (NR = NU = 1,

nR,i,r = nU,i,k = 1, CB,i = 100 Mbit/s, CF,i,r = 50 Mbit/s and W = 10 MHz).

{WP,1,WP,2,WS}. We observe that multivariate compression is instrumental in improving the

trade-off between inter-operator cooperation and privacy. The accrued performance gain increases

with the SNR, since the performance degradation due to quantization is masked by the additive

noise when the SNR is small. Fig. 7(b) plots the optimized bandwidth allocation versus the

average per-UE secrecy rate RU,sec for a 20 dB SNR. The figure suggests that, with multivariate

compression, it is desirable to allocate more bandwidth to the shared subband, given the added

benefits of inter-operator cooperation in the presence of multivariate compression.

VII. CONCLUSIONS

In this work, we have studied the design of multi-tenant C-RAN systems with spectrum

pooling under inter-operator privacy constraints. Assuming the standard C-RAN operation with

quantized baseband signals, we first considered the standard point-to-point compression strategy,

and then proposed a novel multivariate compression to achieve a better trade-off between the

inter-operator cooperation and privacy. For both cases, we tackled the joint optimization of

the bandwidth allocation among the private and shared subbands and of the precoding and

fronthaul/backhaul compression strategies while satisfying constraints on fronthaul and backhaul

capacity, per-RU transmit power and inter-operator privacy levels. To tackle the non-convex

optimization problems, we converted the problems into DC problems with rank relaxation and

October 18, 2017 DRAFT



19

derived iterative algorithms based on the standard CCCP. We provided extensive numerical results

to validate the effectiveness of the multi-tenant C-RAN system with the proposed optimization

algorithm and multivariate compression. Among open problems, we mention the extension of

the design and analysis to models with RAN sharing at the level of RUs and the consideration

of hierarchical fog architectures.
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APPENDIX A

By relaxing the non-convex rank constraints rank(Ṽ
(i)
i,k) ≤ di,k,P and rank(Ũ

(S)
i,k ) ≤ di,k,S

explained in Sec. IV, the problem (23) can be converted into the DC problem

maximize
Ṽ,Ũ,Ω,Σ,W,
R,t,g̃,γ̃,p̃

∑
i∈NO

∑
k∈NU

(Ri,k,P +Ri,k,S) (31a)

s.t. logRi,k,P ≤ logWP,i + log tf,i,k,P , i ∈ NO, k ∈ NU , (31b)

tf,i,k,P ≤ fi,k,P

(
Ṽ,Ω

)
, i ∈ NO, k ∈ NU , (31c)

logRi,k,S ≤ logWS + log tf,i,k,S, i ∈ NO, k ∈ NU , (31d)

tf,i,k,S ≤ fi,k,S

(
Ṽ, Ũ,Ω

)
i ∈ NO, k ∈ NU , (31e)∑

m∈{i,S}

g̃
(m)
i,r + γ̃

(S)
i,r ≤ CF,i,r, i ∈ NO, r ∈ NR, (31f)

logWi,m + log tg,i,r,m ≤ log g̃
(m)
i,r , i ∈ NO, r ∈ NR, m ∈ {i, S}, (31g)

g
(i)
i,r

(
Ṽ,Ω

)
≤ tg,i,r,i, i ∈ NO, r ∈ NR, (31h)

g
(S)
i,r

(
Ũ,Ω

)
≤ tg,i,r,S, i ∈ NO, r ∈ NR, (31i)

logWS + log tγ,i,r,S ≤ log γ̃
(S)
i,r , i ∈ NO, r ∈ NR, (31j)

γ
(S)
i,r

(
Ũ,Σ

)
≤ tγ,i,r,S, i ∈ NO, r ∈ NR, (31k)∑

r∈NR

γ̃
(S)

ī,r
≤ CB,i, i ∈ NO, (31l)

logWS + log tβ,i,k,S ≤ log Γprivacy, i ∈ NO, k ∈ NU , (31m)

βi,k,S

(
Ũ,Ω

)
≤ tβ,i,k,S, i ∈ NO, k ∈ NU , (31n)

p̃
(i)
i,r + p̃

(S)
i,r ≤ Pi,r, i ∈ NO, r ∈ NR, (31o)

logWi,m + log tp,i,r,m ≤ log p̃
(m)
i,r , i ∈ NO, r ∈ NR, m ∈ {i, S}, (31p)

p
(m)
i,r

(
Ṽ, Ũ,Ω

)
≤ tp,i,r,m, i ∈ NO, r ∈ NR, m ∈ {i, S}, (31q)

WP,1 +WP,2 +WS = W. (31r)

Furthermore, at Step 2 in Algorithm 1, the CCCP approach solves the convex problem obtained
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by linearizing the terms that induce non-convexity of problem (31). This can be written as

maximize
Ṽ,Ũ,Ω,Σ,W,
R,t,g̃,γ̃,p̃

∑
i∈NO

∑
k∈NU

(Ri,k,P +Ri,k,S) (32a)

s.t. ϕ
(
Ri,k,P , R

′
i,k,P

)
≤ logWP,i + log tf,i,k,P , i ∈ NO, k ∈ NU , (32b)

tf,i,k,P ≤ f̂i,k,P

(
Ṽ,Ω, Ṽ′,Ω′

)
, i ∈ NO, k ∈ NU , (32c)

ϕ
(
Ri,k,S, R

′
i,k,S

)
≤ logWS + log tf,i,k,S, i ∈ NO, k ∈ NU , (32d)

tf,i,k,S ≤ f̂i,k,S

(
Ṽ, Ũ,Ω, Ṽ′, Ũ′,Ω′

)
i ∈ NO, k ∈ NU , (32e)∑

m∈{i,S}

g̃
(m)
i,r + γ̃

(S)
i,r ≤ CF,i,r, i ∈ NO, r ∈ NR, (32f)

ϕ
(
Wi,m,W

′
i,m

)
+ϕ
(
tg,i,r,m, t

′
g,i,r,m

)
≤ log g̃

(m)
i,r , i ∈ NO, r ∈ NR, m ∈ {i, S}, (32g)

ĝ
(i)
i,r

(
Ṽ,Ω, Ṽ′,Ω′

)
≤ tg,i,r,i, i ∈ NO, r ∈ NR, (32h)

ĝ
(S)
i,r

(
Ũ,Ω, Ũ′,Ω′

)
≤ tg,i,r,S, i ∈ NO, r ∈ NR, (32i)

ϕ (WS,W
′
S) + ϕ

(
tγ,i,r,S, t

′
γ,i,r,S

)
≤ log γ̃

(S)
i,r , i ∈ NO, r ∈ NR, (32j)

γ̂
(S)
i,r

(
Ũ,Σ, Ũ′,Σ′

)
≤ tγ,i,r,S, i ∈ NO, r ∈ NR, (32k)∑

r∈NR

γ̃
(S)

ī,r
≤ CB,i, i ∈ NO, (32l)

ϕ (WS,W
′
S) + ϕ

(
tβ,i,k,S, t

′
β,i,k,S

)
≤ log Γprivacy, i ∈ NO, k ∈ NU , (32m)

β̂i,k,S

(
Ũ,Ω, Ũ′,Ω′

)
≤ tβ,i,k,S, i ∈ NO, k ∈ NU , (32n)

p̃
(i)
i,r + p̃

(S)
i,r ≤ Pi,r, i ∈ NO, r ∈ NR, (32o)

ϕ
(
Wi,m,W

′
i,m

)
+ϕ

(
tp,i,r,m, t

′
p,i,r,m

)
≤ log p̃

(m)
i,r , i ∈ NO, r ∈ NR, m ∈ {i, S}, (32p)

p
(m)
i,r

(
Ṽ, Ũ,Ω

)
≤ tp,i,r,m, i ∈ NO, r ∈ NR, m ∈ {i, S}, (32q)

WP,1 +WP,2 +WS = W, (32r)
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where we defined the functions

f̂i,k,P

(
Ṽ,Ω, Ṽ′,Ω′

)
= log2 det

(∑
l∈NU

Hi
i,kṼ

(i)
i,l H

i†
i,k + Hi

i,kΩ
(i)
i Hi †

i,k + I

)
(33)

− 1

ln 2
ϕ

 ∑
l∈NU\{k}H

i
i,kṼ

(i)
i,l H

i†
i,k + Hi

i,kΩ
(i)
i Hi †

i,k + I,∑
l∈NU\{k}H

i
i,kṼ

(i)′
i,l Hi†

i,k + Hi
i,kΩ

(i) ′
i Hi †

i,k + I

 ,

f̂i,k,S

(
Ṽ, Ũ,Ω, Ṽ′, Ũ′,Ω′

)
= log2 det


∑

l∈NU
Gi
i,kŨ

(S)
i,l Gi †

i,k

+
∑

l∈NU
Gī
i,kŨ

(S)

ī,l
Gī †
i,k

+Hi
i,kΩ

(S)
i Hi †

i,k + Hi
i,kΣ

(S)
i Hi †

i,k

+Hī
i,kΩ

(S)

ī
Hī †
i,k + Hī

i,kΣ
(S)

ī
Hī †
i,k + I

 (34)

− 1

ln 2
ϕ




∑

l∈NU\{k}G
i
i,kŨ

(S)
i,l Gi †

i,k

+
∑

l∈NU
Gī
i,kŨ

(S)

ī,l
Gī †
i,k

+Hi
i,kΩ

(S)
i Hi †

i,k + Hi
i,kΣ

(S)
i Hi †

i,k

+Hī
i,kΩ

(S)

ī
Hī †
i,k + Hī

i,kΣ
(S)

ī
Hī †
i,k + I

 ,


∑

l∈NU\{k}G
i
i,kŨ

(S)′
i,l Gi †

i,k

+
∑

l∈NU
Gī
i,kŨ

(S)′
ī,l

Gī †
i,k

+Hi
i,kΩ

(S) ′
i Hi †

i,k + Hi
i,kΣ

(S) ′
i Hi †

i,k

+Hī
i,kΩ

(S) ′
ī

Hī †
i,k + Hī

i,kΣ
(S) ′
ī

Hī †
i,k + I





,

ĝ
(i)
i,r

(
Ṽ,Ω, Ṽ′,Ω′

)
=

1

ln 2
ϕ

(∑
k∈NU

E†i,rṼ
(i)
i,kEi,r + Ω

(i)
i,r,

∑
k∈NU

E†i,rṼ
(i)′
i,k Ei,r + Ω

(i) ′
i,r

)

− log2 det
(
Ω

(i)
i,r

)
, (35)

ĝ
(S)
i,r

(
Ũ,Ω, Ũ′,Ω′

)
=

1

ln 2
ϕ

(∑
k∈NU

Ẽ†i,rŨ
(S)
i,k Ẽi,r + Ω

(S)
i,r ,

∑
k∈NU

Ẽ†i,rŨ
(S)′
i,k Ẽi,r + Ω

(S) ′
i,r

)

− log2 det
(
Ω

(S)
i,r

)
, (36)

γ̂
(S)
i,r

(
Ũ,Σ, Ũ′,Σ′

)
=

1

ln 2
ϕ

(∑
k∈NU

Ē†
ī,r

Ũ
(S)

ī,k
Ēī,r + Σ

(S)
i,r ,

∑
k∈NU

Ē†
ī,r

Ũ
(S)′
ī,k

Ēī,r + Σ
(S) ′
i,r

)

− log2 det
(
Σ

(S)
i,r

)
, (37)

β̂i,k,S

(
Ũ,Ω, Ũ′,Ω′

)
=

1

ln 2
ϕ

(∑
l∈NU

Ē†iŨ
(S)
i,k Ēi + Σ

(S)

ī
,
∑
l∈NU

Ē†iŨ
(S)′
i,k Ēi + Σ

(S) ′
ī

)

− log2 det

 ∑
l∈NU\{k}

Ē†iŨ
(S)
i,k Ēi + Σ

(S)

ī

 . (38)
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with the notations ϕ(A,B) = ln det(B)+tr(B−1(A−B)), Gj
i,k = [Hj

i,k Hj̄
i,k], Ẽi,r = [E†i,r 0†nR,̄i×nR,i,r

]†,

Ēi,r = [0†nR,i×nR,̄i,r
E†
ī,r

]† and Ēi = [0†nR,i×nR,̄i
InR,̄i

]†.
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