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Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5–10% of all pregnancies and it is
associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurode-
velopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In
recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in
brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is lim-
ited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help
understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an
emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity
within the brain to build a graph model of its neural circuitry known as brain network. In the present study
we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one
year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of
white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks.
Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in
IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficien-
cy, and a pattern of altered regional graph theory features. Bymeans of binomial logistic regression,we also dem-
onstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental
outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years
of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network
characteristics for estimating differences in the architecture of neural circuitry and developing imaging
biomarkers of poor neurodevelopment outcome in infants with prenatal diseases.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Intrauterine growth restriction (IUGR) due to placental insuffi-
ciency affects 5–10% of all pregnancies and it is a leading cause of
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fetal morbidity and mortality (Jarvis et al., 2003; Kady and Gardosi,
2004). Reduction of placental blood flow results in sustained expo-
sure to hypoxemia and undernutrition (Baschat, 2004) and this has
profound consequences on the developing brain (Rees et al., 2011).
A substantial number of studies have described associations between
IUGR and short (Bassan et al., 2011; Figueras et al., 2009) and long-
term neurodevelopmental and cognitive dysfunctions (Bassan et al.,
2011; Eixarch et al., 2008; Feldman and Eidelman, 2006; Geva et al.,
2006a,b; Leitner et al., 2007; McCarton et al., 1996; Scherjon et al.,
2000). Prediction of neurodevelopmental outcomes in IUGR is
among the clinical challenges of modern fetal medicine and pediat-
rics. This goal is currently hampered by the limited understanding
of the brain reorganization processes leading to poor neurodevelop-
ment in IUGR children and the lack of suitable imaging biomarkers
in fetal or early life.
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In recent years several studies have used magnetic resonance
imaging (MRI) to demonstrate differences in brain structure in IUGR
subjects. Studies in term neonates have reported decreased volume
in gray matter (Tolsa et al., 2004) and hippocampus (Lodygensky
et al., 2008), and major delays in cortical development, with discor-
dant patterns of gyrification and a pronounced reduction in cortical
expansion (Dubois et al., 2008). Persistence of structural changes at
1-year of age has been recently reported demonstrating reduced
volumes of gray matter (GM) in the temporal, parietal, frontal, and in-
sular regions (Padilla et al., 2011) and decrease in fractal dimension of
both gray and white matter (WM) which correlate with specific de-
velopmental difficulties (Esteban et al., 2010). Despite these studies
are useful to demonstrate disease-related differences, the ability to
use MRI information to generate individual predictive biomarkers in
IUGR is limited.

Recent research suggests that MRI in vivo access to brain connectiv-
ity might help understanding cognitive and neurodevelopment pro-
cesses (Sporns et al., 2005). Connectomics (Hagmann, 2005) is an
emerging approach to extract information from different modalities,
including MRI data, exhaustively mapping inter-regional connectivity
within the brain to build a graph model of its neural circuitry known
as brain network or connectome (Bullmore and Sporns, 2009; Sporns
et al., 2005). Particularly, connectomics extracts a number of “image
features” after intensive processing that integrates structural informa-
tion of the individual, related to anatomical brain regions and neuronal
connectivity, to compute adjacency matrices that represent brain
networks or graph models of a particular subject brain. Connectomics
provides a framework to compare architecture of brain circuits among
different individuals in a direct and elegant manner. In order to assess
brain organization, graph theory tools have been proposed to allow
quantifying brain network infrastructure, integration and segregation
of the global functioning of a brain network (Rubinov and Sporns,
2009). Of further interest is the ability to explore regional differences
by assessing graph theory characteristics of the regional networks asso-
ciated to a given region.

Connectomics has been successfully utilized in different sets of data,
including functional MRI, structural MRI and diffusion MRI, to report
altered group connectivity parameters in adults and adolescents under-
going diseases such as schizophrenia (Alexander-Bloch et al., 2010;
Bassett et al., 2008; Liu et al., 2008), Parkinson's disease (Wu et al.,
2009), Alzheimer's disease (He et al., 2008, 2009a; Lo et al., 2010),
attention deficit hyperactivity disorder (Wang et al., 2009), and in
non-clinical samples as in the study of synesthesia (Hänggi et al.,
2011). These studies suggest the potential of MRI based connectomics
to develop biomarkers for disease diagnosis and treatment effects
monitoring. Among the above MRI modalities diffusion imaging can
be of particular interest for the study of the developing brain. Diffusion
MRI allows non-invasively assessing in-vivo WM fiber orientation in
the brain. In recent years diffusion MRI based connectomics has been
used to construct structural brain networks in healthy populations
(Gong et al., 2009; Hagmann et al., 2008; Iturria-Medina et al., 2008),
being its network properties associated with sex and brain size (Yan
et al., 2010), intelligence (Li et al., 2009) and specific cognitive abilities
in old age (Wen et al., 2011) and to report altered group network topol-
ogy features in Alzheimer's disease (Lo et al., 2010; Wee et al., 2010),
multiple sclerosis (Shu et al., 2011), schizophrenia (Wang et al., 2012)
and early blindness (Shu et al., 2009). Connectomics from diffusion
MRI has been applied to assess normal development of the human
brain during childhood and adolescence, including subjects from 2 to
18 years of age (Hagmann et al., 2010). Diffusion MRI connectomics in
younger children has been used to study a healthy longitudinal cohort
of 2 weeks, 1 year and 2 years of age (Yap et al., 2011), but no studies
in infants with perinatal conditions have been conducted.

In the present study, we evaluated the hypothesis that diffusion
MRI based connectomics could determine quantifiable changes
resulting from the existence of brain reorganization in children who
suffered IUGR. We used diffusion MRI based connectomics to obtain
structural brain networks in one year old infants with and without
growth restriction. We analyzed global and regional graph theory
features of brain networks explored in previous studies such as infra-
structure, integration, segregation and centrality. We evaluated the
ability of diffusion MRI based connectomics to demonstrate group
differences in global brain network features and localize altered
regional networks. Finally, we also explored whether brain network
features at one year would be associated with neurodevelopmental
outcome at two years of age.

Methods

Subjects

This study was part of a larger prospective research program on
IUGR involving fetal assessment and short- and long-term postnatal
follow-up at Hospital Clinic (Barcelona-Spain). The study design in-
volved recruitment of a consecutive sample of 83 fetuses: 42 IUGR
singleton infants and 41 control fetuses appropriate for gestational
age. All individuals were born between October 2007 and November
2009. IUGR was defined as a fetal estimated weight below 10th cen-
tile according to local reference standards (Figueras et al., 2008) con-
firmed at birth. Control subjects were defined as fetuses with fetal
estimated weight between the 10th and 90th customized centiles
according to local reference (Figueras et al., 2008) confirmed at
birth and were sampled from our general pregnant women popula-
tion during the same period. Pregnancies were dated according to
the first-trimester crown-rump length measurements (Robinson
and Fleming, 1975). Infants with chromosomal, genetic, or structural
defects and signs of intrauterine infection or neonatal early onset sep-
sis as defined by positive blood culture within the first 72 h of life
were excluded from this study. Neonatal data were prospectively
recorded including: gestational age (GA), birth weight, gender, Apgar
at 5 min, umbilical artery pH and neonatal complications including
late-onset sepsis, necrotizing enterocolitis and chronic lung disease
(defined as oxygen need at 36 weeks postmenstrual age). Maternal
education was recorded as low, intermediate or high educational
level. Maternal smoking status during pregnancy and breastfeeding
were also recorded. Growth parameters (weight, length, body mass
index and head circumference) were recorded at 12 months and were
normalized for local standards (Sobradillo et al., 2004). The study proto-
col was approved by the local Ethics Committee, and written informed
consent was obtained from the parents or legal guardians of all
participants.

Neurodevelopmental assessment

Neurodevelopmental outcome was assessed at 21 months of
corrected age (CA) (±3 months) with the Bayley Scale for Infant and
Toddler Development, Third edition (BSID-III), which evaluates five
distinct scales: cognitive; language; motor; socio-emotional behavior;
and adaptive behavior. The scales have scores with a mean of 100 and
S.D. of 15. Abnormal BSID-III was defined as a score below 85 in any of
the five different scales (Anderson et al., 2010). All developmental
examinationswere performed by a single trained psychologist examiner
with previous experience with the BSID-III. The examiner was not
informed about the infant medical history.

MRI data acquisition

Children were scanned at 12±2 months CA, during natural sleep.
Structural MRI and diffusion MRI were performed using a TIM TRIO
3.0 T whole body MR scanner (Siemens, Germany). Diffusion images
were acquired by using a single-shot Echo-Planar Imaging (SE-EPI)
sequence covering 30 diffusion directions with a b-value of 1000 s/
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mm2. All acquired images covered the whole brain, with 3-mm slice
thickness with no interslice gap, 40 axial slices and in-plane acquisi-
tion matrix of 122×122 with a field of view (FoV) set to 200×
200 mm which resulted in a voxel dimension of 1.64×1.64×3 mm3,
repetition time (TR)=9300 ms, echo time (TE)=94 ms. An addition-
al image without diffusion weight (b=0 s/mm2) was also acquired.
High resolution structural T1 weighted images were obtained by a
Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE)
sequence with the following parameters: 0.9-mm slice thickness
with no interslice gap, 192 sagittal slices, in-plane acquisition matrix
of 256×256, FoV=220×220 mm2, which resulted in a voxel dimen-
sion of 0.86×0.86×0.9 mm3, TR=2050 ms, TE=2.41 ms and inver-
sion time (TI)=1050 ms. All acquired MRI structural and diffusion
images were visually inspected for apparent or aberrant artifacts,
and subjects excluded accordingly. In addition, structural T2 weighted
imageswere also acquired in order to excludeWMabnormalities. Diffu-
sion weighted images were corrected for eddy currents effects and
simple head motions using FMRIB's Diffusion Toolbox (FSL 4.1; www.
fmrib.ox.ac.uk/fsl).
Fig. 1. Methodological scheme. By means of automatic parcellation and tractography, structu
tomes) and global and regional brain network features are extracted.
White matter brain network construction

The methodology to compute individual connectivity based on
MRI acquisitions was composed by a comprehensive integration of
standard protocols (Fig. 1).

White matter, gray matter and cerebrospinal fluid segmentation
3D structural volumes were segmented into WM, GM and cerebro-

spinal fluid (CSF) using the unified segmentation model (Ashburner
and Friston, 2005) available at the SPM software (SPM8 release, www.
fil.ion.ucl.ac.uk/spm/). The SPM8 software was slightly modified to
better fit an infant brain. Since the original software package uses
default tissue probability maps derived from adult brains, we replaced
the original templates by specific one year old infant a priori tissue
probability maps (Altaye et al., 2008) (available at irc.cchmc.org/
software/infant.php) which could fit better with the anatomical brain
features of the patients included in the study.

Structural 3D volume of each subject was registered to its corre-
spondent b0 volume (in the diffusion native space) using IRTK (www.
ral and diffusion MRI data of each subject is integrated into adjacency matrices (connec-

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://irc.cchmc.org/software/infant.php
http://irc.cchmc.org/software/infant.php
http://www.doc.ic.ac.uk/~dr/software/
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doc.ic.ac.uk/~dr/software/) to perform a 3D voxel-based affine registra-
tion maximizing normalized mutual information of each pair of images
(Maes et al., 1997; Studholme et al., 1999). The transformation obtained
for each subjectwas used to transformWM, GMand CSF to the diffusion
native space.
Network node definition
Anatomical Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et

al., 2002), has recently been adapted to a one year old population
(Shi et al., 2011) and is available online (http://bric.unc.edu/
ideagroup/free-softwares/unc-infant-0-1-2-atlases/). In order to au-
tomatically parcellate each subject brain using this atlas, we have
used a customized software implementing a consistent version
(Tristan-Vega and Arribas, 2007) of a block matching algorithm
(Warfield et al., 2002), allowing to obtain an elastic transformation
matching the template with each subject anatomical T1 volume. The
labels of AAL atlas were propagated to each structural MRI acquisition
of our subjects using this elastic transformation, and transformed to
diffusion native space with the previously calculated affine transfor-
mation. Discrete labeling values were preserved by nearest neighbor
interpolation for both transformations. The original atlas is composed
by 90 cortical and sub-cortical regions and 16 cerebellar regions. In
order to simplify the analysis, we merged the cerebellar regions into
right cerebellum, left cerebellum and vermix, resulting into a total
of 93 regions per subject brain (Table 1), each of which corresponded
to a node in the brain network.
Table 1
Regions of interest used as nodes in structural brain networks, corresponding to the
regions defined in AAL atlas.

Anatomical regions Label Anatomical regions Label

Precentral gyrus PRE Lingual gyrus LING
Superior frontal gyrus,
dorsolateral

F1 Superior occipital gyrus O1

Superior frontal gyrus,
orbital

F1O Middle occipital gyrus O2

Middle frontal gyrus F2 Inferior occipital gyrus O3
Middle frontal gyrus,
orbital part

F2O Fusiform gyrus FUSI

Inferior frontal gyrus,
opercular part

F3OP Postcentral gyrus POST

Inferior frontal gyrus,
triangular part

F3T Superior parietal gyrus P1

Inferior frontal gyrus,
orbital part

F3O Inferior parietal, but
supramarginal and angular gyri

P2

Rolandic operculum RO Supramarginal gyrus SMG
Supplementary motor
area

SMA Angular gyrus AG

Olfactory cortex OC Precuneus PQ
Superior frontal gyrus,
medial

F1M Paracentral lobule PCL

Superior frontal gyrus,
medial orbital

F1MO Caudate nucleus CAU

Gyrus rectus GR Lenticular nucleus, putamen PUT
Insula IN Lenticular nucleus, pallidum PAL
Anterior cingulate and
paracingulate gyri

ACIN Thalamus THA

Median cingulate and
paracingulate gyri

MCIN Heschl gyrus HES

Posterior cingulate
gyrus

PCIN Superior temporal gyrus T1

Hippocampus HIP Temporal pole: superior temporal
gyrus

T1P

Parahippocampal gyrus PHIP Middle temporal gyrus T2
Amygdala AMYG Temporal pole: middle

temporal gyrus
T2P

Calcarine fissure and
surrounding cortex

V1 Inferior temporal gyrus T3

Cuneus Q Cerebellum CER
Vermis VER
White matter tractography
A deterministic tractography was performed for each subject dif-

fusion data using a diffusion tensor imaging (DTI) based fiber tracking
algorithm with log-Euclidean metrics (Fillard et al., 2007), available
on MedINRIA 1.9 (www-sop.inria.fr/asclepios/software/MedINRIA/).
A relatively low Fractional Anisotropy (FA) threshold of 0.1 was chosen
as stopping criterion for the fiber tract algorithm in order to ensure that
the fiber tracts invade the WM-GM interface. Note that the preproces-
sing prior to the tractography includes a joint tensor field estimation
and regularization that reduce the noise in the estimated DTI volume
used to compute the tractography (Fillard et al., 2007).

Network edge definition
Tractography generated in the previous step was integrated to the

anatomical parcellation in diffusion space in order to construct the
inter-cortical brain network. Similarly to Shu et al. (2011), we charac-
terized each brain network with a binary adjacency matrix and two
weighted matrices. Specifically, two nodes (regions) i and jwere con-
sidered to be connected by an edge eij, when there exist at least one
fiber bundle f with end-points in i and j WM–GM interface, with
self-loops excluded. Some authors proposed to establish a threshold
of aminimumnumber of fiber bundles connecting two ROIs to consider
them connected by an edge (Li et al., 2009; Lo et al., 2010; Shu et al.,
2009, 2011) in order tominimize false positives thatmay be introduced
into individual networks due to the noisy nature of the acquisitions.
However, it has been suggested that the use of different thresholds
does not significantly influence the resulting network analysis in
case–control studies (Li et al., 2009; Lo et al., 2010; Shu et al., 2011).
Analyses applying a fiber threshold from 1 to 5 fiber bundles were
performed, but we focused in the analysis of unthresholded networks,
as it was considered to be a more objective criterion preserving the
whole structure of the connectivity in each individual. Network edge
weights were defined according to two different criteria: fiber number
(FN) connecting each pair of regions, and mean FA along all the fibers
connecting a pair of region, hence obtaining two weighted adjacency
matrices in addition to the binary one.

Network analysis

Network analysis of structural brain networks enables a refinement
of image features obtained fromMRI. As brain networks are defined by
nodes (regions) and edges that connect pairs of nodes, which are repre-
sented mathematically by adjacency matrices or graphs (Hagmann et
al., 2007), it is possible to characterize every subject structural brain
network with a set of graph theory measures (or equivalently, network
features) that summarize the behavior of a network. Particularly, we
characterized each of the three brain network classes computed for
each subject (binary, FN-weighted and FA-weighted) at two levels:
global and regional.

At a global level, network infrastructure (i.e. mean degree), segrega-
tion (i.e. local efficiency) and integration (i.e. global efficiency) were
characterized by means of standard measures as described in Supple-
mentary material. At a regional level, a node based analysis was per-
formed to extract the way in which these elements were embedded in
the network (Rubinov and Sporns, 2009) by a set of network features
of each node and its associated regional network. In that sense, in the
network of a subject, a regional network associated to a given node
was defined as the new network composed by the neighbors of that
node, that is, by the nodes that are connected to that node. Nodes i
and j are considered neighbors in a network if there exist an edge eij
that connect both nodes (Rubinov and Sporns, 2009). Therefore, the
definition of regional networks was based on its network topology,
that is, in the connections among regions no matter how distant were
from each other, not in anatomical and/or contiguity criteria. Specifical-
ly, regional network infrastructure (i.e., nodal degree), regional

http://www.doc.ic.ac.uk/~dr/software/
http://bric.unc.edu/ideagroup/free-softwares/unc-infant-0-1-2-atlases/
http://bric.unc.edu/ideagroup/free-softwares/unc-infant-0-1-2-atlases/
http://www-sop.inria.fr/asclepios/software/MedINRIA/


Fig. 2. Learning algorithm scheme to obtain a ‘regional connectivity risk index’ that in-
tegrates regional network features associated to abnormal neurodevelopment.
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network functional integration (i.e., nodal efficiency), and centrality of
the node (i.e., betweenness centrality) were assessed.

In summary, the global level analysis included: average degree,
global efficiency and local efficiency of each subject structural brain
network. Regional level analysis included nodal degree, betweenness
centrality and nodal efficiency of all the nodes of each subject struc-
tural brain network. For both global and regional network features
the definitions of Rubinov and Sporns (2009) were applied and
Brain Connectivity Toolbox (Rubinov and Sporns, 2009) was used to
calculate most of them. Global, local and nodal efficiencies were cal-
culated in both their binary and weighted versions according to the
brain network considered.

Small-worldness

“Small-world” network model was originally characterized by
(Watts and Strogatz (1998)), relating network clustering coefficient
Cp, and characteristic path length Lp. According Watts and Strorgatz
criterion, small-world networks have Lp comparable to a random
equivalent network but a higher Cp. Specifically, Cp and Lp of each net-
work were compared with equivalent random networks with the
same size and degree distribution.

A more general criterion that characterizes small-world networks
in terms of efficiency was also used. Following these criteria, a net-
work can be considered to follow a small-world model if it accom-
plishes both following conditions (Achard and Bullmore, 2007):

ElattglobbEglobbE
rand
glob and Erandloc bElocbE

latt
loc

where Egloblatt and Eloc
latt are the global and local efficiency of a lattice (reg-

ular) equivalent of the network, and Eglob
rand and Eloc

rand are the global and
local efficiency of an equivalent random network. It can be seen as a
network with an optimal balance between local processing and global
integration (Sporns and Tononi, 2001).

In addition, the principal hubs, defined as the 10% of regions (nodes)
with the highest degree for each subject, were also calculated.

Association with abnormal neurodevelopment at two years of age

Regional connectivity risk index of abnormal neurodevelopment
Due to the relatively reduced sample size, in order to avoid overfit-

ting of the predictive models (Michel et al., 2012), a procedure to
reduce the regional feature space was undertaken. Hence, in a previous
step, regional connectivity features that predicted better neurodevelop-
ment at 2-years were selected and reduced to a single index. In brief, a
scheme was defined to integrate the complex process of regional brain
reorganization into a single score, defined as ‘regional connectivity risk
index’. To this end, a leave-one-out cross validation strategy was
followed to obtain a blind score integrating the relevant regional
features of each IUGR infant. The scheme for the generation of this
index was built according to the following steps (Fig. 2):

(1) Feature selection based on keeping those featureswith higher in-
dividual discriminative power of the normal/abnormal BSID-III
(dicotomic value) for the training set. Specifically, those features
with an absolute value two-sample t-test one standard deviation
above the mean for the training set were selected.

(2) Computation of the nonlinear regression model that better
classified the training set using the features selected in step
(1) by means of a regression tree (Breiman et al., 1984).

(3) Calculation of the ‘regional connectivity risk index’ (probability
of abnormal BSID-III) and blind classification (using a 0.5 cutoff
on the probability of abnormal BSID-III) of the test sample by
applying the regression tree estimated in step (2).
Subsequently, the performance of this ‘regional connectivity risk
index’ to achieve a blind classification of the neurodevelopmental sta-
tus (normal or abnormal) was evaluated.

Association of network features and clinical data to neurodevelopmental
scores on BSID-III in 2 year IUGR children

Three blocks of data were established: clinical–epidemiological fea-
tures (gender, smoking status, breastfeeding, GA and weight centile at
birth), global network features and the regional connectivity risk
index as defined in the Regional connectivity risk index of abnormal
neurodevelopment section.

In order to assess the association of the three blocks of data with
neurodevelopmental scores in IUGR, a binomial logistic regression
with two different approaches was then conducted. In the first ap-
proach the independent association power of each block binomial logis-
tic regression was evaluated based on an enter method. In the second
approach, the three blocks were consecutively entered as predictors
into a binomial logistic regression with a backward step-wise selection
criterion in order to assess the best predictive model for BSID-III abnor-
mal performance. Removal testing in backward step-wise selectionwas
based on the probability of the likelihood-ratio statistic based on the
maximum partial likelihood estimates. p value for variable removal
was set at 0.15.
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Statistical analysis

Statistical comparisons among groups were performed by general
linear models with gender, maternal education level, smoking during
pregnancy and breastfeeding as cofactors and GA as a covariate. Due
to the exploratory nature of these analyses, significance was declared
at pb0.05 (uncorrected). In addition, the results of each regional fea-
ture were corrected for multiple comparisons with a False Discovery
Rate (FDR) approach (Benjamini et al., 2006) in order to control
alpha error to 5%. The software package SPSS 18.0 (SPSS, Chicago,
IL) was used for the statistical analyses. All computational algorithms
were implemented using MATLAB (2007b, The MathWorks Inc., Na-
tick, MA).

Results

Basic clinical features in the study population

Structural MRI evaluation revealed the presence of anomalies in
8 IUGR (two increased cisterna magna, four ventricular dilatations
and two WM lesions) and in 5 controls (two increased cisterna
magna and three ventricular dilatations) that were excluded from
the final analysis. In addition, 4 controls and 10 IUGR did not pass
quality criteria concerning motion artifacts or correct tractography
reconstruction that prevented performing further analysis. Thus, the
final sample included 24 IUGR infants and 32 control infants.

As expected, anthropometric measurements at birth normalized
for local standards were significantly lower in IUGR group (Table 2).
No significant differences were found in GA at birth, gender distribu-
tion, Apgar score at 5 min, umbilical artery pH and rate of neonatal
Table 2
Neonatal data, demographic characteristics, growth parameters, and BSID-III scores in
the study groups. Mean (±SD). Variables with pb0.05 are highlighted in bold.

Controls
n=32

IUGR
n=24

pa

Neonatal data
GA at delivery 34.8 (5.8) 36.6 (3.1) 0.173
Birth weight centile 54 (23.9) 5.5 (5.5) b0.001
Length at birth centile 59.1 (23.3) 11.6 (11.8) b0.001
Cephalic perimeter at birth centile 43.5 (25.1) 13.2 (17.2) b0.001
Gender distribution (male/female) 17/15 15/9 0.483
Apgar 5 min 9 (2.5) 9.5 (1.7) 0.395
Umbilical artery pH 7.27 (0.07) 7.24 (0.09) 0.122
Neonatal complications 3.1% [1/32] 4.2% [1/24] 0.835

Demographic characteristics
Maternal age [years] 31.3 (4.1) 32.2 (4.0) 0.426
Maternal education less than high school 25.8% 33.3% 0.542
Breastfeeding longer than 4 months 67.7% 59.1% 0.518
Smoking during pregnancy 12.5% 45.8% 0.005
Corrected age at MR [months] 12.8 (1.5) 13.2 (1.6) 0.382
Corrected age at BSID-III [months] 20.2 (3.5) 21.7 (3.0) 0.155

Growth parameters at 12 months
Weight z-score −0.52 (0.82) −1.06 (0.85) 0.024
Height z-score −0.17 (1.17) −1.01 (0.97) 0.008
Body mass index (BMI) z-score −0.49 (1.05) −0.52 (0.91) 0.079
Cephalic perimeter z-score −0.50 (1.05) −1.09 (1.30) 0.891

BSID-III scores
Cognitive score b 108.8 (12.5) 104.3 (9.4) 0.029c

Language score b 102.1 (19.0) 91.3 (12.5) 0.002c

Motor score b 106.9 (14.2) 100.7 (9.6) 0.018c

Social emotional score d 117.4 (30.2) 108.6 (23.7) 0.514c

Adaptive behavior score d 92.9 (17.0) 89.5 (18.8) 0.469c

a Student's t-test for independent samples or Pearson's Chi2 test.
b Controls n=22/IUGR n=17.
c General Lineal Model significance among groups corrected for clinical covariables

and cofactors.
d Controls n=18/IUGR n=16.
complications among groups. No postnatal corticosteroids were ad-
ministered to any individual included in our study. Maternal smoking
status during pregnancy was increased in IUGR group (p=0.005).
Regarding BSID-III neurodevelopmental test, IUGR infants showed a
trend to worse scores than the control group in all scales, although
the differences were statistically significant only for cognitive
(p=0.029), motor (p=0.018) and language (p=0.002) clusters
(Table 2). Proportion of abnormal BSID-III in IUGR groups was non-
significantly higher when compared with control group (47.1% vs.
27.3%, p=0.201).

Small-worldness

Graph theoretical analysis on the adjacency matrices representing
structural brain networks of our subjects, showed that 1-year old
children structural brain networks are a small-world network of
neural tracts. The comparison among local and global efficiencies of
the structural brain networks and its random and lattice equivalents
showed that all our population fulfilled a small-world criterion,
having an intermediate global and local efficiency compared to its
random and regular equivalent networks (Table 3). Using classical
small-world criteria, a small-world behavior was also observed
(Supplementary Table 1).

Hubs of IUGR and controls, defined as the 10% of nodes with
higher degree, were identified for each group separately (Table 4).
Similar hubs on both groups were found, mainly precuneus and cere-
bellum of each hemisphere.

Global connectivity characteristics

The analyses of unthresholded networks show that general linear
models of average degree, binary global efficiency and binary local
efficiency did not show statistically significantly differences between
cases and controls (Figs. 3A–C). FN-weighted global and local efficien-
cy were not significantly different in cases and controls, but there was
a trend of reduced values in IUGR (Figs. 3D and E). FA-weighted
global efficiency was significantly decreased in IUGR (group effect:
F=7.15 p=0.012, Fig. 3F). FA-weighted local efficiency was also
significantly lower in the IUGR group (group effect: F=5.99
p=0.020, Fig. 3G). Further analyses with fiber threshold from 1 to 5
are included in Supplementary Table 2.

Disrupted regional connectivity

Analysis of regional connectivity revealed statistically significant
differences in IUGR at multiple levels on the set of features evaluated
(Table 5, Fig. 4). For instance, differences in nodal degree were mainly
observed in parietal and occipital lobe whereas all regions in tempo-
ral lobe and cerebellum demonstrated differences in betweenness
centrality. Binary nodal efficiency showed most of the differences in
temporal and parietal lobe and cerebellum while frontal lobe and
subcortical gray nuclei were the most affected in FN-weighted nodal
efficiency. Finally, FA-weighted nodal efficiency presented significant
differences in multiple regions of frontal lobe and sub-cortical gray
matter, almost all regions included in parietal and occipital lobe and
in whole cerebellum and central region.

Association with abnormal neurodevelopment at two years of age

Regional connectivity risk index of abnormal neurodevelopment
Most discriminant regional connectivity features are shown in

Fig. 5 and Supplementary Table 3. Specifically, features selected in
more than 90% of leave-one-out iterations included characteristics
of frontal regions (right and left precentral gyrus, left superior frontal
gyrus, left superior and middle frontal gyrus orbital part, left superior
frontal gyrus medial orbital part, right inferior frontal gyrus triangular



Table 3
Controls, IUGR and their equivalent random and lattice networks binary global and local efficiency. Mean (±SD).

Fiber threshold Group Random global efficiency Global efficiency Lattice global efficiency Random local efficiency Local efficiency Lattice local efficiency

1 Controls 0.8191 (0.0178) 0.8191 (0.0181) 0.8191 (0.0178) 0.8598 (0.0148) 0.8766 (0.0098) 0.8978 (0.0053)
IUGR 0.8178 (0.0147) 0.8178 (0.0151) 0.8177 (0.0148) 0.8610 (0.0128) 0.8766 (0.0089) 0.8984 (0.0048)

2 Controls 0.7629 (0.0159) 0.7626 (0.0162) 0.7624 (0.0161) 0.8155 (0.0143) 0.8501 (0.0071) 0.8835 (0.0040)
IUGR 0.7595 (0.0141) 0.7592 (0.0145) 0.7589 (0.0142) 0.8154 (0.0135) 0.8499 (0.0082) 0.8838 (0.0037)

3 Controls 0.7301 (0.0137) 0.7290 (0.0145) 0.7285 (0.0142) 0.7862 (0.0142) 0.8355 (0.0065) 0.8766 (0.0041)
IUGR 0.7263 (0.0140) 0.7253 (0.0145) 0.7247 (0.0143) 0.7849 (0.0135) 0.8358 (0.0070) 0.8762 (0.0038)

4 Controls 0.7072 (0.0122) 0.7055 (0.0132) 0.7042 (0.0134) 0.7637 (0.0142) 0.8255 (0.0061) 0.8708 (0.0042)
IUGR 0.7041 (0.0128) 0.7023 (0.0134) 0.7008 (0.0133) 0.7664 (0.0125) 0.8272 (0.0069) 0.8715 (0.0037)

5 Controls 0.6899 (0.0111) 0.6872 (0.0123) 0.6849 (0.0126) 0.7460 (0.0138) 0.8179 (0.0063) 0.8660 (0.0055)
IUGR 0.6869 (0.0127) 0.6841 (0.0135) 0.6818 (0.0139) 0.7462 (0.0145) 0.8201 (0.0073) 0.8659 (0.0055)

1358 D. Batalle et al. / NeuroImage 60 (2012) 1352–1366
part, right gyrus rectus right supplementary motor area), occipital re-
gions (right middle occipital gyrus, left inferior occipital gyrus, left
calcarine fissure and surrounding cortex) and subcortical gray matter
(right and left caudate, right putamen and thalamus).

The regional connectivity risk index obtained blindly for each
subject in the leave-one-out learning algorithm also allowed us to
Table 4
Principal hubs in controls and IUGR and its frequency (%) of selection at different fiber
thresholds.

Fiber threshold Controls hubs Frequency (%) IUGR hubs Frequency (%)

1 PQ (L) 93.8 PQ (L) 87.5
PQ (R) 84.4 PQ (R) 79.2
CER (L) 84.4 CER (L) 75.0
CER (R) 71.9 CER (R) 75.0
CAU (L) 53.1 P1 (R) 50.0
P1 (R) 46.9 F2 (R) 45.8

CAU (R) 34.4 CAU (L) 41.7
AG (R) 31.3 F2 (L) 37.5

THA (L) 21.9 CAU (R) 33.3

2 PQ (L) 90.6 PQ (L) 87.5
PQ (R) 84.4 PQ (R) 87.5
CER (L) 84.4 CER (L) 83.3
CER (R) 65.6 CER (R) 75.0
CAU (L) 56.3 CAU (R) 54.2
CAU (R) 43.8 P1 (R) 45.8
P1 (R) 34.4 F2 (R) 41.7

T1P (L) 31.3 CAU (L) 41.7
F2 (L) 28.1 F2 (L) 33.3

3 PQ (L) 93.8 PQ (R) 91.7
CER (L) 87.5 PQ (L) 87.5
PQ (R) 84.4 CER (L) 75.0
CER (R) 68.8 CER (R) 66.7
CAU (R) 53.1 F2 (L) 58.3
CAU (L) 50.0 CAU (R) 54.2
F2 (L) 28.1 F2 (R) 50.0
O2 (R) 28.1 CAU (L) 41.7
AG (R) 28.1 F1 (R) 33.3

4 PQ (L) 87.5 PQ (L) 91.7
PQ (R) 87.5 PQ (R) 91.7
CER (L) 84.4 CER (L) 70.8
CER (R) 68.8 CER (R) 70.8
CAU (R) 53.1 F2 (R) 58.3
CAU (L) 50.0 CAU (R) 54.2
F2 (R) 31.3 F2 (L) 41.7
P1 (R) 28.1 CAU (L) 41.7
T2 (R) 28.1 T2 (R) 41.7

5 PQ (L) 90.7 PQ (L) 91.7
PQ (R) 87.5 PQ (R) 79.2
CER (L) 84.4 CER (L) 75.0
CER (R) 75.0 CER (R) 75.0
CAU (R) 53.1 F2 (L) 58.3
CAU (L) 50.0 F2 (R) 54.2
F2 (R) 31.3 CAU (R) 41.7
F2 (L) 28.1 T2 (R) 41.7
P1 (R) 28.1 F1 (R) 33.3

(L) refers to left hemisphere and (R) to right hemisphere.
blindly classify each IUGR subject into normal or abnormal BSID-III per-
formance with an accuracy of 82.4%, with a sensitivity of 87.5% and a
specificity of 77.8%.

Predictive model including clinical and MRI data
Binomial logistic regression was used to assess the predictive

value of clinical data, global connectivity features and regional con-
nectivity risk index with abnormal BSID-III performance in IUGR
group (Table 6). The regression model based on clinical information
(weight centile, GA, gender, maternal education level, mother smok-
ing status during pregnancy and breastfeeding) was not significantly
associated with abnormal neurodevelopment. The binomial logistic
regression with global connectivity features (average degree and
binary, FN-weighted and FA-weighted global and local efficiency)
showed an accuracy of 76.5%, with a sensitivity of 87.5% and a speci-
ficity of 66.7%. The model had a Chi-square=9.81 with p=0.199 and
a Nagelkerke R2 of 0.59. None of the global connectivity features had a
significant contribution by itself. Finally, previously calculated regional
connectivity risk index achieved an accuracy of 82.4%, with 87.5% of
sensitivity and 77.8% of specificity. The regressionmodelwas significant
with a Chi-square=7.17, p=0.007 and a Nagelkerke R2 of 0.46.

In an exploratory analysis, in order to find the best performing
combination of predictive variables, binary logistic regression with a
backwards stepwise method was applied, entering the data in three
consecutive blocks: clinical–epidemiological features, global connectiv-
ity and regional connectivity risk index (Table 7). In the first block, all
clinical data were discarded by the step-wise process. Entering global
connectivity data in the second block leaded to a six step process in
which only average degree and binary global efficiency remained.
However, the model was not significant. When regional connectivity
risk index was added in a third block, accuracy of the classification
increased to 88.2% (sensitivity 87.5, specificity 88.9%) with a significant
model (Chi-square=11.38, p=0.010, Nagelkerke R2=0.65).

Discussion

This study describes the use of diffusion MRI based connectomics in
one-year-old infants, with particular focus on the analysis of structural
brain networks. The study provides evidence that diffusion MRI based
connectomics can demonstrate large-scale brain reorganization of the
structural brain network in one year old children who suffered IUGR
bymeans of global aswell as regional brain network feature analysis. Fi-
nally, it was demonstrated that structural brain network features eval-
uated at one year could predict later neurodevelopment in 2-year old
children.

Small-worldness of structural brain networks

Overall, graph theory characterization showed the small-worldness
of one year old brain networks based on diffusion MRI structural con-
nectivity. These findings are in accordance with recent studies on struc-
tural brain networks based on diffusion MRI on adults (Gong et al.,



Fig. 3. Global characteristics of control and IUGR groups. (A) Average degree, (B) binary global efficiency, (C) binary local efficiency, (D) FN-weighted global efficiency, (E), FN-
weighted local efficiency, (F) FA-weighted global efficiency and (G) FA-weighted local efficiency. *pb0.05.
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2009; Hagmann et al., 2008), late developing brain (Hagmann et al.,
2010) and brain networks based on regional volumes correlations in
early developing brain (Fan et al., 2011). The results are indicative of a
high connectivity organization and efficiency already at one year of
age. Randomnetworks communicate every pair of nodeswith relatively
few intermediate steps, but have a lack of organization. On the contrary,
lattice networks have a high level of organization but a poor average ca-
pability to efficiently communicate a given pair of nodes. Small-world
networks present a balance between both kinds of networks (Sporns
and Tononi, 2001) and have been reported in a wide range of networks
present in nature as well as in man-made systems (Bullmore and
Sporns, 2009).

Interestingly, we identified precuneus as one of the principal hubs
in our one-year-old population, which is in line with previously
reported results in infants (Yap et al., 2011) and in adults (Gong et
al., 2009; Hagmann et al., 2008; Tomasi and Volkow, 2011).
Global structural brain network features

There is increasing agreement that network features indicate differ-
ences in brain organization (Bassett and Bullmore, 2009). Consequently,
global brain network features may be a useful approach to identify
which kind and at which level of complexity brain reorganization
occurs. By means of weighted measures of efficiency, alterations in
global and local efficiency were observed. These findings might suggest
brain reorganization of the WM connectivity without significant
changes in the total amount of connections. The results suggest that
FA-weighted approach could be a more sensitive parameter to reveal
brain reorganization due to IUGR. This is in line with previous studies
suggesting the value of weighted metrics of brain networks to assess
subtle differences in neurodegenerative and psychiatric conditions (Lo
et al., 2010; Shu et al., 2011;Wang et al., 2012; Wee et al., 2010). In ad-
dition, weighted measures seem to correlate better with intelligence



1360 D. Batalle et al. / NeuroImage 60 (2012) 1352–1366
measured by IQ score in normal subjects (Li et al., 2009). Lower global
efficiency has been described in multiple sclerosis (Shu et al., 2011),
schizophrenia (Wang et al., 2012), Alzheimer's disease (Lo et al.,
2010) and early blindness (Shu et al., 2009). A few studies have evalu-
ated global efficiency in relationwith normal neurodevelopment. A pat-
tern of increasing values with increasing age from 2 to 18 years of age
has been described (Hagmann et al., 2010), while similar global effi-
ciency values were measured in neonates, one-year-old and two-year-
old infants (Yap et al., 2011).

FA-weighted local efficiencywas also significantly lower in the IUGR
group. The clinical implications of local efficiency are still undefined.
While some have reported decreased local efficiency in schizophrenia
(Alexander-Bloch et al., 2010; Wang et al., 2010), multiple sclerosis
(He et al., 2009b; Shu et al., 2011) and children with severe reading
difficulties (Vourkas et al., 2010), others found increased local efficiency
in attention deficit hyperactivity disorder (Wang et al., 2009). Late de-
veloping brains (2–18 years) show decreasing clustering coefficients,
and hence decreasing local efficiency, with increasing age (Hagmann
et al., 2010). An increase in diffusion MRI local efficiency values has
been observed during the first years of life (Yap et al., 2011).

Regional structural brain network features

Analysis of regional brain network features allowed extracting infor-
mation of the topological changes on each region and its associated net-
work. Regional characteristics were altered following a diffuse pattern
along thewhole brain, which includedmultiple areas as frontal, tempo-
ral, parietal and occipital lobes, subcortical GMnuclei, insular cortex and
cerebellum. Frontal and temporal areas showed changes in all regional
features, although alterations in frontal areas were found mainly in
FN-weighted nodal efficiency. Frontal and temporal areas are involved
in the regulation of functions previously reported to be abnormal in
IUGR children, including short-termmemory (Geva et al., 2006a), learn-
ing abilities (Geva et al., 2006b), attention (Heinonen et al., 2010) and
social skills (Eixarch et al., 2008). Fronto-temporal areas have also
been related with attention deficit hyperactivity disorder (Kobel et al.,
2010), which is present in higher proportion in children who suffered
IUGR (Heinonen et al., 2010). Parietal areas showed differences mainly
in nodal degree and FA-weighted nodal efficiency. These findings are
consistent with the poorer performance in BSID-III motor domain
observed in IUGR children. Previous studies have linked worst motor
performance with reduced GM in parietal areas of IUGR (Padilla et al.,
2011). Occipital areas were altered mainly on FA-weighted nodal effi-
ciency, but also on nodal degree in a less spread pattern. This result is
consistent with previous findings where parieto-occipital and inferior
occipital regional vulnerability to IUGR has been demonstrated
(Thompson et al., 2007). Some subcortical GM nuclei including amyg-
dala, putamen, pallidum and thalamus were also found altered, by
regional features, mainly by FN-weighted nodal efficiency. Interesting-
ly, striatal injury has been related to perinatal disorders, including
IUGR, suggesting that it could be a risk factor of behavioral disturbances
(Toft, 1999) and specific alterations in the cortico-striato-thalamic net-
work have been associated with cognitive disorders, including Tourette
syndrome (Makki et al., 2009), bipolar disorder (Chen et al., 2006) and
attention deficit hyperactivity disorder (Castellanos et al., 1994;
Faraone and Biederman, 1998). Finally, cerebellum alterations in
nodal degree and weighted nodal efficiency were found. These findings
are in line with previously described decreases in cerebellar WM in
IUGR infants (Padilla et al., 2011) and with alterations in cerebellar
neuron population in animal models of IUGR (Mallard et al., 2000).

Association with abnormal neurodevelopment at two years of age

In this study IUGR infants showed significantly worse perfor-
mance in cognitive, motor and language scores on the BSID-III areas.
These findings are in line with previous data in IUGR infants and
children (Bassan et al., 2011; Eixarch et al., 2008; Feldman and
Eidelman, 2006; Geva et al., 2006a,b; Jarvis et al., 2003; Leitner et
al., 2007; Marsal, 2002; McCarton et al., 1996; Scherjon et al., 2000).
The results of this study provide evidence that graph theory features
of structural brain network at one year of age carry relevant individ-
ual information related with adverse neurodevelopment measured
one year later by BSID-III. Specifically, we have shown that global
network connectivity features were associated to abnormal neurode-
velopment. Furthermore, regional connectivity features allowed to
blindly classify abnormal neurodevelopment in IUGR with an accura-
cy of 82.4%. By means of an exploratory backward step-wise logistic
regression, we also demonstrated that mean degree and binary global
efficiency in combination with regional connectivity risk index,
increased the association power, to 88.2%, and achieved a very high
goodness of fit of the model (Nagelkerke R2=0.65). These results
are in line with previous studies relating neurofunction with diffusion
MRI based structural brain network features. Thus, global efficiency
has been previously demonstrated to be associated with intelligence
(Li et al., 2009), and regional features of brain networks selected by
means of a learning algorithm have been related successfully to
mild cognitive impairment in studies attempting to develop early
biomarkers for Alzheimer's disease (Wee et al., 2010). The data here
reported and previous studies suggest that combining global and
regional characteristics could help to improve the understanding of
neurofunctional mechanisms underlying structural connectivity. In
addition, further studies linking structural and functional networks
would be very helpful in order to better understand the intricate
link between structural and functional connectivity in the infant
brain. Combined analysis of both substrates is warranted in future
studies to advance in the understanding of brain reorganization and
its relation with altered neurobehavior due to IUGR and other prena-
tal condition. Several studies have demonstrated the feasibility of the
estimation of resting-state functional MRI networks in infants, and
revealed some of the principal functional hubs in the developing
brain (Doria et al., 2010; Fransson et al., 2007, 2010; Smyser et al.,
2010, 2011). The link between functional and structural networks
has been scarcely investigated. There is preliminary evidence that struc-
tural connections are predictive of functional connections (Honey et al.,
2010), but specific studies in the developing brain are lacking.

Strengths and limitations of the study

One of the most noteworthy strengths of the current study is that
it was performed in well-defined cohorts diagnosed prenatally and
followed prospectively. While most perinatal and demographic char-
acteristics were not significantly different among groups, the results
were corrected for a substantial number of potential confounders.

Notwithstanding, some issues must be noted concerning the meth-
odology followed. The techniques used on a series of complex analyses,
and due to their relative novelty there is a lack of ‘gold standards’ in the
literature. Brain parcellation in young infants is a controversial subject
and tissue segmentation in infant brains is considered a challenging
task due to the isointense developmental pattern which results in a
poor differentiation between GM and WM (Paus et al., 2001). To mini-
mize this limitationwe used high quality T1weighted 3-TeslaMagnetic
Resonance images and to guide the segmentation we used appropriate
brain tissue probability maps (Altaye et al., 2008) and a pediatric atlas
(Shi et al., 2011). In addition, each scan was reviewed to determine if
the results of the tissue segmentation were accurate (Knickmeyer et
al., 2008). A drawback of DTI tractography reconstruction is that it is
highly sensitive to motion artifacts during acquisition. This prevented
us to analyze a remarkable number of subjects. It is also well known
that DTI is not able to encode multi-directional diffusion information,
which may lead to errors in regions with a high amount of crossing
fibers. Other techniques such as Q-Ball Imaging (QBI) (Tuch, 2004) or
Diffusion Spectrum Imaging (DSI) (Wedeen et al., 2005) should be



Table 5
Regions with statistically significant differences in nodal degree, betweenness centrality, binary nodal efficiency, FN-weighted nodal efficiency and FA-weighted nodal efficiency in
IUGR compared with controls.

ROI Nodal degree Betweenness
centrality

Binary nodal
efficiency

FN-weighted nodal
efficiency

FA-weighted nodal
efficiency

PRE (L) N.S. N.S. N.S. N.S. p=0.025
F=5.507

PRE (R) N.S. N.S. N.S. N.S. p=0.027
F=5.393

F1 (L) N.S. N.S. N.S. N.S. N.S.
F1 (R) N.S. N.S. N.S. N.S. N.S.
F1O (L) N.S. N.S. N.S. N.S. N.S.
F1O (R) N.S. N.S. N.S. N.S. N.S.
F2 (L) N.S. N.S. N.S. p=0.023

F=5.650
p=0.032
F=5.024

F2 (R) N.S. N.S. N.S. N.S. N.S.
F2O (L) N.S. N.S. N.S. p=0.023

F=5.721
N.S.

F2O (R) N.S. N.S. N.S. p=0.009
F=7.603

N.S.

F3OP (L) N.S. N.S. N.S. N.S. p=0.021
F=5.870

F3OP (R) N.S. N.S. N.S. N.S. N.S.
F3T (L) N.S. N.S. N.S. N.S. N.S.
F3T (R) N.S. N.S. N.S. p=0.013

F=6.922
N.S.

F3O (L) p=0.012
F=7.133

p=0.006
F=8.578

p=0.020
F=5.930

p=0.019
F=6.097

N.S.

F3O (R) N.S. N.S. N.S. N.S. N.S.
RO (L) N.S. N.S. N.S. N.S. p=0.035

F=4.814
RO (R) N.S. N.S. N.S. N.S. p=0.038

F=4.667
SMA (L) N.S. N.S. N.S. N.S. p=0.027

F=5.377
SMA (R) N.S. N.S. N.S. p=0.033

F=4.977
N.S.

OC (L) N.S. N.S. N.S. N.S. N.S.
OC (R) N.S. N.S. N.S. p=0.003

F=10.618
N.S.

F1M (L) N.S. N.S. N.S. N.S. p=0.021
F=5.895

F1M (R) N.S. N.S. N.S. N.S. N.S.
F1MO (L) N.S. N.S. N.S. N.S. N.S.
F1MO (R) N.S. N.S. N.S. N.S. N.S.
GR (L) N.S. N.S. N.S. N.S. N.S.
GR (R) N.S. N.S. N.S. N.S. N.S.
IN (L) N.S. N.S. N.S. N.S. N.S.
IN (R) N.S. N.S. N.S. N.S. N.S.
ACIN (L) N.S. N.S. N.S. N.S. N.S.
ACIN (R) N.S. N.S. N.S. N.S. N.S.
MCIN (L) N.S. N.S. N.S. p=0.020

F=6.020
N.S.

MCIN (R) N.S. p=0.010
F=7.387

p=0.023
F=5.679

N.S. p=0.037
F=4.742

PCIN (L) N.S. N.S. N.S. N.S. N.S.
PCIN (R) N.S. N.S. N.S. N.S. N.S.
HIP (L) N.S. N.S. N.S. N.S. N.S.
HIP (R) N.S. N.S. N.S. N.S. N.S.
PHIP (L) N.S. N.S. N.S. N.S. N.S.
PHIP (R) N.S. N.S. N.S. N.S. N.S.
AMYG (L) N.S. N.S. N.S. N.S. p=0.035

F=4.839
AMYG (R) N.S. N.S. N.S. N.S. N.S.
V1 (L) N.S. N.S. N.S. N.S. p=0.003

F=10.644
V1 (R) N.S. N.S. N.S. N.S. p=0.005

F=8.950
Q (L) N.S. N.S. N.S. N.S. p=0.001

F=14.081
Q (R) N.S. N.S. N.S. N.S. p=0.013

F=6.975
LING (L) N.S. N.S. N.S. N.S. p=0.003

F=10.601
LING (R) N.S. N.S. N.S. p=0.024

F=5.562
p=0.008
F=7.843

O1 (L) N.S. N.S. N.S. N.S. p=0.005
F=8.999

(continued on next page)
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Table 5 (continued)

ROI Nodal degree Betweenness
centrality

Binary nodal
efficiency

FN-weighted nodal
efficiency

FA-weighted nodal
efficiency

O1 (R) p=0.035
F=4.830

N.S. N.S. N.S. p=0.005
F=9.038

O2 (L) p=0.039
F=4.634

N.S. N.S. N.S. p=0.010
F=7.395

O2 (R) p=0.028
F=5.319

N.S. N.S. N.S. pb0.001
F=16.938

O3 (L) N.S. N.S. N.S. N.S. p=0.007
F=8.289

O3 (R) N.S. N.S. N.S. N.S. p=0.004
F=9.551

FUSI (L) N.S. N.S. N.S. N.S. p=0.008
F=8.105

FUSI (R) N.S. N.S. N.S. N.S. N.S.
POST (L) p=0.006

F=8.499
N.S. N.S. N.S. p=0.008

F=7.948
POST (R) N.S. p=0.015

F=6.540
p=0.043
F=4.437

N.S. p=0.007
F=8.340

P1 (L) pb0.001
F=15.774

N.S. N.S. N.S. p=0.003
F=10.659

P1 (R) N.S. N.S. N.S. N.S. p=0.004
F=9.322

P2 (L) p=0.022
F=5.736

N.S. N.S. N.S. p=0.003
F=10.711

P2 (R) N.S. N.S. N.S. N.S. p=0.006
F=8.515

SMG (L) N.S. N.S. N.S. N.S. p=0.008
F=7.866

SMG (R) N.S. p=0.009
F=7.757

p=0.012
F=7.064

N.S. N.S.

AG (L) p=0.017
F=6.288

N.S. N.S. N.S. p=0.007
F=8.395

AG (R) p=0.046
F=4.301

N.S. N.S. p=0.012
F=7.128

p=0.006
F=8.560

PQ (L) N.S. p=0.046
F=4.307

p=0.016
F=6.513

N.S. p=0.005
F=9.156

PQ (R) N.S. N.S. N.S. N.S. p=0.012
F=7.040

PCL (L) N.S. N.S. N.S. N.S. p=0.012
F=7.040

PCL (R) N.S. N.S. p=0.025
F=5.542

N.S. N.S.

CAU (L) N.S. N.S. N.S. N.S. N.S.
CAU (R) N.S. N.S. N.S. N.S. N.S.
PUT (L) N.S. N.S. N.S. p=0.043

F=4.445
p=0.036
F=4.799

PUT (R) N.S. N.S. N.S. p=0.001
F=13.440

N.S.

PAL (L) N.S. N.S. N.S. p=0.025
F=5.556

N.S.

PAL (R) N.S. N.S. N.S. p=0.014
F=6.738

N.S.

THA (L) N.S. N.S. N.S. N.S. N.S.
THA (R) N.S. N.S. N.S. p=0.035

F=4.814
p=0.016
F=6.449

HES (L) N.S. N.S. N.S. N.S. p=0.028
F=5.271

HES (R) N.S. p=0.031
F=5.061

p=0.012
F=7.131

N.S. p=0.041
F=4.506

T1 (L) N.S. p=0.037
F=4.710

p=0.011
F=7.235

N.S. p=0.016
F=6.432

T1 (R) N.S. pb0.001
F=17.798

p=0.001
F=14.411

N.S. N.S.

T1P (L) N.S. N.S. N.S. p=0.002
F=11.304

N.S.

T1P (R) N.S. N.S. N.S. p=0.029
F=5.225

N.S.

T2 (L) p=0.028
F=5.305

p=0.005
F=9.172

p=0.005
F=9.263

N.S. p=0.024
F=5.616

T2 (R) N.S. pb0.001
F=15.620

p=0.001
F=12.612

N.S. p=0.010
F=7.516

T2P (L) p=0.046
F=4.285

p=0.042
F=4.468

N.S. p=0.027
F=5.332

N.S.

T2P (R) N.S. N.S. N.S. N.S. N.S.
T3 (L) N.S. p=0.038

F=4.647
p=0.006
F=8.652

N.S. p=0.004
F=9.339

T3 (R) N.S. N.S. N.S. N.S.
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Table 5 (continued)

ROI Nodal degree Betweenness
centrality

Binary nodal
efficiency

FN-weighted nodal
efficiency

FA-weighted nodal
efficiency

p=0.017
F=6.273

CER (L) p=0.023
F=5.657

N.S. N.S. pb0.001
F=15.467

p=0.011
F=7.346

CER (R) p=0.042
F=4.471

N.S. N.S. pb0.001
F=19.769

p=0.003
F=10.630

VER p=0.026
F=5.453

N.S. N.S. p=0.006
F=8.539

p=0.016
F=6.467

Features that maintain significance after False Discovery Rate controlling alpha error to 0.05 are highlighted in bold. (L) refers to left hemisphere, (R) to right hemisphere. N.S. for
Not Significant.
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used to solve this issue and providemore accurateWMtractography re-
construction in future studies. Current limitations of DTI based tracto-
graphy, and the noisy nature of the acquisitions, may result in the
inclusion of spurious connections in individual networks. However, it
must be noted that we did not perform an analysis directly based on
edges, butmeasured network topology features. This approach is robust
against noise as it integrates overall information of the individual
networks, and therefore, minimizes the effect of spurious connections.
How the connectivity between regions must be quantified is also an
issue to be addressed. Binarization of the obtained network implies a
loss of information of the connectivity pattern, and some authors pro-
pose different measures to quantify connections based on diffusion
MRI as the number of fiber bundles, density of fibers or average
measures of diffusion along the tract (Hagmann et al., 2007; Li et al.,
2009; Wee et al., 2010). However, how the weight of a connection
must be quantified, and its correlation with the anatomical substrate
in which transfer of neural signals yields is still an open question (Li
et al., 2009; Shu et al., 2009). It must be noted that average degree,
and therefore the network cost, were non-significantly different
between groups in the unthresholded networks, which supports that
similar network density ofWMconnectionswere calculated throughout
Fig. 4. Altered regional features in IUGR. In blue, regional characteristics showing statistica
remained statistically significant after False Discovery Rate controlling alpha error at 5%
weighted nodal efficiency and (E) FA-weighted nodal efficiency. (For interpretation of the
this article.)
all the population,minimizing the chances of differences in network cost
causing some of the observed differences.

It is also worth noticing that the proportion of control subjects
with abnormal Bayley scores may seem relatively high (27%). Part
of the control population was composed by prematurely born infants,
which by definition are associated with increased rates of neurodeve-
lopmental delay (Darlow et al., 2009). While we cannot exclude that
this may have hampered the demonstration of some differences,
correction for prematurity was important to ensure that differences
are most likely the consequence of intrauterine growth restriction.
Finally, we acknowledge that the relatively reduced sample size used
in the present study prevents to generalize the set of altered features
that predict an abnormal BSID-III performance. Larger sample sizes
will help to estimate the generality of the identified regions in future
studies and the robustness of the learning algorithm.

Conclusion

In conclusion, MRI connectomics is an emerging technique that is
suitable for the assessment of brain reorganization in IUGR infants by
means of global and regional graph theory based network features,
lly significant differences (pb0.05) in IUGR. In red, those regional characteristics that
. (A) Nodal degree, (B) betweenness centrality, (C) binary nodal efficiency, (D) FN-
references to color in this figure legend, the reader is referred to the web version of



Fig. 5. Regional features associated with an abnormal BSID-III outcome in IUGR expressed as the frequency (%) of selection in the leave-one-out algorithm. (A) Nodal degree, (B)
betweenness centrality, (C) binary nodal efficiency, (D) FN-weighted nodal efficiency and (E) FA-weighted nodal efficiency.
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which are related to different levels of organizational complexity. We
could demonstrate altered brain network topology in one-year-old
IUGR infants and its association with abnormal performance in neu-
rodevelopmental scales (BSID-III) at two years of age. Larger studies
Table 6
Binomial logistic regression (enter method) of abnormal Bayleys performance using
three blocks of predictors: clinical characteristics, global connectivity features, and re-
gional connectivity risk index.

B S.E. Wald df Sig.

Clinical characteristics
(Cox and Snell R2: 0.155; Nagelkerke R2: 0.207; model significance: p=0.825)

Maternal education −0.610 1.646 0.137 1 0.711
Smoking status 0.791 1.292 0.375 1 0.540
Gender 0.404 1.238 0.106 1 0.744
Breastfeeding more than 4 months 1.081 1.394 0.602 1 0.438
GA −0.135 0.246 0.300 1 0.584
Weight centile −0.021 0.300 0.005 1 0.945
Constant 3.953 9.952 0.158 1 0.691

Global connectivity features
(Cox and Snell R2: 0.439; Nagelkerke R2: 0.585; model significance: p=0.199)

Mean degree 1.601 1.452 1.216 1 0.270
Binary global efficiency −491.020 672.818 0.533 1 0.466
Binary local efficiency 274.691 621.901 0.195 1 0.659
FN-weighted global efficiency 0.894 1.016 0.775 1 0.379
FN-weighted local efficiency −4.375 4.024 1.182 1 0.277
FA-weighted global efficiency −537.727 1046.374 0.264 1 0.607
FA-weighted local efficiency 688.091 1061.576 0.420 1 0.517
Constant 68.287 124.702 0.300 1 0.584

Regional connectivity features
(Cox and Snell R2: 0.344; Nagelkerke R2: 0.459; model significance: p=0.007)

Regional connectivity risk index 3.348 1.443 5.384 1 0.020
Constant −1.805 1.014 3.170 1 0.075
are required to validate the results here reported. However, the find-
ings show the potential of diffusion MRI based connectomics and
graph theory based network analysis for extracting features that
characterize the individual architecture of neural circuitry. Hence,
this methodology holds as a promising candidate for the
Table 7
Binomial logistic regression (step-wise backward method) of abnormal Bayleys perfor-
mance in three consecutive blocks including clinical characteristics, global connectivity
features, and regional connectivity risk index. Results are the last step of the backward
algorithm.

Number
of steps

Variables
remaining
in the step

B S.E. Wald Sig. in the
equation

Sig. of the
model change
if removed

Block1: clinical characteristics
(Cox and Snell R2: 0.000; Nagelkerke R2: 0.000; model significance: p=0.229)

7 Constant −0.118 0.486 0.059 0.808 –

Block2: clinical characteristics+global connectivity features
(Cox and Snell R2: 0.250; Nagelkerke R2: 0.333; model significance: p=0.087)

6 Mean degree 0.361 0.305 1.402 0.236 0.105
Binary global
efficiency

−94.774 61.936 2.342 0.126 0.050

Constant 62.155 41.914 2.199 0.138 –

Block3: clinical characteristics+global connectivity features+regional
connectivity risk index
(Cox and Snell R2: 0.488; Nagelkerke R2: 0.651; model significance: p=0.010)

1 Mean degree 0.757 0.527 2.069 0.150 –

Global
efficiency

−150.857 97.979 2.371 0.124 –

Regional
connectivity
risk index

4.238 2.177 3.790 0.052 0.011

Constant 89.089 61.150 2.123 0.145 –
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development of imaging biomarkers of poor neurodevelopmental
outcome in infants at risk due to prenatal diseases.
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