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Abstract

The Hough Transform (HT) is widely used for feature extraction and object detection. However,

during the HT individual image elements vote for many possible parameter values. This results in

a dense accumulator array and problems identifying the parameter values that correspond to image

features. This article proposes a new method for implementing the voting process in the HT. This

method employs a competitive neural network algorithm to perform a form of probabilistic infer-

ence known as “explaining away”. This results in a sparse accumulator array in which the parameter

values of image features can be more accurately identified. The proposed method is initially demon-

strated using the simple, prototypical, task of straight line detection in synthetic images. In this task

it is shown to more accurately identify straight lines, and the parameter of those lines, compared to

the standard Hough voting process. The proposed method is further assessed using a version of the

implicit shape model (ISM) algorithm applied to car detection in natural images. In this application

it is shown to more accurately identify cars, compared to using the standard Hough voting process

in the same algorithm, and compared to the original ISM algorithm.

Keywords Hough Transform; Generalised Hough Transform; Implicit Shape Model; feature extrac-

tion; object detection; explaining away; neural networks.
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1 Introduction

The Hough Transform (HT) was introduced more than half a century ago (Hart, 2009; Hough, 1962)

but remains a popular method in image processing and computer vision having been extended to detect

features, objects, or shapes of any type (Ballard, 1981; Beinglass and Wolfson, 1991; Davies, 1988;

Duda and Hart, 1972; Gall et al., 2011; Leibe et al., 2004; Maji and Malik, 2009; Samal and Edwards,

1997; Yao et al., 2010). In general terms, the HT is a process of summing up evidence (accumulating

votes) for a shape from multiple, local, image elements that could be constituent parts of that shape.

Evidence is summed in an accumulator array in which different cells represent different combinations of

parameters (such as the location, scale, orientation, etc.) for possible instances of the shapea. Following

this voting process, cells with high values will correspond to those instances of the shape for which there

is most evidence. Shape detection thus involves finding the peaks in the accumulator array.

The HT suffers from several well known problems including spurious peaks and quantization effects.

The former problem refers to the difficulty in identifying cells in the accumulator array that correspond

to peaks caused by the presence of a shape-instance, and distinguishing these from other cells that have

high values caused by the spurious addition of votes from image elements that do not form a single

shape-instance. The latter problem occurs when different constituent parts of the same shape-instance

fail to place votes in the same cell of the accumulator array due to the true parameters of the shape-

instance not corresponding to the parameters values represented by the cells in the accumulator array.

This article proposes a method of improving the HT, and of solving the problems of spurious peaks

and quantization effects, by changing the way in which the votes are cast. Specifically, it is proposed

that the HT can be implemented using a neural network, such that each element in the accumulator

array is replaced by a neuron. The activity of each neuron corresponds to the evidence accumulated

for a particular combination of parameters (i.e., for a shape-instance). For example, in the traditional

application of the HT to straight line detection, the accumulator array consists of a 2-dimensional array

aThe word “shape” will be used to refer to the type of shape that the HT is being used to detect (e.g., lines or squares or

cars), and where it is necessary to make a distinction the phrase “shape-instance” will be used to refer to an instance of the

shape with specific parameters (e.g., a car at a particular location and scale).
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each elements of which corresponds to a possible position and orientation of a line in the image. In

the proposed method, this 2-dimensional accumulator array would be replaced by a vector of neuron

activation values, y. The weights of each neuron define how image elements vote for the shape-instance

represented by that neuron. For example, in straight line detection the weights wj received by neuron j

would be zero from each pixel of the image except those pixels lying along the particular straight line

represented by that neuron. The weights for all the neurons would be represented by a matrix, W, where

each row corresponds to the weights received by a single neuron. The inputs to the neural network would

correspond to the image elements, or object parts, that vote for shape-instances. For example, in straight

line detection the input is a (typically binary) image where only putative edge pixels have nonzero values.

This edge image would be replaced in the proposed method by a vector, x containing the same values.

The voting process performed by the HT can then be implemented in a neural network as follows:

y = Wx

Using a neural network where the outputs are a linear combination of the inputs, as shown in the

preceding equation, will produce results identical to those produced using the standard Hough voting

method. However, implementing the HT as a neural network suggests other ways of calculating y, and

hence, other ways to carry out the voting process. Specifically, by implementing the voting process

using a neural network in which the neurons compete to be active it is possible to produce an accumu-

lator array in which activity, y, is sparse with only the neurons that best explain the image elements

being strongly active. The particular method of competition used in this article performs a form of

probabilistic inference known as “explaining away” (Kersten et al., 2004; Lochmann and Deneve, 2011;

Lochmann et al., 2012; Spratling, 2012b; Spratling et al., 2009). Neurons represent hypotheses about

the shape-instances present in the image, and the input to the network represents sensory evidence for

these different hypotheses. Neurons compete to explain the evidence. Neurons that are best supported

by the evidence have high activity which inhibits other neurons from receiving activation from the same

evidence. Hence, if one hypothesis explains the presence of image elements then those elements are

prevented from supporting alternative hypotheses (i.e., voting for other shape-instances). This solves the

problem of spurious peaks. Additionally, in neural networks it common to represent a stimulus by the

joint activity of a number of neurons. Such a “population coding” approach allows a continuous space

to be represented using a finite number of neurons. Here, this method is used to interpolate between the

parameter values represented by individual neurons, and hence, to overcome the problem of quantization

effects. This population decoding approach also relies on explaining away. Explaining away produces a

sparse accumulator array, and hence, results in isolated peaks of activity that can be easily distinguished

from each other and decoded separately.

Explaining away has previously been proposed as a method of improving the Hough voting process

(Barinova et al., 2012; Gerig, 1987; Woodford et al., 2014). However, these methods have typically

relied on manipulating the accumulator array after the votes have been cast, rather than (as proposed

here), changing the way the votes are cast. For example, Barinova et al. (2012) proposed a probabilistic

voting mechanism that performs explaining away. However, in practice this method is implemented by

performing standard Hough voting, and then rejecting peaks whose evidence can be explained by other

peaks. A similar approach is used in the implicit shape model (ISM; Leibe et al., 2004, 2008) which

uses a “Minimum Description Length” (MDL) criteria to reject peaks where the votes come from image

elements which have voted for other peaks that are believed to be the true ones. Such post hoc analysis

of the accumulator array has also been used to improve the HT when it is applied to the specific task

of straight line detection (e.g., Furukawa and Shinagawa, 2003; Ji et al., 2011; Xu et al., 2015). These

techniques analyse the distribution of the votes in the accumulator array in order to more accurately

locate peaks that correspond to lines in the original image. Previous proposals to solve the problem

of quantization effects have used a continuous (rather than a discrete) space in which to accumulate

votes, and the peaks in this continuous parameter space are then found using a mean-shift clustering

algorithm (Leibe et al., 2004, 2008). Alternatively, it is possible to use a discretized parameter space but

to adaptively refine the resolution of this space (Illingworth and Kittler, 1987).

2



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

To demonstrate the proposed method it is used to implement the HT for straight lines and to imple-

ment the generalised HT applied to object detection in natural images (as in the ISM). The results show

that implementing the HT using a neural network performing explaining away results in a large improve-

ment in detection accuracy in both these applications compared to the standard method of Hough voting.

Furthermore, the results for object detection in natural images are competitive with state-of-the-art tech-

niques.

2 Methods

2.1 The PC/BC-DIM algorithm

The neural network implementation of the HT proposed in this article is realized using the PC/BC-DIM

algorithm (Spratling, 2008, 2010, 2012a,b, 2013, 2014a; Spratling et al., 2009), which is implemented

using the following equations:

e = x⊘ (ǫ2 +Vy) (1)

y← (ǫ1 + y)⊗We (2)

Where y is a (n by 1) vector of “prediction neuron” activations which represent the values in the ac-

cumulator array; x is a (m by 1) vector of inputs representing the image elements that vote for shape-

instances, e is a (m by 1) vector of “error neuron” activations which mediate the competition between

the prediction neurons; W is a (n by m) matrix of weight values defining how each image element

votes for each shape-instance; V is a (m by n) matrix of weight values (V is equal to the transpose of

W but each column is normalised to have a maximum value of one); ǫ1 and ǫ2 are parameters; and ⊘

and ⊗ indicate element-wise division and multiplication respectively. Note that, in many applications

x is sparse, as there are only a limited number of locations in any image where voting elements will

be present. Values of x that are equal to zero have no influence on the resulting values of y which are

calculated via equations 1 and 2. This means that to reduce the computational burden, columns of W

(and rows of V) which correspond to voting elements that are not present in the current image, can be

removed. Rows of W (and columns of V) which contain only zero weight values (corresponding to

cells in the accumulator array for which no image element can vote), can also be removed to improve

computation speed.

To perform the HT, the inputs x were presented to the network. Initially, the values of y were all

set to zero, and equations 1 and 2 were then iteratively updated with the new values of y calculated by

equation 2 substituted into equations 1 and 2 to recursively calculate the neural activations. This iterative

process was terminated after 50 iterations which was sufficient for the network to reach a steady-state.

The values of y produced after 50 iterations were used as the outcome of the proposed neural Hough

voting process.

For all the experiments described in this paper ǫ1 and ǫ2 were given the values 1×10−6 and 1×10−3

respectively. Parameter ǫ1 prevents prediction neurons becoming permanently non-responsive. It also

sets each prediction neuron’s baseline activity rate and controls the rate at which its activity increases

when new evidence appears at the input to the neural network. Parameter ǫ2 prevents division-by-zero

errors and determines the minimum strength that an input is required to have in order to effect prediction

neuron response. As in all previous work with PC/BC-DIM, these parameters have been given small

values compared to typical values of y and x, and hence, have negligible effects on the steady-state

activity of the network. Here, as in previous work with PC/BC-DIM only non-negative weights, inputs,

and activations are used.

Prediction neurons that share inputs (i.e., that receive votes from the same image parts) will inhibit

each other’s inputs. This generates a form of competition between the prediction neurons, such that

each neuron effectively tries to block other prediction neurons from responding to the pattern of inputs

(i.e., the configuration of voting elements) which it represents. This mechanism of competition is im-

plemented using a form of divisive input inhibition (equation 1), in contrast to similar mechanisms of

competition which have been implemented using subtractive inhibition (Harpur and Prager, 1996, 1994;
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Rao and Ballard, 1999; Spratling, 1999; Spratling and Johnson, 2002, 2003). However, the divisive

method is preferred here as it typically converges to a solution more quickly, and the solution is sparser.

The competition between the prediction neurons in a PC/BC-DIM network performs explaining away

(Kersten et al., 2004; Lochmann and Deneve, 2011; Lochmann et al., 2012; Spratling, 2012b; Spratling

et al., 2009). If a prediction neuron wins the competition to represent a particular pattern of inputs, then

it inhibits other neurons from responding to those same inputs. Hence, if one hypothesis (i.e., shape-

instance) explains part of the evidence (i.e., a sub-set of image parts), then support from this evidence

for alternative hypotheses is reduced, or explained away.

The vector of prediction neuron activations, y, can be rearranged to form an array where the cells

represent the same parameter values as the cells in the accumulator array generated by the standard

Hough voting method. However, unlike the standard Hough voting scheme, the accumulator array

produced by PC/BC-DIM will be sparse, and contain isolated regions of activity surrounded by regions

in which the activity is close to zero. To locate each of these regions of activity, cells were identified that

formed a contiguous neighbourhood in which each cell had an activity of more than 0.001, and which

was completely surrounded by cells with a value of 0.001 or less. The parameter values represented by

each region of non-zero activity were then determined using population vector decoding (Georgopoulos

et al., 1986). This simply calculates the weighted average of the parameter values represented by each

cell in the region. Specifically, if cell i in the region has activity value yi and represents the parameter

value pi, then the parameter value represented by the region was calculated as:

∑
i yipi∑
i yi

This population decoding was calculated separately for each parameter (i.e., along each dimension of

the accumulator array). The total sum of the response in each region (i.e.,
∑

i yi) was also recorded.

This was used to indicate the total votes accumulated for the corresponding parameter values (i.e., for

that shape-instance).

2.2 The PC/BC-DIM implementation of the HT for straight line detection

In this application, the voting elements were edge pixels and cells in the accumulator array represented

the radius (ρ) and orientation (θ) of the normal to possible straight lines (Duda and Hart, 1972). The

input was an a by b pixel binary image, where each non-zero pixel indicated the presence an edge at that

location. This was rearranged to form a ab by 1 vector, x. The output y was a pq by 1 vector containing

the votes cast in each cell of the p by q accumulator array. Each row of W was a binary vector with

nonzero values corresponding to each pixel lying on the straight line represented by the corresponding

cell in the accumulator array. Equivalently, each column of W was a binary vector with nonzero values

corresponding to each cell in the accumulator array for which one pixel could vote.

2.3 The PC/BC-DIM implementation of the ISM for object detection

In this application, the voting elements were grayscale image patches that were matched to patches in

an appearance codebook. The accumulator array was either two-dimensional, representing the x- and

y-coordinates of the centre of the object, or was three-dimensional representing the centre coordinates

and scale of the object. When applied to locating objects at a single scale (using a two-dimensional

accumulator array), the following procedure was used.

To define the appearance codebook, image patches were extracted from around keypoints in each

training image. Keypoints were identified using both the Harris and SIFT detectors, and image patches

were 15 by 15 pixels. Patches that fell off the edge of the image were discarded. The remaining patches

were clustered using the hierarchical agglomerative clustering algorithm, with zero-mean normalised

cross correlation (ZMNCC)b between the most different members of each cluster as the measure of

bAlso known as the sample Pearson correlation coefficient.
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similarity. Clustering was terminated once the ZMNCC between all clusters was less than 0.4. Those

clusters with fewer than 13 members were discarded. The arithmetic mean of the patches forming the

remaining clusters were used as the appearance codebook. This process was performed twice, once for

training images containing the object (to produce the positive codebook), and once for training images

that did not contain the object (to produce the negative codebook). Clusters in the positive codebook

that had a ZMNCC with any cluster in the negative codebook that exceeded 0.93 were discarded.

For each member in the positive codebook the distribution of votes, relative to the centre of the image

patch, were defined as follows. For each positive training image, keypoints were located using the Harris

and SIFT detectors. For the patch of image surrounding each keypoint the best matching codebook entry

from both codebooks was found (with matching similarity measured using the ZMNCC). If the best

matching patch was from the positive codebook, the position of the centre of the object relative to the

keypoint location was recorded in the “voting mask” associated with that codebook entry. Finally, each

voting mask was smoothed using a two-dimensional circular symmetric Gaussian function with a sigma

of two pixels.

To locate the object in a new image, keypoints were located in the new image using the Harris and

SIFT detectors. For the patch of image around each keypoint the best matching codebook entry from

both codebooks was found (using the ZMNCC as the similarity metric). If the best matching patch was

from the positive codebook, votes were recorded relative to the location of the keypoint using the voting

mask corresponding to the matched codebook entry. For the standard Hough voting scheme, the votes

can be cast by defining an initially blank “matching map” for each positive codebook entry. Each time

the codebook entry is matched to a keypoint, the matching map for that codebook entry is updated by

changing the value at the coordinates of the keypoint to be equal to the ZMNCC between the image

patch and the codebook entry. Once all matching maps have been updated for all matched keypoints,

votes can be cast by convolving the voting masks with the corresponding matching maps, and summing

these results across all positive codebook entries. The PC/BC-DIM algorithm can also be implemented

using convolution (Spratling, 2014b). However, here votes were cast by concatenating the vectorized

matching maps to form the vector x, and defining the weight matrix, W, so that each column contained

the a concatenation of the vectorized voting masks for the corresponding elements of x.

When applied to locating objects at a multiple scales (using a three-dimensional accumulator array),

the same procedure was used except that separate positive codebooks were trained for each scale, images

patches were 17 by 17 pixels in size (due to objects being, on average, at a larger scale than was the case

for the single scale task), and the voting masks were smoothed using a three-dimensional Gaussian

function with a sigma of two in the x- and y-directions, and one in the scale dimension.

Code

Open-source software, written in MATLAB, which performs all the experiments described in this article

is available for download from: http://www.corinet.org/mike/Code/pcbc_hough.zip.

3 Results

To quantitatively assess the performance of the proposed algorithm the procedures advocated in Agarwal

and Roth (2002) were followed. Specifically, given an accumulator array the peaks exceeding a given

threshold level were extracted and the parameter values represented by these peaks were compared to

ground-truth data. For standard Hough voting, the threshold was applied to the cell values after non-

maximum suppression. For the PC/BC-DIM method of voting, the threshold was applied to the sum of

the votes corresponding to each isolated peak in the accumulator array (see section 2.1). If the parameter

values were sufficiently close to the ground-truth (see the following sections for the exact criteria used in

each task), this was counted as a true-positive. If multiple peaks in the accumulator array corresponded

to the same ground-truth parameters, only one match was counted as a true-positive, and the rest were

counted as false-positives. All other peaks in the accumulator array that failed to match the ground-truth
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Figure 1: Results for a simple synthetic image containing three straight lines, when using a θ

resolution of 5 and a ρ resolution of 1. The top row shows the accumulator arrays produced

by standard Hough voting, and by the PC/BC-DIM method of voting. The bottom row shows

the original binary images (black pixels are edge pixels), and (in green) the lines detected by

thresholding the corresponding accumulator array at a value of 12. Standard Hough voting

finds three lines with estimated parameters of (-90,-9), (-45,0), (65,18) that correspond to the

lines in the image. PC/BC-DIM finds three lines with estimated parameters of (-90,-9), (-45,0),

(64.3,18) that each correspond to a line in the image.

data were also counted as false-positives. Ground-truth parameters for which there was no corresponding

values found by the HT were counted as false-negatives. The total number of true-positives (TP ), the

number of false-positives (FP ), and the number of false-negatives (FN ) were recorded over many test

images, and were used to calculate recall ( TP
TP+FN

) and precision ( TP
TP+FP

). By varying the threshold

applied to the accumulator array, precision recall curves were plotted to show how detection accuracy

varied with threshold. To summarise performance, the f-score (= 2.recall.precision
recall+precision

= 2TP
2TP+FP+FN

)

which measures the trade-off between precision and recall, was calculated at the threshold that gave the

highest value. In addition, to allow comparison with previously published results, the equal error rate

(EER) was also found. This is the percentage error when the threshold is set such that the number of

false-positives equals the number of false-negatives.

3.1 Straight line detection

To illustrate of the behaviour of the proposed algorithm it was initially applied to the task of detecting

straight lines. The effects of explaining-away produced by the proposed voting method can be seen by

comparing the accumulator arrays generated by PC/BC-DIM with those generated by standard Hough

voting. The qualitative performance of each method is assessed by showing the straight lines found by

each method (at a single threshold) projected back onto the original image. Quantitative assessment of

performance is given later in this section.

Figure 1 shows the results for a simple synthetic image containing three straight lines with parameter

values (θ, ρ) of (-90,-9), (-45,0) and (63.4,17.9). The standard Hough voting method results in a dense

accumulator array. Following the application of non-maximum suppression, it is possible to find a

threshold that accepts only those cells that correspond to lines in the image. In this particular example,

the cells that correspond to lines have values of 21 or 20. However, there are numerous other cells with

relatively high values in the accumulator array after non-maximum suppression (for example, there are a

total of 7 cells with values greater than 8 and 23 cells with values greater than 5). In contrast, the PC/BC-

DIM method of voting results in a sparse accumulator array with exactly three clearly identifiable peaks.

6



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Hough

radius

-20 0  20 

o
ri
e
n
ta

ti
o
n

-45

0  

45 

0

5

10

15

20

PC/BC-DIM

radius

-20 0  20 

o
ri
e
n
ta

ti
o
n

-45

0  

45 

0

5

10

15

Hough PC/BC-DIM

Figure 2: Results for the same image used in Fig. 1 when using a θ resolution of 3.9 and a

ρ resolution of 1. The format is the same as, and described in the caption to, Fig. 1. Using a

threshold of 12, standard Hough voting finds three lines with estimated parameters of (-90,-9),

(-47,0), (62.61,18) that correspond to the lines in the image, but the parameters of one line are

poorly estimated. PC/BC-DIM finds three lines with estimated parameters of (-90,-9), (-45,0),

(63.2,18) that are all close to the true parameters of the lines in the image.
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Figure 3: Results for the same image used in Fig. 1 when using a θ resolution of 5 and a ρ

resolution of 2. The format is the same as, and described in the caption to, Fig. 1. Using a

threshold of 12, standard Hough voting finds eight lines. PC/BC-DIM finds three lines with

estimated parameters of (-85.9,-8), (-45,0), (63.8,18) that correspond to the lines in the image,

although the parameters of the first line are poorly estimated.
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These peaks all have amplitudes exceeding 20 and there are no other peaks with amplitudes greater than

0.001. It is therefore far easier to find a threshold that will identify the parameters of the lines in the

image using the PC/BC-DIM method than using the standard Hough voting procedure.

The results shown in Fig. 1 were generated using an accumulator array with cells placed every 5o

degrees along the θ dimension and every 1 pixel along the ρ dimension. Figure 2 shows results for

the same image when a different quantization of the accumulator array is employed. Specifically, the

resolution in the θ dimension has been increased to 3.9o degrees. In this case the estimate of the param-

eters of the −45o line generated by the standard Hough voting mechanism is worse, due to −45o not

being represented by cells in the accumulator array. In contrast, the PC/BC-DIM algorithm represents

the −45o line using a small population of responses, and the exact parameters are successfully decoded

from this distributed code. Another problem, that is not noticeable from Fig. 2, is that in the accumu-

lator array generated by standard Hough voting the peaks that correspond to lines in the image are less

distinguishable from spurious peaks. Specifically, while two cells corresponding to lines that are present

in the image have values of 21, the third cell corresponding to the −45o line has a value of 13. There

are numerous other cells with high values, including 3 with a value of 9. In contrast, the amplitude of

all three peaks found by PC/BC-DIM are in the range 19.9 to 21.3, and there are no other peaks with

amplitudes greater than 0.001.

Figure 3 shows the effects of changing the quantization used for the ρ dimension of the accumulator

array. In this case the resolution is 2 pixels. Using the same threshold as in the previous experiments

(the highest threshold that can be used and still enable Hough voting to detect three lines in Fig. 2), eight

lines are now detected using the standard Hough voting method. In contrast, the PC/BC-DIM method of

voting succeeds in detecting the three lines in the image, although the parameters of one line are poorly

estimated.

Figure 4 shows results for a more complex synthetic image. In contrast to the previous examples, this

image is larger, contains more lines, and approximately 66% of the pixels are missing from each line.

For this particular example, using the same threshold as previously, the PC/BC-DIM method performs

better at detecting the lines than the standard Hough voting method. To determine if this was true in

general, 250 images of this type were generated and each was analysed using the standard Hough voting

method and the proposed one. Each image was 150 by 150 pixels and contained between four and eight

lines. Roughly half the pixels in each line were removed. The parameters of the lines detected by the two

methods were compared to the known parameters of the lines present in each image. To be considered a

true-positive the value of θ given by the detector was required to be withing 4o of the ground-truth value,

and the value of ρ was required to be within 5 pixels of the ground-truth value. The precision recall

curves for the two methods are shown in Fig. 4. It can be seen that the PC/BC-DIM method of voting

significantly outperforms the standard Hough voting method when applied to this task. Specifically,

the f-score was 0.99 for PC/BC-DIM, and 0.89 for Hough voting. Including additional pixels in each

image to act as background noise makes the task of detecting the true lines much harder. However, as

illustrated in Fig. 5 the performance of the PC/BC-DIM method of voting remains significantly superior

to that of standard Hough voting. Specifically, with 1% noise the f-score was 0.96 for PC/BC-DIM, and

0.85 for Hough voting.

For the PC/BC-DIM method of voting, the parameters are determined by taking the weighted average

of the parameters associated with all the cells forming an isolated peak in the accumulator array (see

section 2.1). To determine if this population decoding method yielded more accurate parameter estimates

than the standard HT, 250 randomly generated 150 by 150 pixel images were created, each of which

contained exactly one straight line with approximately two-thirds of the edge pixels missing. Both the

PC/BC-DIM method and the standard HT were applied to each of these images, and for both methods

the parameters encoded by the peak with the most votes were found. The absolute difference between

the estimated parameters and the true parameters were then calculated and the median value of this

error across all 250 images was recorded. This experiment was repeated using accumulator arrays with

various resolutions for the orientation parameter (θ) and the radius parameter (ρ). The results are shown

in Fig. 6. It can be seen that, for all resolutions of the parameters, the population decoding method used
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Figure 4: Results for a synthetic image containing eight lines with approximately 66% of the

pixels missing. The top two rows show the accumulator arrays produced by standard Hough

voting, and by the PC/BC-DIM method of voting when using a θ resolution of 5 and a ρ res-

olution of 1. The bottom row shows the original binary images (black pixels are edge pixels),

and (in green) the lines detected by thresholding the corresponding accumulator array at a value

of 12. Standard Hough voting detects 10 lines. PC/BC-DIM finds exactly the eight lines in the

input image. The graph shows recall versus 1-precision for the standard Hough method and the

proposed PC/BC-DIM method when applied to 250 randomly generated images each of which

contains between four and eight lines with approximately two-thirds of the edge pixels missing.

by the proposed algorithm is more accurate at determining the parameters of the straight line.

3.2 Car detection

To assess the affects of using PC/BC-DIM to perform Hough voting in a natural image object detection

task the method was applied to the UIUC cars dataset (Agarwal et al., 2004; Agarwal and Roth, 2002).

An ISM-like detection method (see section 2.3) was trained on the training set which consists of 500 car

images and 550 non-car images. For the single-scale task the test set contains 170 images containing

200 images of cars taken from the side. The multi-scale task has a test set of 108 images containing 139

cars at a variety of scales. For this latter task the ISM-like detection method was trained on the 500 car

and 550 non-car training images resized to produced training images at six different scales.

To illustrate the behaviour of the proposed method, Fig. 7 shows the accumulator array produced by

PC/BC-DIM in comparison to that produced by standard Hough voting for two images taken from the

UIUC single-scale cars dataset. For the first image, the standard Hough voting scheme results in a peak

corresponding to the location of the car, but also weaker peaks corresponding to locations where a car

would be when the front wheel is identified as a rear wheel, and where a car would be when the rear

wheel is identified as a front wheel. The PC/BC-DIM voting method removes these secondary peaks,

as the votes that contribute to them have been explained away by the more likely explanation that the
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Figure 5: Results for a synthetic image containing eight lines with approximately 66% of the

pixels missing and 1% of all pixels marked as edges to act as background noise. The format of

the figure and the experimental parameters used are the same as, and described in the caption

to, Fig. 4. Standard Hough voting produces seven true-positives, 27 false-positives, and one

false-negative. PC/BC-DIM produces seven true-positives, three false-positives, and one false-

negative. The graph shows recall versus 1-precision for the standard Hough method and the

proposed PC/BC-DIM method when applied to 250 randomly generated images each of which

contains between four and eight lines with approximately two-thirds of the edge pixels missing,

and 1% of the background pixels added as noise.
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Figure 6: Median absolute error in parameter estimates for a range of resolutions of the accu-

mulator array. At each resolution of the accumulator array, both the standard Hough method

and the proposed PC/BC-DIM method were applied to 250 randomly generated images each of

which contains exactly one line with approximately two-thirds of the edge pixels missing. The

parameters of the line estimated by the largest peak in the accumulator array were compared to

the true parameters of the line in the image. The graphs show the median absolute error accoss

the 250 trials at each combination of parameter resolutions used. Errors in the estimate of the

orientation parameter (θ) are shown in the two graphs on the left, and errors in the estimate of

the radius parameter (ρ) are shown in the two graphs on the right.
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Figure 7: Results for two example images from the UIUC cars dataset. The first column shows

the original test images, keypoints are indicated by the green crosses, and those keypoints at

which image patches were matched to codebook entries corresponding to car parts are indicated

by red circles. The second column shows the corresponding accumulator arrays produced by

standard Hough voting, and the last column shows accumulator arrays generated by the PC/BC-

DIM method.

Method UIUC-single UIUC-multi

Hough 17 33.1

PC/BC-DIM 1 3.6

ISM (Leibe et al., 2008) 9 -

ISM+MDL verification (Leibe et al., 2008) 2.5 5

Hough Forest (Gall and Lempitsky, 2009; Gall et al., 2011) 1.5 2.4

Discriminative HT (Okada, 2009) 1.5 -

IHRF (Lin et al., 2014) 0 1.3

PRISM (Lehmann et al., 2011) - 2.2

ESS (Lampert et al., 2008) 1.5 1.4

sliding window HMAX+verification (Mutch and Lowe, 2006) 0.06 9.4

chains model (Karlinsky et al., 2010) 0.5 -

Table 1: Percentage EER for various methods on the UIUC single-scale and multi-scale cars

dataset.

car is in the centre of the image. For the second image, the standard method of voting results in four

peaks. The left-most corresponds to the location voted for by the front and rear wheels of the left-most

car. The second peak corresponds to a location voted for by the rear wheels of the left-hand car and the

front wheels of the right-hand car. The third peak corresponds to the location voted for by the front and

rear wheels of the right-most car, and the right-most peak is at the second location voted for by the rear

wheels of the right-hand car. The PC/BC-DIM voting method explains-away the false peaks, leaving

two clear maxima corresponding to the locations of the two cars.

11



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1-precision
0 0.2 0.4

re
c
a
ll

0.5

0.6

0.7

0.8

0.9

1

Hough

PC/BC-DIM

 

  

Figure 8: Results of applying the proposed method to the single-scale UIUC cars dataset. The

graph shows recall versus 1-precision for the standard Hough voting method and the proposed

PC/BC-DIM method. The images show all the failure cases at equal error rate for the PC/BC-

DIM method. Bounding boxes for cars detected by the proposed algorithm are shown in yellow.

The top row shows the two cases in which the proposed method fails to locate a car. The bottom

row shows the two cases where the proposed method makes a false detection.
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Figure 9: Results of applying the proposed method to the multi-scale UIUC cars dataset. The

graph shows recall versus 1-precision for the standard Hough voting method and the proposed

PC/BC-DIM method. The images show four, out of the 10, failure cases at equal error rate

for the PC/BC-DIM method. Bounding boxes for cars detected by the proposed algorithm are

shown in yellow. The top row shows two cases in which the proposed method fails to locate a

car. The bottom row shows two cases where the proposed method makes a false detection. Note

that the last image has been flagged as containing a false-positive as the lighter, more distant,

car is not included as a true-positive in the annotation of the test data (the same situation occurs

for another test image, not shown).

To quantitatively assess the performance of the proposed algorithm the criteria for counting true-

positives, false-positives, and false-negatives defined by Agarwal et al. (2004) was used (indeed, the

java code supplied with UIUC cars dataset was used to perform this evaluation). The precision recall

curves obtained on the UIUC single-scale cars dataset by the PC/BC-DIM method of voting and the

standard Hough method are shown in Fig. 8. It can be seen that the PC/BC-DIM method is significantly

more accurate than standard Hough voting. Specifically, the f-score was 0.99 for PC/BC-DIM and 0.83

for Hough voting. The EER was 1% for PC/BC-DIM and 17% for Hough voting. The results obtained on
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the UIUC multi-scale cars dataset are shown in Fig. 9. In this case also, the proposed method of voting

is significantly more accurate at detecting cars than standard Hough voting. Specifically, the f-score was

0.96 for PC/BC-DIM and 0.68 for Hough voting. The EER was 3.6% for PC/BC-DIM and 33.1% for

Hough voting. These results are compared to other published methods in Table 1. It can be seen that the

proposed method is competitive with the state-of-the art, and particularly, that it outperforms ISM.

The ISM algorithm replaces the standard Hough voting procedure with a method that casts votes in a

continuous Hough space, then uses the mean-shift clustering algorithm to find peaks, and subsequently

uses an MDL verification method to reject false peaks. Here, the standard Hough voting procedure has

been replaced with the PC/BC-DIM algorithm, and this gives rise to larger improvement in performance

over the standard Hough voting method than is seen for ISM. However, it is not possible to attribute

this improved performance solely to the new voting procedure as the implementation of an ISM-like

algorithm given in section 2.3 has a number of other differences to the version of the ISM originally

proposed by Leibe et al. (2004, 2008). Specifically, the ISM-like algorithm used here is trained using

the UIUC training set rather than a bespoke dataset. The results for ISM reported in Table 1 were

produced using different keypoint detectors and image descriptors for the single-scale and multi-scale

tasks. Specifically, for the single-scale dataset ISM used the Harris keypoint detector and image features

that were image patches. For the multi-scale dataset ISM used Hessian-Laplace keypoints and Local

Shape Context features (Belongie et al., 2002). In contrast, the ISM-like algorithm used here employed

the same detector and descriptor for both tasks: a combination of both the Harris and SIFT detectors and

grayscale image patches. To generate the codebook, ISM uses average-link agglomerative clustering and

retains all clusters which have at least two members, while the ISM-like algorithm used here employs

complete-link agglomerative clustering, and retains only those clusters that have at least 13 members. In

the original ISM algorithm, during detection, the descriptor around each keypoint can be matched to all

codebook entries that have a similarity exceeding a threshold. In the ISM-like algorithm implemented

for this work, at most one codebook entry is matched to each keypoint, and the method of determining

if a codebook entry matches or not uses a second codebook trained on the background images.

4 Discussion

In the Hough Transform, each image element will generate multiple votes. For example, a pixel that

has been identified as an edge will vote for multiple orientations of straight line that can pass through

that point, or a patch of image that has been identified as part of a car will vote for multiple places

were the car centre might be located. However, typically only one (or none) of these votes will be

correct. There will typically be at most one straight line passing through the edge pixel, and there

will be at most one car that the image patch forms part of. If the correct vote can be identified then

this can be used to “explain away” the other, spurious, votes removing them from the accumulator

array. One consequence of explaining away is, therefore, that it is far easier to identify the peaks in

the accumulator which correspond to shapes which are present in the image (i.e., it helps to solve the

problem of “spurious peaks”). A second consequence of explaining away is that the accumulator array

becomes much sparser, allowing the parameters of the shape to be calculated as the weighted average

of the parameters associated with all the cells forming an isolated peak in the accumulator array. This

can result in a more accurate estimation of the parameters and for parameter values to be interpolated

between the those represented by individual accumulator array cells (i.e., it helps to solve the problem

of “quantization effects”).

This article proposes a new method for performing explaining away in the HT. This novel method

utilises a competitive neural network algorithm called PC/BC-DIM. This algorithm performs explaining

away through an iterative process. It has been shown that the proposed method results in a significant

improvement in performance over standard Hough voting in two applications: straight line detection,

and car detection in natural images.

The current work has been concerned with improving the Hough voting process. Other recent work

on the HT has been concerned with improving the identification of voting elements (e.g., Gall and Lem-
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pitsky, 2009; Gall et al., 2011; Lin et al., 2014; Maji and Malik, 2009; Okada, 2009; Razavi et al., 2011).

This previous work is entirely complementary to the current work, and it should therefore be possible

to combine the proposed voting process with these improved methods of voting element identification

to further boost the performance of the HT. For example, here an unsupervised clustering method was

used to define a codebook, codebook entries were grayscale image patches, and these were matched to a

sparse set of image locations. However, recent work on improving the identification of voting elements

suggests that performance is improved by using a supervised learning method to define a descrimina-

tive codebook, using image descriptors other than grayscale intensity, and using dense sampling of the

images.
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