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ABSTRACT 

3-Aminobenzanthrone (3-ABA) is a human metabolite of carcinogenic 3-nitrobenzanthrone 

(3-NBA), which occurs in diesel exhaust and air pollution. Understanding which cytochrome 

P450 (CYP) enzymes are involved in metabolic activation and/or detoxication of this toxicant 

is important in the assessment of an individual’s susceptibility to this substance. The aim of 

this study was to evaluate the efficiency of rat hepatic CYPs to oxidize 3-ABA and to 

examine the metabolites formed during such an oxidation. The metabolites formed by CYPs 

in rat hepatic microsomes were separated by high performance liquid chromatography 

(HPLC). 3-ABA is oxidized by these enzymes to three metabolites, which were separated by 

HPLC as distinguish product peaks. Using co-chromatography with synthetic standards, two 

of them were identified to be oxidative metabolites of 3-ABA, N-hydroxy-3-ABA and 3-

NBA. The structure of another 3-ABA metabolite remains to be characterized. To define the 

role of rat hepatic CYP enzymes in metabolism of 3-ABA, we investigated the modulation of 

its oxidation using different inducers of CYPs for treatment of rats to enrich the liver 

microsomes with individual CYPs. Based on these studies, we attribute most of 3-ABA 

oxidation in rat hepatic microsomes to CYP2B, followed by CYP1A, although a role of other 

hepatic CYPs cannot be ruled out. Inhibition of 3-ABA oxidation by selective inhibitors of 

individual CYPs, supported this finding.  

 

Introduction 

3-Aminobenzanthrone (3-ABA, Fig. 1) is the reductive metabolite of the carcinogenic 

environmental pollutant, nitroketone 3-nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-

one, 3-NBA, Fig. 1) (Hansen et al., 2007; Svobodová et al., 2007). In recent years 3-NBA has 

received much attention due to its presence in diesel exhaust and its extremely high mutagenic 

potency in the Ames Salmonella assay (Enya et al., 1997; Seidel et al., 2002; Arlt, 2005). 3-
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NBA is carcinogenic in rats, causing lung tumours after intratracheal instillation, and it is also 

a suspected human carcinogen (Seidel et al., 2002; Arlt, 2005; Nagy et al., 2005). The uptake 

of 3-NBA in humans has been demonstrated, because its metabolite 3-ABA has been found in 

urine samples of salt mine workers occupationally exposed to diesel emissions (Seidel et al., 

2002). 3-ABA was also the main metabolite of 3-NBA formed in human fetal bronchial cells 

and rat lung alveolar type II cells (Borlak et al., 2000). In addition, 3-ABA was evaluated to 

be suitable for coloration of microporous polyethylene films, which are widely used for 

practical purposes such as separation of liquid mixtures, in particular, as separation 

membranes in chemical batteries (Grabchev et al., 2002), or an advantageous fluorescent 

phospholipid membrane label in the form of its N-palmitoyl derivative (Sykora et al., 2002). 

This suggests its industrial and/or laboratory utilization. Furthermore, genotoxicity of 3-NBA 

and 3-ABA has been documented by the detection of specific DNA adducts formed in vitro as 

well as in vivo in rodents in various tissues (Arlt et al., 2001; 2002; 2003a; b; c; 2004a; c; 

2005; 2006b; Bieler et al., 1999; 2005; 2007; Stiborová et al., 2006; 2008). The predominant 

DNA adducts formed form 3-NBA and 3-ABA are N-(2’-deoxyguanosin-N2-yl)-3-

aminobenzanthrone (dG-N2-ABA) and N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-

C8-N-ABA) and these are most probably responsible for the induction of GC to TA 

transversion mutations induced by these toxicants (Arlt et al., 2004a; Arlt et al., 2006b; Bieler 

et al., 2007).  

Even though the epidemiological study on the toxicity of 3-ABA has not yet been 

evaluated, formation of DNA adducts by this reductive metabolite of 3-NBA in vitro and in 

vivo in rodents inducing these transversion mutations indicates its potential genotoxicity. 

Understanding which enzymes are involved in the metabolism (activation and/or 

detoxication) of 3-ABA is important in the assessment of susceptibility to this 3-NBA 

metabolite. Recently, we have found that cytochromes P450 (CYP) 1A1 and 1A2 are essential 
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for 3-ABA oxidative activation in human and rat livers, forming the same DNA adducts that 

are formed in vivo by 3-ABA or 3-NBA (Arlt et al., 2004b). CYP1A1 is also efficient 

activator of 3-ABA in microsomes of rat kidneys and lungs, while prostaglandin H synthase 

(cyclooxygenase) plays a minor role in this subcellular fraction (Stiborová et al., 2008). 

Previous results also indicate that besides microsomal CYP enzymes cytosolic peroxidases 

might play a role in the oxidative activation of 3-ABA, mainly in extrahepatic tissues such as 

kidneys and lungs (Arlt et al., 2006a, Stiborová et al., 2006; 2008).  In in-vitro experiments, 

mammalian cyclooxygenase, lactoperoxidase and myeloperoxidase were found to be effective 

in activating 3-ABA (Arlt et al., 2006a) (Fig. 1). 

In contrast to the enzymes activating 3-ABA to species binding to DNA, those 

participating in 3-ABA oxidation to other potential metabolites have not been extensively 

studied so far. Therefore, here we investigated the oxidative metabolism of 3-ABA in vitro, in 

order to characterize the 3-ABA metabolites and to identify CYPs responsible for their 

formation. Hepatic microsomes of untreated (control) rats and those treated with two CYP 

inducers, namely, β-naphthoflavone (β-NF), which induces CYP1A and phenobarbital (PB), 

which induces CYP2B, were used for such a study. The selective inhibitors of individual CYP 

enzymes were also utilized to identify the most important enzymes oxidizing 3-ABA.  

 

Materials and methods 

Synthesis of 3-ABA and N-hydroxy-3-ABA (N-OH-ABA) 

3-ABA and N-OH-ABA were synthesized as described (Arlt et al., 2003a) and their 

authenticity was confirmed by UV spectroscopy, electrospray mass spectra and high field 

proton NMR spectroscopy. 

Animal experiments and preparation of microsomes 
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The study was conducted in accordance with the Regulations for the Care and Use of 

Laboratory Animals (311/1997, Ministry of Agriculture, Czech Republic), which complies 

with Declaration of Helsinki. Microsomes from livers of ten male untreated Wistar rats and  

those of rats pretreated with β-NF (Sigma, UK) and PB were prepared by the procedure 

described previously (Stiborová et al., 2002). Rat liver microsomes contained 0.6 nmol 

CYP/mg protein, respectively. Hepatic microsomes of rats treated with β-NF and PB 

contained 1.3 and 1.5 nmol CYP/mg proteins, respectively.  

Incubations 

Incubation mixtures, in a final volume of 500 µl, consisted of 100 mM potassium phosphate 

buffer (pH 7.4), 10 mM NADPH, 0.5 mg of microsomal protein and 5 - 50 µM 3-ABA 

(dissolved in dimethyl sulfoxide, DMSO). The reaction was initiated by adding 3-ABA. 

Incubations with rat microsomes were carried out at 37 for 5-180 minutes. Control 

incubations were carried out either (1) without the enzymatic system (microsomes) or (2) with 

microsomes and 3-ABA, but without NADPH. Then, 5 µl of 1 mM phenacetine in methanol 

was added as an internal standard and 3-ABA and its metabolites were extracted twice with 

ethyl acetate (2 x 1.5 ml). The extracts were evaporated to dryness; residues were dissolved in 

30 µl of methanol and subjected to reverse-phase (RP)-HPLC to evaluate the amounts of 

residual 3-ABA and its metabolites.  

HPLC  

The HPLC was performed with a reversed phase column (Nucleosil 100-5 C18, Macherey-

Nagel, Duren, Germany, 25 cm x 4.6 mm, 5 µm) proceeded by a C-18 guard column, using 

isocratic elution conditions of 70% methanol in distilled water with a flow rate of 0.6 ml/min. 

The HPLC was carried out with a Dionex HPLC pump P580 with UV/VIS UVD 170S/340S 

spectrophotometer detector set at 254 nm, and peaks were integrated with a 

CHROMELEONTM 6.01 integrator. 
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Inhibition studies  

The following chemicals were used to inhibit 3-ABA oxidation in the presence of rat hepatic 

microsomes: α-naphthoflavone (α-NF), which inhibits CYP1A1 and 1A2, furafylline, which 

inhibits CYP1A2, diamantane, an inhibitor of CYP2B, sulfophenazole, which inhibits CYP2C 

and diethyldithiocarbamate, which inhibits CYP2E1 (Rendic and DiCarlo, 1997). Inhibitors 

were dissolved in 7.5 µl of methanol or water (in the case of diethyldithiocarbamate), to yield 

final concentrations of 0.01 - 0.1 mM in the incubation mixtures. Mixtures were then 

incubated at 37ºC for 5 min with NADPH prior to adding 3-ABA, and then incubated for a 

further 20 min at 37ºC. After the incubation, 3-ABA and its metabolites were extracted and 

analyzed by HPLC as described above. 

 

Results 

3-Aminobenzanthrone is oxidized by rat hepatic CYP enzymes in microsomes up to three 

metabolites (see Fig. 2 for hepatic microsomes of rats treated with β-NF). These metabolites 

were separated by HPLC as distinguish product peaks (Fig. 2A). Using co-chromatography 

with synthetic standards, two of them were identified to be the oxidative metabolites of 3-

ABA (Fig. 2B), N-hydroxy-3-ABA (Fig. 2C) and 3-NBA (Fig. 2D). Structures of another 

metabolite eluted with the retention time (r.t.) of 18 min, M18 (Fig. 2A), remains to be 

characterized.  

In order to evaluate the role of the rat hepatic CYPs in oxidation of 3-ABA, hepatic 

microsomes of rats treated with inducers of several CYPs (β-NF as an inducer of CYP1A1/2 

and PB as an inducer of CYP2B) were used. All these microsomes as well as those of the 

untreated (control) rats were capable of oxidizing 3-ABA. Under the experimental conditions 

used, the most efficient microsomes oxidizing 3-ABA were those isolated from livers of rats 

treated with PB (rich in CYP2B), followed by those isolated from livers of rats treated with β-
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NF (rich in CYP1A) and by control microsomes (Fig. 3). This finding suggests that CYPs of a 

2B subfamily, followed by those of a 1A subfamily might play an important role in 3-ABA 

oxidation. Whereas hepatic microsomes rich in CYP1A (β-NF-microsomes) generated the 

final oxidative metabolite of 3-ABA, 3-NBA, this metabolite was not generated by other 

microsomes tested in this study. The metabolite with unknown structure, M18, was only 

formed from 3-ABA by these enzymatic systems (Fig. 3) 

The role of rat hepatic CYP enzymes in 3-ABA oxidation was further investigated by 

modulation of this reaction by selective inhibitors of individual CYPs. Of the inhibitors used 

in the study, diamantane, an inhibitor of CYP2B, was the most efficient inhibitor of 3-ABA 

oxidation with the IC50 value of 0.9 µM, followed by α-NF, sulfaphenazole and furafylline, 

inhibitors of CYP1A1/2, 2C and 1A2, respectively. The lowest inhibition efficacy was found 

for an inhibitor of CYP2E1, diethyldithiocarbamate. The IC50 values are shown in Table 1. 

These results supported the data found in the experiments with CYP inducers; CYP2B, 

followed by CYP1A, seem to be the most efficient in 3-ABA oxidation, whereas other CYP 

enzymes are less effective. 

 

Discussion 

3-ABA, the human metabolite of the ubiquitous environmental pollutant 3-NBA, was detected 

in the urine of smoking and nonsmoking salt mining workers occupationally exposed to diesel 

emissions at similar concentration (1-143 ng/24 h urine) to 1-aminopyrene (2-200 ng/24 h 

urine), the corresponding amine of the most abundant nitro-polycyclic aromatic hydrocarbons 

detected in diesel exhaust matter (Seidel et al., 2002). The present study has increased our 

knowledge on the potential of CYP enzymes to oxidize this toxicant and on the kinetics of 

such an oxidation.  

The rat was used as an experimental model on the basis that the same enzymes activate 3-
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ABA in human and rat livers to species forming DNA adducts (Arlt et al., 2004b, 2006a; 

Stiborová et al., 2006). Therefore, the results should provide some indication of what might 

occur with 3-ABA in livers of humans. Rat and human hepatic CYP1A1 and/or 1A2 were 

found to be responsible for metabolic activation of 3-ABA (Arlt et al., 2004b). This finding 

corresponds to results found in the present study. Here, we have found that CYP1A enzymes 

are effective in oxidation of 3-ABA to the final oxidative metabolite of this compound, 3-

NBA. Namely, to the metabolite that is formed through the formation of N-hydroxy-3-ABA. 

This reactive intermediate is, however, also decomposed to the ultimate carcinogenic species 

of 3-ABA, nitrenium and/or carbenium ions, forming 3-ABA-derived DNA adducts. Hence, 

this metabolic activation pathway seems to be the prevalent pathway of CYP1A enzymes.   

On the contrary, the CYP enzymes of the 2B subfamily (PB-microsomes), which were the 

most effective in oxidation of 3-ABA, did not form 3-NBA. Likewise, such a pathway was 

also not found for CYPs expressed in livers of untreated rats. Therefore, these CYP enzymes 

seem to play a detoxication role in 3-ABA metabolism. Nevertheless, this finding needs to be 

confirmed by additional studies. For example, the structural characterization of the 3-ABA 

metabolite M18 might shed some light on this feature.  

In conclusion, the study showing for the first time identification of two metabolites 

formed from 3-ABA by CYP-mediated oxidation, confirmed the participation of CYP1A 

enzymes in activation of 3-ABA, namely, in formation of such a metabolite of 3-ABA, which 

is responsible for generation of 3-ABA-derived DNA adducts (N-hydroxy-3-ABA). Other 

CYPs expressed in rat livers are more important for detoxication of this compound. Structural 

characterization of the detoxication metabolite of 3-ABA awaits further investigation. 
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Table 1. The values of IC50 for inhibition of 3-ABA oxidation by CYPs  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hepatic microsomes 

from rats pretreated 

with 

Inhibitor IC50 [µM] 

β-naphtoflavone 
(CYP1A1/2) 

α-naphtoflavone 
(CYP1A1/2) 

10.9 

β-naphtoflavone 
(CYP1A1/2) 

Furafylline 
(CYP1A2) 

16.6 

Control DDTC 
(CYP2E1) 

96.8 

Control Sulfaphenazole 
(CYP2C) 

10.8 

Phenobarbital 
(CYP2B) 

Diamantane 
(CYP2B) 

0.9 
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Legend to figures 

Figure 1. Pathways of metabolic activation and DNA adduct formation of 3-

aminobenzanthrone and 3-nitrobenzanthrone. See the text for details. R = -COCH3 or -SO3H; 

dA-N6-ABA, 2-(2’-deoxyadenosin-N6-yl)-3-aminobenzanthrone; dG-N2-ABA, N-(2’-

deoxyguanosin-N2-yl)-3-aminobenzanthrone; dG-C8-N-ABA, N-(2’-deoxyguanosin-8-yl)-3-

aminobenzanthrone. 

 

Figure 2. HPLC of 3-ABA metabolites produced by hepatic microsomes of rats treated with 

β-NF (A), HPLC of 3-ABA (B), N-hydroxy-3-ABA (C) and 3-NBA (D).  

 

Figure 3. Time dependence of 3-ABA oxidation by hepatic microsomes of rats treated with β-

NF (A), PB (B), and untreated (control microsomes) (C)  
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