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HIGHLIGHTS

o The article clarifies the adverse effects of anaesthesia on circulatory physiology.

o It outlines how increased venous capacity lowers CO and MAP and impairs tissue DO, regulation.
e Pre-emptive use of venoconstrictor and/or appropriate fluid infusion improves DO,.

e Understanding the glycocalyx improves rational administration of fluid.

e Restorative action during anaesthesia prevents development of oxygen debt.
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ABSTRACT

The paper examines the effects of anaesthesia on circulatory physiology and their implications regarding
improvement in perioperative anaesthetic management. Changes to current anaesthetic practice, rec-
ommended recently, such as the use of flow monitoring in high risk patients, are already beginning to
have an impact in reducing complications but not mortality [1]. Better understanding of the patho-
physiology should help improve management even further. Analysis of selected individual clinical tri-
als has been used to illustrate particular areas of patho-physiology and how changes in practice have
improved outcome. There is physiological support for the importance of achieving an appropriate rate of
oxygen delivery (DO,), particularly following induction of anaesthesia. It is suggested that ensuring
adequate DO, during anaesthesia will avoid development of oxygen debt and hence obviate the need to
induce a high, compensatory, DO, in the post-operative period. In contrast to the usual assumptions
underlying strategies requiring a global increase in blood flow [1] by a stroke volume near maximization
strategy, blood flow control actually resides entirely at the tissues not at the heart. This is important as
the starting point for understanding failed circulatory control as indicated by ‘volume dependency’. Local
adjustments in blood flow at each individual organ — auto-regulation — normally ensure the appropriate
local rate of oxygen supply, i.e. local DO,. Inadequate blood volume leads to impairment of the regulation
of blood flow, particularly in the individual tissues with least capable auto-regulatory capability. As
demonstrated by many studies, inadequate blood flow first occurs in the gut, brain and kidney. The
inadequate blood volume which occurs with induction of anaesthesia is not due to blood volume loss,
but probably results from redistribution due to veno-dilation. The increase in venous capacity renders
the existing blood volume inadequate to maintain venous return and pre-load. Blood volume shifted to
the veins will, necessarily, also reduce the arterial volume. As a result stroke volume and cardiac output
fall below normal with little or no change in peripheral resistance. The resulting pre-load dependency is
often successfully treated with colloid infusion and, in some studies, ‘inotropic’ agents, particularly in the
immediate post-operative phase. Treatment during the earliest stage of anaesthesia can avoid the build
up of oxygen debt and may be supplemented by drugs which maintain or restore venous tone, such as
phenylephrine; an alternative to volume expansion. Interpretation of circulatory patho-physiology
during anaesthesia confirms the need to sustain appropriate oxygen delivery. It also supports reduc-
tion or even elimination of supplementary crystalloid maintenance infusion, supposedly to replace the
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“mythical” third space loss. As a rational evidence base for future research it should allow for further

improvements in anaesthetic management.

Crown Copyright © 2014 Published by Elsevier Ltd on behalf of Surgical Associates Ltd. This is an open
access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

There has been a great deal of controversy recently concerning
perioperative haemodynamic and fluid management, particularly of
high risk surgical patients. Although blood flow monitoring is
reducing complications in high risk surgical patients [1] contro-
versies surround the amount and type of fluid and the drugs
designed to increase cardiac output (CO) and oxygen delivery (DO5).
Some studies show beneficial effects while others do not. What is the
explanation for this disparity?

1. Optimising haemo-dynamics immediately, or very soon after
the insult — e.g. from an acute reduction in MAP/CO during in-
duction of anaesthesia or as a result of blood loss — will usually
work well, in contrast to measures introduced later (e.g. starting
therapy after 24 h).

2. Measures principally aimed at sustaining blood pressure (IMAP)
may fail to maintain tissue need for oxygen, unless DO, (and
hence CO) are taken into account.

3. Recent studies make a strong case that current routine crystal-
loid maintenance regimens result in a gross excess of tissue fluid
and sodium ion load and may well be a confounder for so called
goal directed therapy; the protocol aimed at treating pre-load
dependency.

In this paper, results are presented from a highly specific se-
lection of clinical trials and experimental results, to illustrate peri-
operative mechanisms which interfere with circulatory delivery of
oxygen, and illustrate ways these can be countered. Optimum
management ensures sustained adequacy of oxygen delivery.
Suggested therapeutic manoeuvres simplify management, relating
it to the need for an adequate, but not excessive rate of oxygen
supply to the tissues (DO;) and emphasise the need to obtain pre-
induction SV, CO, MAP and DO, reference values in elective patients
and maintain them intraoperatively. This strategy may result in an
improvement in outcome [2].

2. Evidence from specific trials and experimentation
2.1. An intra-operative study — Noblett et al. (2006) [3]

The study of Noblett et al. [3] demonstrates that correction of
pre-load dependency (volume responsiveness) during the earliest
stages of anaesthesia, can improve outcome compared with similar
colloid volume given later. The patients underwent elective colo-
rectal resection; standard volatile-based general anaesthesia was
used for all patients. The control group received peri-operative fluid
at the discretion of the anaesthetist in contrast to the ‘intervention’
(or protocol) group who received colloid boluses throughout the
operative period, prompted by Doppler assessment suggesting pre-
load responsiveness. The colloid for the intervention group was
predominantly given in the earliest stages of the operation,
whereas a similar total colloid volume, given to the control group,
was predominantly administered during the later stages. Cardiac
index (CI) was consistently higher in the intervention group
compared to the control patients (Fig. 1).

Outcomes were much improved in the intervention group
including; a shorter hospital stay (7 versus 9 days), reduced

morbidity (2% versus 15% major complications in the control group)
and significantly lower interleukin (IL) 6 values. The intervention
group patients were also able to take food earlier than the control
patients (2 versus 4 days). Early and effective compensation for pre-
load dependency therefore appears to have been responsible for
the improvements.

The reason behind the insufficient circulatory volume in
anaesthesia is not immediately obvious since, the fluid respon-
sive state is frequently found as early as the immediate post
induction period prior to any fluid loss. There is evidence that
fluid responsiveness is due to an increase in venous capacity as a
result of reduced sympathetic activity. The relaxation of venous
wall smooth muscle tone [4], means that the original, un-
changed, blood volume is low relative to the new higher venous
capacity. Hence, administration of early colloid fills the new
extra capacity.

2.2. Evidence for venous relaxation and its effect on cardiac output

Evidence for venous relaxation comes from a series of experi-
ments with dogs, where nine had complete sympathetic blockade
from spinal anaesthesia [5]. The immediate result was a fall in mean
arterial blood pressure to about 45 mm Hg. Normal pressure was
restored by an infusion of noradrenalin (nor-epinephrine —
0.0052 mg kg~! min~!). The return to normal was a result of
restoration of venous wall tone since, in vitro experimentation us-
ing rings of venous tissue has shown that nor-adrenaline causes
venous wall constriction [6].

Consistent with the idea that induction of anaesthesia does not
change the blood volume, but increases the capacity of the venous
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Fig. 1. Cardiac index measured at 10-min intervals during surgery, timed from
immediately post-induction of anaesthesia. Values are mean (+s.d.). Noblett et al. [3]
(With permission from John Wiley and Sons, publishers of the British Journal of
Surgery).
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system [7], is the tendency for venous inflow to the heart to
oscillate to a greater extent than normal following induction and at
other times where there is pre-load responsiveness. This variability
is indicated by high stroke volume and/or pulse pressure variation
(SVV & PPV). Excess venous capacity leads to a decrease in venous
return during lung inflation and an increase in venous return as the
thoracic cage relaxes during expiration. High PPV and SVV are good
indicators of inadequate blood volume and thus pre-load respon-
siveness [8,9]

Although there is no net volume deficit following induction the
increased capacity of the venous system is the basis for the reduced
SV, CO and MAP. For any given inflow to the venous system, the
larger venous pathway will result in a delay in the arrival of blood at
the heart with a reduction in preload and cardiac output (CO).
Furthermore, pooling of blood in the veins reduces arterial and
capillary capacity, with immediate reduction in mean arterial
pressure. The fall in SV and MAP are well illustrated by results from
the study of Purushothaman et al. [10] in Fig. 2. The fall in MAP and
SV on anaesthetic induction are clearly seen relative to the pre-
induction values. There was little change in SVR despite the
increasing depth of anaesthesia. Hence, most of the fall in MAP was
a result of the lowered SV and CO. In addition, the patients with
high SVV following induction had the biggest fall in SV and CO; i.e.
high SVV indicated profound venodilation. Although fluids (in
particular colloid) may be used to restore venous capacitance,
preload, SV and CO this might better be corrected by
venoconstriction.

The illustration (Fig. 2) also emphasises the reason why
MAP is lowered; it is principally from reduced SV and CO, not a
reduction in SVR. If the fall in MAP was due predominantly to a
fall in SVR then CO would be maintained or even increased.
The effects on CO and MAP of changes in venous capacity have
been discussed in more detail by Guyton et al. [11] Changes in
the bispectral index (BIS™, Covidien, USA) were used to assess
the depth of anaesthesia; its use and validity will be discussed
later.

The CO fall, for the patients' measurements illustrated in Fig. 2
was, on average, 33% (+14% SD) contributing 82% to the average
fall in MAP (40% + 12% SD). As mentioned above (see Figure text)
venodilation due to propofol increases venous capacity and thus
decreases venous return and preload. This fall in CO on induction of
anaesthesia with propofol and etomidate has been confirmed in a
recent study [12].
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Fig. 2. Induction changes in SV, MAP, SVR and BIS (Bispectral index). BIS indicates the
depth of anaesthesia. The anaesthesia was via intravenous propofol and remifentanil.
This Figure was shown when the abstract — Purushothaman et al. [ 10] — was presented
at The American Society of Anesthesiology meeting.

2.3. A post-operative study — Pearse et al. [13]

Pearse et al. [13] studied 122 high risk surgical patients in the
postoperative period (62 in the protocol group, 60 in the control
group). The protocol included initial post-operative correction of
pre-load dependence and utilised SV responses to colloid boluses to
maximize CO. Dopexamine supplementation was given subse-
quently to patients who failed to reach a particular DO, (DOl
600 ml min~' m~2). In most cases, where the DO, goal was not
reached with supplementary colloid, it was achieved with dopex-
amine administration. For the control patients central venous
pressure (CVP) changes were used to guide dosage of colloid.
Control group patients were not given dopexamine
supplementation.

Improvements, following protocol group treatment, included
shorter hospital stay than for the CVP controlled group (median
duration 11d versus 14d), and less complications (27 versus 41). It is
likely that, with postoperative intervention, compensatory therapy
(higher DO,) was required to make up for deficiencies in DO,
(oxygen debt) incurred during surgery.

2.4. Fluid overload as a confounder

The above two major clinical studies [3,13] support the idea that
peri-operative CO measurement, utilizing appropriate volume
supplementation with colloid fluids and inotropes, improve
outcome. The extra aim in the postoperative study [13], to reach a
particular DO,, was based on factors to be considered later, after
some observations here concerning crystalloid fluid
supplementation.

Some recent studies appear to refute the claim that periopera-
tive optimization (or ‘maximisation’) of SV and hence CO, with
colloid and inotrope, improves outcome during and after anaes-
thesia. Otherwise it would be a simple matter to recommend uni-
versal implementation of the colloid fluid supplementation
approach. Fluid overload has, however, been shown to be a real
concern [14]. The study of Lobo et al. [15] has addressed the
problem, in particular, with regard to ‘maintenance’ intravenous
(iv) crystalloid. It is important to avoid lumping crystalloid and
colloid together simply as fluid, since crystalloid adds to all com-
partments, colloid principally, at least initially, to the circulatory
volume.

The study of Lobo et al. [15] utilized a DO, goal similar to that of
Pearse et al. [13] above, for two groups; one with typical crystalloid
‘maintenance’ iv crystalloid (lactated Ringer's solution,
12 ml kg~ ' h™1), the other with a considerably lower infusion rate
(4 ml kg~! h™1). Optimization of DO,I was continued throughout
surgery and for the following 8 h. Both groups showed a reduced
incidence of complications relative to earlier studies on a similar
group of patients [16]. There was, however, a significantly greater
reduction in complications where maintenance crystalloid was
limited (restricted group 20.0%; conventional group 41.9%). This
was despite the conventional group having higher DO,. High
crystalloid infusion rates therefore appeared to confound advan-
tages gained from the treatment of pre-load dependency.

It is possible that even better results would be obtained by
avoiding continuous supplementary intra-venous crystalloid infu-
sion altogether, except under circumstances where there have been
significant, measured, excess fluid losses. Chappell et al. [17] sug-
gest that most, so called, restrictive regimens could still result in the
infusion of more crystalloid than required. This is because the fluid
deficit from fasting, insensible fluid loss, evaporation during sur-
gery was thought to be exacerbated by a loss of functional extra-
cellular fluid, referred to as ‘3rd space’ loss. This has now been
refuted [18].
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It has been shown that routine infusion of 12 ml kg~' h~! of Na*
based fluid such as 0.9% NaCl or Hartmann's/Lactated Ringer's to
replace the “imaginary” 3rd space loss often results in gross fluid
overloading. Operative complications correlate strongly with both
weight gain and excess fluid [19]. Chappell et al, 2008 [17]
recommend the use of crystalloid specifically for replacement of
measured losses of fluid and electrolyte, (colloid is more appro-
priate for intra-vascular volume expansion). The introduction of so
called “restrictive” or “zero balance” intraoperative fluid adminis-
tration techniques has been introduced [20], because methods used
to determine the, so called, “third space loss” were flawed [21].

2.5. Crystalloid, colloid and the glycocalyx

Two major advances have clarified the understanding of fluid
absorption from the capillary lumen. Firstly, measurement of
interstitial tissue hydrostatic and colloid osmotic pressure led to
revision and then it was found that there is a layer of tissue, the
glycocalyx, constituting a previously unknown component lining
the endothelium [22,23]. It was thought, originally (Starling hy-
pothesis), that fluid passed out of capillaries over the earlier part of
capillary transit, while capillary hydrostatic pressure (P.) exceeded
plasma protein osmotic pressure (7). Then it was thought that
fluid was re-absorbed, as P. fell below .. However, it is now known
that outflow from capillaries is continuous, with uptake into
lymphatic vessels equal to the total plasma water every 9 h.
Reabsorption at the venous end only occurs transiently when there
is a sudden fall in pressure. The only tissues where extra-vascular
fluid moves into capillaries in a sustained manner are lymph
nodes vessels, renal tubules (cortical peri-tubular capillaries and
the ascending vasa recta) and, during the intestinal absorptive
phase.

Understanding of glycocalyx physiology has clarified the calcu-
lation of the expected balance between intra-vascular and inter-
stitial hydrostatic and colloid osmotic pressures which had
predicted too great an outflow. It also transpired that the sub-
glycocalyx space colloid osmotic pressure (mg) rather than the
interstitial colloid osmotic pressure (7;) was the major determinant
of the colloid osmotic pressure gradient between the capillary
lumen and the interstitial fluid.

The glycocalyx constitutes a layer which lines the whole circu-
latory endothelial surface. In the capillaries there are tight junctions
between the endothelial cells at the base of shallow clefts between
the cellular endothelial surfaces. These channels are covered by the
glycocalyx forming the sub-glycocalyx spaces. Sufficient albumin is
present to create the sub-glycocalyx osmotic pressure (7g). There
are widely spaced gaps in the tight junction which are entrances to
tortuous pathways to the interstitial tissue space. Outflow of fluid
passes through these purely under the residual hydrostatic pres-
sure. So, the forces generating outflow are P, interstitial fluid
pressure P; and ¢ and Tg.

The glycocalyx exhibits many important functions in addition to
its partial penetration by albumin. Negative charges are responsible
for an exclusion zone with central streaming of red cells and other
cellular blood components [24]. It is delicate with vulnerability to
damage, losing much of its bulk when there is excess volume
expansion from either crystalloids or colloids. Even though crys-
talloid expansion is briefer the damage is done where an excess is
infused over and above a blood volume already adequate or larger
than normal. Colloid and crystalloid effects on blood volume, and
blood pressure, were compared as pre-load prior to spinal anaes-
thesia for caesarean section, with a dose dependent expansion from
colloid (hydroxyl-ethyl starch solution); better normalization of
arterial blood pressure occurred with the higher of two

concentrations of colloid [25]. Here the expansion is appropriate
filling the dilated venous compartment.

The decision to use colloid for blood volume expansion in
anaesthesia fulfils a need to fill the expanded venous capacity —
there is no fixed blood volume. The appropriate volume of the
vascular compartment is that which keeps the venous side of the
circulation sufficiently stretched to avoid loss of arterial volume
and hence arterial blood pressure. The circulation is then more
appropriately filled than it is without the added volume. As pointed
out earlier, the use of phenylephrine is probably a better way of
achieving compatibility between blood volume and capacity since
it acts towards restoring normal capacity by compensating for the
anaesthetic derived loss of tension in the venous walls.

There are different clinical situations where it is argued that
crystalloid infusion is more appropriate, especially in longer term
situations, as in intensive care. The reasoning concerns the inhibi-
tion of hepatic albumin metabolism since permeable capillaries
allowing extensive hepatic penetration with colloid can impair
normal hepatic function and albumin production [26].

2.6. Tissue regulation of blood flow

Clinical practice has lost sight of the fact that the majority of in-
dividual tissues regulate their own blood flow; known now for
around 100 years. Regulation of blood flow to individual organs and
parts of those organs occurs via appropriate local adjustment of
input resistance. At rest blood flow is normally sustained virtually
constant in the face of wide variations in arterial blood pressure [27].
In the review of organ auto-regulatory capabilities by Green et al.
[27] they quote multiple studies showing the strongest auto-
regulatory capabilities are those of skeletal muscle and heart
whereas the weakest capabilities are those of intestine (gut) and
liver (splanchnic areas). Brain and kidney show intermediate auto-
regulatory capability. Skin does not auto-regulate its blood flow
(the priority is thermal) and for bone blood flow the total and its
regulation are uncertain. The great majority of blood flow is there-
fore regulated by the tissues. Auto-regulation has been shown to be
independent of innervation [5,11]. Since blood flow is determined at
the tissues venous return, total tissue blood flow, determines the
input to the heart (pre-load). Starling showed that the heart will
always put out what it receives, over a wide range of inflow,
contractility and heart rate [28,29]. As pointed out in the recent
paper by Bidd et al. [30] “the heart is the servant of the tissues”.

The tissue priority, for the majority of tissues, is to receive ox-
ygen at the appropriate rate [31], normally achieved remarkably
successfully. For each tissue type the DO, required bears a specific
relation to the rate of oxygen consumption. This will have been an
evolutionary priority, since an adequate DO, ensures sufficiently
rapid blood flow for all other metabolites [11].

2.7. Arterial and venous blood volumes

There is a big difference between the volume of blood in the
venous and arterial compartments (see upper panel of Fig. 3). The rest
of the blood volume (around 20%) resides in the pulmonary circula-
tion. If we assume a total blood volume of 5 L, 3 L (60%) would reside in
the venous side but only 600 ml (12%) in the arteries. Even a modest
increase in venous capacitance of 200 mls following induction could
well result in a 1/3rd reduction (200 ml) of arterial blood volume. A
fall in MAP would inevitably follow (Fig. 3, middle panel).

When the blood volume is inadequate and MAP is low, the
reduced arterial and capillary volume will prevent auto-regulation
working in the most vulnerable tissues, contributed to by the
reduction in arterial volume. Hence, for the organs with the lowest
auto-regulatory capability blood flow becomes inadequate to sustain
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Fig. 3. The upper panel shows the normal volume relations of arteries, arterioles/
capillaries and veins. The arterial volume is only one fifth of the venous volume. The
middle panel represents relaxation of the veins by around 200 ml. The loss of 200 ml
from the arterial compartment reduces its volume by 1/3rd. The lower panel shows the
effect expected from partially re-constricting the veins with phenylephrine, say by
100 ml. The increase in arterial volume will improve the pressure. (Around 20% of
blood volume is in the pulmonary circuit.)

normal local VO,. The reduction in blood flow to the splanchnic area,
the brain and the kidneys leads to a reduced total tissue blood flow,
reduced venous return, and hence reduced CO, SV and DO,.

2.8. Impaired tissue blood flow regulation

Individual studies have shown early impairment of splanchnic
blood flow, cerebral blood flow and renal blood flow associated

100 Blood [l GUT
% of | volume as
norma % capaci
blood p/ i
flow sp [| RN

perfusion

KIDNEY

5

Fig. 4. The vertical bars represent the percentage of normal blood flow in three major
organ systems with moderate or low auto-regulatory power (gut, brain and kidney).
The full length bars represent normal blood flows. The sloping line depicts the per-
centage of increased blood volume capacity filled by the actual blood volume. With the
decline in percent capacity (and rise in SVV) gut, brain and kidney develop inadequate
blood flows (shorter bars) due to impaired auto-regulation.

with increased pre-load (volume) responsiveness [32]. We can
illustrate this in relation to the patho-physiology discussed above.
Fig. 4 is a diagrammatic representation of the blood volume as a
percentage of capacity, also showing schematically individual blood
flows in gut, brain and kidney. The degree of excess SVV increases
as the actual blood volume becomes a lower percentage of the
increased vascular capacity (principally venous). Blood flows, in
these vulnerable organs, are affected successively as the venous
capacity increases so that available blood volume as a percentage of
capacity decreases.

Impaired gastro-intestinal perfusion is recognized as an early
consequence of inadequate blood volume. Improvement in
outcome has been shown to result from early treatment (with
colloid), based on finding gastric mucosal ischaemia, by means of
gastric tonometry [32,33]. Early studies were reviewed by Lebuffe
et al. [34] and confirmed the crucial role of gastro-intestinal
ischaemia in the instigation of severe side effects, including mul-
tiple organ dysfunction (MODS) and sepsis. The reduction in blood
flow, with progressive volume responsiveness, probably occurs
first in the gut blood supply, but the precise organ sequence, for
brain and kidney, requires investigation and may vary. Cerebral
oxygenation is monitored with near infra-red spectroscopy (NIRS)
in some centres, also acting as an early warning of inadequate
blood volume [35—38]. Adequate cerebral oxygenation helps sus-
tain good cerebral function [35] and is also a good indicator of
adequate systemic oxygenation [38]. Renal near infra-red spec-
troscopy (NIRS) has been used extensively in paediatric surgery
[39] but has found limited applicability for adult monitoring,
thought to be due to a limited depth of tissue penetration by NIR
photons.

Haemorrhage gives rise to a reduced blood volume. The
extreme sensitivity of the gut blood flow to an inadequate blood
volume is demonstrated by the animal study of Guzman et al.
[40] Fig. 5 illustrates the early impairment of blood supply to
the ileal mucosa during progressive haemorrhage. In this
experiment mucosal perfusion began to decline after the loss of
two small volume increments; yet there was no obvious effect
on other organs, even after considerable mucosal perfusion
deficit.

The brain also suffers early ischaemic change after haemor-
rhage, often with little if any indication from systemic markers.
Cerebral NIRS detects the ischaemia as a fall in cerebral oxygen
saturation (rSO;). Reduced cerebral oxygen saturation has been
found to be an early warning of haemorrhage, in the absence of
pre-load dependency, Hence, NIRS reduction in rSO, may be an

15

Mucosal flow (TPU)

Time (hr)

Fig. 5. lleal mucosal blood flow in dogs subject to controlled haemorrhage — 5 ml kg~!
every 15 min. The fall in blood flow after the first increment occurred with very little
overall haemodynamic change. Intestinal mucosal auto-regulation is far less robust
than for heart, skeletal muscle and even the brain. After Guzman et al. [40] (With
permission from The American Physiological Society, APS). Key: TPU — Tissue Perfusion
Units.
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early indicator of the need for blood transfusion and haemostasis
[36,41].

2.9. Auto-regulation of oxygen delivery

Recent work has confirmed and extended that of Guyton et al.
[11] that the supply of oxygen to the tissues in the arterial blood
(DO,) is normally well sustained in the face of low arterial oxygen
content (due to either hypoxia or anaemia) by augmentation of local
blood flow. In subjects with a normal blood volume, DO, is sustained
at the normal level in hypoxia and anaemia unless arterial oxygen
content (Ca0;) drops too low. Below critical levels, local blood flow
progressively fails to compensate and DO; starts to decline.

With pre-load dependency the impaired auto-regulation and
reduced blood flows in gut, brain and renal vessels are accompa-
nied, initially, by increased oxygen extraction (the same rate of
oxygen consumption from a smaller rate of delivery). This results
in localised tissue ischaemia with adverse consequences despite
continuation of a normal overall VO,. It is only when the oxygen
supply is grossly reduced that the rate of oxygen consumption falls
— with generation of an oxygen debt. The ischaemic range is still
important in that function is impaired.

Measures to improve and sustain adequate blood flow are
therefore fundamental to the maintenance of adequate DO,. The
idea that DO, optimization may have advantages over and above
simple correction of volume responsiveness with colloid infusion
requires further clarification.

2.10. Oxygen delivery, tissue ischaemia and oxygen debt

The normal rate of oxygen delivery in fit young men at rest (non-
indexed) is around 1200 ml min~!). The indexed value is around
666 ml min~! m2 [42,43]. Shoemaker et al. [44,45] showed,
retrospectively, that high risk surgical patients with post-operative
DO,I values lower than around 600 ml min~! m~2 had high
morbidity and mortality rates. With low CO and in some cases, low
oxygen consumption (VO,), lower DO, correlated with poor
outcome more closely than with any other, of the many compre-
hensively recorded, clinical measures. Patients with DO>I values at
or above 600 ml min~! m~2 in the 8 h post-operative period had
very low morbidity. This value corresponds with a non-indexed
DO, value around 1080 ml min~!, lower than for fit young men at
rest, but probably generous even for the most normal hospitalized
subjects.

In study by Lugo et al. [46] on 20 high risk surgical patients,
mean oxygen delivery index (DOyI) pre-operatively was
460 ml min~! m~2 (calculated from values in a table (not the value
560 given in the text).

In a study monitoring DO,, CO and VO, before, during and
following operation Shoemaker et al. [47] calculated a higher mean
pre-operative DO, index of 586 (+ 29) ml min~! m~? for those who
survived without complications. For patients who survived but had
complications mean DO,I was 503 + 28 ml min~' m~2 and was a
little lower still, at 485 + 27 ml min~! m~2, for non-survivors. The
study also showed a clear relationship between the number of
complications and peri-operative oxygen debt. Oxygen debt was
obtained by making an estimate of the required VO, from the pa-
tient's own resting pre-operative control values and calculating the
VO, deficit (oxygen debt) from the measured VO, minus a 15%
lower VO, need (as a result of the effects of anaesthesia on VO,).
Fig. 6 shows results from an illustrative case. The deficit during a3 h
operation showed considerable worsening as it progressed post-
operatively.

Shoemaker et al. [48] undertook a prospective study comparing
protocol patients versus control patients on standard care. The
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Fig. 6. Results from one patient [(Shoemaker et al.; 1992, [47]. Upper section, serial
measurements of VO, (solid line) and estimated VO, requirements (dashed lines) in an
illustrative case. Middle section, VO, deficit measured as difference between actual
measured VO, and VO, need. Lower section, cumulative VO, deficit (below) or excess
(above) zero line. (Reproduced with permission from the American College of Chest
Physicians).

protocol included colloid supplementation and dobutamine and/or
dopamine, to achieve DO, values up to or above 600 ml min~—! m~2
during the immediate post-operative period. Morbidity and mor-
tality were considerably reduced relative to control patients (in
whom DOl was significantly lower).

The pre-induction DO, values were lower than those needed
post-operatively; suggesting the oxygen debt was created intra-
operatively. Hence, a post-operatively increased DO, is required
to correct for the oxygen debt generated during the operation.

The relationship between low DO, and poor outcomes receives
strong support from a study on dogs [49]. Deaths which occurred in
response to bleeding were specifically and uniquely related to ox-
ygen debt — the cumulative difference between normal oxygen
consumption (VO) and the declining rate of oxygen consumption
during progressive haemorrhage.

The many studies of Shoemaker's group led to development of
goal directed therapy. The aim was to sustain a post-operative DOl
of around 600 ml min~’, with colloid infusion. Dopamine, dobut-
amine or dopexamine were added where colloid alone was insuf-
ficient. Appreciable increases in CI of the protocol patients were
achieved postoperatively. This work has been supported by others
[50,51] and includes the above post-operative study of Pearse et al.
[13] where the protocol group achieved an average DO, of
600 ml min~! m~2 or more. The DOyl profile for the Pearse et al.
[13] study is shown in Fig. 7.

2.11. Filling with colloid alone

The reduction of complications from the simple colloid filling
undertaken, during the earliest stages of the operative procedure,



1354 C.B. Wolff, D.W. Green / International Journal of Surgery 12 (2014) 1348—1356

750 p
¥
£
- GDT
E 650 =
=
E Control
= 550 |
o~
(o]
o

450 &=

L | | I | 2 | 2 |

0 1 2 3 4 5 6 7 8

Time (hours)

Fig. 7. Oxygen delivery index for goal-directed therapy and control groups during the
8-h post-operative study period. Results are means + SEM. DO, oxygen delivery in-
dex; GDT, goal-directed therapy. [(Pearse et al., 2005, ([13])], (Permission from Critical
Care publisher BioMed Central).

by Noblett et al. [3], were likely to have been related to an early
increase in DOy, though values from their study are not available.
The study of Wakeling et al. [52] also utilized colloid infusion intra-
operatively to maximize Doppler assessed SV and achieved
increased CO values. Improved outcomes relative to control pa-
tients (central venous pressure — CVP -guided) were accompanied
by an increase in DO, despite the dilution effect of colloid infusion.
These studies support intra-operative action to fill the available
volume where it has increased from venous relaxation.

2.12. 0O, and auto-regulation

The fact that extra DO, post-operatively may counter deficiency
incurred during operation, and thereby improve outcome, em-
phasises the likely value of maintaining pre-induction DO, intra-
operatively in elective patients.

The importance of maintaining DO, is related to the absence of
an oxygen store. The rate of oxygen delivery must keep pace with
the rate of tissue oxygen consumption. There is less reserve for
oxygen than for the supply of any other nutrient or for removal of
any waste product. Oxygen is limited in its rate of carriage whereas
other substances are not. Guyton, Jones and Coleman [11] point out
that the maximum reserve for oxygen is a factor of 3 (utilization of
2/3rds, assuming capability for maximal oxygen extraction).

The reserve for oxygen is even more limited than would be the
case if it were possible to extract 2/3rds of that normally carried in

arterial blood. Even modest increases in oxygen extraction mean
the tissue is, at least moderately, ischaemic.

The normal rates of DO, to different tissues are precisely related
to the individual VO, and it is the appropriate ratio which is sus-
tained when blood volume is normal [31]

2.13. Pre-induction measurement and early infusion of veno-
constrictor

Measurements made prior to induction are likely to represent
adequate CO and DO>, since they give a measure of the normal state
in the elective patient. Values of SV, CO and DO, made prior to
induction can therefore function as reference values during the
operative period. The aim emerging from the analysis in this paper
is to sustain DO> close to the reference value. It has been found that
a small dose of phenylephrine (0.25—0.5 pg kg~! min~!), started
prior to induction, can reduce the fall in SV which commonly fol-
lows induction. A typical fall in SV (and MAP) at induction (illus-
trated earlier in Fig. 2) is shown in Fig. 8 (left hand panel, no
phenylephrine). The patient, whose result is shown in the right
hand panel, was started on a phenylephrine infusion prior to in-
duction. The percentage fall in SV and MAP is less marked. The
values, from pre-to post-induction, were SV 145 ml—100 ml (a fall
of 31%) for no drug and 145 ml—120 ml (a fall of 17%) following
induction on phenylephrine.

This manoeuvre, thought to partially reverse the venous relax-
ation from propofol, [7] reduces the fall in CO and DO,. It appears to
reduce the subsequent incidence of episodes of volume respon-
siveness and hence reduces the need for further fluid infusion.

The work of Sharpey-Shafer, in the early 1960s (1961 and 1963)
[53,54] on ‘venous tone’ is interesting. The studies showed
increased values, relative to normal, in normal subjects on standing
and in anaemia and congestive cardiac failure. Furthermore, in-
creases were observed following administration of adrenaline and
noradrenaline. Hence, the clinical responses to nor-adrenaline may
be from effects on venous constriction (with an increase in venous
tone), rather than their supposed inotropic effect on the heart. It
may be time to revisit measurement of venous tone to augment
available data on cardiovascular function.

3. Conclusions

By understanding the circulatory response to anaesthesia and
relating it to the patho-physiology, it may be possible to further
improve outcomes by sustaining pre-induction DO, and limiting
oxygen debt intraoperatively, rather than trying to repay debt by
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Fig. 8. The figure shows the situation at induction of anaesthesia in two patients. On the left the patient's induction proceeded without phenylephrine pre-medication. On the right
phenylephrine had been administered, as an infusion from 5 min pre-induction (15 pg min~"), and the fall in stroke volume (SV) lessened. Note systemic vascular resistance (SVR)
did not fall (often assumed to be the reason for lowering of blood pressure). Green DW (unpublished).
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maximising DO, post-operatively in an HDU or ICU environment. It
is probably not necessary to maximise SV but rather to sustain CO
and DO; at, or close to, the pre-induction (reference) level.

Extra benefits may also be derived from the ability to monitor
depth of anaesthesia and cerebral and tissue oxygenation [30].
Excess depth of anaesthesia (DOA) is recognised as one of the
causes of circulatory depression with low CO and MAP. DOA mon-
itors are now recommended in patients who are at greatest risk of
cerebro-vascular depression, due to inadvertent excess DOA (e.g.
the elderly) [55].

Recent NICE guidelines [56] recognise the need for blood flow
monitoring during surgery, particularly in patients considered at
high risk for complications. It has been estimated that universal
adoption of blood flow monitoring with appropriate responses
would produce very large reductions in costs, complications and
mortality [57]. Inclusion of further recommendations made here,
and better understanding of the patho-physiology, should allow
further savings in morbidity and mortality, with concurrent
reduction in the expense involved in the care of high risk surgical
patients.
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