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Cough is an essential neurally-mediated reflex that has evolved to protect the upper airways 

from obstruction, and to expel chemical and mechanical irritants. When heightened or 

persistent, however, cough presents a clinically-challenging source of considerable physical 

and psychological morbidity [1, 2]. In the US, cough continues to be the commonest single 

symptom for which patients seek a medical consultation [3]. Chronic cough, defined as cough 

continuing > 8 weeks, is also globally prevalent and accounts for 10% of respiratory referrals 

to secondary care [4].  

 

The associated societal and healthcare costs of cough are huge. Acute cough contributes to 

approximately 34.0 million working days lost each year in the UK through minor illnesses [5], 

with more than £100 million pounds being spent on over-the-counter antitussive drugs each 

year [6]. Despite meticulous, and often lengthy, diagnostic protocols, chronic cough remains 

unexplained or refractory in 12 – 42% of cases [7], following which patients are frequently 

subjected to sequential trials of anti-tussives with limited clinical efficacy and/or undesirable 

side-effects [8]. A recent internet-based survey, conducted across 29 different European 

countries, found that most subjects with chronic cough responded that their cough 

medication had limited or no effectiveness (57% and 36%, respectively), with only 7% 

reporting that medications they had tried for their cough were effective [2]. This lack of 

effective treatment reflects our limited understanding of the mechanistic basis of cough. 

Indeed, it is increasingly recognised that in order to effectively treat cough syndromes, there 

is a need to look beyond the presence (or not) of underlying disease processes, and towards 

a better understanding of physiological control of the cough reflex itself.  

 

This paradigm shift has heralded the recent description of the “cough hypersensitivity 

syndrome” (CHS) by a European Respiratory Society Taskforce. CHS is defined as a clinical 

entity characterised by cough as a major component, which is often triggered by low levels of 

thermal, mechanical, or chemical exposure [9]. The main mechanism of CHS has been 

suggested to be dysregulated sensory neural pathways and central processing in cough reflex 

regulation, as supported by a number of observations. Firstly, the symptom profile of CHS is 

similar to that of neuropathic disorders such as pain. CHS patients frequently report 

exaggerated coughing to known tussive stimuli, for example, strong odours and smoke 

(hypertussia) and to non-tussive stimuli such as talking and laughing (allotussia), and 
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abnormal sensations such as laryngeal paraesthesia (tickle) [10]. Secondly, neuropeptides, 

released from sensory nerves, can act as neurotransmitters and initiate local inflammatory 

responses and these are present in increased concentrations in the airways of patients with 

persistent cough [11, 12]. Central sensitisation to respiratory sensations, involving 

convergence of sensory bronchopulmonary C-fibres with low threshold Aδ-fibres onto second 

order neurons in the brainstem, is suggested by animal models of bronchopulmonary C-fibre 

activation leading to an increase in Aδ-mediated cough reflex sensitivity [13] [14]. Functional 

neuroimaging studies are beginning to provide insights into the neurobiology of chronic 

cough, including increased activation in the cortical and subcortical brain centres that 

integrate the intensity and location of the cough stimulus, and in regions previously 

implicated in voluntary cough suppression [15]. Centrally-acting neuromodulatory drugs such 

as gabapentin [16], amitriptyline [17]  and morphine [18], and speech and physiotherapy 

interventions [19, 20], are also effective in some patients. Direct evidence for neural 

dysfunction is however lacking because, except for peripheral lung tissues, human neural 

tissues are very difficult to obtain. Thus, at present, CHS is still a conceptual entity.  

 

The key regulator of CHS also remains elusive. Ion channels present on respiratory vagal 

afferent nerve termini can be activated by a wide variety of stimuli to elicit cough and other 

reflexes. The main family of ion channels implicated in the initiation of sensory reflexes are 

the transient receptor potential (TRP) channels, with most information pertinent to cough 

physiology having been gathered for transient receptor potential vanilloid (TRPV) 1, transient 

receptor potential ankyrin (TRPA) 1, TRPV4, and transient receptor potential melastatin 

(TRPM) 8 [21]. Capsaicin, the active ingredient of chilli pepper, binds TRPV1 receptors causing 

pain, burning sensation, cough and urge-to-cough, and is one of the most potent tussigens 

used in inhalation cough challenge tests [21]. TRPV1 is expressed by vagal afferent C- and Aδ-

nociceptive fibres innervating the airways [21] and TRPV1 receptor expression is increased in 

airway nerves of chronic cough patients [22]. However, despite efficacy being predicted in 

preclinical guinea pig and human in vitro vagal models [21], the potent TRPV1 receptor 

antagonist XEN-D0501 failed to significantly alter objective 24-hour cough frequency or 

subjective urge-to-cough in patients with refractory chronic cough in a recent clinical trial 

[23]. TRPA1 receptors are also present on vagal sensory afferents and bind a wide range of 

irritants (but not capsaicin) present in tussigenic environmental pollutants such as cigarette 
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smoke, as well as functioning as cold thermosensors [24]. However, despite the preclinical 

promise of TRPA1 receptors as effective anti-tussive targets [24], a TRPA1 antagonist did not 

show significant anti-tussive effects in humans (study completed in 2014 but unpublished) 

[25, 26]. Other examples where preclinical models of cough have failed to reliably translate 

to clinical efficacy are neurokinin (namely substance P) antagonists (reviewed in [27]), and 

the novel voltage-gated sodium channel blocker GSK2339345 [28].  

 

These findings are, however, in stark comparison to those of a recent randomised, controlled 

clinical trial of an antagonist of the purinergic P2X3 receptor (AF219/MK7264), which caused 

a dramatic decrease in cough frequency in patients with refractory chronic cough [29]. P2X3 

receptors are relatively specific for adenosine triphosphate (ATP), release of which is 

triggered by tissue inflammation and present in increased concentrations in the airways of 

chronic smokers and in COPD [30], after allergen challenge in asthmatics [31], and in fibrotic 

interstitial lung disease [32].  P2X3 and P2X2/3Rs are also present on the central projections 

of these neurons within the dorsal horn of the spinal cord and brainstem, where they are 

implicated in augmenting release of glutamate [33] and substance P [34], mediating central 

sensitisation at the first synapse. Animal studies implicate P2X3Rs in central sensitisation to 

pain including inflammatory hyperalgesia [35] and mechanical allodynia underlying bladder 

pain [36], and in arthritic and cancer pain [37] [38]. However, ATP administered to the 

bronchial tree does not cause a dramatic left-shift in cough reflex sensitivity [39]. Thus the 

P2X3 receptor may merely be a link in the chain of cough hypersensitivity rather than the 

primary mediator [25]. 

 

In this issue of the European Respiratory Journal, WORTLEY et al. [REF] report an elegant series 

of investigations in which they identify, for the first time, fatty acid amide hydrolase (FAAH) 

inhibition as a target for the development of novel, anti-tussive agents through modulation 

of the endocannabinoid system in preclinical guinea pig and human models. FAAH is an 

integral membrane protein found within the nervous system and is responsible for the 

hydrolysis of the endocannabinoid N-arachidonoyl ethanolamine (anandamide, AEA), and 

other related fatty acid amides (FAAs) such as palmitoylethanolamine (PEA), N-

oleoylethanolamide (OEA) and linoleoyl ethanolamide (LEA). The recent identification of 

cannabinoid (CB1 and CB2) receptors and their endogenous lipid ligands has triggered an 
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exponential growth of studies exploring the endocannabinoid system and its regulatory 

functions in health and disease. Modulating the activity of the endocannabinoid system holds 

therapeutic promise in a wide range of disparate diseases and pathological conditions [40], 

notably including neuropathic pain [41]. The G-protein coupled receptors CB1 are the “brain 

receptors” for cannabinoids in the mammals, but are also present at much lower 

concentrations in a variety of peripheral tissues and cells. A second cannabinoid G-protein 

coupled receptor (GPCR), CB2, is primarily expressed peripherally in cells of the immune and 

hematopoietic systems but have also been identified in the brain, in nonparenchymal cells of 

the cirrhotic liver, in the endocrine pancreas, and in bone [40]. Activation of the CB2 receptor 

subtype has previously been shown to inhibit both guinea-pig and human airway sensory 

nerve activity and the cough reflex in guinea-pigs [42], modulation of sensory nerve activity 

being shown to be elicited both by the exogenous ligands capsaicin and hypertonic saline and 

by endogenous modulators such as PGE2 and low pH stimuli [43]. Although non-selective 

cannabinoids, such as anandamide, have been shown to suppress the cough reflex [44, 45], 

the associated (predominantly CB1-mediated) side effects such as sedation, cognitive 

dysfunction, tachycardia and psychotropic effects have hampered the use of such agonists for 

treatment purposes [46]. This suggested that the development of CB2 agonists, devoid of 

CB1-mediated central effects, could provide a new and safe antitussive treatment for chronic 

cough without these undesirable central side-effects. 

 

Peripheral elevation of endocannabinoids provides an attractive alternative pharmacological 

strategy through which to indirectly target vagal afferent CB2 receptor activation. In a 

conscious guinea pig model, WORTLEY et al. [REF] demonstrate inhibition of citric acid (low pH) 

provoked cough in association with elevated FAAs, brought about by pharmacological 

inhibition of FAAH (FAAHi). This suggests FAAHi as a potential novel target for the 

pharmacotherapy of CHS. Then, in an isolated guinea-pig vagus nerve model, PEA is shown to 

cause a concentration related inhibition of both low pH- and capsaicin-induced 

depolarisation. WORTLEY et al. subsequently confirm this effect to be a CB2-, not CB1-, 

receptor-mediated mechanism, operating through activation of Ca2+-activated K+ (SKCa) 

channels. Remarkably, FAAHi-mediated inhibition of depolarisation is similarly demonstrated 

in a human vagal nerve preparation, again via a CB2-PP2A-SKCa channel mechanism. 
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We await in vivo human studies of FAAH inhibition in chronic cough with the optimism that, 

counter to what might otherwise be predicted from previous experience [27], direct 

translation of physiological mechanism from rodent to man will translate to clinical efficacy. 

Lack of efficacy and safety are of course major causes of attrition in the pharmaceutical 

industry, and the former is likely to be a more significant contributor to attrition in therapeutic 

areas in which animal models of efficacy are unpredictive [47]. The parallels here between 

CHS and neuropathic pain are ominous [48], and highlight the need for robust preclinical 

human models; a problem because access to human vagal nerve preparations is challenging. 

A call to improve translation through a better understanding of, and control for, differences 

in human and animal preclinical and cellular models [27], together with the need to reduce, 

replace and refine the use of animals for scientific purposes, brings an urgent requirement for 

development of novel in vitro models of cough hypersensitivity based on human biology.  

 

Could human sensory “peripheral neuronal equivalents” (PNEs), as introduced in this issue of 

the Journal by CLARKE et al., meet this challenge? Human dental pulp stem cells (hDPSCs) are 

of neural crest origin and as such have a propensity to differentiate towards a neuronal 

phenotype [49]. CLARKE et al., describe refinement of the hDPSC model to produce PNEs that 

have morphological, molecular and functional characteristics of sensory neurons. Moreover, 

these PNEs express functional TRPA1 and, intriguingly, exhibit TRPA1 channel hyper-

responsiveness following stimulation with both nerve growth factor (NGF) and the viral 

mimetic Poly(I:C). Of course, TRPA1 channel hyper-responsiveness is physiologically distinct 

to neuronal hypersensitivity, and further work is required to study the latter phenomenon in 

the PNE model. Confirmation that a similar functional relationship exists between TRPA1 and 

live respiratory viruses to that demonstrated using the viral mimetic Poly(I:C) in the PNE 

model would also add relevance to the field of clinical respiratory medicine. An additional, 

albeit unavoidable, limitation of any in vitro peripheral sensory model of cough, human or 

otherwise, is that it is impossible to predict how the resultant pattern of afferent activity will 

be processed in central brain pathways. Most current clinically-effective drugs are centrally-

acting [16, 18] and normalisation of cough frequency did not appear to be a prerequisite for 

clinical response to AF219/MK7264 [29]. This underlines the importance of understanding 

central pathways subserving cough perception in order to achieve antitussive effects.  
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These limitations should not, however, distract from the potential of the work of CLARKE et al. 

to provide a much-needed human in vitro model for the study of inflammatory TRP channel 

regulation and related CHS mechanisms. Such models should improve efficiency of translation 

to therapeutic development through larger-scale screening of pharmaceutical compounds on 

the basis of their functional interactions, improved drug dosage and frequency prediction 

before going to man, and a better understanding of interspecies differences. These could also 

prove helpful in improving the therapeutic ratio of drugs where the maximal clinical dose is 

limited by intolerable side-effect profiles [50]. The current level of interest in identifying 

antitussive targets and efficacy in preclinical models is reflected by the variety of alternate 

animal [51-54] and human cellular [55] options in development. These, together with 

identification of novel pharmacological targets [ref WORTLEY et al.], should provide 

opportunities to accelerate progress to positive first-in-man trials through a better 

understanding of the pathophysiology of human cough reflex hypersensitivity. 
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