

King’s Research Portal

DOI:
10.1007/978-3-319-25645-0_5

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Suarez-Tangil, G., Tapiador, J. E., & Peris-Lopez, P. (2015). Compartmentation policies for Android apps: A
combinatorial optimization approach. In International Conference on Network and System Security (NSS) (Vol.
9408, pp. 63-77) https://doi.org/10.1007/978-3-319-25645-0_5

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 06. Oct. 2023

https://doi.org/10.1007/978-3-319-25645-0_5
https://kclpure.kcl.ac.uk/portal/en/publications/bbcd6e90-c74f-4a48-b441-e148e9b8c9a7
https://doi.org/10.1007/978-3-319-25645-0_5

Compartmentation Policies for Android Apps:
A Combinatorial Optimization Approach

Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-Lopez

Department of Computer Science, Universidad Carlos III de Madrid, Spain
guillermo.suarez.tangil@uc3m.es??, {jestevez, pperis}@inf.uc3m.es

Abstract. Some smartphone platforms such as Android have a distinc-
tive message passing system that allows for sophisticated interactions
among app components, both within and across app boundaries. This
gives rise to various security and privacy risks, including not only inten-
tional collusion attacks via permission re-delegation but also inadvertent
disclosure of information and service misuse through confused deputy
attacks. In this paper, we revisit the perils of app coexistence in the
same platform and propose a risk mitigation mechanism based on segre-
gating apps into isolated groups following classical security compartmen-
tation principles. Compartments can be implemented using lightweight
approaches such as Inter-Component Communication (ICC) firewalling
or through virtualization, effectively fencing off each group of apps. We
then leverage recent works on quantified risk metrics for Android apps to
couch compartmentation as a combinatorial optimization problem akin
to the classical bin packing or knapsack problems. We study a number of
simple yet effective numerical optimization heuristics, showing that very
good compartmentation solutions can be obtained for the problem sizes
expected in current’s mobile environments.

Key words: Smartphone security, permission based security, malware,
collusion attacks, risk assessment.

1 Introduction

Android’s security model is substantially different from that of standard desktop
operating systems, as it was designed to better fit the architecture and intended
usage of smartphones. The device is seen as a platform with a number of avail-
able services, such as storage, networking, and a collection of sensors [1]. Access
to each service is provided through a system API freely available to apps yet
restricted with a permission system. Thus, an app must request the appropriate
permission in its manifest in order to gain access to protected API calls. Permis-
sions can be also used by apps to control interactions among components, for
instance by specifying which privileges a caller must have in order to use a com-
ponent. Recent studies by Felt et al. on the effectiveness of permission systems in
smartphone platforms conclude that they are quite effective at protecting users
[2]. However, in the case of Android it has been pointed out that apps often

?? Current email address: guillermo.suarez-tangil@rhul.ac.uk

2 G. Suarez-Tangil, J.E. Tapiador, P. Peris-Lopez

request a significant amount of permissions identified as potentially dangerous.
This exposes users to frequent warnings, which drastically reduces effectiveness.

Android apps are considered mutually distrusted and are isolated from
each other. Thus, each app has its own process and can access its own data
only. Despite this isolation, Android provides the developer with a rich inter-
application message passing system. This pursues several goals, including to fa-
cilitate component reuse and inter-application collaboration. In Android, develo-
pers are encouraged to leverage existing data and services offered by other apps,
which is achieved by dividing an app into components and then exchanging infor-
mation within the app boundaries—ICC, or Inter-Component Communication—
and across applications—IPC, or Inter-Process Communication. This is mostly
achieved through intents, which can be thought of as messages that allow implicit
and explicit communication among components.

The Perils of Coexistence. The Android app interaction model creates nu-
merous security risks [3]. A careless developer may accidentally expose func-
tionality that another (malicious) app can exploit to, for instance, trick it into
performing an undesirable action. Thus, vulnerable apps can unintentionally pro-
vide attackers an interface to privileged resources in what is known as a confused
deputy attack. Additionally, in a compromised device messages exchanged be-
tween two components could be intercepted, stopped, and/or replaced by others,
as they are generally not encrypted or authenticated.

Deliberate collusion attacks are not only possible but also quite simple to
implement. Two or more malicious apps can cooperate to violate security poli-
cies in the so-called permission re-delegation attacks [4]. Permission re-delegation
takes place when an app with sufficient permissions performs a privileged task
that is requested by another app that does not have those permissions, which
effectively undermines the user-approved permission system. To further com-
plicate matters, a sophisticated attacker might not even rely on the IPC/ICC
subsystem, but on covert channels as a substitute to the official communica-
tion interface. This would provide colluding apps with an alternative—and most
likely unnoticed—vehicle to exchange information. Chandra et al. [5] have re-
cently conducted a comprehensive study of such covert channels in smartphones,
showing that they abound and that some of them offer reasonable bandwidth.
More generally, apps with networking privileges can also use communication
channels external to the smartphone to exchange information.

Related Work. Countering attacks that exploit inter-app communications is a
challenging task [6]. Bugiel et al. introduced in [7] a framework called TrustDroid
to separate trusted from untrusted applications into domains, firewalling ICC
messages among domains. Partly based on this concept, Samsung has recently
released the KNOX Container [8], so that apps and data inside a container
are isolated from apps outside it. According to Samsung, KNOX is intended to
facilitate the coexistence of work and personal content on the same device, this
being a more lightweight solution than using a separate virtual machine (VM)
for each compartment. Interested readers can find in [9] an overview of recent
progress in virtualization techniques for mobile systems.

Compartmentation Policies for Android Apps 3

Monitoring and enforcing restrictions on app interactions has been a ma-
jor research theme almost since the first Android releases. Dietz et al. introduce
in [10] Quire, a signature-based scheme that allows developers to specify local
(ICC) and remote (RPC) communication restrictions. Other proposals such as
TaintDroid [11], AppFence [12], or XManDroid [13] closely monitor apps to en-
force given security policies. While the first two use dynamic taint analysis to
prevent data leakage and protect user’s privacy, the latter extends Android’s
security architecture to prevent privilege escalation attacks at runtime.

Motivation and Contribution. A common theme in all the solutions dis-
cussed above is that app segregation is ultimately driven by a user-defined policy.
But delegating such a burden to users can only result in a very limited protec-
tion, since policy making is unanimously recognized as a difficult task. Users
hardly understand the repercussions of granting an app a given set of permis-
sions, let alone those of all possible combinations of apps. Furthermore, policies
will likely be user- and even context-specific, so a one-size-fits-all approach does
not seem a sensible choice either. Lastly, the problem of leveraging covert chan-
nels for command, control, and communication among colluding apps is yet to
be addressed. Isolation is generally recognized as one of the most economic and
effective ways to dismantle covert channels, but then again it is unclear which
apps should be set apart from which others without totally disrupting the very
purpose of inter-app communication.

In a related but different area, risk analysis techniques such as [14–18] have
recently gained much attention as attractive mechanisms to effectively signal
potential threats and better communicate them to final users. Most of such
techniques are essentially based on deriving a numerical score from various app
features, generally its permissions. Motivated by the discussion provided above,
in this paper we make the following contributions:

1. We argue that current risk assessment schemes based on examining apps
in isolation can only offer a limited vision of the actual risk, since they fail
to model the perils of app coexistence in security models such as that of
Android. Ideally, risk assessment should be redefined to extend its scope to
all apps residing in the platform, possibly considering dynamic contextual
variables too. To formalize this, we introduce an Unrestricted Collusion (UC)
model that captures these points in a very simple way.

2. We reuse existing risk scoring techniques and adapt them to the UC model.
Simple experiments with typical apps show that, for instance, as little as 10
apps may pose a risk level higher than that the risk obtained for 75% of
well-known malware instances.

3. We then revisit the classical idea of risk mitigation through compartmenta-
tion (as in, e.g., the Brewer-Nash model [19]), a notion that has been used
for decades both in corporations and by the intelligence community, and
is implicit in some of the works that have addressed the problem of app
isolation. However, considering the complexities and limitations that policy
making entails, we use quantified risk metrics to formulate the problem as
a class of mathematical optimization problems known as packing problems.

4 G. Suarez-Tangil, J.E. Tapiador, P. Peris-Lopez

This addresses the compartmentation problem in a very effective way while
reducing user involvement to a bare minimum.

4. We explore 14 heuristics for two practical settings—risk minimization given
a fixed number of compartments per mobile terminal, and minimization of
the number of compartments given a maximum tolerable risk level for each of
them. Our experimental results show that the problem is practically tractable
for the sizes involved in current mobile’s environments.

5. Lastly, we introduce a freely available online service called DroidSack that
implements app compartmentation as introduced in this paper.

2 A Quantified Risk Model for App Colocation

2.1 Risk Scoring Functions for Individual Apps

Several proposals have recently addressed the design of mechanisms to palliate
the ineffective way in which permissions are used to communicate potential risks
to the user [14]. Wang et al. introduced in [20] DroidRisk, a permission-based
quantitative risk assessment metric for Android apps. DroidRisk draws inspira-
tion from standard methods in quantitative risk assessment and associates with
each app a the risk quantity

R(a) =
∑
i

R(pi) =
∑
i

L(pi)I(pi), (1)

where R(pi) is the risk level of permission pi, L(pi) and I(pi) are the likeli-
hood and the impact of permission pi, respectively, and the sum is taken over
all requested permissions. The likelihoods L(pi) are empirically estimated by
applying Bayes’ rule to a dataset of benign and malicious apps. As for the im-
pacts I(pi), they are set to 1 for normal permissions and to 1.5 for dangerous
ones. These values are also empirically chosen so as to maximize discrimination
between goodware and malware.

Similar mechanisms are presented by Peng et al. in [16] and then fur-
ther explored in an extended version of that paper by Gates et al. in [17].
Here the authors develop various risk scoring functions also based on the set
of permissions an app requests, including probabilistic generative models such
as Basic Naive Bayes (BNB), Naive Bayes with informative Priors (PNB), Mix-
ture of Naive Bayes (MNB), and Hierarchical Mixture of Naive Bayes (HMNB).
The work presented in [17] also explores a related approach in which the rar-
ity of permissions—computed as the logarithm of the associated probability—is
used to construct risk metrics. Each app a is modeled as a pair a = [ci,xi =
(xi,1, . . . , xi,M)], where ci is the category of the app, M is the number of per-
missions, and xi a binary vector indicating which permissions the app requests.
Two risk metrics are introduced. The first is called the Rarity Based Risk Score
(RS) and associates with each app the number

RS(xi) =

M∑
m=1

xi,m · ln
(
N

cm

)
, (2)

Compartmentation Policies for Android Apps 5

where N is the total number of apps. A variant called Rarity Based Risk Score
with Scaling (RSS) is also explored. It uses scaling factors wn to penalize high
risk permissions more than low risk ones

RRS(xi) =

M∑
m=1

xi,m · wm · ln
(
N

cm

)
. (3)

Other proposals, such as the work reported in [18, 21, 15], introduce more
complex risk assessment mechanisms and consider factors other than permis-
sions, such as intents or the presence of native code, among others.

2.2 Extending Risk Scoring to App Compartments

Feature-based risk scores. Essentially all the risk scoring mechanisms pro-
posed so far represent an app a as a feature set

a←→ φa = {f1, . . . , fM}, (4)

where each fi is a feature associated with a particular risk factor, i.e., an aspect
of the app which is relevant when measuring the risk it poses. Permissions are,
by far, the most common risk factors considered by existing risk assessment
metrics. Thus, most risk metrics represent φa as a binary vector in which a one
in the i-th position means that the app requests permission pi, and vice versa.

Risk quantification is effectively done by some scoring function ρ(a) re-
turning, in general, a positive real number proportional to the amount of risk
posed by a. As discussed in [16], it is reasonable to assume that risk scoring
functions are monotonic. In our feature-based framework, monotonocity for a
risk scoring function ρ means that, if φa and φb are the feature sets associated
with apps a and b, then

φa ⊆ φb ⇒ ρ(a) ≤ ρ(b). (5)

That is, adding risk factors to an app does not decrease risk.

The Unrestricted Collusion (UC) model. We now consider the problem
of measuring the risk of a set of apps {a1, . . . ,aN} running on the same device.
This strongly depends on the particular platform used. We will assume a rather
permissive co-existence model such as the one provided by Android, in which
collusion is facilitated not only by side channels, but also directly (re-delegation
attacks) and indirectly (confused deputy attacks) by the IPC subsystem. Thus,
we define an Unrestricted Collusion (UC) model as follows: in terms of risk, a set
of apps running on the same platform can be viewed as a single app whose risk
factors are the union of the risk factors of the constituent apps. More formally:

{a1, . . . ,aN} ←→ φa1,...,aN
=

N⋃
i=1

φai
. (6)

6 G. Suarez-Tangil, J.E. Tapiador, P. Peris-Lopez

In practical terms, the UC model states that apps can communicate with each
other without restrictions. Thus, if one of them has been granted permission to
access a particular resource, all of them can also access that resource via the
first app. We believe the UC model is reasonable for the current smartphone
ecosystem dominated by social, gaming, and sport apps that are increasingly
supporting resource sharing and other forms of interactions with each other.

Abusing notation ρ({a1, . . . ,aN}) can be computed by any feature-based
risk scoring function for individual apps by just applying it to the union of all
feature sets of the integrating apps. A priori, it is unclear what the relationship
between ρ({a1, . . . ,aN}) and {ρ(a1), . . . , ρ(aN)} should be. For example, both
DroidRisk—expression (1)—, RS—expression (2)—, and RSS—expression (3)—
are “sublinear”, in the sense that they have the subadditivity property

ρ(

N⋃
i=1

ai) ≤
N∑
i=1

ρ(ai). (7)

Note that this will not generally hold for nonlinear risk scoring, e.g, those based
on subsets of risk factors. Sublinear risk scoring functions are relevant for a class
of compartmentation heuristics developed later in Section 3.

2.3 An Empirical Analysis of Colocation Risk

We first conducted an empirical evaluation of the risk metrics discussed above
in order to assess the risk of colocated apps in the UC model. We implemented
DroidRisk [20] and the RS and RSS metrics proposed in [17]. In all cases, pa-
rameters were estimated using a dataset composed of over 15K apps from the
Google Play market and over 15K malicious apps from VirusShare. Each app
in the dataset was preprocessed and transformed into its corresponding feature
vector with the permission-related information so as to train each risk model.
Overall, our results show risks distributions very similar to those reported in the
original papers and confirm that permission-based risk metrics offer a fair degree
of discrimination between goodware and malware.

We next considered the case of a platform hosting N ∈ {10, 20, 30, 40, 50}
colluding apps and measured the risk of the entire group. The choice of this
range is motivated by a 2014 report from Nielsen establishing that smartphone
owners use between 20 and 30 apps on a regular basis [22]. For each value of
N , we randomly selected a group of apps from our dataset of non-malicious
apps, computed the risk of the set, and repeated the experiment 1000 times.
Fig. 1 shows the risk using DroidRisk and RS/RSS as underlying risk metrics.
For a better understanding of the implications of colluding attacks in terms of
quantified risk, each plot is accompanied by the risk distribution of malware.
The results suggest that, for instance, just 10 apps pose a risk level higher than
75% of the malware according to the RSS metric. The figures vary when using
DroidRisk, yet the fundamentals are the same. Overall, as the number of apps
increases so does the risk. As expected, risk growth slows down after certain
number of apps since the likelihood of acquiring more risk factors for the group
(e.g., additional permissions) gets lower.

Compartmentation Policies for Android Apps 7

Avg. risk (goodware) Median (malware) Quartiles (malware)

0 20 40
0

100

200

colluding apps

R
is

k

(a) RSS

0 20 40

0

20

40

60

80

colluding apps

(b) DroidRisk

Fig. 1: Quantified risk of collusion for different number of apps

3 Optimal Risk Compartmentation Policies

3.1 Two Compartmentation Problems

Our scheme relies on a quantified risk-driven compartmentation policy. That
means that, in principle, there are no predefined conflict of interest classes,
as in the classical Brewer-Nash model, nor any other enforceable mandatory
controls. Contrarily, compartmentation is implemented by computing the risk of
a group of apps coexisting in the same compartment and checking whether this
is acceptable or not. Note that, in doing so, compartmentation takes place with
minimal user intervention.

We consider two different settings in which app compartmentation can
occur. The first one, called the RISKPACK problem, models a scenario in which
it is feasible to define a notion of a maximum tolerable risk, this being an upper
bound to the risk that each compartment can assume. For simplicity, we assume
that all compartments have the same risk capacity. This can be straightforwardly
extended to the general case in which the user can define compartments with
different risk bounds.

Definition 1 (RISKPACK). Given a set A of N apps, for each S ⊆ A a risk
measure ρ(S) ∈ Z+, a finite set K of N compartments, and a maximum tolerable
risk τ ∈ Z+ common to all compartments k ∈K, the RISKPACK problem is to
find an integer number of compartments Z and a Z-partition S1, . . . ,SZ of the
set A such that ρ(Si) ≤ τ for all i = 1, . . . , Z. A solution is said to be optimal
if it has a minimal Z.

Note that in RISKPACK the number of available compartments is equal
to the number of apps, and it is implicitly assumed that ρ(a) ≤ τ for all a ∈ A.

8 G. Suarez-Tangil, J.E. Tapiador, P. Peris-Lopez

That is, all apps will be eventually assigned to a compartment, the challenge
being how to use the minimum number of compartments while not exceeding
the risk capacity in none of them.

The second problem, called RISKMIN, is intended for a more practical
situation, in the following sense. On the one hand, the semantics of the risk
scoring functions are often unclear. Quantified risk approaches are generally
not intended as final indicators to be communicated to users, but rather as
intermediate variables to be used in a higher lever decision making process.
Thus, in RISKMIN the focus is not on each compartment’s risk value in absolute
terms but rather on minimizing it. On the other hand, instead of assuming that
a pool of as many as necessary compartments is available, we assume a fixed,
and possibly small, number of them. This is more commensurate with current
smartphones’ capabilities, since it is unrealistic to assume they will soon be able
to support a substantial number of virtual machines.

Definition 2 (RISKMIN). Given a set A of N apps, for each S ⊆ A a risk
measure ρ(S) ∈ Z+, and a finite set K of M ≤ N compartments, the RISKMIN

problem is to find a Z-partition S1, . . . ,SZ of the set A such that

Z∑
i=1

ρ(Si) is

minimal. Other target functions are possible, for example minimizing maxi ρ(Si).

For simplicity, a detailed discussion on how to introduce restrictions such
as these in our model is left out of this paper. Nonetheless, we anticipate that
most problem solving strategies would be able to deal with them straightfor-
wardly.

Online vs Offline Packing. As in the case of many classical packing problems,
it seems reasonable to consider two versions in which compartmentation can take
place. In the online setting, apps must be installed in a compartment one at a
time, without considering which the next app(s) would be. Contrarily, in an
offline setting all apps are given upfront. It is easy to prove that the online
problem is more difficult and that there is no algorithm that always gets the
optimal solution.

3.2 Complexity Analysis and Heuristics

RISKPACK is a variant of the combinatorial optimization Bin-Packing Problem
(BPP) [23]. There is, however one significant difference: while in BPP the space in
a bin occupied by two objects is the sum of their sizes, in RISKPACK there might
not be an straightforward relationship between the risk of two apps put together
and the risks of each one of them isolated. When the risk scoring function is
sublinear, RISKPACK reduces to the VM (Virtual Machine) packing problem
recently explored by Sindelar et al. in [24], in which several virtual machines
jointly packed in a server share memory pages and, therefore, occupy less space
than the sum of their individual sizes.

Compartmentation Policies for Android Apps 9

The RISKMIN problem is a variant of the Multiple Subset Sum (MSS)
problem, and can be also seen as a Multiple Knapsack Problem (KPP) if com-
partments with different risk tolerances are assumed [23]. As in the case of
RISKPACK, the key difference is that risk aggregation by the scoring function
might not be additive. As discussed in the next section, this can negatively
impact the ability to develop efficient approximations.

Both RISKPACK and RISKMIN are NP-hard since they contain the BPP
and the MSS/MKP, respectively, as special cases when the risk scoring function
is strictly additive in the sense that

ρ(

N⋃
i=1

ai) =

N∑
i=1

ρ(ai). (8)

Furthermore, a direct reformulation of the results provided in [24] determines
that, for arbitrary (i.e., nonlinear) risk scoring function, RISKMIN is hard to
approximate, whereas for the case of RISKPACK the question is open. Despite
this hardness result, we will later see that standard heuristic strategies attain
sufficiently good solutions for many instances that arise in practice.

Even though BPP and MSS/MKP are known to be NP-hard, excellent so-
lutions to large instances can be obtained by relatively simple algorithms. Many
heuristics have been developed for both problems, often resulting in solvers that
provide fast but generally suboptimal solutions. We have adapted some of those
heuristics to our risk packing/minimization problems, and also explored others
commonly used in minimization problems. In total, we explored 14 different
heuristics. A short description of each of them is provided in Table 1. The im-
plementation in all cases is straightforward.

4 Experimentation

4.1 RISKPACK

We first obtained a risk score model of our dataset for RS, RSS, and DroidRisk
as described in Section 2. Then, we computed the number of compartments
required to fit N ∈ {10, 30, 50} apps given a maximum tolerable risk τ ∈ [0, 1].
In all the risk metrics used it is possible to compute the maximum attainable
risk for a set of apps. This allows us to express risk as a percentage relative to the
maximum, which is arguably a more understandable communication instrument
for users. For each number of compartments N , we randomly selected a group
of apps from our dataset of non-malicious apps, repeating the experiment 1000
times, testing all heuristics described in Table 1 for the selected group of apps.
Due to space restrictions, Fig. 2 only shows the results reported using RSS and
DroidRisk (DR). RS yields very similar results to RSS.

Results show that apps can be segregated into a small number of com-
partments with a very low risk tolerance each. For instance, 10 apps require just
2-4 compartments for a maximum risk tolerance of 1%-2%, increasing to around

10 G. Suarez-Tangil, J.E. Tapiador, P. Peris-Lopez

Heuristic Description

R
IS

K
P

A
C

K
NF

Next Fit. When processing the next app, see if it fits in the same com-
partment as the last app. Start a new empty compartment if it does not.

FF
First Fit. As NF but rather than checking just the last compartment,
check all previous compartments.

BF
Best Fit. Place the app in the tightest compartment, i.e., in the spot so
that the smallest residual risk is left.

CF
Cheapest Fit. Place the app in the compartment in which it causes the
lowest risk increment.

FFD
First Fit Decreasing. Offline analog of FF. Sort the apps in decreasing
order of risk and then apply FF.

BFD
Best Fit Decreasing. Offline analog of BF. Sort the apps in decreasing
order of risk and then apply BF.

CFD
Cheapest Fit Decreasing. Offline analog of CF. Sort the apps in decreasing
order of risk and then apply CFD.

R
IS

K
M

IN

HC

Hill Climbing. Start with a random assignment of apps to compartments.
Pick one app randomly and move it to a randomly chosen compartment.
Keep it there if the overall risk decreases; otherwise undo the move. Repeat
until no improvement is achieved for L consecutive moves.

MR Minimum Risk. Place the app in the compartment with minimum risk.

B?
Best Risk. Place the app in an empty compartment, if any. Otherwise,
place it in a compartment in which it causes no risk increment, if possible.
Otherwise, place it where it causes the highest risk increment.

CR?
Cheapest Risk. Place the app in an empty compartment, if any. Otherwise,
place it in a compartment in which it causes no risk increment, if possible.
Otherwise, place it where it causes the lowest risk increment.

MRD?
Minimum Risk Decreasing. Place the app in an empty compartment, if any.
Otherwise, place it in a compartment in which it causes no risk increment,
if possible. Otherwise, place it in the compartment with lowest risk.

BRD? Best Risk Decreasing?. Offline analog of B?. Sort the apps in decreasing
order and then apply B?.

CRD? Cheapest Risk Decreasing?. Offline analog of C?. Sort the apps in decreas-
ing order and then apply C?.

Table 1: Heuristics for the RISKPACK and RISKMIN problems.

10 compartments for 50 apps. Interestingly, the risk vs. number of compartment
relation is not linear: while a massive risk reduction can be done with just 2 or 3
compartments, further reducing the risk translates into an exponential increase
on the number of compartments. Additionally, note that the number of com-
partments strongly depends on the risk metric used. For instance, a user that
could only afford a 2% of the overall risk when installing 10 apps requires around
2 compartments with RSS but over 8 with DroidRisk. Some heuristics such as
FF and FFD consistently outperform across settings and in all scenarios. These
heuristics are known to behave well in classical combinatorial packing problems,
so this does not come as a surprise.

Compartmentation Policies for Android Apps 11

NF FF BF CF FFD BFD CFD

0 1 2

·10−2

2

4

6

8

10

τ

#
C

o
m

p
a
rt

m
en

ts
10 apps RSS

0 1 2 3

·10−2

10

20

30

τ

30 apps RSS

0 2 4

·10−2

20

40

τ

50 apps RSS

0 5 · 10−2 0.1

2

4

6

8

10

τ

#
C

o
m

p
a
rt

m
en

ts

10 apps DR

0 5 · 10−2 0.1

10

20

30

τ

30 apps DR

0 5 · 10−2 0.1

20

40

τ

50 apps DR

Fig. 2: Solutions for the RISKPACK problem using different heuristics: number
of compartments used for a maximum tolerable risk τ .

4.2 RISKMIN

We tested RISKMIN solvers using the same experimental setting described
above. Based on this, we computed the risk reported by the platform given
a fixed amount of compartments. For the sake of simplicity, we assume that the
risk of the platform is determined by the compartment with higher risk. Fig.
3 shows the results obtained using RSS and DroidRisk (DR). As in the case
of RISKPACK, the overall risk can be effectively minimized even when using a
small number of compartments. From all heuristics tested, MRD, MR, and HC
perform better than the others. Note the duality among the curves in Figs. 2
and 3. Unlike RISKPACK, however, the performance of the different heuristics
varies significantly. For instance, MRD? achieves a risk of 10−2 with 30 apps and
10 compartments in DroidRisk (DR), while BR? attains about 0.13 in the same
setting.

12 G. Suarez-Tangil, J.E. Tapiador, P. Peris-Lopez

HC MR BR* CR* MRD* BRD* CRD*

0 5 10

2

2.5

3

3.5
·10−2

Compartments

R
is

k
10 apps RSS

0 10 20 30

4

5

6

7

·10−2

Compartments

30 apps RSS

0 20 40
4

6

8

·10−2

Compartments

50 apps RSS

0 5 10
5

6

7

8

·10−2

Compartments

R
is

k

10 apps DR

0 10 20 30

8 · 10−2

0.1

0.12

0.14

Compartments

30 apps DR

0 20 40

0.1

0.12

0.14

0.16

0.18

Compartments

50 apps DR

Fig. 3: Solutions for the RISKMIN problem using different heuristics: residual
risk vs. number of available compartments.

4.3 DroidSack: An Online Compartmentation Service

We have implemented a freely available online service called DroidSack that
offers app compartmentation as introduced in this paper. The service is exposed
through a REST HTTP-based API publicly available1. The API comprises two
services, GET RISKPACK and GET RISKMIN, which implement solvers for the two
problems. In the current version, apps are provided through their full names
from the Google Play market. The service connects to the market, retrieves
the app, and extract the manifest to compute the risk. Candidate solutions are
returned as JSON objects. Detailed instructions on how to use it along with a
basic HTML interface for manual usage are provided in the URL given above.

1 http://www.seg.inf.uc3m.es/DroidSack

Compartmentation Policies for Android Apps 13

5 Conclusions and Future Work

In this paper, we have revisited the security problems derived from app coexis-
tence in mobile platforms such as Android. To counter them, we have adopted a
compartmentation approach driven by a quantified risk assessment metric. We
have introduced a collusion model that facilitates extending existing risk met-
rics for smartphone apps to sets of apps. We have then posed two combinatorial
optimization problems for two practical settings and discussed our experimental
results with simple yet effective numerical optimization heuristics. Overall, our
results suggest that very good compartmentation solutions can be obtained quite
efficiently for the sizes expected in current’s mobile environments.

Our proposal presents a number of limitations that should be tackled in
future work. For instance, we deliberately do not consider app collusion via In-
ternet. We believe that, although a perfectly valid mechanism to share resources,
this problem should be addressed by different means—e.g., by system-level mon-
itoring and firewalling. Similarly, we have only considered permissions as the
only type of risk factor, since it is the most common feature used by existing
risk assessment metrics. However, considering additional aspects of an app such
as IPC calls might provide a more precise assessment of the risk and should be
further studied. Finally, dynamic reallocation policies, as opposed to re-solving
the problem again with different inputs, might be worth-exploring. For example,
such reallocation policies would be interesting when using context-driven risk
measures in which the risk of an app changes as the context varies.

Acknowledgments

We are very grateful to the anonymous reviewers for constructive feedback and
insightful suggestions. This work was supported by the MINECO grant TIN2013-
46469-R (SPINY: Security and Privacy in the Internet of You) and the CAM
grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks).

References

1. Suarez-Tangil, G., Tapiador, J.E., Peris, P., Ribagorda, A.: Evolution, detection
and analysis of malware for smart devices. IEEE Communications Surveys &
Tutorials 16(2) (May 2014) 961–987

2. Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of application permis-
sions. In: USENIX Web application development. WebApps’11 (2011) 7–7

3. Chin, E., Felt, A., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: Mobile sys., apps., and services, ACM (2011) 239–252

4. Felt, A., Wang, H., Moshchuk, A., Hanna, S., Chin, E.: Permission re-delegation:
Attacks and defenses. In: USENIX Security Symposium. (2011) 1–16

5. Chandra, S., Lin, Z., Kundu, A., Khan, L.: Towards a systematic study of the
covert channel attacks in smartphones. Technical report, Univ. of Texas (2014)

6. Fang, Z., Han, W., Li, Y.: Permission based android security: Issues and counter-
measures. Computers & Security 43 (2014) 205–218

14 G. Suarez-Tangil, J.E. Tapiador, P. Peris-Lopez

7. Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.R., Shastry, B.: Prac-
tical and lightweight domain isolation on android. In: Security and privacy in
smartphones and mobile devices. SPSM ’11, New York, ACM (2011) 51–62

8. Samsung: White paper: An overview of samsung knox (April 2013)
http://www.samsung.com/es/business-images/resource/white-paper/2014/

02/Samsung_KNOX_whitepaper-0.pdf.
9. Jaramillo, D., Furht, B., Agarwal, A.: Mobile virtualization technologies. In:

Virtualization Techniques for Mobile Systems. Springer (2014) 5–20
10. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: Lightweight

provenance for smart phone operating systems. In: USENIX Security. (2011) 16
11. Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.:

Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: USENIX OS design and implementation. (2010) 1–6

12. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids
you’re looking for: retrofitting android to protect data from imperious applications.
In: Computer and communications security, ACM (2011) 639–652

13. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.: Xmandroid: A
new android evolution to mitigate privilege escalation attacks. Technical report,
Technische Universitat Darmstadt (2011)

14. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices. SPSM ’11, NY, USA (2011) 3–14

15. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th international
conference on Mobile systems, applications, and services, ACM (2012) 281–294

16. Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Using probabilistic generative models for ranking risks of android apps.
In: Computer and communications security, ACM (2012) 241–252

17. Gates, C., Li, N., Peng, H., Sarma, B., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Generating summary risk scores for mobile applications. Dependable
and Secure Computing, IEEE Transactions on 11(3) (May 2014) 238–251

18. Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X.: Exploring permission-
induced risk in android applications for malicious application detection. Informa-
tion Forensics and Security, IEEE Transactions on 9(11) (Nov 2014) 1869–1882

19. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: IEEE Symposium
on Security and Privacy, Oakland, CA, USA. (1989) 206–214

20. Wang, Y., Zheng, J., Sun, C., Mukkamala, S.: Quantitative security risk assessment
of android permissions and applications. In: Data and Applications Security and
Privacy. DBSec’13, Springer-Verlag (2013) 226–241

21. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: Mast: Triage for market-scale
mobile malware analysis. In: Security and Privacy in Wireless and Mobile Net-
works. WiSec ’13, NY, USA, ACM (2013) 13–24

22. Nielsen: Smartphones: so many apps, so much time. Available Online (Last visited
October 2014) (July 2014)

23. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. J. Wiley & Sons (1990)

24. Sindelar, M., Sitaraman, R.K., Shenoy, P.J.: Sharing-aware algorithms for vir-
tual machine colocation. In: ACM Symposium on Parallelism in Algorithms and
Architectures. (2011) 367–378

