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Abstract

Metal nanocluster deposition is an important fabrication process that can be
used to grow nanoarchitectures for use in various applications such as electronics
and electrocatalysis. Classical nucleation theory is a powerful theory that can be
used to qualitatively capture nucleation thermodynamics for many systems, but has
been found to be inappropriate to describe the initial stages of nucleation due to
its inherent assumptions. Despite the development of atomistic nucleation theories,
much still remains unclear about the early stages of metal deposition and the role of
the atomic-scale structure on the surface. In this regard, atomistic simulations based
on electronic structure methods can play an important role in the elucidation of the
initial nucleation processes and mechanisms. This thesis will use density functional
theory and its derived methods to characterise the adsorption of gold nanoclusters
on polycrystalline boron-doped diamond surfaces. First, a detailed investigation
into the most stable oxygenation state of diamond (110) surfaces is conducted,
and the most stable surface phase is shown to comprise coexistent and adjacent
carbonyl and ether functional groups. Afterwards, the structural stability of single
gold atoms on oxygen-terminated diamond (110) surfaces is investigated, and defects
and dopants within the diamond surface are shown to significantly increase the
adsorption energy and diffusion barriers of single gold atoms. The atom-by-atom
growth of gold dimers, trimers and tetramers on diamond surfaces is subsequently
studied by analysing their stabilities and identifying preferred morphologies. Finally,
machine learning-based interatomic potentials are developed to facilitate accurate
and computationally efficient geometry optimisations, and are used to predict the
structures and stabilities of larger gold nanoclusters ranging from 6 to 147 atoms.
This thesis is part of a scientific effort to develop modern atomistic theories of atom-
by-atom particle growth, and will help guide the controlled design of nanostructured
catalysts in the future.
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Chapter 1

Introduction

1.1 Electrodeposition of Metal Nanostructures

Electrodeposition is the formation of solid structures on the surface of an electrode

after an electrochemical potential is applied. Electrodeposition is a viable nanofab-

rication process alongside more established methods such as nanoimprint lithogra-

phy [1; 2], pH-driven precipitation [3; 4] and directed assembly [5; 6; 7; 8; 9; 10;

11; 12], and can be used to create metal nanostructures for a variety of applications

such as carbon dioxide reduction catalysis [13], water splitting [14], fuel cell [15]

and materials for energy storage and conversion.

Metal nanoparticle (NP) electrodeposition is an important method for the

growth of thin films and nanoarchitectures, which has prospective applications in

numerous fields such as electronics, electrocatalysis and quantum computing. Metal

NPs have been shown to exhibit unique electrocatalytic properties due to finite size

effects [16; 17], while bimetallic NPs have been shown to have greater electrocat-

alytic activity than monometallic NPs due to geometric effects [17; 18; 19]. The

key challenge in electrodeposition is to be able to control the structure, size, and

stability of surface-adsorbed NPs on an atomistic scale, which in turn define the

reactivity and electrochemical properties of the resulting materials [20; 21]. The

establishment of an atomic-scale understanding of the electrodeposition process is

thus crucial to enable the controlled fabrication of NPs and other nanostructures.

The process of electrodeposition is often described in four stages: diffusion

through the solvent, adsorption at the electrode via electron-transfer, surface mi-

gration and nucleation, as depicted in Figure 1.1.
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Figure 1.1. A simplified diagram showing the process of metal electrodeposition
onto a cathode surface, from the nucleation of a single atom to the growth of a
larger structure with possible deformation. The system can be split into two parts:
the bulk system, consisting of water (H2O) molecules (blue), anions (green) and
metal cations (red), and the double layer, where charge separation occurs. When
a metal cation, M+, in the double layer gets close enough to the cathode surface
(step 1), an electron-transfer reaction occurs that reduces it to a metal atom, M i.e.
adsorption (step 2). Once adsorption has occurred, the adatom may migrate along
the cathode surface (step 3). This surface migration can lead to adatoms coalescing,
resulting in the formation of larger structures (step 4) such as nanoclusters (NCs)
and nanoparticles (NPs). If energetically unfavourable, NCs and NPs may fragment
(step 5) and lead to further atomic migration along the electrode surface, which
may feed the growth of other NCs and NPs on the surface. Isolated atoms may also
directly adsorb onto or migrate into defect sites on the electrode surface.

Experimental techniques to track and characterise the metal electrodeposi-

tion process have vastly improved over recent years, as discussed in Section 1.1.1.

The complementary use of scanning transmission electron microscopy (STEM), sur-

face spectroscopy, and electrochemical analysis provides unprecedented resolution

at the nanoscale and, to a more limited extent, resolution in the time domain [22].

Simultaneously, significant advancements have been made in molecular simulation

capabilities and the electronic structure theory of complex interfaces [23; 24], as

summarised in Section 1.1.2. Yet a large gap between realistic applications, theo-

retical understanding of dynamics, and atomistic simulation remains. Both theory

and experiment face challenges when it comes to bridging this gap and reaching an

atomic-level understanding of electrodeposition: theoretical and simulation stud-

ies must be able to generate realistic models capable of replicating experimental
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conditions, including factors such as surface heterogeneity. On the other hand,

experimental studies should ideally be conducted under well-defined and idealised

conditions (e.g. atomically-flat electrode interfaces) to allow for atomistic simula-

tions and theoretical analyses to be applied [17]. The synergy between experiment

and simulation has the potential to deeply enrich the field: modelling methods can

be refined once information about atomic structure is attained from experiment,

while simulations can also be used to make predictions that can be validated using

experiments [17].

1.1.1 Experimental Methodologies

A variety of microscopy techniques have been used to study metal electrodeposition.

Two such techniques are electron microscopy (EM) and scanning probe microscopy.

EM is able to attain high magnification and resolution due to the use of electrons

over light waves, which can therefore be used to analyse structures in immense de-

tail and generate high-quality images [25]. Disadvantages of EM include the large

equipment size, the cost of operation and the long training time required to ensure

proper operation; furthermore, the high kinetic energy of the beamed incident elec-

trons can lead to sample degradation [25]. One variant of EM is scanning EM, where

the electron beam is focused to a spot and is scanned sequentially across the sam-

ple [25]. At each location, scattered electrons are emitted from the sample and are

collected by detectors; electrons are typically beamed at energies of 1–30 keV [25].

In transmission EM (TEM), the electron beam is focused on a defined area of the

sample [25]. Electrons are typically beamed at higher energies than in scanning EM

(80–300 keV) to ensure they are transmitted through the sample; this transmitted

signal is then collected by parallel detectors below the sample [25]. A hybrid form of

the two methods, STEM, also exists, where scanning electron microscopes are fitted

with detectors to collect transmitted electrons [25]. STEM techniques have been

a popular choice to study metal electrodeposition due to the high resolution they

offer [22; 26; 27; 28; 29]. STEM has been shown to be capable of dynamically visu-

alising the early stages of electronucleation for metals such as gold, with structural

resolution on the atomic scale and time resolution defined by the sequential analy-

sis of short electrodeposition runs (several milliseconds of deposition per run) [22].

TEM has also been used to study the electrodeposition of metals such as lithium,

silver, nickel and platinum at submicroscopic resolutions [26; 27; 28; 29; 30; 31].

Several studies also report the use of scanning EM to investigate metal electrodepo-

sition [28; 32; 33]. While liquid cell TEM has made lots of progress in monitoring

dynamic electrochemical systems [34; 35], it has limited resolution due to factors
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such as electron-beam-induced gas bubble formation and electron scattering in the

liquid [22]; in contrast, ex situ aberration-corrected STEM is not only capable of re-

solving single atoms but can quantify the number of atoms within a particle [22; 36].

Despite the high resolution from STEM, the resulting two-dimensional (2D) projec-

tion does not allow for a full assessment of the 3D structure of surface-adsorbed

NPs. Some machine learning (ML) and neural network (NN) methodologies have

been used to tackle this problem by analysing experimental data and extracting 3D

structural data [37; 38; 39; 40; 41].

In contrast, scanning probe methods such as scanning tunnelling microscopy

and atomic force microscopy generate images of surfaces using a physical probe

that scans the sample [42]. The advantages of scanning probe microscopy over EM

include the capability to extract three-dimensional (3D) topographic information

at atomistic scales and the sensitivity of the different environments it can operate

inmethodshowevertypically require much longer scan times than EM methods [42].

Both atomic force microscopy [43] and scanning tunnelling microscopy [44; 45; 46;

47; 48; 49; 50] are capable of analysing the influence of current on the electrode-

posited structure at submicroscopic resolutions. Scanning electrochemical cell mi-

croscopy has also been used to study the initial electronucleation stages and mobility

of metals such as platinum [51], copper [52], iron [53] and silver [54], and has gained

much attention [55; 56; 57] due to its ability to routinely operate at submicroscopic

scales [52; 58; 59]. By mapping electrochemical phenomena directly and locally via

a nanoscopic meniscus cell, scanning electrochemical cell microscopy can be used

to make measurements over a large array of discrete areas over an electrode sur-

face [52]. Comparing microscopy techniques, the resolution obtained using scanning

probe techniques such as atomic force microscopy and scanning electrochemical cell

microscopy is typically limited to the NP level though, and while scanning tunnelling

microscopy can resolve individual atoms, studies typically focus on 2D growth and

dissolution [22; 44]. Furthermore, while all microscopy techniques provide informa-

tion on geometrical and electronic structure to some degree, scanning electrochem-

ical cell microscopy can provide information about reactivity.

Other microscopy techniques such as surface plasmon resonance microscopy [60]

and dark-field scattering microscopy [61; 62] also exist have been used to investigate

metal electrodeposition. Surface plasmon resonance microscopy is a non-intrusive

optical technique that is highly sensitive to nanoscopic objects, while dark-field

scattering microscopy has a relatively simple experimental setup that can directly
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probe the plasmonic properties of individual structures and allow for correlation

with EM [61; 62]. Their performancehoweveris restricted by the very small field of

view which increases the difficulty in acquiring quantitative data on electronucle-

ation [60; 61]. Wide-field surface plasmon resonance microscopyhoweverremoves this

constraint and allows for the growth of hundreds of nuclei to be tracked simultane-

ously at a reasonable time resolution (∼1 s) [60]. Dark-field scattering microscopy

also requires working electrode materials to be optically-transparent and for the

nanostructure being analysed to at least include a plasmonic metal; furthermore,

the structures have to be large enough to ensure detection [62].

1.1.2 Simulation Methodologies

Electrodeposition comprises many different aspects that must be accounted for in

computational simulations, such as the motion of atoms, interactions and electronic

structure at the interface, electrolyte and ions, and the electrochemical potential

itself. Various computational approaches exist and have been used to model these

aspects, including classical molecular dynamics [63] and Monte Carlo methods [64]

(for atomic motion), quantum mechanical (QM) electronic structure methods such

as density functional theory (DFT) [65; 66] or tight-binding methods (for surface

interactions), solvation methods (for the electrolyte and ions) and grand-canonical

ensemble simulations [23; 67] (to account for the electrochemical potential).

DFT is the most commonly used ab initio electronic structure methodto de-

scribe extended surfaces [68] and materials [69], with numerous software packages

containing DFT implementations [70; 71; 72; 73; 74; 75; 76; 77]. Semi-empirical

tight-binding methods [78; 79; 80; 81] often a good compromise between compu-

tational cost and accuracy, have also been used to explore metal electrodeposi-

tion [82] the structure of metallic NCs [83]. a few reliable parameterisations cur-

rently exist for metal-organic interfaces [84; 85; 86], which is why DFT is typi-

cally more popular than tight-binding methods. The extended surface model and

the choice of density-functional approximation (DFA) within DFT, discussed more

in Section 2.1.4, need to correctly account for the rich diversity of interactions

that are present in such surfaces. This includes interactions between metals and

non-metals, long-range dispersion interactions, and long-range electrostatic interac-

tions of charged species [68; 69; 87]. Increasingly accurate DFAs are being devel-

oped that can represent the energetics and electronic structure of complex materi-

als [68; 69; 88; 89], however the intrinsic computational scalability of DFT provides

a challenge for systems comprising more than a few hundred atoms. To ensure an
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efficient description of such interfaces requires a pragmatic selection of well-tested

DFAs that balance computational efficiency and predictive accuracy.

The large configuration space of possible NP structures at a particular elec-

trode surface must also be considered. Various approaches such as ML [90; 91; 92],

genetic algorithms [93; 94; 95; 96], cluster regularisation [97] and global optimisation

methods such as basin- [98; 99] and minima-hopping [100], can automatically ex-

plore the configuration space, and the structure and stability of NPs at surfaces, not

many of these approaches have been applied in the context of electrodeposition [101].

Genetic algorithms can be used to perform direct searches within the solution space,

while ML can be used to extend existing solution spaces by recognising existing pat-

terns from training datasets. However, it is important to note that while methods

such as ML can provide a lot of important information, even if trained on high-level

ab initio data, they can only provide approximations to the physical characteristics

of a system, which can only be fully captured through experiments [102].

1.1.3 Nucleation Theories

Theoretical considerations of electrodeposition in literature study two processes: the

movement and adsorption of solvated ions and electron-transfer reactions, and the

process of electronucleation. When it comes to modelling the process of electronu-

cleation, both classical and atomistic theories exist to describe the formation of

stable nuclei [22; 103; 104; 105]. Classical nucleation theory relies on macroscopic

physical quantities that are applicable to sufficiently large clusters such that their

sizen (number of atoms)can be considered a continuous variable. In this case, the

free energy of nucleation, ∆G(n), is differentiable [104; 105], which allows for the

prediction of the nucleation rate [103], as expressed in Equation (1.1).

% = NZJ exp

(
− ∆G

kBT

)
, (1.1)

where % is the nucleation rate, N is the number of nucleation sites, Z is the Zeldovich

factor, J is the rate at which atoms attach to the nucleus, kB is the Boltzmann

constant and T is the temperature [103].

When it comes to experimental electrochemical measurements, techniques

such as chronoamperometry provide mostly macroscopic information, from which

nanoscopic behaviour such as nucleation rates can be inferred [22; 106; 107]. Such

inferenceshoweverhave been found to be inappropriate to describe the initial stages
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of nucleation where individual atoms and few-atom clusters are present [22; 54;

108; 109; 110; 111; 112] due to the assumptions within classical nucleation theory.

Classical nucleation theory assumes the holding of the capillarity approximation,

which treats the nucleus interior as a bulk incompressible liquid and assumes that

the surface tension of a small liquid droplet is equal to the surface tension of a

flat surface [104; 105; 113]. This has been shown to break down for small sys-

tems [114; 115; 116]. Furthermore, clusters are assumed to either grow or shrink

via single-particle absorption or emission respectively, which places kinetic restric-

tions on the nucleation pathways [104; 105; 113]. This does not hold in reality

as entire clusters can merge or fragment, and these kinetic pathways cannot be

ignored. While improvements to classical nucleation theory do exist, such as dy-

namical nucleation theory [117], mean-field kinetic nucleation theory [118], coupled

flux theory [119; 120; 121; 122] and diffuse interface nucleation theory [123; 124],

these have mostly been applied to describing the condensation of supersaturated

vapours into the liquid phase and crystal nucleation studies rather than investigat-

ing metal electronucleation [113; 125]. Despite its shortcomings, classical nucleation

theory is still a powerful theory and has been shown to be capable of qualitatively

capturing nucleation thermodynamics and kinetics for many systems [113].

In contrast, atomistic nucleation theory can be applied to clusters so small

such that n is no longer continuous, as is the case with first-order phase transitions at

high supersaturation levels resulting in ∆G(n) being non-differentiable [104; 105].

Figure 1.2 shows the intrinsic differences between the two theories as well as the

(dis)continuity of cluster size. Atomistic theories allow for high ∆µ levels to be

modelled and have been validated against experimental studies [105]. Despite the

existence of such theories, much remains unclear regarding the initial stages of elec-

tronucleation and the role of the atomic-scale structure of the electrode. In this

regard, explicit atomistic simulations can play an important role in elucidating the

initial processes and mechanisms.
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(a)

(b)

(c)

Figure 1.2. Schematics showing the differences between classical (blue) and atomistic
(red) nucleation theories. Shown in (a) is the relationship between supersaturation,
∆µ, and the supercritical cluster size (nc atoms) according to both theories. In
classical/atomistic nucleation theory, ∆µ is low/high enough such that nc is con-
tinuous/discontinuous. Shown in (b) is the relationship between the free energy
of nucleation, , and the cluster size of a cluster (n atoms) for a constant ∆µ. In
classical/atomistic theories, ∆µ is small/large enough to result in ∆G(n) being
differentiable/non-differentiable. In both theories, n = nc [105] is the size at which
∆G(n) has a global maximum. Shown in (c) are visualisations of both theories
treat clusters: atomistic theories are applicable for small clusters, whereas classical
theories can be used for large clusters which can be treated spherically.
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Once , may migrate along the electrode surface and coalesce to form metastable

nanoclusters (NCs). In order for NPs to form, these NCs will rearrange to form

crystalline NPs; closely-spaced NCs may also dissemble and feed atoms into exist-

ing NPs. Both for the formation of NCs and NPs, atoms will migrate along the

electrode surface. In short, the on-surface dynamics of electronucleation can be ex-

tremely rich and complex. The nucleation and growth of NPs on electrode surfaces

involves a number of factors including thermodynamics and kinetics, which define

the NC size distribution, growth rate, and the rate-determining steps [126]. Kinet-

ics can be determined using transition state theory, for which the energy barriers

between given initial and final states need to be calculated. This can be done via

minimum energy path methods such as nudged elastic band [127] to determine the

energy required to move isolated metal atoms over an electrode surface [22].

A full simulation pipelinethusneeds to be established that is both efficient

and can capture all the relevant effects for metal NC growth. Furthermore, it

is prudent that an understanding is gained as to how nucleation is affected by

variables such as surface defects, and if certain atomistic details govern nucleation

in certain systems and conditions. Once has been established, optimisation of the

conditions in which nucleation is kinetically controlled by on-surface processes, such

that NC and NP growth can be selectively controlled by surface modification and

subtle parameter tuning, can be attempted. Understanding the factors that affect

the electrodeposition and electronucleation of metals, and possessing the ability to

control their growth on an atomistic scale, has the potential to increase the efficiency

of many technologies and applications and is therefore of paramount importance.

1.2 Diamond as a Material

Diamond is a solid allotrope of carbon that possesses numerous extreme properties,

such as the highest hardness [128], thermal conductivity [129] and Debye tempera-

ture [130] of any material. Diamond also possesses a wide band gap, which results

in a high electrical resistivity [131]. These properties have been exploited across a

large variety of fields including electrochemistry [21; 131], photonics [132; 133], and

quantum computing [134; 135; 136].

Diamond is only a metastable allotrope of carbon at room temperature and

pressure, with graphite being the most stable instead [137]. However, the graphiti-

sation rate of diamond is almost negligible under standard conditions, which means
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diamond and graphite can coexist. Natural terrestrial diamonds typically form deep

within the mantle of the Earth [138], where pressures and temperatures are high

enough such that diamond becomes [137]. atural diamonds normally contain many

contaminants and are therefore unfit for most industrial applicationsynthetic dia-

monds are typically used for technological applications. Synthetic diamonds are

used either as single crystals, where the crystal arrangement is continuous, or as a

polycrystalline material, where grain boundaries exist between crystal arrangements

of different orientations. However, it is typically much more difficult [139; 140]

and expensive to grow single-crystal diamonds. For large-area applications, it is

much cheaper to grow polycrystalline diamond than single-crystal diamond, though

other types such as nanocrystalline and microcrystalline diamonds have also found

use [141]. Polycrystalline diamond has numerous industrial applications, including

thermal management [142] and electrochemistry [143]. Synthetic diamonds can be

grown using two methodologies, which are briefly summarised in Section 1.2.1.

1.2.1 Diamond Synthesis

For many technological applications, the most common approach to growing dia-

mond is via the process of chemical vapour deposition (CVD) [144]. With CVD

growth, it is relatively easy to control impurity content and grow large-area sam-

ples [145], hence is commonly used to grow samples for industrial and technological

applications. CVD occurs in the region where diamond is metastable compared to

graphite, and is therefore driven by kinetics rather than thermodynamics [145]. CVD

is typically performed using a small fraction of a carbonaceous gas such as methane

in an excess of molecular hydrogen [144; 145]. The excess hydrogen is crucial as

it etches away graphite but not diamond, and helps to stabilise the diamond sur-

face [145]. The gas mixture is then thermally activated, and this heating can be done

using various methods, though a hot filament or microwave plasma are the most com-

monly used [145]. With single-crystal diamond, growth of the required crystal face

is achieved by using a single crystal substrate of the same orientation for epitaxial

growth [140] or by laser cutting along the required axis post-growth. As the diamond

grows thicker, or the growth substrate moves away from atomic smoothness, achiev-

ing monocrystallinity becomes more challenging [139; 140]. Other substrates such as

silicon, molybdenum or tungsten [145] can be used to grow polycrystalline diamond.

In contrast , high pressure high temperature [146] seeks to, in principle, re-

produce the conditions that result in the growth of natural diamonds with some

practical adjustments [145]. This method of synthesis operates within the regime
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where diamond is thermodynamically stable and allows control over the geometry

of the sample, though it is more difficult than CVD when it comes to controlling

impurity content. igh pressure high temperature-grown diamonds typically contain-

ing a few hundred parts per million of single substitutional nitrogen dopants [147].

For this reason, CVD is typically preferred for growing crystals for technological

applications [148].

1.2.2 Diamond Crystallography

Within a diamond crystal, each carbon atom is covalently bonded to four other

carbon atoms via sp3 hybridisation in a tetrahedral manner. Diamond has a cubic

crystal structure with eight atoms per unit cell. The unit cell can be thought of as

the amalgamation of two face-centred cubic lattices, as can be seen in Figure 1.3.

To derive the positions of the eight atoms within the full unit cell, consider an

enlargement of the unit cell by a factor of 4. Then, atoms within the cell lie at

positions (x, y, z) ∈ Z3 such that x ≡ y ≡ z (mod 2) [149]. For the first face-centred

cubic, positions must also satisfy the condition x + y + z ≡ 0 (mod 4) [149], to

which there are four solutions (modulo 4): (0, 0, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0). For

the second face-centred cubic, atomic positions must satisfy the aforementioned

x ≡ y ≡ z (mod 2) condition, as well as x + y + z ≡ 1 (mod 4) [149]. Once

again, there are four solutions to this congruence relation (modulo 4), which are

(3, 3, 3), (3, 1, 1), (1, 3, 1) and (1, 1, 3). Reducing this down to a unit cell, given any

position (x1, y1, z1), its nearest atom can be found at (x1 ± 1/4, y1 ± 1/4, z1 ± 1/4), in

fractional coordinates. For this reason, {(0,0,0), (1/4, 1/4, 1/4)} is considered to be

the two-atom motif for atomic positions within the diamond unit cell.

Figure 1.3. Atomic positions within a diamond unit cell, expressed as fractional
coordinates. The unit cell can be thought of as the amalgamation of two face-
centred cubics, with their atoms shown in red and blue respectively.

11



When diamond crystals grow, either naturally or synthetically, they can do

so in any direction. However, there are three primary crystallographic orientations

that dominate crystal growth, which are (111), (100) and (110) (in Miller index

notation). Each crystallographic orientation has a different surface arrangement of

carbon atoms, and Figure 1.4 visualises the atomic structure of these facets. Of these

orientations, the (110) facet typically has the fastest growth rate [139; 150; 151] and

thus serves as a useful model of the more reactive sites during diamond growth [152].

The faster growth rate of the (110) facet can be explained by comparing the dif-

ferent growth mechanisms of the different facets [151]. (110) faces are stepped,

where the nucleation process is one-dimensional as these faces grow by a unidirec-

tional addition of atoms [139; 151]. (111) faces, however, are flat and grow via

a layer-by-layer mechanism [139; 151]. The nucleation process is therefore two-

dimensionalwhich slows the growth kinetics but makes it easier to grow atomically

smooth surfaces [139; 151]. On the other hand, (100) faces are kinked and have a

very small nucleation barrier [139; 151]. Growth of such faces typically occurs via a

random incorporation of atoms and tend to be the fastest-growing [139; 151]. How-

ever, for many materials such as silicon, germanium, gallium arsenide and diamond,

their (100) surfaces have been shown to typically (2× 1)-reconstruct, which confers

a flat-like character to the face and hence slows their growth rate [139; 153].
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(a)

(b)

Figure 1.4. three primary crystallographic facets of diamond, shown (a) as planes
within a cubic crystal with orthogonal lattice vectors a1,a2,a3, and (b) as skeletal
formulae from a ‘front-on’ view with axes presented.

The (110) surface possesses C2 symmetry [152], which means the surface re-

mains identical after a 180° rotation. Every surface carbon atom is bonded to three

other carbon atoms and therefore has one dangling bond. (110)-oriented single

crystals have applications in fields like photonics [154], though these are much more

difficult to grow as the crystal face decreases in size as the crystal gets thicker [155].

Furthermore, the occurrence of (110) faces during single-crystal growth can lead

to a partial break-up of the crystal beyond a certain thickness [150]. In contrast,

the slower growth rates of the (111) and (100) facets [139; 150; 151] make it much

easier to grow single-crystal samples of such orientations. For this reason, many

single-crystal diamond studies tend to use (111)- or (100)-oriented samples, hence

why the (110) facet has not been as well studied in literature.

In polycrystalline material, the (110) facets can be revealed by mechani-

cally polishing to a surface roughness where the surface is predominantly (110)-

textured. This has been experimentally demonstrated using electron backscatter
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diffraction [156] and STEM [22]. Such surfaces have found practical use in electro-

chemical applications, where the polycrystalline diamond material can be treated

as a textured surface with a dominant (110) orientation [22; 156].

1.2.3 Boron-Doped Diamond

Other elements are frequently added into diamond as impurities to modify the prop-

erties exhibited by the material [131]. Substitutional boron is often added Boron

acts as a p-type dopant in diamond and bestows diamond with semiconductive prop-

erties [21; 131; 157]. Boron is a triel with three valence electrons, whereas carbon

atoms have four valence electrons. Therefore, if a boron atom displaces a carbon

atom in diamond, the valence electrons of boron form covalent bonds with three

of its carbon neighbours, but no bond is formed with its fourth neighbour, thus

introducing a formal +1 charge within the diamond.

Typically only one atom in a thousand carbon atoms needs to be replaced by

boron for diamond to exhibit semi-metallic properties [131]. Boron-doped diamond

(BDD), typically in polycrystalline form, has thus found great use in electrochem-

istry as a working electrode material [21; 131]. BDD has a very wide solvent window,

low background and capacitive currents, as well as reduced fouling as compared to

other electrode materials [131], which makes it ideal for a variety of applications

such as sensing, waste water treatment and chemical disinfection [158]. Along with

its electrical conductivity, BDD is highly stable [21; 131; 143; 157; 158] and can be

used as a substrate for STEM measurements [22]. It is therefore an attractive sub-

strate to study metal electrodeposition on, and has a lot of potential as a support

for metal nanostructures for purposes such as electrocatalysis.

1.3 Gold as a Material

Gold is a precious, noble metal that possesses many unique properties, such as the

highest malleability [159] and nobleness [160] of all metals. Furthermore, gold nan-

oclusters are known to adopt unique electronic and geometric structures [161; 162].

The high electrocatalytic activity of monometallic [163; 164; 165; 166; 167; 168],

bimetallic [169; 170; 171; 172; 173; 174; 175; 176; 177; 178; 179] and multimetal-

lic [180; 181; 182] gold-based nanostructures has been well-established in literature.

Recently, supported single atom electrocatalysts [183; 184; 185] have also grown in

popularity due to their optimal atom utilisation and unique electronic properties,

often outperform supported metal nanostructures. Single gold atoms, supported by
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materials such as copper [186], magnesium oxide [187; 188; 189; 190], cerium(IV)

oxide [190; 191; 192; 193; 194; 195] and graphene/graphite [196; 197; 198; 199; 200;

201; 202], have been shown to be very efficient electrocatalysts for a variety of key

chemical processes, including nitrogen reduction [203; 204; 205] and oxygen reduc-

tion and evolution [206].

The formation of gold nanostructures on BDD [22; 207] and their combined

electroanalytical applications [208; 209; 210; 211; 212; 213; 214] have been investi-

gated extensively, though only one study considered their combined electrocatalytic

ability [164]. a lot of potential for BDD-supported gold-based nanomaterials fabri-

cated via electrodeposition to be used for electrocatalytic purposes. One particular

study of note is Hussein et al., where STEM was used to track the electrodeposition

dynamics of gold on polycrystalline BDD surfaces, from the nucleation and growth

of a single atom to a crystalline NP [22]. Here, gold atoms were found to be stable

atop BDDs surface and even withstand the momentum transfer from the highly

energetic electron beam [22]. However, the diffusion barriers for single gold atoms

were calculated to be very low [22], which indicates that the high stability of gold

atoms observed by Hussein et al. is likely due to defects and dopants that were not

seen within their STEM images or investigated further. Atomistic simulations based

on DFT can provide many insights in this regard to elucidate how the atomic-scale

structure of the BDD surface influences the adsorption and nucleation of gold NCs.

1.4 Thesis Aim

This thesis will detail an investigation into the initial stages of gold nucleation and

aim to characterise the adsorption of gold NCs on polycrystalline BDD surfaces

by making use of DFT and its derived methodologies. Chapter 2 will provide a

theoretical background to the underlying principles of the various computational

methods that were used herein, as well as introduce the various software packages

that were used to conduct this work. Chapter 3 will describe a joint computational-

experimental investigation into the characterisation of the most stable oxygenation

state of the diamond (110) surface. Building on this, Chapter 4 will present an inves-

tigation into the adsorption of single gold atoms onto oxygen-terminated diamond

(110) surfaces and establish mechanisms that promote the stability of adsorbed sin-

gle atoms. This will be followed by studying the atom-by-atom growth of supported

gold dimers, trimers and tetramers, and identifying energetically preferred struc-

tures. Chapter 5 will showcase the development of an MLIP approach that can be
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used to facilitate fast and accurate structure searches, and efficiently explore the

stabilities of supported gold NC structures of various sizes. Chapter 6 will then

present an overall discussion of the work conducted in this thesis and finish with an

outlook. This thesis will help contribute to the development of modern atomistic

theories of atom-by-atom particle growth and will help guide the controlled design

of nanostructured catalysts in the future.
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Chapter 2

Computational Methods

2.1 Density Functional Theory

DFT is a method based on quantum mechanics (QM) that has been widely used

to study the electronic structure of numerous systems. In the following, the funda-

mentals of DFT are discussed and how it can be used to calculate the ground-state

energy of a many-body system based on its density. Atomic units are used through-

out this section.

2.1.1 The Many-Body Schrödinger Equation

The Schrödinger equation can be used to fully describe the many-body behaviour

and energy of a system. Equation (2.1) expresses a time-independent and non-

relativistic form of the Schrödinger equation, which can be used to describe station-

ary states.

Ĥ |Ψ(r1, r2, · · · , rN , r1, r2, · · · , rM )〉 = E |Ψ(r1, r2, · · · , rN , r1, r2, · · · , rM )〉 , (2.1)

where r1, r2, · · · , rN ∈ R3 denote the positions of N ∈ N electrons, r1, r2, · · · , rN ∈
R3 denote the positions of M ∈ N nuclei, Ψ is the many-body wavefunction, Ĥ is

the Hamiltonian operator and E is the energy of the system. Ĥ can be expressed as

the sum of five terms, as shown in Equation (2.2).

Ĥ = T̂elec + T̂nuc + Ûelec + Ûnuc + V̂ext (2.2)

where T̂elec and T̂nuc are the electronic and nucleic kinetic energy operators re-

spectively, Ûelec and Ûnuc are the electron-electron and nucleus-nucleus repulsion

operators respectively, and V̂ext is the external potential operator which describes
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electron-nucleus attractions.

The Born-Oppenheimer approximation [215] assumes that nuclei move much

slower than electrons due to their larger sizes and masses. The positions of the

nuclei can therefore be assumed to be fixed, and electrons can be assumed to move

within a field of nuclei, with electronic positions being parameterised by nucleic

positions. Furthermore, this approximation means that T̂nuc can be equated to zero

and Ûnuc can be equated to a constant. Using the Born-Oppenheimer approximation,

Equation (2.1) can be reduced to the electronic Schrödinger equation to evaluate

the electronic energy, as shown in Equation (2.3).

Ĥelec |Ψelec(r1, r2, · · · , rN )〉 = Eelec |Ψelec(r1, r2, · · · , rN )〉 , (2.3)

where Ψelec is the electronic many-body wavefunction, Ĥelec is the electronic Hamil-

tonian operator and Eelec is the electronic energy of the system. Ĥelec can then be

expressed as the sum of three terms, as expressed in Equation (2.4), which are the

electronic kinetic energy operator (T̂ ), the electron-electron repulsion operator (Û)

and the external potential operator (V̂), which describes the attraction between elec-

trons and nuclei. The total energy of a system can then be calculated by summing

Eelec and the now-constant nucleus-nucleus repulsion.

Ĥelec = T̂elec + Ûelec + V̂ext (2.4)

While T̂elec and Ûelec do not change for any N -electron system and are therefore

universal operators, V̂ext is dependent on the nuclei within the system, which makes

it difficult to calculate Ψelec. Furthermore, it quickly becomes infeasible, if not

impossible, to solve Equation (2.3) for systems comprising more than a few elec-

trons as Ψelec is dependent on 3N coordinates, which makes it difficult to store the

wavefunction.

2.1.2 Hohenberg-Kohn Theorems

Hohenberg and Kohn [65] were able to overcome the calculation of Ψelec by express-

ing Eelec as a functional of the electron density, ρ(r), as shown in Equation (2.5) via

bra-ket notation [216]. The electron density describes the probability distribution

of electrons in space and is a function of only 3D space, which makes it much easier

to store than the many-body wavefunction.

Eelec = E[ρ] = 〈Ψ[ρ]|T̂elec + Ûelec + V̂ext|Ψ[ρ]〉 (2.5)
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Equation (2.5) holds as Hohenberg and Kohn proved that there exists an in-

vertible one-to-one mapping between V̂ext and ρ(r) [65]. Then, the external potential

can be expressed as a functional of ρ, as shown in Equation (2.6).

V̂ext = Vext[ρ] =

∫
vext(r)ρ(r) dr (2.6)

Using Equation (2.6), Equation (2.5) can be rewritten as Equation (2.7) [65],

which is the first Hohenberg-Kohn theorem. The 〈Ψ[ρ]|T̂elec + Ûelec|Ψ[ρ]〉 term in

Equation (2.5) is referred to as the Hohenberg-Kohn functional, FHK[ρ].

Eelec = E[ρ] = FHK[ρ] +

∫
vext(r)ρ(r) dr (2.7)

The second Hohenberg-Kohn theorem, as summarised in Equation (2.8),

states that the Hohenberg-Kohn functional will yield the ground-state energy, E0,

of a system if and only if ρ = ρ0, where ρ0 is the ground-state density [65]. Further-

more, for any ρ 6= ρ0, E[ρ] would provide an upper bound on E0 [65].

E0 = E[ρ0] ≤ E[ρ] (2.8)

There is still the question of how to formulate FHK[ρ] in Equation 2.7, as

its constituent operators are not solely density-dependent. However, FHK[ρ] can be

recast as powers of the electronic charge, e2, as shown in Equations (2.9)–(2.11). The

implication between Equations (2.10) and (2.11) follows after equating coefficients

F (i). The zeroth-order term can be equated to the kinetic energy of a non-interacting

set of electrons, Ts, while the first-order terms correspond to Coulomb and exchange

terms that can be found from Hartree-Fock theory, where only the classical Hartree-

Coulomb contribution, EH, can be expressed as a simple functional of ρ. All other

higher-order terms are grouped within the exchange-correlation functional, EXC. In

Equation (2.11), only the EH[ρ] term is known, while many approximations to EXC

exist and are discussed in Section 2.1.4.

FHK[ρ] =
∞∑
j=0

(
e2
)j
FHK

(j)[ρ] (2.9)

= FHK
(0)[ρ] + e2FHK

(1)[ρ] + e4FHK
(2)[ρ] + · · · (2.10)

= Ts[ρ] + EH[ρ] + EXC[ρ] (2.11)
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2.1.3 Kohn-Sham Equations

The Hohenberg-Kohn theorems prove that any ρ0 can be mapped to only one single

external potential within that mapping [65]. Trial electron densities must satisfy

mathematical conditions such as V-representability, which comprises being normal-

isable, positive and compliant with the Pauli principle [217], to ensure they can

be associated with an external potential. However, any ρ can be connected to two

different external potentials via two different mappings: one for interacting elec-

trons and one for non-interacting electrons. Kohn and Sham [66] proposed that the

non-interacting ground-state density could first be calculated in a known, fictitious

Kohn-Sham potential, Vs, for a non-interacting set of electrons. This ground-state

density can then be used to evaluate the ground-state energy of a system [66] as

described by Vext. This can be done by introducing fictitious one-electron orbitals,

ψi, for the non-interacting set of electrons, in turn can be used to construct a Slater

determinant for the non-interacting wavefunction [66]. The Kohn-Sham approach

allows for Ts to be expressed as Equation (2.12).

Ts[ρ] =

N∑
i=1

〈ψi| −
1

2
∇2|ψi〉 (2.12)

The Kohn-Sham equations are then a set of one-electron equations that are

essentially eigenvalue problemfor each electron i [66], which can be summarised as

Equation (2.13). (
− 1

2
∇2 + Vs

)
ψi = εiψi (2.13)

where εi is the Kohn-Sham eigenenergy for electron i. The ground-state density, for

both interacting and non-interacting systems, can be expressed as:

ρ0(r) =
N∑
i=1

|〈r|ψi〉 〈ψi|r〉|2 (2.14)

Using the variational principle, the one-particle Vs potential can be defined

as the variational derivatives of the energy functional, as shown in Equation (2.15):

Vs[ρ] = Vext[ρ] + vH[ρ] + VXC[ρ] (2.15)

2.1.4 Density-Functional Approximations

Many DFAs to the true EXC functional have been developed [218], and these are

typically arranged hierarchically depending on the complexity of their formulation
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and their accuracy [219]. This hierarchical arrangement of DFAs has been referred

to as Jacob’s ladder [219], and at its lowest rung lies local-density approximations

(LDAs), which assume that EXC depends solely upon the value of ρ at each point

in space [69]. The general LDA approximation to EXC is shown in Equation (2.16),

EXC[ρ] ≈ ELDA
XC [ρ] =

∫
ρ(r)eLDA

xc (ρ) dr (2.16)

where exc(ρ) is the exchange and correlation energy of a homogeneous electron gas

at ρ. The exchange component, eLDA
x , for a homogeneous electron gas is known

and can be expressed as Equation (2.17), but different numerical parameterisations

can be used to calculate the correlation component, ec, and this is where different

LDAs differ [68]. In practice, different LDAs differ only in the functional form and

parameterisation, and all typically yield similar results [68].

eLDA
x (ρ) = −3

4

(
3

π

)1/3 ∫
ρ(r)

4/3 dr (2.17)

LDAs have been shown to generally calculate lattice constants and band structures

of simple metals well, but they tend to perform less well for molecules and semi-

conductors [68] by overestimating band gaps and overestimating adsorption energies

[69]. This occurs because LDAs exhibit an artificial energy minimum between sub-

systems, even if they are not covalently or ionically bonded [68]. This was often

taken to mimic van der Waals (vdW) interactions, although this overbinding is due

to the wrong physical reason [89; 220; 221; 222]. This has been demonstrated for

many hybrid inorganic-organic interfaces [220; 223; 224; 225; 226; 227] as well as

for intermolecular bond [228], where LDAs result in adsorption distances that are

much than experimental data.

The subsequent rung comprises generalised gradient approximations (GGAs),

which assume that EXC depends on ρ as well as the density gradient, ∇ρ, as shown

in Equation (2.18). GGAs are very popular in condensed matter physics due to their

ability to typically produce fairly accurate results without too much computational

expense [68; 69] as opposed to more complex approaches.

EXC[ρ] ≈ EGGA
XC [ρ] =

∫
ρ(r)eGGA

xc (ρ,∇ρ) dr (2.18)

The eGGA
xc (ρ,∇ρ) term in Equation (2.18) can be expressed as Equation (2.19), where

F is an enhancement factor and can be split into exchange, Fx, and correlation, Fc,
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components.

eGGA
xc (ρ,∇ρ) = eLDA

x (ρ)Fxc(ρ,∇ρ) (2.19)

Different GGAs typically differ in their choice of Fxc formulation; for example, the

PBE [229] GGA, which is one of the most popular DFAs [68; 69; 230] and is the

main DFA used herein, uses Equation (2.20) to calculate Fx, where s is the reduced

density gradient, and κ and χ are constants. Within the PBE GGA, κ is specified

to be 0.804 [229]. The PBE-derived revPBE GGA also uses Equation (2.20) to

calculate Fx but softens κ to 1.245 [231]. The PBEsol GGA only differs from the

(rev)PBE formulation by reducing the s-dependence of Fx after reducing χ [232].

The RPBE GGAhoweverpossesses a different mathematical form for Fx but has the

same formulation for all other constituent components [233].

FPBE
x = 1 + κ− κ

1 + χs2/κ
, (2.20)

Meta-GGAs (MGGAs) make up the third rung on Jacob’s ladder and seek to

account for higher-order dependencies by including the density of the Kohn-Sham

orbital kinetic energy, ts, as shown in Equation (2.21) [69]. MGGAs tend to improve

upon GGAs and LDAs with more accurate binding energies, along with better co-

hesive and structural properties [69], but are also typically more computationally

costly. The TPSS MGGA uses a similar equation to Equation (2.20) to calculate

Fx, but uses a different parameter to χs2 [234]. he M06-L MGGA also includes the

PBE exchange energy density within its formulation for the exchange energy [235].

In contrast, the TPSSloc MGGA uses a localised PBE-like DFA for Fc within a

TPSS-like formulation [236], while the revTPSS MGGA is based on the PBEsol

modification to Fc with respect to PBE [232]. Within the SCAN [237] MGGA,

Fx obeys the conjectured Fx ≤ 1.174 bound for all densities [237; 238; 239], while

within (rev)TPSS and even PBE, Fx monotonically tends to the general Lieb-Oxford

bound (1.804) [240].

EXC[ρ] ≈ EMGGA
XC [ρ] =

∫
ρ(r)eMGGA

xc (ρ,∇ρ, ts) dr (2.21)

Hybrid functionals, the fourth rung along Jacob’s ladder, aim to improve

upon lower rungs by mixing a certain amount of exact exchange into their formula-

tions using Hartree-Fock theory, which are typically GGA-based (HGGAs) [241; 242;

243; 244] but can also be LDA- [245] or MGGA-based [246]. However, this admixing

typically increases the computation effort associated with hybrid functionals by at

least one order of magnitude over lower-rung DFAs [68]. Equation (2.22) details
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the mixing between exact and GGA-exchange for the calculation of the exchange

and correlation density, where a is the mixing parameter and a constant. For both

the PBE0 [243] and PBEsol0 [244] HGGAs, a = 0.25, and the PBE and PBEsol

GGAs are used to calculate EGGA
x respectively. Range-separated HGGAs such as

HSE03 [241] and HSE06 [242] build on this and also use a screening parameter to

split eGGA
x in Equation (2.22) into short- and long-ranged components.

eHGGA
xc = aeexact

x + (1− a)eGGA
x + eGGA

c (2.22)

2.1.5 Basis Sets

Apart from the choice of DFA, another factor that must be taken into consideration

when running DFT calculations is the choice of basis set. A basis set is a set of

functions that can be used to represent the Kohn-Sham orbitals in a way that is

suitable for computational implementation. The accuracy of a DFT calculation in-

creases as the basis set size increases, but so does its computational cost. There are

at least two sources of error that occur from basis sets. The first is a basis set in-

completeness error [247; 248], which is the difference between results obtained with,

or extrapolated to, a complete basis set and results obtained with a smaller basis

set. The second error that can arise is a basis set superposition error [249], which

occurs when atoms are in close proximity to each other. In this situation, the basis

functions of the atoms can overlap, resulting in the basis set size for each atom ar-

tificially increasing as it borrows basis functions from its neighbouring atoms. This

can be result in erroneous results such as overestimated binding energies [248; 249].

Basis sets should therefore be chosen to minimise these sources of error and have a

suitable degree of accuracy.

Most modern DFT software packages either use plane waves or atomic or-

bitals to represent the electronic structure [68]. Approaches that use the former

rely on delocalised basis functions and the basis can be systematically improved to

achieve monotonic convergence [68]. However, core electrons need to treated care-

fully, and various approaches exist to treat them such as pseudopotentials [250; 251]

and projector-augmented waves [72; 73; 252]. In contrast, atom-centred basis func-

tions are centred on atomic nuclei and can easily describe core electrons, but the

convergence of results with respect to basis-set complexity is typically not strictly

monotonic [68]. However, for systems such as surfaces exposed to vacuum and

low-dimensional systems, atom-centred basis functions have the benefit that basis

functions are only placed around atoms and do not cover vacuum regions [68], which
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is why atomic orbitals are used in this work. It should be noted though that if well-

converged settings are used, plane-wave and atom-centred basis functions should

result in identical results [253].

There are many types of atomic orbitals that can be used to describe basis

sets for DFT calculations. Nuclear-centred Slater-type orbitals [254], which are

solutions to the Schrödinger equation for hydrogen-like atoms, have the correct

asymptotic form to exhibit exponential decay when they are far away from the

nucleus, as well as satisfy Kato’s nuclear cusp condition [255] for interactions close

to the nucleus [256]. However, Slater-type orbitals struggle to accurately describe

many-electron interactions, as these are not encountered by hydrogen-like atoms,

and are very computationally demanding. Gaussian-type orbitals have since gained

a lot of popularity as they facilitate much faster evaluations than Slater-type orbitals

whilst still being able to approximate them [256; 257; 258]. Numeric atomic orbitals

(NAOs) have recently gained popularity as a suitable parameterisation can represent

Slater- or Gaussian-type orbitals exactly [256]. Furthermore, a single NAO can

simultaneously satisfy the Kato nuclear cusp condition [255] for interactions close

to the nucleus as well as demonstrate the aforementioned exponential decay [256].

NAOs are typically the most accurate atomic orbital basis set choice [70; 256; 259]

and for this reason are used herein to conduct DFT calculations.

2.2 Dispersion Corrections

While many DFAs are able to capture around 99% of the total electronic energy

(depending on the system) [260], many of them fail to account for long-range non-

covalent interactions [261] such as hydrogen bonds and vdW forces, which often

play a large part in the formation and stability of molecular complexes and nanos-

tructured materials [262]. Despite having a minimal contribution to the abso-

lute electronic energy, these long-range dispersion effects have been shown to have

a significant effect on relative interaction energies [263; 264; 265], binding ener-

gies [222; 266; 267; 268; 269] and structural features [265; 270; 271], as well as

the electronic [272; 273], thermodynamic [274], kinetic [275; 276; 277] and mechan-

ical [278; 279] properties of intermolecular complexes, aggregates and nanostruc-

tures [260]. There have been several attempts to account for long-range dispersion

interactions, such as vdW density functionals [280; 281], though these methods tend

to be computationally demanding. A popular method is to account for long-range

effects via an a posteriori correction scheme, of which there are many varieties,
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which are discussed below.

2.2.1 Tkatchenko-Scheffler Scheme

In the Tkatchenko-Scheffler (TS) correction scheme, the dispersion energy, EvdW, is

defined as a pairwise interatomic term, as shown in Equation (2.23) [262], which is

subsequently added to the total energy.

EvdW =
∑
A,B

fdamp(RA,B)
C6(A,B)

RA,B
6 , (2.23)

where fdamp is a damping function which controls short-range behaviour and corrects

for singularities at short distances, RA,B is the distance between atoms A and B,

and C6 is an diatomic-specific coefficient for A and B. C6 coefficients for every pair

of atoms can be calculated using various methods, such as empirical interpolations

as is done within the pairwise DFT-D3 [282] scheme. The TS method removes

this empirical dependence by computing static atomic polarisabilities, αfree
A , and C6

coefficients for each free atom A, C free
6 , using tabulated values [283]. Both αfree

A and

C free
6 are then scaled via the Hirshfeld atoms-in-molecules partitioning scheme [284].

This scheme partitions the electron density from a DFT calculation and can be

used to calculate the effective volume of an atom A within a molecule, νeff
A . This

quantity can then be divided by its known volume as a free atom, νfree
A , to calculate

a Hirshfeld volume ratio, HA, as shown in Equation (2.24).

HA =
νeff

A

νfree
A

(2.24)

UsingHA, the atomic polarisability of atom A, αA, within a system can be calculated

using Equation (2.25), while C6(A,A) can be calculated using Equation (2.26):

αA = HAα
free
A (2.25)

C6(A,A) = HA
2C free

6 (A,A) (2.26)

Then, for any two atoms A and B, their C6(A,B) coefficient can be calculated using

Equation (2.27):

C6(A,B) =
2C6(A,A)C6(B,B)

αB

αA
C6(A,A) +

αA

αB
C6(B,B)

(2.27)

The tabulated vdW radius of each atom, Rfree
A , is also scaled using HA to
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calculate an effective radius, Reff
A , as shown in Equation (2.28):

Reff
A = HA

1/3Rfree
A (2.28)

Then, fdamp in Equation (2.23) can be defined using Equation (2.29):

fdamp(RA,B, R
free
A,B) =

1

1 + exp

(
− d

(
RA,B

sRRfree
A,B

− 1

)) (2.29)

where d is a parameter to control the damping steepness and sR is a screening

parameter that depends on the DFA to which the TS scheme is coupled.

2.2.2 Many-Body Dispersion Schemes

Many-body dispersion (MBD) [285; 286; 287; 288; 289] correction schemes have

become popular as they extend upon Equation (2.23) by accounting for long-range

correlation beyond pairwise atomic interactions. There are many variants of MBD

that exist [287; 288], but they all account for long-range correlations in some way.

In any MBD method, an atomic system is mapped to a model Hamiltonian of

quantum harmonic oscillators located at r with static polarisabilities α and non-

interacting uncoupled frequencies ω. In a finite system of N oscillators, where each

oscillator represents an atom, the MBD Hamiltonian, ĤMBD, can be defined as

Equation (2.30):

ĤMBD =

N∑
j=1

−1

2
∇2(ξj) +

N∑
j=1

1

2
ωj

2ξj
2 +

N∑
j>k

ωjωk
√
αjαkξjTjkξk (2.30)

where ξj are the displacements of the oscillator charges weighted by the oscillator

masses, and T is a damped dipole interaction tensor. The first summation in Equa-

tion (2.30) corresponds to the kinetic energy, the second summation represents the

potential energy, while the final summation is for dipole-dipole interactions between

the oscillators. Diagonalisation of ĤMBD will yield a set of interacting dipole-coupled

oscillation frequencies, ω̃. The MBD energy, EMBD, can then be obtained as the

change in the zero-point energies of the coupled and uncoupled oscillations induced

by the dipole interaction, as shown in Equation (2.31).

EMBD =

3N∑
l=1

ω̃l
2
−

N∑
j=1

3ωj
2

(2.31)
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Range-Separated Self-Consistent Screening Variant

The range-separated self-consistent screening variant of MBD (MBD@rsSCS), is the

many-body extension of the TS method outlined in Section 2.2.1. In this variant, a

screening procedure is used to obtain a refined set of parameters before they are used

within ĤMBD in Equation (2.30). To do this, a frequency-dependent polarisability,

αA(iω), for each atom A at an imaginary frequency iω, i ∈ I, is calculated using

Equation (2.32).

αA(iω) =
αA[ρ]

1 +

(
ω

ωA[ρ]

)2 (2.32)

The short-range atomic polarisabilities can then be extracted after applying a Dyson-

like screening, as shown in Equation (2.33), where αTS is the sum of effective polar-

isabilities calculated using the TS method, as shown in Equation (2.25).

αSCS(r, iω) = αTS(r, iω) + αTS(r, iω)

∫
T(r− r1)αSCS(r1, iω) dr1 (2.33)

As αTS is continuous over space, and by representing N atoms using quantum har-

monic oscillators, Equation (2.33) can be rewritten as the discretised Equation (2.34)

after integration over r. The αSCS
A term is finally made isotropic before entering

Equation (2.30).

αSCS
A (r, iω) = αTS

A (r, iω) + αTS
A (r, iω)

∑
A 6=B

TA,Bα
SCS
B (r1, iω) (2.34)

Non-Local Variant

Rather than use an atomic response model in the form of static polarisabilities

as MBD@rsSCS does, the non-local variant of MBD (MBD-NL) uses the Vydrov

and Van Voorhis polarisability functional [290], αVV, which is a functional of ρ,

to parameterise atomic responses [288]. While MBD-NL retains a similar level

of empiricism as MBD@rsSCS, the need for tabulated vdW radii and short-range

screening is removed [288]. The polarisability density is coarse-grained into atomic

fragments and can be expressed as Equation (2.35):

αVV[ρ](r, iω) =
ρ(r)

4π

3
ρ(r) + C

|∇ρ(r)|4

ρ(r)4
+ ω2

(2.35)
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where C is an empirical parameter. Hirshfeld volume ratios, HA(r), are then used

to partition αVV[ρ](r, iω) into atomic polarisabilities, αVV
A (r, iω), for each atom A,

as shown in Equation (2.36).

αVV
A (r, iω) =

∫
HA(r)αVV[ρ](r, iω) dr (2.36)

The C6(A,A) coefficients, if needed, can then be calculated using the Casimir-Polder

formula [291; 292], as shown in Equation (2.37):

C6(A,A) =
3

π

∫ ∞
0

αVV
A (iω)2 dω (2.37)

2.3 Density Functional Tight-Binding

Density functional tight-binding (DFTB) is an electronic structure method based on

an approximation to the Kohn-Sham DFT expansion of the total energy functional,

as expressed in Equation (2.13) [79]. In DFTB, ρ is expressed as the perturbation,

δρ, of a carefully chosen reference density, ρ0 i.e. ρ = ρ0 +δρ. The energy functional

can then be expanded as a Taylor series, as expressed in Equation (2.38).

E[ρ0 + δρ] =
∞∑
i=0

Ei[ρ0, (δρ)i] (2.38)

There are several DFTB approximations, with each based on what order the

Taylor series in Equation (2.38) is truncated to. The first-order, non-self-consistent

DFTB1 [293; 294] approach only takes the E0[ρ0] and E1[ρ0, δρ] terms into ac-

count. The second-order, self-consistent DFTB2 [78] approach also includes the

E2[ρ0, (δρ)2] term, while the newer DFTB3 [295; 296] approach includes the third-

order term. Only the DFTB2 method is used in this work, and is expanded upon

below.

2.3.1 DFTB2

To evaluate the total DFTB2 energy, the E0, E1 and E2 terms in Equation (2.38)

need to be evaluated. E0 is a functional of ρ0, which it means it is essentially univer-

sal and does not depend on the surrounding chemical environment [79]. Therefore,

it can be evaluated for a suitable ‘reference system’ and be applied to any environ-

ment. In DFTB, E0 is approximated as a sum of repulsive pairwise potentials, as
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expressed in Equation (2.39).

E0[ρ0] ≈ 1

2

∑
A,B

Vrep(A,B), (2.39)

where Vrep(A,B) is the repulsive energy term between atoms A and B. These repul-

sive pair potentials can be computed by fitting to either experimental data [297] or

DFT calculations [294].

Equation (2.40) shows the exact expression for the E1 functional in terms

of one-electron orbitals ψi, occupation numbers ni, and a Hamiltonian operator,

Ĥ [79].

E1[ρ0, δρ] =
∑
i

ni 〈ψi|Ĥ[ρ0]|ψi〉 (2.40)

Two approximations are made to calculate E1: firstly, ψi is expressed using a

valence-only minimal basis set, {φm}, within a linear combination of atomic or-

bitals ansatz [79], as expressed in Equation (2.41).

ψi =
∑
m

cmiφm (2.41)

where cmi are expansion coefficients and {φm} is explicitly calculated from DFT

calculations by solving the Kohn-Sham equations for an isolated atom with an ad-

ditional (usually harmonic) confining potential [79]. Secondly, a two-centre approx-

imation to Ĥ is used in a linear combination of atomic orbitals basis, as expressed

in Equation (2.42) [79].

〈φm|Ĥ[ρ0]|φv〉 ≈ 〈φm| − 1/2∇2 + V [ρA + ρB]|φv〉 (2.42)

where m ∈ A and v ∈ B. This representation can be computed by evaluating Kohn-

Sham equations for dimers [79].

To calculate the E2 term, δρ is expressed as a superposition of atomic con-

tributions, as expressed in Equation (2.43) [79].

δρ(r) =
∑

A

δρA(r−RA) (2.43)

Then, the E2 term can be approximated as a function of charge fluctuations,
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∆q, for each atom, as shown in Equation (2.44) [78; 79].

E2(RAB) ≈ 1

2

∑
A 6=B

γAB(RAB)∆qA∆qB (2.44)

where γ is an analytical function and RAB is the distance between atoms A and B.

Here, ∆q is the difference between the Mulliken charge with respect to the neutral

atom.

2.3.2 Limitations of DFTB

As can be seen in Section 2.3.1, there are many approximations made in order to

calculate DFTB energies. While these help to significantly reduce the computa-

tional expense of DFTB as compared to DFT, they are also responsible for some

inaccuracies. While accurate fitting to the E0 term in Equation (2.39) can resolve

some inaccuracies, not all approximations can be compensated for via parameterisa-

tions [79]. For example, different bonding environments between two atoms cannot

be differentiated within one parameterisation. Single, double and triple bonds there-

fore have to be accounted for within one repulsive potential, which is not a realistic

way to account for the different bonding interactions [79]. As DFTB is a DFT-

derived method, some DFT limitations are also inherited by DFTB, such as the

inability to account for long-range, non-covalent interactions [79] (see Section 2.2

for a detailed explanation). The use of a minimal basis set can also be problem-

atic for solids such as silicon, which require d orbital contributions to describe the

conduction band [79].

2.4 Hybrid Quantum Mechanics/Molecular Mechanics

While methods like DFT can provide detailed insights into the structural and elec-

tronic properties of many materials [68; 69], their computational scalability as stan-

dalone methods generally means that higher-rung DFAs cannot be used to study

large, periodic models without incurring high, and often infeasible, computational

costs. Furthermore, while the use of periodic boundary conditions can be helpful

to study extended surfaces [68], they become problematic when modelling isolated

defects or dopants as they acquire a periodicity under such boundary conditions,

when they should in fact be aperiodic.

To address the fact that surface chemistry is intrinsically local, as well as

potentially aperiodic in nature in the presence of surface defects on semiconductors,
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embedded cluster approaches are a viable alternative. In embedded cluster mod-

els, the material is modelled as a finite system and is embedded into a surrounding

medium that is typically treated at a lower level of theory [68]. Embedded cluster

models have been treated using a variety of approaches, such as hybrid quantum me-

chanics/quantum mechanics [298], molecular mechanics/molecular mechanics [299]

and quantum mechanics/molecular mechanics (QM/MM) [300]. Hybrid QM/MM

is an approach that aims to combine the accuracy of QM methods with the speed of

MM methods, whereby a region of interest within a system, such as a defect, dopant

or reaction site, is treated using a QM method such as DFT, while the surrounding

environment is treated using a classical forcefield [301], as shown in Figure 2.1. This

is typically done by cutting a cluster model from a periodic unit cell, which itself

can be treated using QM or MM, and partitioning it into QM and MM regions, as

shown in Figure 2.1. Apart from being partitioned into QM and MM regions, the

embedded cluster is also usually partitioned into an active region, which includes the

entire QM region and part of the MM region, and defines the volume of the cluster

that is to be optimised; and a frozen region, where atoms are constrained during

optimisation to ensure the active region is not affected by the edges of the cluster.

The QM/MM methodology allows for local chemical processes to be modelled with

the accuracy of QM, whilst circumventing the computational expense required to

treat the full system with QM [301; 302].

Figure 2.1. Process of cutting an infinite periodic surface model, defined by a unit
cell, into a finite, embedded cluster surface model partitioned into quantum mechan-
ical (QM) and molecular mechanical (MM) regions. The MM region itself is split
into active and frozen parts. The position of the unit cell from the periodic model
within the embedded cluster model is shown using dotted black lines, but note that
the cluster is not defined by a unit cell.

There are two ways to calculate the total QM/MM energy of a system. The
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first is via a subtractive scheme, as shown in Equation (2.45).

E = EQM(QM) + EMM(QM + MM)− EMM(QM) (2.45)

where EQM(QM) denotes the energy of the QM region as calculated using QM,

EMM(QM) is the energy of the QM region as calculated using MM, and EMM(QM+

MM) is the energy of the combined QM and MM regions as calculated using MM.

An alternative approach is an additive scheme, as shown in Equation (2.46), which

is typically more popular [302; 303; 304] and is used herein. Despite its greater

popularity, it should be noted that if properly set up, Equations (2.45) and (2.46)

should provide identical results [304].

E = EQM(QM) + EMM(MM) + E(QM/MM) (2.46)

where EMM(MM) is the energy of the MM region as calculated using MM and

E(QM/MM) is the interaction energy between the QM and MM regions and in-

cludes the bonded, electrostatic and vdW interactions between the atoms in the two

regions [305].

When partitioning any system into two regions, such as QM and MM re-

gions, it is important to ensure the interface between the two regions is treated

properly. For covalent systems such as diamond, the boundary between the two

regions will inevitably pass through a covalent carbon-carbon bond. This therefore

requires proper truncation of the embedded region, and many methodologies exist

for this purpose, such as localised-orbital schemes [306; 307], where hybrid orbitals

are placed at the boundary to saturate the embedded QM region, and boundary-

atom schemes, where the MM atom is replaced by an atom that appears in both

the QM and MM calculations [302]. The most common method however, and the

one used herein, is the hydrogen link-atom approach [302; 308; 309]. In the hydro-

gen link-atom approach, for every covalent bond across the QM-MM boundary, a

hydrogen atom is added to covalently bond with the QM atom to satisfy its valency.

Forcefield terms in the MM calculation also need to be selectively deleted to ensure

no interactions are double counted [310]. It is important to note that the hydrogen

atom is not part of the real system and only serves to prevent the appearance of

unsaturated dangling bonds within the QM calculation.
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2.5 Machine Learning

ML involves the creation of an algorithmic framework that learns the statistical

trends of its input data and uses these to predict outputs, whilst also possessing

the ability to improve upon its predictions if additional input is provided [102].

Mathematically, most ML methods aim to find and optimise a predictive function

f : X→ Y that acts as a ‘universal approximation’ by mapping an input space X to

a target space Y [102].

There are two primary regimes of ML: supervised and unsupervised, though

others also exist [102]. Supervised ML seeks to find a function f given a known finite

training set, T = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where (xi, yi) ∈ X×Y, i ∈ N [102].

In the ideal case, f should ensure f(xi) = yi for all xi. If new x′ values are pro-

vided, f should then be able to accurately predict f(x′) values. This is in contrast

to unsupervised ML, where only X is known and Y is unknown, and the training set

is only {x1, x2, · · · , xn}. Unsupervised ML is typically used to ascertain patterns

within data, such as clustering or for dimensionality reduction [102]. For the pur-

poses of this work, supervised ML is made use of to train regression models on DFT

calculations for systems xi with properties yi.

While f(xi) = yi is the ideal prediction, in reality this equality does not

hold and there is an error between f(xi) and yi. Many functions map X to Y, and

the training process seeks to find the function that minimises the expected risk.

Let F = {g | g : X → Y}. The accuracy of any g ∈ F can be determined using a

loss function, ` : g(X) × Y → R, which evaluates the error between the predicted

g(x) and true y values [102; 311]. It is important that ` is chosen carefully as it is

dependent on how the ML model is trained. The expected risk, R, of any g ∈ F
can then be defined as the expectation of its loss function, E : ` → R, as shown in

Equation (2.47),

R(g) = E[`(g(X),Y)] =

∫
`(g(X),Y) dP(X,Y) (2.47)

where P is a joint probability distribution over X and Y [311]. Here, an assumption

is made that T comprises n instances which are independently and identically dis-

tributed from P(X,Y), and Y is assumed to be a random variable with a distribution

conditional on X. Then, the optimal predictive function, g∗, can be expressed as
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Equation (2.48) [102; 311].

g∗ = arg min
g∈F

(R(g)) (2.48)

In practice however, P is unknown and in supervised ML, ` requires knowl-

edge of Y. Therefore, g∗ is calculated to be the function that minimises the empirical

risk [102; 311; 312], Remp, which is the average of ` over the size of T , as shown in

Equation (2.49):

Remp(g) =
1

n

n∑
i=1

`(g(xi), yi) (2.49)

Conditions can be applied to the ML algorithm to ensure Remp → R as n → ∞ in

Equation (2.49) [311].

2.5.1 Neural Networks

There are many ML architectures that exist to optimise a predictive function. One

such framework is NNs, which are circuit-like arrangements inspired by how neurons

process information. In biological NNs, upon the application of a stimulus, a neuron

receives information through its dendrites [313]. The neuron then emits a signal

along its axon and at the majority of synapses, the signal is transferred from its

axon to the dendrite of another neuron, and the whole process repeats [313]. This

is how the framework of an artificial NN is modelled, where neurons are termed

‘nodes’ instead, neurites (dendrites and axons) are termed ‘connections’, and a block

of nodes is a ‘layer’. The inputs into any node are all assigned weights depending on

their relative importance. The node then applies some function to the weighted sum

of its inputs and maps this to its successor node. Figure 2.2 shows a comparison

between a biological and artificial neuron. There are three types of layers within any

NN. The first is the input layer, which only receives information and passes it on to

its successive layer. The information sent from the input layer is then received by

a hidden layer, where intermediate processing is done. If multiple hidden layers are

used, the process is referred to as ‘deep learning’ [314]. The output layer processes

all the weighted information received from the final hidden layer and provides an

output based on this.
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Figure 2.2. Comparison of neurons within (a) biological and (b) artificial neu-
ral networks. In (b), each input Ai is assigned a weight wi and the node ap-
plies some function, F , to

∑n
i=1wiAi. Figure (a) is adapted from “Neuron

Anatomy” by BioRender.com (2022), retrieved from https://app.biorender.com/

biorender-templates.

Figure 2.3. Example schematic of the structure of a neural network.
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2.5.2 Machine-Learned Interatomic Potentials

Once appropriately trained, machine-learned interatomic potentials (MLIPs) can be

used in lieu of ab initio methods such as DFT at a fraction of their computational

cost. Furthermore, if trained using ab initio data, such potentials can theoretically

retain the ab initio-level of accuracy possessed by the training data (assuming there

are no prediction errors). MLIPs thus have the potential to advance many compu-

tational tasks, including structure searches and geometry optimisations of complex

systems containing thousands of atoms. There are many different flavours of MLIPs,

such as NN potentials [315; 316; 317; 318; 319; 320], which are used herein. It should

be noted though that there is no universally best MLIP that exists for every prob-

lem [321] because any pair of optimisation algorithms should be equivalent when

their performances are averaged over all possible problems, as explained within the

no free lunch theorem [322].

To train any MLIP, the atomic environment first has to be transformed into a

representation that is machine-learnable; this representation is termed a ‘descriptor’.

Unless specifically required, descriptors should generally aim to satisfy a number of

properties [323], such as invariance to translation and rotation of the atomic system,

as well as invariance to the permutation of the atomic indices within the system [321].

There are many different descriptors that exist to model atomic systems. A pop-

ular example is the simplified molecular-input line-entry system [324] which uses a

line notation to encode molecular structures and only utilises the bonding patterns

within a molecule [325]. Such graphical descriptors do not require the full 3D molec-

ular structure, which can instead be extracted from line notations [325]. However,

problems can arise if there are strong electron delocalisation effects within the sys-

tem, such as in metals or π-conjugated molecules [325]. An alternative approach is

to make use of geometrical features [325], which have been shown to perform well

when predicting thermodynamic and electronic properties [326; 327; 328]. Global de-

scriptors can be used to encode information about the whole atomic structure [321],

examples of which include the Coulomb-like matrix [329], the Ewald sum matrix and

the sine matrix [323]. However, these matrical descriptors are not permutationally

invariant as the matrix columns and rows are dependent on the ordering of atomic

indices, though permutational invariance can be enforced by methods such as diag-

onalisation or by ordering rows and columns using a norm [321; 329]. Furthermore,

global descriptors depend on and typically scale unfavourably with the size of a

system and the number of interactions within it [325; 330]. In contrast, local de-

scriptors such as the smooth overlap of atomic positions [331; 332] or the one used
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within the SchNet NN [315; 316; 333], the latter of which is used herein, can be used

to encode a localised region of an atomic structure [321]. It is also not too computa-

tionally costly to combine the information from multiple local descriptor outputs to

form a global prediction [334]. However, local descriptors require a specified radial

cut-off region to describe atoms with respect to their local chemical and structural

environments. While this ensures short-range interactions are learned by the MLIP,

challenges can arise when attempting to learn long-range interactions [318], as it

quickly becomes computationally tedious and infeasible to train MLIPs for cut-off

radii beyond a few angstroms.

2.6 Ab Initio Thermodynamics

Ab initio thermodynamics is a methodology that can be used to determine the equi-

librium composition and geometry of a surface in contact with a gaseous atmosphere

under finite temperature, T , and pressure, p, conditions [335]. This is done by cal-

culating the Gibbs free energy, G(T, p), using total energies, typically evaluated by

some ab initio method such as DFT [65; 66]. This approach allows for a system to

be split into subsystems which can be connected by assuming equilibrium between

the subsystems, while also allowing for finite temperature effects to be taken into

account [335]. However, no temporal or kinetic effects are considered, and the as-

sumption of equilibrium is not always a realistic one.

Consider a solid surface of element X in contact with an atmosphere of gas

Y. This environment can be thought of as a reservoir, as any amount of Y particles

can be given to or taken away from the surface without any change in T or p [335].

The Gibbs free energy of this entire system can be split into contributions that arise

from the bulk solid, Gsolid, the homogeneous gas phase, Ggas, and an additional term

introduced through the surface, ∆Gsurf, [335] as shown in Equation (2.50).

G = Gsolid +Ggas + ∆Gsurf (2.50)

If surface homogeneity is assumed, as is the case for the surfaces of ideal single

crystals, ∆Gsurf will scale linearly with the surface area, A [335]. Then, the surface

free energy, γ, can be expressed using Equation (2.51).

γ =
1

A
(G−Gsolid −Ggas) (2.51)

It should be noted that γ is well-defined for a finite part of the total, infinite system.
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However, as distance from the interface increases, the solid and gas phases will not

be affected by the surface interface. [335]. Therefore, only the finite part of the

system affected by the surface needs to be considered [335]. If this part comprises

NX solid atoms and NY gas atoms per surface area, Equation (2.51) can be rewritten

as Equation (2.52).

γ(T, p) =
1

A

(
G(T, p,NX, NY)−NXX(T, p)−NYµY(T, p)

)
(2.52)

where X is the Gibbs free energy per X atom in the bulk, and µY is the chemical

potential of Y in the gas phase. Using Equation (2.52), the surface free energy of

the clean surface can be defined as:

γclean(T, p) =
1

A

(
G(T, p,NX, 0)−NXX(T, p)

)
(2.53)

Then, the Gibbs free energy of adsorption, ∆Gads, can be expressed as the difference

between γclean and γ, as shown in Equation (??).

∆Gads = (2.54)

=

eq:DeltaGads

For any given (T, p) couple in the gas phase, the most stable surface structure is

the one that γ or ∆Gads at the corresponding µY [335]. The key quantities that

determine γ or ∆Gads are therefore the Gibbs free energies of the solid surface and

the bulk solid, as well as the chemical potential of the gaseous environment [335].

The solid-phase Gibbs free energies can be computed by decomposing G into

four contributing terms, as shown in Equation (2.55):

G = Etotal + Fvib + Fconf + pV (2.55)

where Etotal is the energy , Fvib is the vibrational free energy, Fconf is the configura-

tional free energy and V is the volume [335]. The dominant term in Equation (2.55)

is Etotal, which can be calculated using an ab initio method such as DFT [65; 66].

For the purposes of the work herein, the vibrational contributions to ∆Gads are

not considered, which only leaves the pV term. Using dimensional analysis, it can
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be seen that the contribution of the pV term to γ, normalised with respect to A,

is atm·Å3/Å2 ∼ µeV/Å2, which is negligible for a pressure of even hundreds of

standard atmospheres [335]. Therefore, G can be equated to an ab initio energy,

and the size of the error can be attributed to the accuracy of the specific ab initio

method [335].

Assuming gas Y exists as a diatomic molecule, Y2, at standard conditions,

µY can be expressed as Equation (2.58):

µY(T, p) =
1

2
µY2(T, p) (2.56)

=
1

2
· ∆GY

NY
(2.57)

= −1

2
· kBT ln (QY) + pV

NY
(2.58)

where Q is the partition function and kB is the Boltzmann constant. Using statistical

mechanics (and once again, excluding vibrational contributions), Equation (2.58)

can be reduced to Equation (2.59).

∆µY(T, p) ≈ 1

2
EY2 + ∆µY(T, p
) +

1

2
kBT ln

( p

p


)
(2.59)

where EY2 can be calculated using an ab initio method and p
 is standard pressure.

∆µY(T, p
) can be calculated from tabulated enthalpy and entropy values available

in thermochemical tables [336].

Bringing it all together, Equations (2.55) and (2.59) can be used to rewrite

Equation (??) as a function of µY, as shown in Equation (2.61).

∆Gads(∆µ) =
1

A

(
Etotal − Eclean −

NY

2
EY2 −NY∆µY

)
(2.60)

= −NY

A

(
Eads + ∆µY

)
(2.61)

where Eads is the adsorption energy of Y, which can be calculated using ab initio

methods.

2.7 Software Packages

A variety of software packages were used to conduct the work herein, and they are

briefly discussed below.
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2.7.1 DFTB+

DFTB+ [79] (website: https://dftbplus.org/) is a software package that can be

used to run DFTB calculations. DFTB+ provides several default parameter sets

based on the DFTB2 and DFTB3 methods. All parameter sets are constructed using

electronic and repulsive components. The former comprises atomic and diatomic

contributions which are typically computed from LDA or GGA calculations. The

repulsive energy, which is approximated as the sum of pair potentials as shown

in Equation (2.39), is represented using splines or polynomials. Parameter sets

are stored as Slater-Koster files, which contain electronic and repulsive parameters

between atoms within the parameter set. Parameter sets are usually limited to a

subset of elements within the periodic table due to the O(N2) effort required to

acquire parameters for N elements. To run a calculation, the DFTB+ software

requires two files: dftb in.hsd, which contains runtime information, and an input

geometry file. An example dftb in.hsd file for a geometry optimisation, as used

herein, can be found in Listing A.4, which loads a geometry.gen file containing

information pertaining to the atomic structure of the system, and includes a path

to the auorg [86] parameter set, which is a extension of the mio [78] parameterisation

to include elemental interactions with gold. Dispersion interactions can be accounted

for by adding a Dispersion{} subblock within the Hamiltonian{} block.

2.7.2 FHI-aims

FHI-aims [70] (website: https://fhi-aims.org/) is an all-electron electronic struc-

ture theory software package based on NAOs that can be used to run DFT calcu-

lations on both periodic and aperiodic systems. FHI-aims provides pre-constructed

basis sets associated with different elements, and these basis sets are defined on

four levels: ‘light’, ‘intermediate’, ‘tight’, and ‘really tight’ [259]. These element-

dependent basis sets are highly compact and retain a high level of accuracy for

a range of systems, achieving up to millielectronvolt-level energy convergence [70]

and small basis set superposition errors for standard DFAs. Two input files are

required to run calculations: geometry.in, which contains information pertaining

to the atomic structure for a given calculation, and control.in, which contains all

other runtime-specific information. An example control.in file using the PBE [229]

GGA and a ‘tight’ basis set for carbon can be seen in Listing A.5. Keywords for

various dispersion corrections can also be added.

The following self-consistency convergence criteria were set for all FHI-aims
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calculations: 1× 10−6 eV for the total energy, 1× 10−2 eV for the sum of eigenvalues,

1× 10−5 e/a0
3 for the charge density, 1× 10−4 eV Å−1 for the energy derivatives and

1× 10−2 eV Å−1 for the maximum residual force component per atom (for structure

optimisation calculations).

2.7.3 GULP

GULP [337; 338] (website: https://gulp.curtin.edu.au/gulp/) is a software

package that can be used to perform a variety of MM simulations on materials,

and includes a variety of forcefields parameterised for different sets of elements as

library files.

2.7.4 Atomic Simulation Environment

The Atomic Simulation Environment [339] (website: https://wiki.fysik.dtu.

dk/ase/) is a software package that comprises a set of Python modules for the setting

up, manipulation, running, analysing and visualisation of atomistic simulations.

Interfaces to other software packages are also provided, which can be called as

a Calculator() object. Both local and global optimisation algorithms, such as

limited-memory Broyden–Fletcher–Goldfarb–Shanno and basin-hopping [98; 99], are

also available within this software. The Graphical User Interface of this software was

used extensively in this work to manually build and visualise structural geometries.

2.7.5 Py-ChemShell

ChemShell [301; 303; 310] (website: https://www.chemshell.org/) is a modular

software package that can be used to run hybrid QM/MM calculations, where a

variety of QM and MM software packages (either compiled in as libraries or called

through external interfaces) can be utilised to evaluate energies and gradients of the

QM and MM regions. ChemShell couples the results of the QM and MM regions to

obtain the combined QM/MM energy and gradient, whilst appropriately treating

the boundary region that couples the two subsystems [301; 310]. The newer Python-

based redevelopment of the code, Py-ChemShell [301], is used herein. Listing 2.1

details a Python script that was used to cut a hemispherical cluster from a periodic

surface. The connect toler keyword, a scalar for vdW radii to determine bonding

interactions, was set to a value of 1.3 for all QM/MM calculations to ensure correct

hydrogen saturation of the QM region for the QM calculator.
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1 from ase.io import read

2 from chemsh import *

3 from chemsh.io.tools import *

4 import numpy as np

5

6 # Read periodic surface geometry file

7 slab = read('periodic_slab.in')

8 frag = convert_atoms_to_frag(slab, connect_mode='covalent', dim='2D')

9

10 # Cut cluster

11 cluster = frag.construct_cluster(crystal_type='covalent', origin=8,

radius_cluster=20.0, radius_active=10.0)↪→

12

13 # Specify QM region

14 qm_region = np.arange(0,90,1)

15

16 # Partition cluster

17 regions = cluster.partition(qm_region=qm_region, origin=0, cutoff_boundary=0.0,

radius_active=10.0)↪→

18

19 # Save partitioned cluster

20 regions.save('cluster_partitioned.pun', 'pun')

Listing 2.1. An example Python script used to cut a hemispherical cluster from a
periodic surface model. Using this script, a cluster of radius 20 a0 (and active radius
10 a0) is cut and partitioned into a system with a QM region size of 90 atoms.

Listing 2.2 details a Python script used to add a gold atom 1.5 Å above the

saved partitioned cluster from Listing 2.1.
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1 from ase import Atoms

2 from chemsh import *

3 from chemsh.io.tools import *

4

5 # Load partitioned cluster

6 frag = Fragment(coords="cluster_partitioned.pun", connect_mode='covalent',

connect_toler=1.3)↪→

7

8 # Create gold atom 1.5 angstroms above atom 7

9 coords = frag.coords[7].copy()

10 coords /= 1.88973 # Convert from Bohr to angstrom

11 coords[2] += 1.5 # Define gold atom position

12

13 # Add gold atom

14 gold_atom = Atoms('Au', position=[coords])

15 gold_frag = convert_atoms_to_frag(gold_atom, connect_mode=None)

16 frag.append(gold_frag)

17

18 # Rename gold atom to reflect QM region (region 1) status

19 frag.names[frag.natoms-1] = 'Au1'

20

21 # Save fragment

22 frag.save('cluster_with_gold_partitioned.pun', 'pun')

Listing 2.2. Python script used to add a gold atom 1.5 Å above a specified atom
(atom 7) of the saved partitioned cluster from Listing 2.1.

In this thesis, Py-ChemShell is used to couple the FHI-aims and GULP

software packages. Listing 2.3 details a Python script that was used to opti-

mise partitioned clusters using QM/MM. FHI-aims settings can be provided via

an fhiaims.settings file, while the fhiaims.basis file includes basis sets for all

atoms.
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1 from chemsh import *

2

3 # Load partitioned cluster

4 frag = Fragment(coords="cluster_with_gold_partitioned.pun", connect_mode='covalent',

connect_toler=1.3)↪→

5

6 # QM settings (FHI-aims)

7 qm_region = frag.getRegion(1)

8 qm = FHIaims(settings="fhiaims.settings", basis="fhiaims.basis",

ghost_species='Emptium')↪→

9

10 # MM settings (GULP)

11 ff = 'brenner' # Specify forcefield

12 mm = GULP(ff=ff)

13

14 # QM/MM settings

15 qmmm = QMMM(frag=frag, qm_region=qm_region, qm=qm, mm=mm, embedding='mechanical',

coupling='covalent')↪→

16

17 # Run optimisation

18 opt = Opt(theory=qmmm, algorithm='lbfgs', maxcycle=1000,

active=frag.getRegion(1,2,3))↪→

19 opt.run()

Listing 2.3. Python script used to optimise a partitioned cluster using QM/MM.

Before the 21.0 release, Py-ChemShell users were able to only parse control.in-

specific keywords into an FHIaims() object, but there was no infrastructure to parse

in geometry.in-specific keywords. Examples of such keywords include initial moment

and initial charge, which allow for an initial spin moment or charge, respectively,

to be placed on a particular atom. To allow for the parsing of these keywords,

two new variables were introduced into the FHIaims() class: initial moment and

initial charge. These keywords allow for users to enter a dictionary such as

initial moment = {A: x,...} or initial charge = {A: x,...}, into an FHIaims()

object, where A is either an integer that corresponds to the atom number (e.g. 1),

or is a string that corresponds to the atom label (e.g. ‘Au’), and x is a real number

denoting the initial spin moment or initial charge on atom A. This implementation

of initial spin moments and initial charges by the author can be found within the

21.0 release of Py-ChemShell, and the changes to the source file can be found in

Listing A.6.
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Similarly, before the 21.0 release, users were not able to run constrained

optimisations using Py-ChemShell. A new variable named “frozen partial” was

introduced within the chemsh/dl find/opt.py file of the software, which allows

users to enter a list of tuples e.g. frozen partial = [(A, ax),...] within the

Opt() class, where A is either an integer that corresponds to the atom number

(e.g. 1), or is a string that corresponds to the atom label (e.g. ‘C’), and ax is

a string containing the axes that should be frozen (e.g. ‘xy’) for atom A. For

a fragment with n atoms, an n × 3 array, F , was subsequently written, where

every row comprised a three-dimensional vector of binary numbers, with 1 per-

taining to unfrozen axes and 0 corresponding to frozen axes. Amendments to the

chemsh/dl find/opt.py by the author can be found in Listing A.7. To implement

constrained optimisations, the gradients along the frozen axes (for every atom) had

to be equated to zero. Gradients, G, are calculated by calculators and invoked as

single-point energy evaluations by the chemsh/dl find/callback.py file within Py-

ChemShell. Gradients were therefore zeroed after these single-point calculations in

the dlf get gradient() function within the chemsh/dl find/dlf routines.f90

file in Py-ChemShell, which passes the gradient values back to DL-FIND [340]. To

obtain the new gradients, G′, that accounted for the frozen axes, a Hadamard prod-

uct between G and F was taken i.e. G′ = F �G. The amended Fortran subroutine

can be found in Listing A.8.

2.7.6 PyMOL

The PyMOL [341] software package (website: https://pymol.org/) was used through-

out this work to visualise and render structures.

2.7.7 Python Libraries

Various Python libraries were used throughout this work to analyse and visualise

data. The NumPy [342] library was used extensively for data processing and anal-

ysis, while the Scikit-learn [343] and SciPy [344] libraries were used for statistical

analysis. The Matplotlib [345] library was used throughout to plot graphs and fig-

ures, while Python scripts from the logsdail/carmm [346] GitHub repository (web-

site: https://github.com/logsdail/carmm) were also used to analyse FHI-aims

output files.
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Chapter 3

Oxygenation State of the

Diamond (110) Surface

The following chapter presents work published in the paper referenced below. Sec-

tion 3.3.2 includes XPS simulation results which were conducted by Samuel J. Hall

(University of Warwick), and results from XPS experiments which were conducted

by Dr. Marc Walker (University of Warwick) and in collaboration with Dr. Benedikt

P. Klein (University of Warwick, Diamond Light Source). Section 3.3.3 includes

results from X-ray diffraction experiments, which were conducted by Dr. David

Walker (University of Warwick), low-energy electron diffraction experiments, which

were conducted by Dr. Marc Walker, and atomic force microscopy experiments,

which were conducted by Dr. Julie Macpherson (University of Warwick).

S. Chaudhuri, S. J. Hall, B. P. Klein, M. Walker, A. J. Logsdail, J. V. Macpherson,

R. J. Maurer (2022) ‘Coexistence of carbonyl and ether groups on oxygen-terminated

(110)-oriented diamond surfaces’ Commun. Mater. 3: 6 [347]

3.1 Introduction

When grown via CVD [144], the more popular synthesis method for technologi-

cal applications , diamond surfaces usually leave the growth chamber terminated

with hydrogen species [145]. However, processes such as mechanical polishing or

chemical cleaning, which typically use strong oxidising agents, render the surface

oxygen-terminated. Even if untreated, the hydrogen-terminated surface will grad-

ually oxidise over time if exposed to air [348; 349]. Oxygen-terminated diamond

surfaces have been shown to exhibit hydrophilicity [350; 351] and a positive electron
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affinity [352]. Oxygen terminations can also cause a reduction in surface electrical

conductivity [348], an increase in capacitance [353], and impact the electron-transfer

kinetics of inner-sphere electrochemical reactions on BDD electrodes [131]. As ex-

plained in Section 1.2.2, polycrystalline BDD surfaces can be treated as a textured

surface with a dominant (110) orientation [22; 156], which means a detailed atomic-

scale understanding of the oxygen termination and elementary composition of dia-

mond (110) surfaces is of vital importance. Knowledge of the diamond (110) surface

oxygenation state would allow for the growth of gold NCs on BDD surfaces to be

studied, as is the aim of this thesis.

The oxygenation state of the diamond (110) surface has not been extensively

characterised, with previous studies primarily focusing on the (111) and (100) sur-

faces [152], most likely due to the challenges associated with growing and preparing

a (110)-oriented single-crystal diamond surface with a large-enough area at a high-

enough quality [139]. Computational studies have identified the presence of both

carbonyl (C=O) and ether (C–O–C) functional groups on the diamond (111) and

(100) surfaces [354; 355; 356; 357; 358; 359; 360; 361; 362; 363; 364], while exper-

imental techniques, such as infrared and X-ray photoelectron spectroscopy (XPS),

also provide an indication of the coexistence of different oxygenic moieties on dia-

mond surfaces. Experimental studies on the (111) and (100) surfaces indicate the

presence of both carbonyl and ether groups [365; 366; 367; 368] after the removal of

loosely-bound compounds and organic contaminants. The few experimental studies

that exist for the (110) surface are also interpreted in the context of a coexistence of

carbonyl and ether groups [152; 369; 370; 371]. Peroxide (C–O–O–C) groups have

also been found to exist on the (110) surface at low temperatures using infrared

spectroscopy [152]. However, in two of these studies, the (110) surfaces were sub-

jected to a hydrogen plasma treatment before analysis [152; 371], which is known to

induce the formation of (111) microfacets [152; 371; 372] and compromise the (110)

crystallinity of the surface. Makau and Derry only presented XPS data recorded

at room temperature, where the physisorbed contaminants may still be present and

no details about the quality of the studied crystal were provided [369]. Baldwin

et al. [370] assumed the crystal contained a mixture of (110) and (111) facets and

a large number of step edges, with a measured surface roughness of 1 nm. These

studies highlight the challenges of preparing high-quality (110) surfaces.

This chapter will present a systematic characterisation of the structure and

stability of various oxygenic terminations of the diamond (110) surface. This is
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achieved through a combination of DFT [65; 66] calculations and XPS experi-

ments (at elevated temperatures) on a homoepitaxial (110)-oriented BDD substrate

grown via CVD. Using ab initio atomistic thermodynamics [335; 373; 374] based

on DFT [65; 66], as described in Section 2.6, a phase diagram of a large number of

surface structures is established and the most stable oxygenation state of the (110)

surface is identified.

3.2 Methods

3.2.1 Computational Structure Search

DFT [65; 66] calculations were conducted using the FHI-aims [70] software package

and a ‘tight’ basis set [259]. Unless otherwise stated, all calculations were con-

ducted using the PBE [229] GGA, though a few calculations were also conducted

using the revPBE [231], RPBE [233] and BLYP [375; 376] GGAs, and the TPSS [234]

MGGA ; these instances are clearly stated within the text. The pairwise TS [262]

dispersion correction, as described in Section 2.2, was used to account for long-

range effects in GGA calculations. A few calculations were also conducted using the

MBD@rsSCS [287] and MBD-NL [288] schemes ; these instances are clearly stated

within the text.

Structures were symmetric with oxygenic species terminating both the top

and bottom of a seven-layer dipole-cancelling diamond (110) slab. To account for

cases where only partial oxidation might occur, the following surface unit cells were

optimised and studied: p(1× 1), p(2× 1), p(1× 2) and p(2× 2). A reciprocal space

grid of size 16×16×1 centred around the Γ point of the first Brillouin zone was used

for p(1×1) surface calculations. Input and output files for all calculations have been

uploaded as a dataset [377] to the NOMAD electronic structure data repository [378]

and are freely available under https://doi.org/10.17172/NOMAD/2021.03.01-1.

Figure 3.1.
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Equation (3.1) was used to calculate the oxygen adsorption energy, Eads, of

different surface phases:

Eads =
1

N
(Etotal − Eslab −NEO), (3.1)

where N is the number of oxygen atoms, Etotal is the total energy of the terminated

surface and Eslab is the energy of the surface onto which the oxygenic species is being

adsorbed. The oxygen adsorbate energy, EO, was calculated as half the total energy

of a free oxygen molecule (O2), while for hydroxyl adsorbates, EO was calculated

as the difference between the energy of a free water molecule and half the energy of

a free hydrogen molecule. The adsorption energy per unit cell surface area, Eads/A,

was calculated by multiplying Eads by N/A.

Using the calculated Eads values, the Gibbs free energy of adsorption, ∆Gads,

for every termination was calculated as a function of the gas-phase chemical po-

tential of oxygen, ∆µO, which represents the ease of oxygen adsorption onto the

surface [335; 374], using Equation (2.61). Here, the surface was assumed to be in

equilibrium with an oxygen atmosphere that behaves as an ideal gas. ∆µO was

then further expressed as a function of both temperature, T , and pressure, p, using

Equation (2.59) [335]. ∆µO

(
T, p
) was calculated using a quartic polynomial fit,

as expressed in Equation (3.2), to tabulated enthalpy and entropy data for molec-

ular oxygen at standard pressure from thermochemical tables [336]. A qualitative

comparison of Equation (3.2) to the thermochemical data can be seen in Figure 3.2;

quantitatively, the coefficient of determination value of Equation (3.2) was evaluated

to be 1.00, showcasing the high quality of the fit.

∆µO

(
T, p
) = βT 4 + γT 3 + εT 2 + ηT + ζ, (3.2)

where β = −3.062×10−13, γ = 8.957×10−10, ε = −1.156×10−6, η = −1.332×10−3

and ζ = −1.552× 10−1.
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Figure 3.2. Graphical comparison of the fit expressed in Equation (3.2) to
∆µO

(
T, p
) values calculated from tabulated entropy and enthalpy values for molec-

ular oxygen [336].

3.2.2 Core-Level Binding Energy Simulations

This subsection details the methods used by Samuel J. Hall to conduct core-level

binding energy simulations, and is included here for completion. The cutting and

hydrogen-saturation of clusters were conducted by the author.

XPS core-level binding energies were calculated by Samuel J. Hall using

the Delta Self-Consistent Field [379; 380] method by taking the energy difference

between two self-consistent Kohn-Sham DFT calculations: the ground-state calcu-

lation and the excited core-hole-constrained calculation, where the population of

an atom (either carbon or oxygen) was constrained electron. Both periodic and

aperiodic core-hole calculations were performed using the PBE [229] GGA. Periodic

calculations were performed using the plane-wave pseudopotential CASTEP [71]

software package, with default on-the-fly generated ultrasoft pseudopotentials, an

electronic energy tolerance of 1× 10−6 eV atom−1 and a plane-wave cut-off of 650 eV.

Here, the core-hole was localised through the generation of a modified pseudopo-

tential with a core-hole included on the target atom. The energetic contribution

of core electrons was accounted for via a correction term when calculating binding

energies between the ground and excited states [381]. Supercells of various sizes

were constructed to systematically assess binding energy convergence and the role

of finite size effects.
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Aperiodic calculations were also performed by Samuel J. Hall using the FHI-

aims [70]. The force occupation basis keyword was used to constrain the core-

hole, along with additional basis functions to better describe the core-states, as

laid out by Kahk and Lischner [382]. Here the constraint was defined in terms

of a localised atomic orbital basis function, with the Kohn-Sham eigenstate with

the highest contribution also being constrained. A variation of the maximum over-

lap method [383] ensured the constraint remained satisfied. The aperiodic calcula-

tions were performed on hemispherical cluster models of various phases, cut from

their parent periodic models using the Py-ChemShell [301] software package, as ex-

plained in Listing 2.1. Dangling bonds for all atoms were terminated with hydrogen

species, though the XPS calculations were conducted on the central carbon and

oxygen atoms. Visualisations of the hydrogen-saturated clusters can be found in

Figures B.2. Using a Mulliken analysis [384], the density of states of each cluster

was compared against its parent periodic model, which are shown in Figure B.3.

Cluster models, unlike periodic models, allow for the prediction of absolute binding

energies [382; 385] and can therefore be used to validate the relative binding energy

shifts calculated using periodic models. Once convergence with respect to model

size was established [385], the majority of calculations were conducted with periodic

models via CASTEP.

3.2.3 Surface Science Experiments

This subsection details the experimental methods that were used to prepare and anal-

yse a diamond sample provided by Element Six Ltd., and is included here for com-

pletion. XPS and low-energy electron diffraction experiments were conducted by Dr.

Marc Walker, X-ray diffraction experiments were conducted by Dr. David Walker,

and atomic force microscopy experiments were conducted by Dr. Julie Macpherson.

Sample Preparation

A (110)-oriented single-crystal BDD sample (Element Six Ltd.) of size 5.00×5.00×
0.47 mm3 was homoepitaxially grown via microwave-plasma CVD from a (110)-

oriented single-crystal diamond substrate. The growth chamber comprised a ∼5%

methane and hydrogen gas atmosphere at temperatures of 700–950 °C and pressures

of 100–200 Torr, with microwave powers of 1-3 kW at 2.45 GHz [145]. The sample

was highly boron-doped [131] to low 1020 atoms per cubic centimetre, and boron

doping was achieved with the addition of up to 0.02% diborane(6) to the gas phase
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during CVD growth. A highly boron-doped sample was used to reduce charging

effects within the XPS experiments, the dopant concentration was low enough the

surface termination of the diamond sample [386]. The sample was removed from

the growth substrate via laser micromachining. A small amount of twinning was

observed at the edge of the crystal, which compromises the surface quality and

can impact polishing. The twinning was removed by reducing the crystal size to

3.25× 3.25× 0.47 mm3 using laser micromachining. To smooth the growth surface,

the (110) surface was first mechanically lapped using a resin bonded wheel and then

scaife cast iron polished. Prior to any analysis, the sample was acid-cleaned for

30 min at ∼200 °C in concentrated sulphuric acid saturated with potassium nitrate,

rinsed with deionised water and cleaned again for 30 min at ∼200 °C in concentrated

sulphuric acid [348]. The sample was finally ultrasonically cleaned for 15 min in

deionised water and left to air-dry. All solutions were prepared from Milli-Q water

(Millipore Corp.) with a resistivity of 18.2 MΩ cm at 25 °C.

X-Ray Photoelectron Spectroscopy

An Omicron Multiprobe instrument was used to acquire XPS data, with the sam-

ple mounted onto stainless steel Omicron flag plates using tantalum foil and loaded

into a fast-entry chamber. Once a pressure of less than 1× 10−6 mbar was achieved

(which took ∼1 h), the sample was transferred to a 12-stage storage carousel lo-

cated between the preparation and main analysis chambers for storage at pressures

of less than 2× 10−10 mbar. XPS measurements were conducted in the main analysis

chamber (base pressure 2× 10−11 mbar) with the sample being illuminated using an

XM1000 monochromatic aluminium Kα X-ray source (Omicron NanoTechnology),

which corresponds to a photon energy of 1486.7 eV. Photoelectrons were detected

using a Sphera electron analyser with survey scans acquired using a 50 eV pass en-

ergy and a 0.5 eV step size. Selected high resolution core-level spectra were recorded

using a 10 eV pass energy (resolution approximately 0.47 eV) with a 0.1 eV step size.

Measurements were conducted at two different electron emission angles, 0° and 60°
with respect to the surface normal (90° and 30° with respect to the sample surface

respectively). The spectrometer work function was calibrated using a clean polycrys-

talline silver sample immediately prior to experiments commencing. The analyser

transmission function was calibrated using clean silver, gold and copper foils. In

order to ensure the removal of any surface-adsorbed contaminants, XPS measure-

ments were taken after annealing the sample to different temperatures. Sample

heating was performed in the main analysis chamber using a resistive heater and

monitored by a K-type thermocouple attached to the manipulator head. Spectra
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were fitted using symmetric pseudo-Voigt profiles [387; 388], and if several peak com-

ponents were present in a spectrum, they were restricted to have the same widths

and Gaussian-Lorentzian ratios.

X-Ray Diffraction

X-ray diffraction experiments were conducted by Dr. David Walker using a PAN-

alytical X’Pert Pro MRD instrument with a 4-bounce germanium (220) hybrid

monochromatorwhich gave out pure copper Kα1 radiation, and a Pixcel detector

was set as a point detector using the whole 14 mm detector width. A pole figure

was recorded at a 75.3° 2θ reflection position (where θ is the Bragg angle) with a

wide open detector, and by rotating the sample at different azimuthal angles and a

number of different tilt angles.

Low-Energy Electron Diffraction

Low-energy electron diffraction experiments were conducted by Dr. Marc Walker in

ultra high vacuum conditions using a SPECTALEED optics (Omicron NanoTech-

nology). Diffraction patterns were taken at various electron energies after degassing

the sample to 300 °C.

Atomic Force Microscopy

Atomic force microscopy experiments were conducted by Dr. Julie Macpherson on

different locations of the surface using a Bruker Dimension Icon microscope oper-

ating in ScanAsystTM mode. The resulting data was processed using the Gwyd-

dion [389] software.

3.3 Results and Discussion

3.3.1 Structure and Stability of Oxygen-Terminated Phases

An extensive computational structure search was performed to identify the atomically-

flat oxygen-terminated (110) surfaces with the highest stabilities, varying both the

termination and surface coverage of oxygen. The search involved placing surface-

terminal carbonyl, ether, peroxide, and hydroxy (C–OH) groups, as well as com-

binations thereof, on a diamond (110) surface slab and performing geometry opti-

misations. 22 different optimised surface terminations were considered, which are

visualised along with their calculated adsorption energies and fractional oxygen sur-

face coverages in Table B.1. Table 3.1 summarises the adsorption energies of the
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most stable phases, which are also depicted in Figure 3.3; in both, three- and five-

ring ether groups are denoted as ‘Ether3’ and ‘Ether5’, respectively, and carbonyl

groups are denoted as ‘Keto’ groups. The most stable phases are found to con-

tain carbonyl, ether, and peroxide functional groups, which agrees with existing

experimental literature [152; 369; 370; 371]. In particular, phases containing coex-

istent carbonyl and ether groups appear to have the largest adsorption energy, with

the p(2 × 1)Keto-Ether5 phase having by far the largest Eads and Eads/A values of

−3.03 eV atom−1 and −0.34 eV Å−2, respectively. The p(2×2)Keto-Ether5 phase, a

half-coverage form of the p(2×1)Keto-Ether5 phase, is the most stable phase at lower

coverage. To ensure results with the 7-layered slab were converged, the adsorption

energies of the p(2× 1)Keto-Ether5 and p(1× 1)Peroxide surface phases were recal-

culated using a 9-layered diamond (110) slab and evaluated to be −3.03 eV atom−1

and −1.42 eV atom−1 respectively, which are identical to the 7-layered Eads values

in Table 3.1.

Phase
Eads/A

(eV Å−2)

Eads

(eV atom−1)

Coverage

(atoms nm−2)

p(1× 1)Peroxide −0.31 −1.42 22.2

p(2× 1)Keto-Ether5 −0.34 3.03 11.1

p(2× 1)Peroxide −0.23 −2.04 11.1

p(1× 1)Ether3 −0.20 −1.77 11.1

p(1× 1)Ether5 −0.17 −1.52 11.1

p(2× 2)Keto-Ether5 −0.25 −2.25 5.5

p(2× 2)Peroxide −0.10 −1.78 5.5

Table 3.1. Adsorption energies for the most stable oxygen-terminated diamond (110)
surface phases. Energies are given as a function of surface area and per atomic
adsorbate, as well as the associated surface coverage, for the most stable oxygen-
terminated (110) surface phases. Entries are ordered from high to low oxygen surface
coverage. A full table for all investigated surface phases can be found in Table B.1.

Figure 3.3 shows the convex hull of the calculated ∆Gads as a function of

the gas-phase ∆µO; a full free energy plot featuring all the phases can be found in

Figure B.1. Here, the oxygenated surface is considered to be in equilibrium with a

gas-phase molecular oxygen at temperature and pressure conditions, (T, p), that cor-

respond to a certain chemical potential (for details see Section 3.2.1). The structure

with the largest ∆Gads value (note the inverted vertical axis) is the most stable at

the given ∆µO value, and therefore (T, p) couple, and will be thermodynamically re-

alised under these conditions (notwithstanding any kinetic barriers) [335; 374]. Over
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the shown range of ∆µO values, the following three surface structures constitute the

convex hull, i.e. they are the most thermodynamically stable under these conditions:

the clean (110) surface, the p(2 × 1)Keto–Ether5 and the p(1 × 1)Peroxide phases.

The unterminated surface is the most stable configuration below ∆µO = −3.03

eV atom−1. As ∆µO increases further, the p(2 × 1)Keto–Ether5 phase is the most

stable until ∆µO = 0.29 eV atom−1. Above this , the p(1 × 1)Peroxide phase be-

comes the most stable configuration, which is to be expected as the free energy

of oxygen adsorption increases with ∆µO. This results in an increase in the sta-

bility of oxygen-rich phases relative to oxygen-poor surfacesthe p(1 × 1)Peroxide

phase possesses the maximal oxygen coverage. Visualisations of the clean surface,

p(2× 1)Keto–Ether5and p(1× 1)Peroxide phases are given in Figure 3.4.

Clean surface p(2×1)Keto-Ether5 p(1×1)Peroxide

p(1×1)Ether3

p(1×1)Ether5p(2×2)Peroxide

p(2×2)Keto-Ether5

Figure 3.3. Free energy plot for the most stable oxygen-terminated diamond (110)
surface phases, as listed in Table 3.1. The shaded region represents the convex hull
of ∆Gads, which is presented as a function of ∆µO in the gas phase. A full free
energy plot of all phases can be seen in Figure B.1. Orthographic ball-and-stick
visualisations of the first three carbon layers of the phases are shown as viewed
‘front on’ from the [001] direction, with carbon and oxygen atoms shown in grey
and red respectively. Unit cell outlines are shown in black dashed lines with surface
axes also presented.

The range of temperatures and pressures at which the most stable phases

are realised can be seen in Figure 3.5. Over the temperature range of 0–1000 K,

at standard pressure, the p(2 × 1)Keto–Ether5 phase is the most stable configura-

55



(a) (b) (c)
Figure 3.4. Orthographic ball-and-stick visualisations of the three most sta-
ble oxygen-terminated diamond (110) surface phases. (a) Clean surface, (b)
p(2 × 1)Keto-Ether5 and (c) p(1 × 1)Peroxide, shown as a ‘top-down’ view from
the [110] direction. Carbon and oxygen atoms are shown in grey and red respec-
tively. Unit cell outlines are shown in black dashed lines with surface axes also
presented.

tion, and expected at standard atmospheric conditions. The unterminated surface

is the most stable phase at higher temperatures (T > 1000 K) and lower pressures

(p < 10−6 atm), which is expected as the stability of an oxygen ideal gas increases

with increasing T and decreasing p. The p(1× 1)Peroxide phase is the most stable

phase at lower temperatures, with suprema ranging from around 60 K to around

100 K over the whole pressure range.

Figure 3.5. Phase diagram of the oxygen-terminated diamond (110) surface. The
diagram is presented as a function of both temperature, T , and pressure, p, and
shows the three most stable oxygen-terminated diamond (110) surface phases.

Experimental studies on the oxygenation state of the (110) surface provide

56



evidence of oxygen species that broadly supports the results presented above. How-

ever, the aforementioned caveat concerning the quality of the surfaces used in these

studies [152; 369; 370; 371] should be noted. These studies report carbonyl and

ether groups on the surface [152; 369; 370; 371], while surface peroxide species are

reported to exist at low temperatures (90 K) [152]. However, the ab initio atom-

istic thermodynamics method used herein does not consider any kinetic information,

such as reaction barriers, that are likely to affect which phases are experimentally

observed under conditions. Vibrational contributions to ∆Gads were also not con-

sidered here, comprising the vibrational entropy and enthalpy [335; 373], which can

shift the stability boundaries to some extent. These contributions are unlikely to

affect the convex hull though as the Keto-Ether5 phases are significantly more stable

than all other considered phases.

As an additional note, the PBE [229] GGA was employed to optimise sur-

face phases, and is known to underestimate adsorption energies and overestimate

adsorption distances in many cases [68; 69; 88]. To assess the effect of the choice of

DFA, surface structures were reoptimised, and adsorption energies recalculated with

different DFAs for the p(2× 1)Keto–Ether5 and p(1× 1)Peroxide phases. Table 3.2

details the different Eads values with various DFAs. The DFAs that were compared

against PBE [229] were the revPBE [231], RPBE [233] and BLYP [375; 376] GGAs,

and the TPSS [234] MGGA. It should be noted that the TS [262] dispersion cor-

rection scheme was not used alongside TPSS due to the MGGA already accounting

for a certain level of mid-range interactions within its formulation [234]. As can

be seen, the absolute adsorption energy values strongly depend on the DFA, with

Eads varying within a range of 0.4 eV atom−1 for both phases. The DFAs fall into

two classes with respect to the relative stability of the two phases that they predict.

Nevertheless, the ordering of the two phases and the significantly higher stability of

the p(2× 1)Keto-Ether5 phase are independent of the DFA.
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DFA
p(2× 1)

Keto-Ether5

p(1× 1)

Peroxide
∆Eads

PBE [229] 3.03 1.42 1.61

revPBE [231] 2.61 1.55 1.06

RPBE [233] 2.83 1.15 1.68

BLYP [375; 376] 2.62 1.57 1.05

TPSS [234] 3.04 1.41 1.63

Table 3.2. Table showing the Eads values, in electronvolts per atom, for the p(2 ×
1)Keto-Ether5 and p(1×1)Peroxide phases as calculated using different DFAs, along
with the difference in Eads values, ∆Eads.

The choice of dispersion correction scheme was also assessed by reoptimis-

ing surface structures with two MBD [285; 286] schemes and recalculating the ad-

sorption energies. Table 3.3 details the different Eads values with the TS [262],

MBD@rsSCS [287] and MBD-NL [288] schemes based on the PBE [229] GGA. As

can be seen, the absolute adsorption energy values have a very minor dependence

on the dispersion correction, but the ordering of the two phases and the signifi-

cantly higher stability of the p(2× 1)Keto-Ether5 phase are also independent of the

dispersion correction.

Dispersion

Correction

p(2× 1)

Keto-Ether5

p(1× 1)

Peroxide
∆Eads

TS [262] 3.03 1.42 1.61

MBD@rsSCS [287] 2.98 1.43 1.55

MBD-NL [288] 3.01 1.45 1.56

Table 3.3. Table showing the Eads values, in electronvolts per atom, for the p(2 ×
1)Keto-Ether5 and p(1× 1)Peroxide phases as calculated using different dispersion
correction schemes based on the PBE [229] GGA, along with the difference in Eads

values, ∆Eads.

In the following, the origin of the high stability of the Keto-Ether5 phases is

addressed. During the structure optimisations, the Keto-Ether5 phases form spon-

taneously from manually-prepared peroxide groups aligned along the [110] direction.

A schematic of the optimisation mechanism is shown in Figure 3.6. The initially-

adsorbed peroxide homolytically dissociates to form two oxygen radicals (O·), one

of which is saturated by forming a carbonyl group with a surface carbon atom at

the expense of a carbon-carbon bond between the first and the second layer, while

the other is stabilised by bridging the ridge to form a five-ring ether, resulting in
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the p(2 × 1)Keto-Ether5 phase. The p(2 × 1)Keto-Ether5 structure has previously

been verified to be the most stable structure via a global structure search [22].

[001]

O
O

O
O

O
O

O

O

O

O

(a) (b)

(d)
(c)

(e) [110]

Figure 3.6. Structural rearrangement during the formation of the p(2 × 1)Keto-
Ether5 phase. The initial peroxide termination is along the C–C ridge in the [110]
direction. First, (a) the O–O bond breaks to form two oxygen radicals (O·), one
of which then proceeds to form a double bond with a surface carbon atom (b).
Due to the propensity of carbonyl groups to form trigonal planar structures, one of
the C–C bonds in the tetrahedral diamond structure also breaks. Both processes
are underway in the transition state (c). In order to form a stable structure, the
remaining O· bridges over the surface ridge to form an ether group, allowing the
carbon radical (C·) to bond with another carbon atom behind the carbonyl (d).
The resulting structure is the p(2× 1)Keto-Ether5 phase (e). Surface axes are also
presented.

To further understand the large adsorption energy of −3.03 eV atom−1, the

structure of the p(2×1)Keto-Ether5 phase is examined against other surface phases

by analysing bond lengths and bond angles. From calculations, carbonyl groups are

found to lead to some lattice distortion, with C–C=O bond angles of 123.2° and

125.0° in the p(2 × 1)Keto-Ether5 phase, which indicates a more trigonal planar

surface structure. Based on valence shell electron pair repulsion theory, partial sp2

hybridisation has occurred in the surface carbon layers, which is consistent with

partial graphitisation and sp2 hybridisation in diamond [137; 390; 391; 392]. Fur-

ther geometrical distortions can be seen by comparing carbon-oxygen bond lengths.

Other surface terminations that feature ether, peroxide or hydroxy surface groups

seem to preserve the sp3 hybridisation of the carbon atoms, with a C–O bond length

of typically around 1.45 Å, with the exception of 1.55 Å in Ether5 phases; in com-
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parison, the C=O bond length in the Keto-Ether5 phases is 1.20 Å, shorter than the

observed C–O bonds. The formation of the C=O bond pulls the respective carbon

atom above the diamond surface plane, as can be seen in the Keto-Ether5 structures

shown in Figure 3.3.

While C=O bonds are typically stronger than C–O bonds, individual surface

carbonyl groups cannot be realised on a pristine (110) surface as they would require

the breaking of C–C bonds, creating carbon radicals and leading to a substantial

deformation of the surface. To circumvent that, another surface moiety such as

an ether group must be present to saturate the carbon radicals and minimise the

necessary deformation, as shown in Figure 3.6. The adjacent carbonyl and ether

functionalities in the Keto-Ether5 phases possess such a high stability because their

local pairing is able to balance the high adsorption energy from the carbonyl with

low structural deformation in the surface. Taking the distorted surface slab upon

adsorption of oxygen in the p(2×1)Keto-Ether5 phase to be Eslab in Equation (3.1),

the Eads value is recalculated to be −5.26 eV atom−1. Therefore, the structural de-

formation penalty associated with adsorption is 2.23 eV atom−1. Without the ether

group, this deformation penalty would be much higher. The fact that the geome-

try optimisation of an adsorbed peroxide leads to the formation of the Keto-Ether5

phase, suggests that the pathway shown in Figure 3.6 can be a viable oxidation

mechanism of the diamond (110) surface.

3.3.2 Comparison to X-Ray Photoelectron Spectroscopy

To connect the predicted structures with experimental data, the core-level binding

energies of the central carbon and oxygen species in the DFT-based structures were

simulated by Samuel J. Hall. Convergence tests of the XPS binding energies were

carried out on three increasing cluster sizes and unit cells for the p(2 × 1)Keto-

Ether5 phase. Figure 3.7 shows convergence behaviour for the p(2× 1)Keto-Ether5

phase, while Table 3.4 details the numerical values for this phase. Figure 3.7 shows

that both the cluster and periodic calculations converge to the same value (0.8 eV).

Finite-size and cell-charging effects can therefore be ruled out from affecting the

relative binding energy shifts obtained via periodic calculations. This agreement

between periodic and aperiodic models also verifies that the saturating hydrogen

species in the aperiodic models do not influence the XPS behaviour of the central

carbon and oxygen atoms. All binding energies reported hereafter were obtained

from the converged periodic models.
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Figure 3.7. Graph showing the convergence of the simulated oxygen 1s (O 1s)
binding energy difference between the carbonyl and ether groups in the p(2 ×
1)Keto–Ether5 phase using periodic and cluster models.

Unit Cell ∆C 1s Binding Energy (eV) O 1s Binding Energy (eV)

Size C=O C–O–C C–O–C C=O C–O–C Difference

2× 1 6.59 7.52 7.15 547.33 549.18 1.85

4× 2 2.33 2.41 2.16 543.24 544.24 1.00

6× 2 1.88 1.85 1.61 542.80 543.69 0.89

6× 3 1.59 1.52 1.29 542.53 543.37 0.84

8× 3 1.44 1.35 1.12 542.39 543.21 0.82

8× 4 1.34 1.25 1.02 542.30 543.11 0.81

10× 4 1.28 1.18 0.96 542.25 543.05 0.80

10× 5 1.24 1.15 0.92 542.22 543.01 0.79

Cluster Radius (a0) C=O C–O–C C–O–C C=O C–O–C Difference

9.0 291.16 290.75 290.70 535.72 536.38 0.66

12.0 291.06 290.71 290.78 535.37 536.07 0.70

15.0 – 290.64 290.41 535.18 535.96 0.78

Table 3.4. Table showing the convergence of the carbon 1s (C 1s) binding energies
with respect to the diamond bulk (∆C 1s) and O 1s absolute binding energies for
supercells and clusters of various sizes of the p(2×1)Keto-Ether5 phase. For cluster
models, where a diamond bulk value was not calculated, the absolute binding energy
is shown. The entry marked ‘–’ is a result of the calculation failing to converge.

XPS simulations were compared to experimental XPS measurements con-
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ducted by Dr. Marc Walker, as well as to literature [369; 370]. The simulation

results for the core-electron binding energies of the Keto–Ether5 phase in two cover-

ages, p(2×1) and p(2×2), are detailed in Tables 3.5 and 3.6. The carbon 1s (C 1s)

binding energies in Table 3.5 are presented as shifts with respect to the bulk carbon

signal of the diamond surface, both for experiment and simulation. In the case of

the oxygen 1s (O 1s) data in Table 3.6, only the binding energy difference between

the two oxygen species present in the different functional groups are discussed.

Species Simulation Experiment

p(2× 1) p(2× 2) Warwick
Makau and

Derry [369]
Baldwin et al. [370]

C=O 1.16 0.74 0.7 4.5 2.2

C–O–C 1.46 0.80 0.7 1.9 1.1

C–O–C 1.23 0.30 0.7 1.9 1.1

Table 3.5. Comparison of the C 1s binding energy shifts for the Keto-Ether5 phases
with respect to the diamond bulk signal. For the simulation of the ether moiety, two
carbon binding energies are given, one for each oxygen-bonded carbon atom. The
Warwick experiments only show one peak in addition to the bulk diamond signal,
while literature reports two additional peaks at a much higher binding energy.

Simulation Experiment
p(2× 1) p(2× 2) Warwick Makau and Derry [369] Baldwin et al. [370]

1.00 1.31 1.5 2.1 1.7

Table 3.6. Comparison of the O 1s binding energy difference for the Keto-Ether5

phases. The binding energy difference is calculated as the difference between the
binding energies of the oxygen atoms involved in the carbonyl (C=O) and ether
(C–O–C) functional groups. The experimental data reports the binding energy
difference between the two peaks in the corresponding O 1s spectra.

As can be seen in Table 3.5, the calculated C 1s binding energies for car-

bonyl and ether carbons are close together; in the lower-coverage p(2 × 2) phase,

the C=O binding energy sits evenly between the two C–O–C carbons present in

the structure. This result is in agreement with the experiments conducted by Dr.

Marc Walker, presented in Figure 3.8, which shows the experimental C 1s and O

1s spectra recorded after annealing the sample surface to 500 °C. The C 1s spec-

trum in Figure 3.8(a) is dominated by a main peak with a small shoulder at a

higher binding energy, caused by a small peak partly underneath the main peak.
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The binding energy difference between the two peaks is 0.7 eV (0.6-0.9 eV). As can

be seen in Figure 3.8(b), two species are present in the O 1s spectrum: the high

binding energy peak corresponds to an ether moiety, while the low binding energy

peak can be attributed to a carbonyl group. The relative shift between the two

species is 1.5 eV (1.4-1.6 eV). The lower binding energy peak of the carbonyl has a

higher intensity, with an intensity ratio of about 2:1. Therefore, both spectra can be

fitted sufficiently using only two sub-peaks. The resulting experimental peak shifts

between the two respective peaks are also included in Tables 3.5 and 3.6.

Figure 3.8. Experimental X-ray photoelectron spectra of the sample surface. (a)
Carbon 1s (C 1s) spectrum and (b) oxygen 1s (O 1s) spectrum. Spectra were
taken at normal emission after annealing the sample to 500 °C. The raw data, fit
functions and fitted peaks are shown using open circles, red lines and shaded areas
respectively.

Contrary to both DFT calculations and Warwick experiments, data pub-

lished in literature [369; 370] shows two additional oxygen-related peaks at much

higher binding energy. As discussed above, this discrepancy is hypothesised to be

due to both crystal quality and the lack of sample annealing prior to running XPS

experiments. contaminants in the atmosphere that the sample is exposed to prior

to measurement can lead to a high coverage of contaminants adsorbed on the sur-

face; these contaminants will still be present after the sample is introduced into the

vacuum chamber of the photoelectron spectrometer [393]. Contaminants can cause

surface reactions, introduce additional signals into the O 1s region, and also show

oxygen-related peaks in the C 1s region. As can be seen in Figure 3.9(a), the XPS

63



survey spectrum for the non-annealed sample showed the expected C 1s and O 1s

signals, but small nitrogen 1s (N 1s) and sodium 1s (Na 1s) signals were also ob-

served. No other elements contaminated the sample surface. In order to remove any

carbon-, nitrogen-, sodium- and oxygen-containing surface-adsorbed contaminants,

the surface was annealed. The annealing temperature had to be chosen carefully;

the surface oxide would have decomposed if the temperature was too high. Oxide

decomposition on the (110) surface has maximum efficiency in the 760-890 °C tem-

perature range, as seen in temperature-programmed desorption experiments [371].

The annealing temperature was therefore chosen to be lower than 650 °C to exclude

surface oxide decomposition.

Figure 3.9. (a) Survey, (b) nitrogen 1s (N 1s), and (c) sodium 1s (Na 1s) XPS
spectra of the diamond sample at room temperature (RT) i.e. prior to annealing,
and after annealing to 400 °C, 500 °C, and 600 °C. Spectra were taken at an emission
angle of 0°. The survey spectra are truncated and do not show the full height of the
C 1s signal.

While absolute coverage determination from XPS is difficult without a trust-

worthy reference, some approximate results for the oxygen coverage prior to an-

nealing were obtained. When comparing the carbon signals from the unannealed

and annealed surfaces, the signal attenuation due to desorbed contaminants can be

determined. While this method is tainted by several inaccuracies, it can be used to

distinguish a thick layer of contaminants on the surface from a single oxide layer.

As can be seen in Figure 3.10(a), the C 1s signal of the unannealed surface is sig-

nificantly attenuated when compared to the annealed surface; it is estimated that

a layer with a thickness of 5–40 nm is desorbed due to the annealing. Correspond-

ingly, the O 1s signal is massively reduced, as can be seen in Figure 3.10(b). The

small N 1s and Na 1s signals in Figures 3.9(b) and (c) that were detected prior
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to annealing vanished post-annealing to 400 °C and 500 °C respectively. A similar

desorption/change in attenuation was observed for different annealing temperatures

of 500 °C and 650 °C, well below the threshold for surface oxide decomposition.

From these results, it must be concluded that the majority of the carbon and

oxygen signals that contribute to the unannealed sample’s spectra due to volatile

contaminants, which can be desorbed. Therefore, only the spectra relate to the ac-

tual oxygenated (110) surface, and the spectra are not usable due to the significant

contribution of contaminants to both the C 1s and O 1s XPS signals. It should

be noted that some previously published XPS experiments have experienced the

same problem, with C 1s and O 1s spectra from literature resembling data from

the Warwick experiments for the unannealed surface in Figure 3.10 [369]. The O 1s

spectrum of the unannealed surface shows a broad peak which can be fitted by two

subpeaks, as shown using dotted lines in Figure 3.10(b), while the C 1s region shows

a main peak with one pronounced satellite and a broad shoulder showing a second

satellite signal, as can be seen in Figure 3.10(c). When fitted, the binding energy

differences from the main peak to the first and second satellite peak are 1.5 eV and

4.1 eV respectively.

Figure 3.10. (a) Carbon 1s (C 1s) and (b) oxygen 1s (O 1s) XPS spectra of the
diamond sample prior to annealing and after annealing to 550 °C, where fitted peak
components for the O 1s spectrum prior to annealing are shown as dotted lines. (c)
Fitted C 1s spectrum prior to annealing. Open circles: data, red line: fit function,
shaded areas: fitted peaks. All spectra taken at an emission angle of 60°. C 1s and
O 1s binding energies are reported with respect to the bulk C 1s and the dominant
O 1s signals respectively.
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3.3.3 Sample Surface Characterisation

The simulated binding energies of the lower coverage p(2 × 2)Keto–Ether5 phase

are close to the Warwick XPS data, while the higher coverage p(2× 1)Keto–Ether5

phase shows a larger deviation from experiment. Good agreement is also observed

between simulated O 1s binding energy differences for the low coverage structure

and the Warwick experiments, as shown in Table 3.6. On the other hand, the sim-

ulations of the high coverage structure show deviations that cannot be reconciled

with XPS experiments once the obvious surface contaminants are removed.

X-ray diffraction experiments were performed by Dr. David Walker to gather

further information about the quality of the sample surface. X-ray diffraction is

bulk-sensitive and can therefore provide the orientation of the whole single crystal

relative to the sample holder. Figure 3.11 shows a pole figure for the sample (prior to

the removal of twinned edge regions) in the [220] direction, proving that the sample

is predominantly (110)-oriented along the sample normal with a clear peak at a tilt

angle of 1.5°, which corresponds to an azimuthal angle of 64.4°.

Low-energy electron diffraction experiments were also conducted by Dr. Marc

Walker as the technique is very surface-sensitive and can therefore provide informa-

tion on the top few surface layers of the sample. Figure 3.12 shows the diffraction

pattern for the sample surface. As can be seen, there is only one set of diffrac-

tion spots, which means that the surface is not polycrystalline on the length scale

of the spot size (1×1 mm2), but rather only has one domain (or one domain type

combined with amorphous material). The diffraction pattern also has a two-fold

symmetry, which is in line with a predominant (110)-oriented face-centred cubic

diamond structure [372; 394; 395; 396].
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Figure 3.11. Pole figure of the diamond sample prior to the removal of twinned edge
regions, recorded in the [220] direction at a 75.3° 2θ reflection position, where θ is
the Bragg angle.

Figure 3.12. Low-energy electron diffraction pattern of the diamond sample surface,
taken at an electron energy of 122 eV.

To obtain information about the surface roughness and morphology of the

post-growth and polished crystal surface, atomic force microscopy measurements

were also performed by Dr. Julie Macpherson on different locations of the surface.

Figure 3.13 shows a typical 1.0 × 1.0 µm2 image of the sample surface topography.

The average surface roughness and a root-mean-square roughness were found to be

only 0.18 nm and 0.23 nm respectively, which is close to atomic smoothness. The

small bright spots are associated with impurities (‘dirt’) on the surface. Repeated

sonication of the crystal during the cleaning stage was found to decrease the small

particle density and size. The (110) surface used in the Warwick experiments is
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therefore of higher quality than all other diamond (110) surfaces currently reported

in literature [152; 369; 370; 371; 372; 394; 395; 396; 397].

(a)

(b)

Figure 3.13. Atomic force microscopy of the sample surface topography. (a) 1.0 ×
1.0 µm2 image and (b) the roughness profile of the white line in (a). The average
surface roughness and the root mean square roughness were found to be 0.18 nm
and 0.23 nm respectively.

The observed larger deviations for the p(2×1) system are therefore hypothe-

sised to be due to the higher coverage structure being difficult to realise for realistic

surfaces under the experimental conditions employed herein.
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3.4 Conclusions

Using ab initio atomistic thermodynamics based on DFT, this chapter has estab-

lished a phase diagram of the most stable oxygen terminations of the diamond (110)

surface. Within the 0–1000 K temperature range, the phase diagram is dominated

by a highly stable phase of coexistent carbonyl and ether functional groups, while

peroxide groups become more stable at low temperatures and high oxygen pressures,

which is in agreement with existing experimental literature. Adjacent carbonyl and

ether groups are observed which, as suggested from DFT calculations, can form via

a transition from an adsorbed peroxide structure. The high stability of the adja-

cent carbonyl and ether groups arises from cooperative effects that mitigate surface

deformation and satisfy all valencies. These findings are robust with respect to the

DFA and dispersion correction scheme. From the simulation of core-level binding

energies, a lower coverage of this phase was found to produce core-level shifts in

agreement with experimental XPS data. While the experimental data does not

agree with the simulation results for the most stable highest coverage, this could

indicate that this coverage may not be able to be realised due to kinetic hindrance

and coverage limitations on realistic surfaces. The combined theoretical and exper-

imental analyses outlined in this chapter provide a much improved understanding

of the oxygen-terminated diamond (110) surface, which has been lacking to-date.

A better characterisation of the chemical terminations of diamond-based materials

is crucial to understanding elementary diamond growth and electrochemical surface

processes.
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Chapter 4

Growth of Aun Nanoclusters on

Diamond, 1 ≤ n ≤ 4

4.1 Introduction

Chapter 3 characterised the oxygenation state of the diamond (110) surface and

showed that the most stable surface phase is comprised of coexistent and adjacent

carbonyl and ether groups. In this chapter, this surface will be used to computa-

tionally explore the initial stages of gold NC formation on BDD surfaces, as is the

aim of this thesis. The formation of all NCs and NPs start from single atoms, which

are the smallest possible entity that can be deposited [398; 399; 400; 401]. Single

metal atoms have been shown to have unique magnetic properties [402] and excel-

lent (electro)catalytic applications [203; 204; 205; 206], often outperforming NCs in

the latter regard [183; 184; 185]. This makes it essential to investigate a variety of

possible stabilisation mechanisms that can not only promote the deposition of single

gold atoms onto BDD surfaces provide some key insights into the initial stages of

atomistic nucleation.

Using STEM, single gold atoms were shown to be stable atop polycrystalline

BDD surfaces, while DFT calculations showed that these single atoms possess low

diffusion barriers on an idealised oxygen-terminated surface [22]. However, the DFT

calculations reported in Hussein et al. [22] did not account for local surface defects

and dopants. This is because modelling isolated defects and dopants at extended

surfaces is challenging, as the majority of computational studies typically employ

periodic boundary conditions [68]. These define an infinitely repeating unit cell and

have been used to model extended surfaces and interfaces [68] in numerous studies,
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including within the previous chapter. However, periodic models become problem-

atic when modelling local defects or dopants as they acquire a periodicity under

such boundary conditions, when they should in fact be aperiodic. For example,

when it comes to modelling BDD, boron dopants typically have a concentration of

one boron atom within a thousand carbon atoms [131], and computational studies

either do not include the dopant [22; 386], whilst assuming that this low concen-

tration means it is safe to exclude boron, or they model the dopant within periodic

boundary conditions anyway [403; 404] and are not concerned with the periodicity

of the dopant. Embedded cluster approaches are an alternative that can be used to

appropriately model surface defects [68]. However, there are certain challenges that

arise when attempting to model structures using embedded cluster approaches. One

such challenge is the creation of additional surfaces at the edges of the cluster when

it is cut from a substrate. For semiconducting materials such as BDD, this involves

the cleaving of several covalent bonds, and these dangling bonds can give rise to

states within the band gap of the material and thus artificially increase its reactiv-

ity [68]. This issue can be resolved by either saturating the dangling bonds using

hydrogen atoms for example, or by somehow embedding the cluster within a sur-

rounding material that is significantly more extended [68]. However, both of these

solutions require the cluster itself to be large enough to ensure finite-size effects are

avoided, which can occur due to the spatial confinement of the wavefunction within

the cluster and increase the band gap of the material [68; 405; 406], whilst not being

so large as to be computationally infeasible [68]. It is therefore essential to develop

a computational framework that can be used to study the adsorption energetics and

kinetic barriers of gold adatoms and NCs on extended diamond surfaces whilst also

accounting for local surface defects and dopants.

Ab initio methods such as DFT [65; 66] can provide detailed insights into the

structural and electronic properties of supported metal atoms [68; 69; 407]. How-

ever, as a standalone method, its computational scalability [408] generally means

that higher-rung DFAs, which are theoretically more accurate [409] and generally

more computationally expensive [68; 69], cannot be used to study large, periodic

models without incurring high, and often infeasible, computational costs [410]. Due

to this, many large-scale studies are often limited to using GGAs or MGGAs as the

DFA to the true XC functional in the calculation of the Kohn-Sham ground-state

energy [68; 69], as explained in Section 2.1.4. These DFAs typically either correctly

estimate the adsorption energy or the reaction barriers, but never both [68; 69].

They also suffer from the lack of long-range dispersion interactions within their

71



formulations, though this has been successfully addressed recently with the devel-

opment of a posteriori dispersion correction schemes, as discussed in Section 2.2.

To circumvent the limitations of DFT with periodic boundary conditions and

to address the fact that surface chemistry is intrinsically local, as well as potentially

aperiodic in nature in the presence of surface defects on semiconductors, embed-

ded cluster approaches based on a hybrid quantum mechanics/molecular mechanics

(QM/MM) [300; 301] methodology, as explained in Section 4.2.1, are a viable al-

ternative. Cluster approaches are generally computationally cheaper than periodic

approaches and can therefore permit calculations with higher-rung DFAs such as

HGGAs, which can allow for a systematic assessment of the accuracy of lower-rung

DFAs along Jacob’s ladder [219] against higher-rung DFAs without changing the

model setup [406]. This is particularly important in the case of metal adsorption

on insulating and semiconducting materials as there are very little experimental

data that exists about adsorption structures and energetics that computational ap-

proaches can be compared against.

This chapter will explain the construction of an embedded cluster model

that can be used to study the adsorption of single gold atoms on oxygen-terminated

diamond (110) surface. This model will be used to analyse the effect of surface de-

fects and substitutional boron dopants within the diamond substrate on gold atom

adsorption. By using DFT as the QM method within this hybrid QM/MM frame-

work, the embedded cluster model will be used to benchmark the performance of

various QM density-dependent methods, including DFAs and a posteriori dispersion

correction schemes. Finally, after the identification of suitable QM methods and sta-

bilisation mechanisms for single gold atom adsorption on diamond, the growth of

small gold NCs will be briefly analysed, with a focus on gold dimers, trimers and

tetramers.

4.2 Methods

Henceforth, the notation ‘χ+ψ/φ’ is used to denote specific hybrid QM/MM meth-

ods, where χ is the DFA, ψ is the dispersion correction and φ is the forcefield used.

4.2.1 QM/MM Model Setup

The Py-ChemShell [301; 340] software package was used to cut hemispherical clus-

ters of radius 20.0 a0 (and active radius 10.0 a0) from the PBE+TS-optimised p(2×
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1)Keto-Ether5 periodic model and run hybrid QM/MM calculations, as shown in

Listing 2.1. The surface oxygenation state was initially modelled to comprise coex-

istent and adjacent carbonyl and ether groups at full oxygen coverage, as was shown

to be the most thermodynamically stable state in Chapter 3. Figure 4.1 details the

cutting and partitioning processes of a cluster into QM and MM regions from the

periodic surface model, which was done using a Python script that can be found

in Listing 2.1. The FHI-aims [70] and GULP [337; 338] software packages were

used to treat the QM and MM regions respectively; QM- and MM-specific calcula-

tion settings are detailed in Section 4.2.3. QM/MM energies were calculated using

an additive scheme [304], as described in Equation (2.46) and implemented within

the Py-ChemShell [301] software, and the hydrogen link-atom approach [309] was

used to treat cleaved covalent interactions across the QM-MM interface, with the

connect toler keyword (a rescaling coefficient for vdW radii to determine bonding

interactions) set to a value of 1.3 for all QM/MM calculations to ensure correct

hydrogen saturation of the QM region for the FHI-aims calculator, as shown in

Listing 2.3.

Figure 4.1. Process of cutting an infinite, periodic surface model into a finite,
embedded cluster surface model partitioned into QM and MM regions. Atoms within
the blue circle represent the QM region of the cluster, while the green annulus
represents atoms within the MM region. Also shown are the software packages used
to treat the different regions. The surface is visualised from the [110] direction, with
surface axes presented, and the unit cell outlines are shown with black dashed lines.
Carbon and oxygen atoms are shown in grey and red respectively.
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4.2.2 Construction of Structures

The fully oxygen-terminated surface model shown in Figure 4.2(a) is an idealised

one and unlikely to be realistic due to kinetic hindrance and coverage limitations.

Oxygen vacancies in oxides have been shown to influence the catalytic properties

of small gold clusters [407; 411; 412; 413]. For this reason, a point defect at the

surface was modelled by removing a carbonyl oxygen, as shown in Figure 4.2(b).

The embedded cluster model eliminates any finite size effects that would have been

caused by interactions of the defect site with its periodic image. To ensure this

defect was modelled correctly, PBE+TS/REBO optimisation was conducted after

the removal of the carbonyl oxygen atom. Because diamond surfaces are usually

hydrogen-terminated after CVD growth [145], uncoordinated carbon atoms were

subsequently saturated with hydrogen species and the surface was reoptimised us-

ing PBE+TS/REBO.

Boron-doped surfaces, as are commonly used in electrochemical applica-

tions [21; 22], were also investigated. Single substitutional boron dopants introduce

a charge into the diamond, regardless of whether it is uncompensated (neutral) or

compensated (ionised). The uncompensated instance was modelled as only neutral

boron gives rise to the characteristic one-phonon absorption and luminescence fea-

tures observed in BDDs [414]. Boron dopants can be situated within the top few

surface layers or deep within the bulk material. For the former case, where the ef-

fects of the boron are localised, a single boron atom was explicitly placed within the

second and third carbon layers of the QM region by replacing a carbon atom, and

an initial 1+ charge was placed on the neighbouring uncoordinated carbon atom, as

shown in Figures 4.2(c) and (d) respectively. The initial conditions of the localised

dopant calculations therefore represent uncompensated boron. An assumption was

made that the explicit presence of the boron atom in the top surface layers will not

affect the surface oxygenation state of the substrate.

To model boron dopants located deep within the bulk material, where the

effects of the dopant are delocalised, a +1 charge was placed on the entire QM

region to account for the one fewer electron, as shown in Figure 4.2(e). It should

be noted that the delocalised dopant model is not boron-specific, as boron is not

explicitly included, and is applicable for any delocalised single substitutional triel

such as aluminium, gallium or indium. While non-boron triels are not common

diamond dopants, some have still found use. For example, aluminium dopants have

been shown to induce superconductivity [415; 416], though boron was deemed to
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be a more suitable dopant to attain superconductivity [416]. Gallium dopants have

been shown to suppress the graphitisation of diamond tools by increasing their

wear resistance [417; 418], while indium dopants have been shown to improve the

wettability of diamond [419]. In both cases, only (the effect of) one dopant atom

was included within the QM region to match common boron dopant densities [131].

The finite, cluster-based QM/MM approach allows for the single dopant/charge

defect to be accurately modelled in a much more pertinent manner as opposed to a

periodically repeating dopant and/or charge.

Figure 4.2. Skeletal visualisations of the five substrate models investigated. Sub-
strates are (a) an idealised oxygen-terminated diamond (110) surface (b) a SCOV-
defective surface (c) a boron-doped surface with the dopant in the second layer
(d) a boron-doped surface with the dopant in the third layer and (e) a delocalised
triel-doped surface. Visualisations are shown from the [001] direction.

To construct Aun NCs, n ∈ {2, 3, 4}, the most stable Aun−1 structures of a

particular shape on the surface were identified, and the additional nth gold atom

was subsequently manually placed at several positions to generate Aun NCs. While

this procedure will not explore the entire space of possible NCs of a given atom

count on a specified surface, it can provide insights into preferred shapes and their

energetics. Ideally, a global optimisation would have been conducted via basin-

hopping [98; 99] for example to identify the global minimum for every Aun NC
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on a given surface. However, as of the 21.0 release of the Py-ChemShell [301]

software, global optimisation algorithms could not be conducted, which necessitated

the manual preparation of NC structures.

4.2.3 Computational Settings

QM DFT [65; 66] calculations were performed using the FHI-aims [70; 259] software

package, and NAOs were represented using a ‘tight’ basis set. Unless otherwise spec-

ified, the pairwise, long-range TS [262] dispersion correction method was used to

account for vdW interactions in calculations with GGAs and HGGAs. The TS [262]

method was not used alongside MGGAs, which already account for a certain level of

mid-range interactions [234], or LDAs, which exhibit an artificial energy minimum

between subsystems that is taken to unintentionally mimic vdW interactions [68],

as explained in Section 2.1.4. For periodic calculations, the interaction between the

gold adatom and its periodic images were excluded for the TS dispersion correction.

The Atomic Simulation Environment [339] was used to generate structures. Density

of states graphs were plotted using the logsdail/carmm [346] GitHub repository,

with a Gaussian broadening value of 0.02 eV used for smoothing. For the single

gold atom, spin polarisation was accounted for by setting an initial spin moment

of 1 for the single unpaired electron; the implementation of this feature within the

Py-ChemShell [301] software is explained in Section 2.7.5, with the amended source

file provided in Listing A.6.

The PBE [229] GGA was the primary DFA used herein, though a variety of

other DFAs were also used to run DFT calculations; DFAs are clearly stated through-

out for clarity. DFAs whose diamond lattice constant values were within ±0.02 Å

of the PBE [229] value were chosen for this study. This was done to ensure inter-

atomic distances within the diamond substrate were not too dissimilar from a specific

DFA-optimised value and allow for fair comparisons to be made between DFAs. The

lattice constant for each DFA was picked by either optimising the lattice vectors of

the primitive diamond unit cell with a two-atom motif, as outlined in Section 1.2.2,

or by taking values from the Materials Science and Engineering dataset [420]. DFAs,

either implemented within FHI-aims or from the Libxc [218] library, from different

rungs of Jacob’s ladder [219] were investigated and compared against the PBE [229]

GGA. LDAs investigated were: GDSMFB [421], KSDT [422] and PZ-LDA [423; 424].

The following GGAs were studied: PBEsol [232], revPBE [231] and RPBE [233];

and the following MGGAs were examined: SCAN [237], rSCAN [425], M06-L [235],

TPSS [234], TPSSloc [236] and revTPSS [426]. The following HGGAs were consid-
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ered: HSE03 [241], HSE06 [242], PBE0 [243] and PBEsol0 [244]. The dfauto [427]

implementation within the FHI-aims [70] software package was used to run calcu-

lations with the SCAN [237] and rSCAN [425] MGGAs, and a screening parameter

of 0.11 a0
−1 was set for the HSE06 [242] HGGA.

MM calculations were performed with the GULP [337; 338] software pack-

age. The reactive empirical bond order (REBO) potential specified in Brenner et

al. [428; 429] was used to run the majority of MM calculations, as it has been

shown to accurately describe interactions between carbon, oxygen and hydrogen

atoms [429], as well as accurately predict carbon-carbon bond lengths and angles

within diamond [428]. Some calculations were performed using the Tersoff [430]

forcefield; forcefields are clearly stated throughout for clarity.

4.2.4 Energy Calculations

Equation (4.1) was used to calculate the adsorption energy per atom, Eads, of dif-

ferent gold NCs comprising n atoms (Aun):

Eads =
Etotal − Esubstrate − EAun

n
(4.1)

where n is the number of gold atoms, Etotal is the total energy of the gold-diamond

complex, Esurface is the energy of the clean surface onto which the gold cluster was

adsorbed, and EAun is the gas-phase energy of the Aun NC in the frozen surface-

adsorbed geometry. Equation (4.2) was used to calculate the cohesion energy, Ecoh,

for any Aun NC:

Ecoh =
EAun − nEAu1

n
(4.2)

For structure optimisations with any QM/MM method, the PBE+TS/REBO-

optimised oxygen-terminated diamond substrate was reoptimised using the new

QM/MM method. A single gold atom was then placed 1.5 Å above the adsorp-

tion site, and another optimisation was conducted using the specified QM/MM

method. For the construction of binding energy curves for a specified QM/MM

method, single-point calculations were run on the specified QM/MM-optimised sur-

face substrate, with the gold atom being placed at various heights above the surface.

To calculate the kinetic stabilities of a gold adatom with a specified QM/MM

method, the gold atom was first translated to a new site along either the [001] or the

[110] directions, and placed 1.5 Å above the specified QM/MM-optimised surface. A
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constrained optimisation was then conducted, where the position of the gold atom

was only allowed to relax along the [110] direction, with motion along the [001] and

[110] directions frozen. The kinetic stability of the gold atom with any specified

QM/MM method was then calculated as the energy difference between the initial

optimised structure and the constrained-optimised structure. An explanation of

how constrained optimisations were implemented within the Py-ChemShell [301]

software is explained in Section 2.7.5, with the amended source files provided in

Listings A.7 and A.8.

4.3 Results and Discussion

4.3.1 QM Region Size Optimisation

As explained in Section 4.1, it is important to ensure that the size of the QM region

embedded within the MM region is large enough to avoid any finite-size effects.

The appropriate QM region size of the substrate was chosen by comparing various

properties of PBE+TS/REBO-optimised embedded cluster models with varying QM

region size against the parent PBE+TS-optimised periodic model. All convergence

tests were conducted on an idealised surface model. First, the structural deviations

of each PBE+TS/REBO-optimised embedded cluster were compared against the ini-

tially cut cluster from the PBE+TS-optimised periodic model, which can therefore

be taken to be an appropriate representation of the periodic model. As can be seen

from Figure 4.3(a), PBE+TS/REBO-optimised embedded clusters with QM region

sizes of 10, 20, 60, 70 and 90 atoms have the lowest root-mean-square deviation

(RMSD), 0.037 Å, with respect to the PBE+TS-optimised periodic model, while the

RMSDs for the 30-, 40-, 50- and 80-atom QM regions were at least 0.7 eV, showing

a greater disparity in optimised structures.

Following this structural comparison, the energetics of the PBE+TS/REBO-

optimised embedded cluster models were compared against the PBE+TS periodic

model. Figure 4.3(b) shows a graph of the band gap, which is the energy between

the highest occupied molecular orbital and the lowest unoccupied molecular orbital,

of the embedded clusters as a function of QM region size. As can be seen, the band

gap generally decreases as the QM region size increases and tends towards the QM

periodic value (2.3 eV). This shows that clusters with smaller QM region sizes do

experience some finite-size effects. In contrast, as the QM region size increases, the

embedded cluster becomes more structurally and energetically similar to the peri-

odic QM structure. Despite this overall trend, over the range of QM region sizes
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explored, the 30-atom QM region was found to possess the closest band gap to the

periodic value, while the 90-atom QM region had the next closest value (2.6 eV).

The band gaps of the 10-, 20-, 60- and 70-atom QM regions, which were found to be

structurally similar to the periodic model, were found to be at least 0.5 eV higher

than the QM periodic value.

Finally, the adsorption energy of a single gold atom was evaluated as a func-

tion of the QM region size using Equation (4.1), as shown in Figure 4.3(c). The 70-

and 90-atom QM regions (71- and 91-atoms respectively including the gold atom)

resulted in the closest adsorption energy value, −0.30 eV to the QM periodic value

(−0.31 eV). The 20- and 30-atom QM regions significantly overestimate the ad-

sorption energy, while the 10-, 40-, 50-, 60- and 80-atom QM regions report similar

adsorption energetics to the QM periodic model, but are not as close as the 70- and

90-atom QM regions.

Taking all three properties into consideration, it can be seen that the 90-

atom QM region results in an optimised structure, band gap and gold adsorption

energy most similar to the QM periodic model, and was thus chosen as the optimal

QM region size within the QM/MM cluster. While a larger QM region would most

likely result in a cluster with a final geometry and energetics more similar to the

periodic model, convergence problems were encountered with larger QM region sizes

(100 and 110 atoms). Regardless, the embedded cluster with a 90-atom QM region

was found to have similar structural and energetic properties to the periodic QM

cluster and was thus deemed an appropriate size.

To further confirm the higher computational efficiency of the hybrid QM/MM

approach, scaling graphs were constructed after conducting single-point calculations

on the PBE+TS-optimised periodic model and the PBE+TS/REBO-optimised model,

with a 90-atom QM region, after a gold atom was adsorbed onto the model surfaces.

Figure 4.4 shows the computational cost of these single-point calculations as a func-

tion of number of cores, which were run on Lenovo NeXtScale nx360 M5 servers

with dual Intel Xeon E5-2680 v4 (Broadwell) 14-core processors at 2.4 GHz, as avail-

able within the Orac high performance computing cluster provided by the Scientific

Computing Research Technology Platform of the University of Warwick. All calcu-

lations used the Eigenvalue SoLvers for Petaflop-Applications [431] library and the

ELectronic Structure Infrastructure [432]. As can be seen in Figure 4.4, QM/MM

calculations are vastly cheaper than the periodic QM calculations. Furthermore,
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periodic QM calculations failed when using 16 cores or fewer due to memory is-

sues. This confirms the superior computational efficiency of the hybrid QM/MM

approach and that it can be used to access more computationally-costly methods

such as MGGAs and HGGAs.

Figure 4.3. Scatter graphs showing the (a) RMSDs and (b) band gaps of a single
gold atom atop PBE+TS/REBO-optimised cluster models against the initial clus-
ter cut from the PBE+TS-optimised periodic model; and (c) adsorption energies
of a single gold atom atop PBE+TS/REBO-optimised cluster models against the
PBE+TS-optimised periodic model, all as a function of QM region size.
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Figure 4.4. Scaling graphs of single-point PBE+TS/REBO and PBE+TS calculations
of the idealised oxygen-terminated diamond (110) surface. The embedded cluster
model comprised 527 atoms with a 90-atom QM region, while the periodic model
comprised 92-atom unit cell.

4.3.2 Effect of Defects and Dopants

The idealised, fully oxygen-terminated diamond (110) surface was used as the start-

ing point for all QM/MM models. Other systems based on this were also studied,

where defects and dopants were introduced into the surface model, namely a defec-

tive surface with a saturated carbonyl oxygen vacancy (SCOV), and boron-doped

surfaces with the dopant modelled explicitly and implicitly, as explained in Sec-

tion 4.2.1 and visualised in Figure 4.2. The final adsorption structures are all visu-

alised in Figure 4.5, while Table 4.1 summarises the adsorption energetics and the

computed Mulliken charges [384] of the single gold atom. The interactions between

the gold atom and each surface are discussed in more detail below.

As can be seen in Table 4.1, the introduction of defects or dopants into the

idealised surface seems to increase the adsorption energy of the gold atom, which

is reflected in the lower adsorption height, indicating the closer proximity of the

adatom to the surface. For all investigated defective and doped surfaces, the sign

of the Mulliken charge [384] on the gold atom was found to be positive, which is

indicative of charge transfer from the gold atom into the surface and explains the

relatively adsorption energies. In contrast, for the idealised , the sign of the Mulliken

charge is positive, indicating charge accumulation. It should be noted that the more

complete a basis set is, the more ambiguous a Mulliken analysis becomes as it is not

a priori clear which electrons should be counted towards the basis functions of one
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atom rather than another. While other charge analysis schemes do exist [284; 433],

these are also not perfect, but the Mulliken analyses used herein can still be used

as a qualitative indicator of trends.

(a)

(c)

(b)

(d)

(e)

Figure 4.5. Orthographic ball-and-stick visualisations of a gold adatom on differ-
ent oxygen-terminated diamond (110) surface substrates, as optimised using the
PBE+TS/REBO method. Substrates are (a) an idealised oxygen-terminated dia-
mond (110) surface (b) a SCOV-defective surface (c) a boron-doped surface with
the dopant in the second layer (d) a boron-doped surface with the dopant in the
third layer and (e) a delocalised triel-doped surface. Visualisations of the QM region
are shown from the [001] and [110] directions, and surface axes are also shown, with
the saturating hydrogen link-atoms at the QM region boundary excluded for clarity.
Carbon, oxygen, hydrogen, boron and gold atoms are shown in grey, red, white,
pink and gold, respectively. For clarity, pink circles are also included to show which
carbon atom the boron atom is situated behind for (c) and (d).

Idealised surface: In the case of the idealised, fully oxygen-terminated surface,

the gold adatom was found to weakly adsorb onto a carbonyl oxygen atom, at

a height of 1.71 Å above the with an adsorption energy of −0.30 eV, as detailed in

Table 4.1. This is a very weak adsorption energy and its associated diffusion barriers

are also likely very weak, as has been shown previously [22]. Such weak adsorption of

the gold adatom is to be expected for this idealised system due to the high stability
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System
Adsorption Energy

(eV)
Adsorption Height

(Å)
Mulliken Charge

(|e|)
Idealised −0.30 1.71 −0.14

SCOV-defective −2.31 −0.12 +0.07

Boron dopant
(2nd layer)

−1.66 1.03 +0.28

Boron dopant
(3rd layer)

−1.75 0.35 +0.16

Delocalised triel
dopant

−1.98 0.36 +0.26

Table 4.1. Adsorption energies, adsorption heights and Mulliken charges for a single
gold adatom on various oxygen-terminated diamond (110) surface substrates. Ad-
sorption energies were calculated using the PBE+TS/REBO method. Adsorption
heights are given with respect to the plane of carbonyl oxygen atoms.

of the coexistent carbonyl and ether functional groups on the diamond surface, as

shown in Chapter 3. The valencies of all surface atoms are satisfied and the surface

is therefore ‘closed-shelled’. There are no unpaired electrons for the gold atom to

interact with, which means the interaction between the adatom and the surface is

governed by weak long-range effects such as vdW forces and electrostatics.

SCOV-defective surface: Compared to the idealised system, the gold adatom

was found to adsorb significantly stronger to the SCOV-defective diamond sur-

face with an adsorption energy of −2.31 eV, indicating that this is a much more

adsorption complex. This is reflected by the negative adsorption height in Ta-

ble 4.1, which indicates that the gold atom sits below the plane of carbonyl oxygen

atoms, and is thus much closer to the surface carbon atoms than in the idealised

surface. The addition of a gold atom first causes one of the C–O bonds within a

surface ether group to dissociate, and the gold subsequently atom sits in between

the former ether group.

To elucidate the nature of the bond between the gold adatom and the dia-

mond surface, the projected density of states of the gold atom and its neighbouring

former-ether oxygen atom was computed based on a Mulliken analysis [384] and are

shown in Figure 4.6(a). The highest occupied orbital, as shown by the peak centred

at an eigenenergy of −4.1 eV, includes contributions from oxygen p-states, as well

as gold s-, p- and d-states. In contrast, the lowest unoccupied orbital, as shown

by the peak centred at −2.4 eV, is dominated by gold s-states but also includes
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contributions from both oxygen and gold p-states, with a small contribution from

gold d-states. Furthermore, in both peaks, the contributions from oxygen s- and

gold f -states are near-zero and negligible. The presence of the single gold atom

can therefore be seen to form both bonding and antibonding orbitals, and is indica-

tive of a bonding interaction between spd-hybridised orbitals of the gold atom and

the oxygen p orbitals that has been observed between gold and oxygen atoms in

literature [434].

Figure 4.6. Projected density of states of the orbital contributions from a sin-
gle gold (Au) atom and its neighbouring formerly-ether oxygen (O) atom on a
SCOV-defective oxygen-terminated diamond (110) surface after optimisation with
the PBE+TS/REBO method. The black dashed vertical line indicates the position
of the highest occupied orbital. Also shown is an orthographic ball-and-stick visu-
alisation of a single gold adsorbed onto the SCOV-defective surface along the [001]
direction. Carbon, oxygen, hydrogen, and gold atoms are shown in grey, red, white,
and gold respectively.

The Au–O bond length was found to be 2.09 Å and the angle between the

gold, oxygen and the other ether carbon atoms is 118.0°. The observed bond length

is only 0.07 Å longer than the sum (2.02 Å) of the covalent radii for gold (1.36 Å) and

oxygen (0.66 Å) [435], while a similar bond length (2.06 Å) has been observed in gold-

based trifluoromethoxy complexes [436]. As shown in Table 4.1, the positive sign of

the Mulliken charge [384] on the gold atom is indicative of charge depletion and a

loss of electron density from the gold atom to the surface. In contrast, the formerly-

ether oxygen atom was found to have a Mulliken charge [384] of −0.30 |e|, which

indicates charge accumulation. The effective ionic valence, which is the difference

between the formal and Mulliken charges of the anion, can be used as a measure

of ionicity/covalency; an effective ionic valence of 0 |e| would indicate full ionicity
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while larger values would indicate increasing levels of covalency [437]. If the Au–O

bond is assumed to be ionic, then the formal charge number of the oxygen anion

would be −1, which would result in an effective ionic valence of 0.70 |e|. Ionic

compounds such as sodium fluoride, sodium chloride and magnesium oxide were

evaluated to have effective ionic valences less than 1.5 |e| [437], which would suggest

that the interaction between the gold and the former-ether oxygen atoms is more

ionic than covalent. As mentioned, an assumption was made by treating the Au–O

bond as ionic for the calculation of the effective ionic valence, while Mulliken charge

decompositions have inherent issues of their own, as discussed above. However,

this analysis can still give an indication that the interaction is somewhere between

a polar covalent bond and an ionic bond rather than a non-polar covalent bond,

which is to be expected due to oxygen being more electronegative than gold [438].

Boron-doped surface: As can be seen from Table 4.1, the boron-doped systems

result in a much stronger adsorption energy of the single gold adatom as compared

to the idealised system, though not as strong as the SCOV-defective system. This

increased stability compared to the idealised system is not unexpected, as boron

dopants within other materials have been reported to increase the adsorption en-

ergy of hydrogen [439; 440; 441; 442] and metal atoms such as calcium [443; 444]

and sodium [445; 446]. The stronger adsorption observed for boron-doped surfaces

as opposed to the idealised, undoped surface occurs as boron dopants possess one

fewer valence electron than the carbon atoms in diamond. Such p-type dopants

form an electron-deficient region that the metal adatom is attracted to [445]. While

the difference between the adsorption energies for the localised cases is only 0.09 eV,

the 0.68 Å disparity in adsorption height is much more noticeable. This is due to

the location of the boron dopant within the surface layers. In the surface where

the dopant is in the second layer, the boron atom lies below an ether oxygen atom,

whereas the boron dopant within the third layer lies below a carbonyl oxygen atom,

as visualised in Figure 4.2. As explained above, the gold atom is attracted to the

electron-deficient regions caused by p-type dopants such as boron [445] and thus

moves closer to them. This is achieved by the gold atom adsorbing above the ether

and carbonyl oxygen atoms that lie atop the second- and third-layer dopants, re-

spectively, as are visualised in Figures 4.5(c) and (d) respectively.

In contrast, the adsorption energy and height calculated from the delocalised

model do not differ significantly from the localised model with the boron atom in

the third layer, with the adsorption energy and height differing by only 0.23 eV and
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0.01 Å respectively. This similarity is to be expected, because as the dopant moves

from the surface layers into the bulk, the localised results from lower layers should

converge to the delocalised result. Unlike the idealised case, the introduction of a

charge within the delocalised model causes the structure of the surface atoms to

change and accommodate the gold atom. This surface rearrangement allows the

gold atom to get closer to an ether oxygen atom and sit in between two carbonyl

oxygen atoms, resulting in a smaller adsorption height and a larger adsorption en-

ergy than the idealised surface.

In general, it can be seen that the idealised, fully-oxygenated diamond (110)

surface results in very weak adsorption of the gold atom, which is likely to have

very low kinetic barriers. However, as Table 4.1 shows, the introduction of defects

or dopants into the surface significantly increase the adsorption energy of the gold

atom. In particular, the SCOV defect was found to result in a very strong adsorption

energy of −2.31 eV, and after projecting the density of states of the gold atom and

its neighbouring carbon and oxygen atoms, it can be deduced that this strong ad-

sorption is due to the formation of a polar covalent bond between the gold adsorbate

and the diamond surface. Despite the interaction not being as strong as the defect

studied here, the introduction of boron dopants, both localised and delocalised, was

also found to increase the stability of the single gold atom on the surface.

4.3.3 Benchmarking Computational Methods

Having established that defects and dopants seem to promote the adsorption of

single gold atoms, it is important to confirm that these trends are retained irrespec-

tive of what forcefield, dispersion correctionand DFA is chosen within the QM/MM

method. This section will benchmark the embedding REBO [428; 429] forcefield

against another forcefield, the TS [262] against other a posteriori dispersion correc-

tion schemesand the PBE [229] GGA against other DFAs.

Benchmarking MM Forcefields

As mentioned above, the QM region was embedded within an MM region that was

treated using the REBO [428; 429] forcefield. It is important to ensure that the

adsorption energetics of a single gold atom are not significantly affected by the

choice of the embedding forcefield environment. To investigate this further, the

adsorption energy of a single gold atom on an idealised surface as calculated us-

ing PBE+TS/REBO was benchmarked against the Tersoff [430] forcefield, where
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PBE+TS was used as the complementary QM method. Similar to REBO, the Ter-

soff forcefield was developed specifically for carbon, with applications to amorphous

carbon [430], and is thus an appropriate forcefield to benchmark the REBO force-

field against.

Table 4.2 benchmarks the REBO forcefield against the Tersoff [430] forcefield.

As can be seen, both the REBO and Tersoff forcefields result in the same adsorption

energy for a single gold atom on an idealised surface. Furthermore, there is a very

small disparity in adsorption height (0.05 Å), showing that both forcefield methods

predict virtually identical adsorption energetics for the single gold atom, and that

the REBO forcefield is appropriate to embed the QM region within.

MM Forcefield
Adsorption Height

(Å)

Adsorption Energy

(eV)

REBO [428; 429] 1.71 −0.30

Tersoff [430] 1.76 −0.30

Table 4.2. Adsorption energetics of a single gold atom adsorbed onto an idealised
oxygen-terminated diamond (110) surface after a PBE+TS/MM optimisation, using
various MM forcefield methods.

Benchmarking A Posteriori Dispersion Correction Schemes

As discussed in Section 2.2, it is important to ensure long-range dispersion ef-

fectssuch as vdW forcesare treated appropriately as they can have a significant effect

on the adsorption structure. Thus far in this chapter, only the pairwise additive TS

scheme was been used alongside the PBE GGA, which does not explicitly account

for beyond-pairwise vdW interactions. For this reason, the TS scheme was bench-

marked against some a posteriori MBD [285; 286] correction schemes, namely the

MBD@rsSCS [287] and MBD-NL [288] variants, which are described in Section 2.2.2.

PBE+TS/REBO was also benchmarked against non-dispersion-corrected PBE i.e.

PBE/REBO calculations. The performances of various dispersion corrections were

benchmarked by comparing the final adsorption energy and adsorption height after

a full dispersion-corrected PBE/REBO geometry optimisation, and by construct-

ing binding energy curves by running a series of dispersion-corrected PBE/REBO

single-point calculations with the gold adatom placed at various heights above the

surface, which represent the variation of the adsorption energy as a function of ad-

sorption height.
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Dispersion corrections were benchmarked on the idealised, SCOV-defective

and the delocalised triel-doped systems. The idealised and SCOV-defective systems

were chosen as they would permit dispersion corrections to be benchmarked on both

‘more physisorbed’ and ‘more chemisorbed’ systems respectively. The delocalised-

triel doped system was chosen for three reasons: firstly, with common boron dopant

densities, the probability of the dopant atom being within the bulk material is much

higher than it being in the top surface layers. Secondly, the delocalised model is

applicable to any triel dopantand thirdly, the predicted adsorption height and energy

do not differ significantly from the localised case with the boron dopant in the third

layer, as can be seen in Table 4.1.
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Dispersion

Correction

Adsorption Height

(Å)

Adsorption Energy

(eV)

Idealised Surface

TS [262] 1.71 −0.30

MBD@rsSCS [287] 1.60 −0.29

MBD-NL [288] 1.63 −0.27

No Dispersion 1.82 −0.15

SCOV-Defective Surface

TS −0.17 −2.31

MBD@rsSCS – –

MBD-NL −0.13 −2.29

No Dispersion −0.11 −2.04

Delocalised Triel-Doped Surface

TS 0.36 −1.97

MBD@rsSCS 1.06 −1.73

MBD-NL 1.06 −1.71

No Dispersion 1.09 −1.53

Table 4.3. Adsorption energetics of a single gold atom adsorbed onto various oxygen-
terminated diamond (110) surfaces after a dispersion-corrected PBE/REBO opti-
misation, using various a posteriori dispersion correction schemes. No data were
attained using MBD@rsSCS for the SCOV-defective system due to the negative
polarisabilities for some atoms after the initial FHI-aims calculation settings.

Table 4.3 details the adsorption heights and energies of a single gold atom

after TS-, MBD@rsSCS-, MBD-NL-, and non-dispersion-corrected PBE/REBO op-

timisations of the idealised, SCOV-defectiveand delocalised triel-doped surfaces. As

can be seen for the idealised surface, there is very little disparity between TS and

the MBD approaches with respect to both adsorption heights and energies. Both

MBD@rsSCS [287] and MBD-NL [288] perform very similarly to each other, and

predict slightly weaker adsorption than TSdespite the gold atom adsorbing closer

to the surface; however these differences are minor (0.11 Å and 0.03 eV at most

for adsorption heights and energies respectively). The lack of a dispersion correc-

tionhoweverwas found to have a more evident effect, with the gold atom adsorb-
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ing 0.11 Å higher than with TS and 0.22 Å higher than with MBD@rsSCS. Fur-

thermore, the adsorption energy of the gold atom was found to be even weaker

without a dispersion correction. The non-dispersion-corrected results are in line

with literature where non-dispersion-corrected PBE, as well as other GGAs, have

been observed to underestimate adsorption energies and overestimate adsorption

distances [68; 69; 220; 447], and highlights the importance of including a dispersion

correction with such DFAs.

For the SCOV-defective surface, the TS method once again was found to

perform quite well with respect to MBD-NL. After a PBE+MBD-NL/REBO optimi-

sation, the gold atom was found to adsorb 0.04 Å higher than with TS, and this

small disparity is reflected in the adsorption energywhich is only 0.02 eV weaker

than with TS. No data were attained using MBD@rsSCS for this system due to

the negative polarisabilities for some atoms after the initial FHI-aims calculation

settings. It should be noted that this is a technical limitation of the MBD@rsSCS

approach that can occur in some systems under certain conditions, and is not physi-

cally meaningful. Once again, without any dispersion correction, the gold atom was

found to adsorb higher than dispersion-corrected approaches, and the adsorption

energy was evaluated to be at least 0.25 eV weaker, further attesting to the need for

a dispersion correction.

Finally, for the delocalised triel-doped system, there does appear to be some

dependency on the choice of dispersion correction. The TS correction predicts

stronger adsorption than both MBD approaches, and the gold atom optimises to a

site far closer to the surface. The MBD approaches perform very similar to each

other, with the gold atom predicted to adsorb 1.06 Å above the surface with an

adsorption energy just larger than −1.7 eV. The consistency between the MBD ap-

proaches and the relatively weaker adsorption energies are indicative of the beyond-

pairwise interactions being taken into account, and these effects have a greater

influence within this charged system rather than the neutral idealised and SCOV-

defective systems. The lack of a dispersion correction yet again resulted in the gold

atom adsorbing higher than dispersion-corrected approaches, and the adsorption

energy was evaluated to be at least 0.18 eV weaker.

Figure 4.7 shows the binding energy curves as calculated using various dispersion-

corrected PBE/REBO calculations on the idealised, SCOV-defective and delocalised

triel-doped surfaces. As can be seen from Figure 4.7(a) for the idealised surface, all
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dispersion-corrected curves have similar shapes with adsorption energy minima be-

tween −0.12 eV and −0.11 eV at an adsorption height of 3.0 Å, showing that there is

no major dependency on which dispersion correction is used. Once again, the MBD

approaches predict slightly weaker adsorption than the pairwise TS scheme. How-

ever, without any dispersion correction, the adsorption energy minimum reduces

to −0.05 eV, indicating very little, near-zero adsorption, as has been reported in

Table 4.3 and in literature [68; 69; 220; 447].

Moving onto Figure 4.7(b), which shows binding energy curves for the SCOV-

defective surface, all dispersion-corrected PBE/REBO [229] curves have similar

shapes with adsorption energy minima between −0.27 eV and −0.19 eV at an ad-

sorption height of 3.5 Å with TS [262] and MBD-NL [288], respectively. This shows

that there is a slight disparity depending on what dispersion correction is used, but

it is not a major difference. Furthermore, the minima of the curves are much deeper

for the SCOV-defective surface than the idealised surface. However, without any

dispersion correction, the adsorption energy minimum reduces to −0.05 eV, which

is very similar to that of the idealised surface, and further showcases the importance

of including a dispersion correction for the SCOV defect.

Finally, all the curves for the delocalised triel-doped surface have a mini-

mum at a height of 2.0 Å, as can be seen in Figure 4.7(c). For this surface, both

TS and MBD@rsSCS have near-identical results, with an adsorption energy value

of −0.76 eV at 2.0 Å. MBD-NL predicts a similar curve to these two dispersion

schemes, with an adsorption energy value of −0.73 eV at 2.0 Å, though some differ-

ences arise at around 3.0 Å. Yet again, a lack of a dispersion correction results in a

shallower curve with an adsorption energy of −0.60 eV at 2.0 Å.
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Figure 4.7. Binding energy curves showing the adsorption energy of a single gold
adatom on various oxygen-terminated diamond (110) surface substrates as a func-
tion of height above the plane of carbonyl oxygen atoms on the substrate surface
after dispersion-corrected PBE/REBO calculations. Substrates are (a) an idealised
oxygen-terminated diamond (110) surface (b) a SCOV-defective surface and (c) a
delocalised triel-doped surface.

Overall, after comparing the TS scheme against the MBD@rsSCS and MBD-

NL dispersion schemes, no major dependency on the flavour of dispersion correction

can be observed. However, a lack of a dispersion correction was found to result in
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a weaker adsorption energy and a larger adsorption height, showing the importance

of accounting for vdW effects if the DFA does not include any mid-/long-range

dispersion interactions.

Benchmarking Density-Functional Approximations

Now that both the REBO forcefield and the TS dispersion correction have been

shown to provide accurate results, the final factor that remains is the choice of

DFA. The choice of DFA can have a large effect on the absolute adsorption energy

value, as was shown in Table 3.2 in Chapter 3. As was done when benchmarking

dispersion corrections, DFAs were benchmarked on the idealised, SCOV-defective

and the delocalised triel-doped systems by first comparing the final adsorption en-

ergy and adsorption height after a full QM/REBO geometry optimisation. After

this, binding energy curves were constructed to see how the adsorption energy of

the single gold atom changes as a function of adsorption height with different DFAs.

Idealised surface: Figure 4.8(a) details the performance of various DFAs on an

idealised surface after a full QM/REBO optimisation. All DFAs predict fairly weak

adsorption of the single gold atom, with adsorption energies ranging from −0.04 eV

to −0.67 eV. Overall, there is an inverse relationship between the final adsorption

height and the adsorption energy, which is to be expected because a smaller adsorp-

tion height is generally reflective of a stronger interaction between the adsorbate

and substrate. Different rungs of DFAs (along Jacob’s ladder [219]) generally seem

to produce results that group together in specific areas. LDAs (GDSMFB [421],

KSDT [422], and PZ-LDA [423; 424]) were found to predict the largest adsorp-

tion energy (between −0.66 eV and −0.67 eV). This is in line with observations

that LDAs typically overestimate binding between metal and organic/carbonaceous

interfaces, which results in overestimated adsorption energies and underestimated

adsorption heights [69]. With this in mind, the LDA values can be thought of as an

upper bound on the true adsorption energy between the single gold atom and the

surface. Most GGAs, MGGAs and HGGAs are grouped together, apart from the

RPBE [233] GGA and the TPSS [234] MGGA, while the PBEsol0 [244] HGGA sits

in between these two groups.

Some differences in adsorption energy (and height) arise depending on the

choice of (TS-corrected) GGA. The revPBE [231] GGA predicts stronger adsorption

than PBE [229] (−0.40 eV as opposed to −0.30 eV), though their values differ by

only 0.1 eV. This is to be expected as both PBE and revPBE possess the same
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mathematical form for Fx, as expressed in Equation (2.20). The PBEsol [232] GGA

predicts a similar adsorption energy of −0.42 eV and also has a similar formulation

to PBE , as explained in Section 2.1.4. The similarities between the PBE, revPBE

and PBEsol formulations for Fx indicate why these GGAs predict fairly similar

adsorption energetics. The RPBE [233] GGAhoweverpossesses a different mathe-

matical form for Fx, and has been shown to not perform very well for physisorbed

systems where vdW effects govern adsorption [289; 448; 449], which could explain

the disparity between results attained using RPBE and other PBE-like GGAs.

Most of the MGGAs predict similar adsorption energetics to each other and

to most GGAs, with the only exception being the TPSS [234] MGGA, which predicts

similar adsorption energetics to the RPBE [233] GGA. The TPSS [234] MGGA also

uses Equation (2.20) to calculate Fx, but uses a different parameter to the χs2 term,

which could explain the disparity to the majority of PBE-like GGAs. Studies have

sought to correct for this disparity by building TPSS-like MGGAs and ‘fitting’ to

GGA results. The TPSSloc [236] MGGA uses a localised PBE-like DFA for the cor-

relation within a TPSS-like DFA form, while the revTPSS [426] formulation is based

on the PBEsol modification to the PBE correlation. These corrections might explain

why the TPSSloc [236] and revTPSS [426] results align better with GGA results.

The M06-L [235] MGGA also includes a PBE-like component within its formulation,

as explained in Section 2.1.4, which might also explain its similar performance to

PBE-derived DFAs, while its slightly stronger adsorption energy for the gold atom as

compared to PBE has been previously observed [450]. In general, both SCAN-based

MGGAs predict slightly stronger adsorption than the TPSS-based MGGAs, though

they still predict very similar adsorption energetics to revTPSS and TPSSloc, de-

spite the different nature of Fx within the SCAN formulation. Fx in SCAN obeys

the conjectured Fx ≤ 1.174 bound for all densities [237; 238; 239], while within

(rev)TPSS and PBE, Fx monotonically tends to the general Lieb-Oxford bound

(1.804) [240]. The fact that these different formulations with different properties

result in very similar adsorption energetics provides confidence in the accuracy of

their predictions.
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Figure 4.8. Plots benchmarking the performance of various DFAs on an idealised
oxygen-terminated diamond (110) surface. Shown are: (a) Scatter graph showing
the adsorption energy and adsorption height of a single gold adatom after a full
geometry optimisation, and (b) Binding energy curves showing the adsorption en-
ergy of a single gold adatom as a function of height above the substrate surface. In
(b), DFAs are divided according to (from left to right): LDAs, TS-corrected GGAs,
MGGAs and TS-corrected HGGAs.

The HSE03 [241], HSE06 [242] and PBE0 [243] HGGAs predict similar ad-

sorption energetics to all GGAs apart from RPBE [233]. This is to be expected as

75% of the PBE0 exchange energy is from PBE [243], while 75% of the exchange

energy for both HSE DFAs is from PBE, and the remaining 25% is split between a

long-ranged PBE-like component and a short-ranged, screened Hartree-Fock compo-

nent [241; 242], as explained in Equation (2.22). The PBEsol0 [244] HGGA predicts

a much weaker adsorption energy than other HGGAs as well as the PBEsol [232]

GGA, which accounts for 75% of the exchange energy within PBEsol0. This is

95



somewhat surprising given the agreement seen between PBE, PBEsol and other

HGGAs but could indicate that mixing exchange energy from PBEsol and Hartree-

Fock components, as is done within PBEsol0 [244], can lead to contrasting results

(for this system at the very least).

Moving onto the binding energy curves shown in Figure 4.8(b), all DFAs

result in a curve with a minimum between 2.5 Å and 3.5 Å, before tending to an

adsorption energy of 0 eV as adsorption height increases. LDAs have an adsorption

energy minimum of −0.26 eV at an adsorption height of 2.5 Å which is much deeper

than other QM methods. A deeper minimum is more indicative of stronger binding,

and this is once again in line with observations that LDAs predict stronger adsorp-

tion [69]. The PZ-LDA [423; 424] and KSDT [422] results are indistinguishable over

the range of adsorption heights investigated, and are identical to the GDSMFB [421]

results over 2.5 Å.

With the MGGAs, DFAs within the same families have similar binding en-

ergy curves. TPSSloc [236] and revTPSS [426] have adsorption energy minima

of −0.03 eV and −0.04 eV respectively at an adsorption height of 3.0 Å. This ad-

sorption height is the same as that of PBE [229], but the adsorption energies are

much smaller, which explains why these two MGGAs predict weaker adsorption

than PBE [229] in Figure 4.8(a). While TPSS [234] has a similar adsorption energy

minimum of −0.03 eV, this occurs at an adsorption height of 3.5 Å, which is the

same height as the RPBE [233] GGA, albeit a lower adsorption energy. This same

adsorption height explains why the RPBE [233] and TPSS [234] data points are

so close together in Figure 4.8(a), and the lower adsorption energy explains why

TPSS [234] predicts slightly weaker adsorption than RPBE [233]. The SCAN [237]

and rSCAN [425] MGGAs have similar binding energy curves, with minima of

−0.10 eV at 2.5 Å, which is a similar adsorption energy minimum to the PBE [229]

GGA and the same adsorption height as the revPBE [231] and PBEsol [232] GGAs;

this trend is reflected by the positions of the SCAN [237] and rSCAN [425] data

points in Figure 4.8(a). M06-L [235] has an adsorption energy minimum at −0.08 eV

at an adsorption height of 3.0 Å, similar values to the PBE [229], SCAN [237] and

rSCAN [425] DFAs, and this is reflected by the position of the M06-L [235] data

point in Figure 4.8(a).

The HSE03 [241], HSE06 [242] and PBE0 [243] HGGAs have very similar

binding energy curves, with adsorption energy minima at −0.11 eV at an adsorp-
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tion height of 3.0 Å. This close agreement explains why these HGGAs are so close

together in Figure 4.8(a), and the similar adsorption energy minima and adsorption

height values to other DFAs further explains the proximity of these HGGAs to the

majority of GGAs and MGGAs. However, the PBEsol0 [244] HGGA has a much

shallower adsorption energy minimum of −0.06 eV at 3.0 Å. Despite the similarity

between the PBEsol0 [244] and revTPSS [426] curves, the PBEsol0 [244] data point

in Figure 4.8(a) sits quite close to the RPBE [233] and TPSS [234] data points.

SCOV-defective surface: The second substrate of interest was a surface with a

SCOV defect. To ensure the SCOV defect was correctly modelled with every DFA,

DFAi, the carbonyl oxygen was first removed and the surface was re-optimised using

DFAi/REBO. After this initial optimisation, the surface structure at the defect site,

centred at the former carbonyl carbon atom, should change from bent (originally

trigonal planar with the carbonyl oxygen atom in the idealised system) to trigonal

pyramidal. Because diamond surfaces are usually hydrogen-terminated after CVD

growth [145], uncoordinated carbon atoms were subsequently saturated with hydro-

gen species and the surface was reoptimised using DFAi/REBO, after which the

surface structure at the defect site should change to tetrahedral. Based on valence

shell electron pair repulsion theory, this shows a return of the ·C· atom to an sp3-

hybridised state. This is the correct surface configuration as an oxygen atom is

needed to pull the carbon atom above the diamond (110) surface plane to form a

carbonyl group at the surface, as shown in Figure 3.6. Without this oxygen atom,

the carbon atom would remain in an sp3-hybridised configuration.

Only the DFAs that returned the former-carbonyl carbon atom to an sp3-

hybridised configuration were considered herein. This was evaluated by studying

the conformational isomerism of the structure centred at the former-carbonyl car-

bon atom. After the removal of the carbonyl oxygen atom and optimisation with

a given DFA, the dihedral angle between a surface ether oxygen atom and a sur-

face carbon atom, along the bond between the former-carbonyl and corresponding

ether carbon atoms was calculated. Table 4.4 details the calculated dihedral angles

after optimisation with various DFAs. As can be seen, most DFAs correctly return

the structure to a synclinal conformation, with dihedral angles of approximately

60°, which indicates a more sp3-hybridised configuration. However, the SCAN [237]

MGGA and all investigated HGGAs result in an anticlinal conformation, with di-

hedral angles of approximately 150°, which indicates the former-carbonyl carbon

atom remains in a more sp2-hybridised state. Even though the higher-rung HGGAs
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predict the anticlinal conformation, this is most likely a local energy minimum and

as explained above, is not the correct physical conformation for the surface after

the removal of a carbonyl oxygen atom. Therefore, the SCAN [237] MGGA and

the PBE0 [243], PBEsol0 [244], HSE03 [241], and HSE06 [242] HGGAs were not

studied for this system. For clarity, the Newman projections [451] of the synclinal

and anticlinal conformations are provided in Figure 4.9.

DFA Dihedral Angle (°)

PZ-LDA [423; 424] 54.3

KSDT [422] 54.3

PBE [229] 55.7

revPBE [231] 55.2

RPBE [233] 56.1

PBEsol [232] 55.1

TPSS [234] 56.4

TPSSloc [236] 56.0

revTPSS [426] 56.3

SCAN [237] 142.7

PBE0 [243] 141.3

PBEsol0 [244] 140.9

HSE03 [241] 141.1

HSE06 [242] 141.1

Table 4.4. Dihedral angles between a surface ether oxygen atom and a surface
carbon atom, along the bond between the formerly-carbonyl and corresponding
ether carbon atoms after the removal of a carbonyl oxygen atom from the idealised
oxygen-terminated diamond (110) surface and subsequent optimisation with various
DFAs. DFAs are ordered from low- to high-rung (along Jacob’s ladder [219]), and
the TS [262] dispersion correction method was applied to all GGAs and HGGAs.
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Figure 4.9. Newman projections [451] of the synclinal (left) and anticlinal (right)
conformations after optimisation with various DFAs. The projection is along a bond
between the former-carbonyl carbon atom and a surface ether carbon atom. The
synclinal conformation is the correct model for the SCOV defect (prior to hydrogen
saturation).

Figure 4.10(a) details the performance of various DFAs on a SCOV-defective

surface. As can be seen from this figure, the introduction of a SCOV defect at the

surface significantly increases the range of adsorption energies as compared to the

idealised surface, from −0.03 eV to −2.84 eV. This range of adsorption energy values

indicate that while some DFAs still predict weak adsorption, some DFAs such as

PBE [229], revPBE [231] and revTPSS [426] predict much stronger adsorption and

a possible covalent bonding interaction between the gold adatom and the substrate

surface, as discussed earlier.

Both LDAs, PZ-LDA [423; 424] and KSDT [422], predict similar adsorption

energies to each other: −0.67 eV and −0.63 eV respectively. However, there is quite

a large range of adsorption energies predicted amongst TS-corrected GGAs, and

all GGAs apart from RPBE [233] predict stronger adsorption than the LDAs. The

revPBE [231] and PBE [229] GGAs predict very strong adsorption (−2.84 eV and

−2.31 eV respectively), with the former predicting stronger adsorption much like in

the idealised case. Their negative adsorption heights means that the gold adatom

sits below the plane of carbonyl oxygens i.e. it sits within the ‘well’ caused by the

vacancy. The PBEsol [232] GGA predicts weaker adsorption than PBE but strong

adsorption nonetheless with an adsorption energy of −1.35 eV. Much like in the ide-

alised case, RPBE [233] GGAhoweverstill predicts a very weak adsorption energy

of −0.18 eV and predicts the gold adatom to adsorb 1.94 Å above the surface. This

is quite unusual as RPBE [233] has been reported to typically perform better for

chemisorbed systems [448].

Much like with GGAs, there is a vast range of adsorption energies predicted

by various MGGAs. The revTPSS [426] MGGA predicts a very strong adsorption
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energy of −2.20 eV, slightly weaker than the PBE [229] GGA as in the idealised

case. The negative adsorption height indicates that revTPSS [426] also predicts

the gold adatom to sit below the plane of carbonyl oxygens. TPSS [234], however,

much like the RPBE [233] GGA, also predicts a very weak adsorption energy of

−0.03 eV, with the gold adatom adsorbing 2.48 Å above the surface. The perfor-

mance of TPSSloc [236]howeverdiffers quite a lot from the idealised case, with the

MGGA predicting a very weak adsorption energy of −0.22 eV, though the adatom

is adsorbed closer to the surface than predicted by RPBE [233] and TPSS [234],

with an adsorption height of 1.02 Å.

Moving onto the binding energies for the SCOV-defective surface that can

be seen in Figure 4.10(b), DFAs generally predict stronger adsorption than in the

idealised surface. Note that no binding energy curve for the KSDT [422] LDA is

reported due to a DFA-specific error within the FHI-aims calculation: ‘no classi-

cal turning points were found when solving for the radial equation’. LDAs and

most GGAs predict similar binding energy curves, with revPBE [231] and PZ-

LDA [423; 424] predicting the strongest adsorption at an adsorption height of 3.0 Å.

PBE [229] and PBEsol [232] have similar curves to each other, despite the disparity

in optimal adsorption structures as seen in Figure 4.10(a). The RPBE [233] GGA,

however, once again predicts the weakest adsorption among GGAs and has a binding

energy minimum at 4.0 Å, which is a larger adsorption height value than all other

LDAs and GGAs, much like in the idealised case.
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(a)

(b)

Figure 4.10. Plots benchmarking the performance of various DFAs on a SCOV-
defective oxygen-terminated diamond (110) surface. Shown are: (a) Scatter graph
showing the adsorption energy and adsorption height of a single gold adatom after
a full geometry optimisation, and (b) Binding energy curves showing the adsorption
energy of a single gold adatom as a function of height above the substrate surface. In
(b), DFAs are divided according to (from left to right): LDAs, TS-corrected GGAs
and MGGAs.

Curiously, all MGGAs result in very shallow binding energy curves for the

single adatom. This is to be expected for both TPSS [234] and TPSSloc [236] as they

predict very weak adsorption in Figure 4.10(a). Furthermore, the binding energy

curve for TPSS [234], much like RPBE [233], has a minimum at a value larger than

all other DFAs. However, the revTPSS [426] binding energy curve is very similar to

other MGGAs’ despite the strong adsorption predicted in Figure 4.10. This reflects
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the importance of local surface relaxation upon adsorption of the single adatom.

Delocalised triel-doped surface: Figure 4.11(a) details the performance of var-

ious DFAs on the final substrate of interest, which was a delocalised triel-doped sur-

face. Once again, the introduction of a charge into the surface significantly increases

the range of adsorption energies as compared to the idealised surface, from −0.03 eV

to −2.84 eV. This range of adsorption energy values indicate that all DFAs generally

predict fairly strong adsorption between the single gold atom and the surface. There

is once again a general inverse relationship between the adsorption heights and en-

ergies, though DFAs are generally grouped into two areas of adsorption heights:

0–0.4 Å and 0.9–1.5 Å above the plane of carbonyl oxygen atoms. This difference

in adsorption heights is primarily due to the final optimised adsorption site. In the

smaller set of adsorption heights, 0–0.4 Å, the structure of the surface atoms changes

to accommodate the gold atom, and the gold atom is able to get closer to an ether

oxygen atom and sit in between two carbonyl oxygen atoms, resulting in a smaller

adsorption height and a larger adsorption energy. In contrast, for the larger 0.9–

1.5 Å set of adsorption heights, the surface does not change as much and sterically

hinders the gold atom from getting closer to the ether oxygen atom. The gold atom

therefore binds to the carbonyl oxygen atom, resulting in a larger adsorption height

and a weaker adsorption energy.

The PZ-LDA [423; 424] predicts a very strong adsorption energy of −3.06 eV,

which is second-strongest interaction of all investigated DFAs and only 0.04 eV

weaker than the HGGA PBEsol0 value. This strong adsorption energy is reflected

in the final adsorption height of the gold atom, 0.23 Å, which is very close to the

surface. The PBE [229], revPBE [231] and PBEsol [232] GGAs once again pre-

dict fairly similar adsorption energies to each other. Much like in the idealised

case, revPBE [231] (−2.11 eV) predicts stronger adsorption than PBE [229], while

PBEsol [232] (−2.49 eV) predicts slightly stronger adsorption than both PBE [229]

and revPBE [231]. Overall, the adsorption energies are quite similar to each other,

which is to be expected given their similar formulation for Fx. However, some differ-

ences arise in the final adsorption heights of the single gold atom. Both PBE [229]

and PBEsol [232] result in the gold atom being adsorbed fairly close to the surface,

with adsorption heights of 0.36 Å and 0.28 Å respectively. However, the final ad-

sorption height with revPBE [231] is relatively much higher than PBE(sol), with

the single gold atom predicted to adsorb 0.91 Å above the surface. The RPBE [233]

GGA once again predicts much weaker adsorption than the other PBE-based GGAs,
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and the weakest of all investigated DFAs, though the adsorption energy itself is quite

strong, unlike for the idealised and SCOV-defective surfaces. This relatively weak

adsorption energy is reflected in its predicted adsorption height, which is the highest

among all investigated DFAs.

Figure 4.11. Plots benchmarking the performance of various DFAs on a delocalised
triel-doped oxygen-terminated diamond (110) surface. Shown are: (a) Scatter graph
showing the adsorption energy and adsorption height of a single gold adatom after
a full geometry optimisation, and (b) Binding energy curves showing the adsorption
energy of a single gold adatom as a function of height above the substrate surface. In
(b), DFAs are divided according to (from left to right): LDAs, TS-corrected GGAs,
MGGAs and TS-corrected HGGAs.

MGGAs are split within the two aforementioned adsorption height ranges.

The SCAN [237] MGGA predicts the second-weakest adsorption (−1.53 eV) of all

investigated DFAs, and this is reflected in the second-largest adsorption height
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of 1.43 Å, which is not too dissimilar to the RPBE-predicted adsorption height.

The TPSS [234] and M06-L [235] MGGAs predict stronger adsorption than both

RPBE [233] and SCAN [237] with adsorption energies of −1.69 eV and −2.06 eV re-

spectively, and this is reflected in the lower adsorption heights of 1.08 Å and 1.11 Å

respectively. Both TPSS [234] and M06-L [235] predict similar adsorption heights to

the PBE0 [243] and HSE06 [242] HGGAs, but predict weaker adsorption energies.

In contrast, revised versions of TPSS [234] and SCAN [237], namely revTPSS [426],

TPSSloc [236] and rSCAN [425], generally predict stronger adsorption energies of

−2.21 eV, −2.68 eV and −2.33 eV respectively, with the gold atom adsorbing much

closer to the surface with adsorption heights of 0.31 Å, 0.13 Å and 0.32 Å respec-

tively. The revTPSS [231] and rSCAN [425] results are right in the middle of the

PBE [229] and PBEsol [232] results in Figure 4.11(a), while the TPSSloc [236] result

shows only slightly stronger adsorption than these four DFAs. Despite the differ-

ence in adsorption heights, these MGGAs also predict a similar adsorption energy

to the revPBE [231] GGA. The similarity between the revised MGGAs and the

PBE-based GGAs can be attributed to their GGA-based formulation. As discussed

before, TPSSloc [236] includes a PBE-like component, while revTPSS [426] is based

on the PBEsol modification to PBE. These MGGAs were designed by fitting to

GGA results [236; 426] and could explain the level of agreement observed between

GGAs and revised MGGAs.

Unlike for the idealised and SCOV-defective surfaces, some disparities be-

tween HGGAs and lower-rung DFAs can be seen in Figure 4.11(a), with HGGAs

generally predicting stronger adsorption. As mentioned above, the PBEsol0 [244]

HGGA predicts very similar adsorption energetics to the PZ-LDA [423; 424], with

the strongest adsorption energy of all investigated DFAs (−3.10 eV) and a very small

adsorption height of 0.22 Å, which is only 0.01 Å lower than the PZ-LDA-predicted

value. Despite predicting stronger adsorption energies, PBEsol0 [244] predicts a

similar adsorption height for the single gold atom as compared to the aforemen-

tioned revised MGGAs, PBE [229] and its base PBEsol [232] GGA. In contrast, the

PBE0 [243] and HSE06 [242] HGGAs predict similar adsorption energies (−2.70 eV

and −2.50 eV respectively) to PBEsol [232] and the revised MGGAs, but both pre-

dict a larger adsorption height of 1.07 Å, which agrees more with the TPSS [234]

and M06-L [235] results. The PBE0 [243] and HSE06 [242] results can be seen to

differ a fair amount from the PBE [229] result, despite both HGGAs including PBE

components within their formulations.
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Moving onto the binding energies for the delocalised triel-doped surface that

can be seen in Figure 4.11(b), DFAs once again generally predict stronger adsorption

than in the idealised surface. The curves for all DFAs have their binding energy min-

imum at an adsorption height of 2.0 Å. The PZ-LDA [423; 424] predicts fairly simi-

lar binding energy curves to GGAs, but has a larger binding energy minimum value

of −1.14 eV. Of all investigated GGAs, PBEsol [232] has the deepest curve with a

binding energy minimum of −0.90 eV, which is followed by revPBE [231] (−0.82 eV),

then PBE [229] (−0.75 eV) and finally RPBE (−0.50 eV). This trend of binding en-

ergy minimum values is reflected in Figure 4.11(a), where as discussed above, the

adsorption energy trend is PZ-LDA [423; 424] > PBEsol [232] > revPBE [231] >

PBE [229] > RPBE [233].

The binding energy curves of MGGAs are quite similar to the GGA curves:

the largest MGGA binding energy minimum arises from M06-L [235] (−1.01 eV).

The rSCAN [425] binding energy minimum is at −0.89 eV, which is only 0.01 eV

away from the PBEsol [232] value (−0.90 eV), and further explains the agreement

seen between the two DFAs in Figure 4.11(a). The revTPSS [426] and TPSSloc [236]

binding energy minima are at −0.79 eV and −0.89 eV, which are very close to the

aforementioned rSCAN [425], PBEsol [232] and PBE [229] values. While the HGGA

binding energy curves have a similar shape to lower-rung DFAs, all three investi-

gated HGGAs have much deeper curves. Both PBE0 [243] and PBEsol0 [244] have

binding energy minima at 1.82 eV, while the range-separated HSE06 [242] HGGA

has a binding energy minimum at −1.62 eV. This could explain the trend in Fig-

ure 4.11(a) where HGGAs generally predict stronger adsorption for this system than

lower-rung DFAs.

In summary, the PBE [229] GGA was generally found to be able to provide

important insights into the nature of single gold atom adsorption on various oxygen-

terminated diamond (110) surfaces. For the idealised and SCOV-defective surfaces,

PBE [229] was able to accurately capture the physisorbed and chemisorbed natures

of the gold adatom, respectively. A high degree of agreement was also observed

with most other GGAs, as well as many higher-rung MGGAs and HGGAs. This is

important as there is no existing experimental data that describes the adsorption

energetics of single gold atoms on such surfaces. Some DFAs such as RPBE [233]

GGA and the TPSS [234] MGGA were observed to perform poorly and should not be

used for these surfaces. Some disagreement was found between PBE and higher-rung

HGGAs for the delocalised triel-doped surface, though the PBE results were quite
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similar to some MGGAs. The disparity with HGGAs indicates that PBE is perhaps

not the ideal DFA for this surface, though it was still able to capture the stronger

adsorption interaction with respect to the idealised surface. For this surface, it is

perhaps more appropriate to use either HSE06 [242], PBE0 [243], revPBE [231] or

M06-L [235] as the DFA. In general, this section has shown that the trends observed

in Section 4.3.2 are robust with respect to the choice of embedding forcefield, a

posteriori dispersion correction scheme and DFA.

4.3.4 Kinetic Stabilities

Having established how the adsorption energy of a single gold atom varies with dif-

ferent defects and dopants within oxygen-terminated diamond (110) surfaces, it is

also important to calculate the kinetic stability of the single gold atom on various

surfaces. Using STEM, Hussein et al. observed gold atoms to be very stable atop

polycrystalline BDD surfaces, even withstanding the momentum transfer from the

highly energetic electron beam (∼200 kV), as explained in Section 1.1.1, and ther-

mal baking [22], as is typically done to store samples before they are transferred

to the microscope. Both of these factors can lead to the movement of gold atoms

along the diamond substrate surface [22] if the kinetic barriers are overcome. How-

ever, the barriers associated with the idealised system were calculated to be very

low [22] and unlikely to stabilise single gold atoms. This indicates that the high

stability of single gold atoms observed by Hussein et al. [22] is likely due to surface

defects and (boron) dopants that were not seen within their STEM images. For

this reason, constrained QM/REBO optimisations were performed to calculate the

energy required to move a single gold atom across idealised, SCOV-defective and

boron-doped substrate surfaces after adsorption.
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Figure 4.12. Relative energies (∆E) of translating a single gold atom across various
oxygen-terminated diamond (110) surface substrates from its initial adsorption site,
which is placed at the origin. (a) Paths of motion along the idealised surface;
(b) relative energies along the [001] direction; (c) relative energies along the [110]
direction. The Tkatchenko-Scheffler (TS) dispersion correction was used alongside
the PBE, HSE03, and HSE06 density-functional approximations, but not alongside
revTPSS.

Figure 4.12 details the relative energies of a single gold atom along the [001]

and [110] directions with respect to the initial adsorption site. The curves are not

symmetrical about the origin as the structure is not symmetrical along the [001]

and [110] axes that pass through this point. As can be seen, along both directions,

the surfaces that lead to stronger adsorption of the single gold atom have larger en-

ergetic barriers. More specifically, the introduction of defects and dopants increases

the stability of the single gold atom along both investigated directions. This is to

be expected as the gold adsorbate was shown to be more strongly bound to these

surfaces, which means more energy would be required to overcome this interaction

and translate the gold atom across the diamond surface.

As shown in both Figures 4.12(b) and (c), the on an idealised surface are

quite low as compared to defective and doped surfaces. Such a low kinetic bar-
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rier is to be expected as the gold atom is not strongly bound to the surface, as

was shown in Table 4.1 and Figure 4.8. The energetic barriers to moving the gold

atom along the [001] direction were calculated to be 0.14 eV and 0.18 eV for the

negative and positive displacements respectively with PBE+TS/REBO, which are in

close agreement with the energy barrier of 0.16 eV that was predicted by Hussein

et al. using a periodic PBE+TS-optimised model of the idealised surface [22]. The

relative energies along the [110] direction were generally found to be higher with

PBE+TS/REBO, with barriers of 0.24 eV and 0.21 eV for the negative and positive

displacements respectively, which are once again comparable to the energy barrier

of 0.25 eV predicted by Hussein et al. using a periodic surface model [22]. The

relatively higher barriers along the [110] direction are to be expected, as the gold

atom has to move above the plane of carbonyl oxygen atoms that are along this

axis, as shown by the purple arrows in Figure 4.12(a). In contrast, for the [001]

direction, the gold atom has to ‘only’ move above the plane of ether oxygen atoms

to move across the surface, as shown by the blue arrows in Figure 4.12(a), which is

at a lower height than the plane of carbonyl oxygen atoms and therefore would be

expected to have a lower energy barrier.

While the PBE [229] GGA was shown to perform well with respect to other

DFAs for the prediction of adsorption energetics in Section 4.3.3, a further compar-

ison of barriers was conducted against the HSE03 [241] and HSE06 [242] HGGAs.

Both of these HGGAs predict near-identical relative energies to each other. As

can be seen in Figure 4.12(c), there is some difference in the shapes of their curves

with respect to the PBE curve along the [110] direction. However, both HSE03 and

HSE06 predict energy barriers of 0.15 eV and 0.17 eV respectively for the positive

displacement, and a barrier of 0.23 eV for the negative displacement. These values

are only slightly lower than the PBE value but are still very similar, showing that

the PBE [229] GGA remains an appropriate choice. For the [001] direction, PBE

again predicts a similar barrier to the values predicted by both HGGAs (0.12 eV and

0.15 eV along the negative and positive displacements respectively. A thermal baking

temperature of 60 °C, as was used by Hussein et al., corresponds to a translational

kinetic energy of 0.043 eV atom−1 [22], which is lower than the barriers calculated

with all three DFAs for all displacements and directions, which means atomic move-

ment along the surface during the aforementioned thermal baking process is unlikely.

Unlike the idealised surface, the SCOV-defective surface has very large ki-

netic barriers associated with it. Such large barriers are expected as the gold atom
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sits within the ‘well’ caused by the defect, so a lot of energy would be required to

overcome the interaction between the gold atom and the surface described earlier,

remove the gold atom out of the defect site and move it across the diamond surface.

Along the [001] direction, as shown in Figure 4.12(b), the barriers were calculated

to be 1.93 eV and 6.86 eV along the negative and positive displacements respectively

using PBE+TS/REBO. This disparity between the displacement can once again be

explained by the structural asymmetry. Along the negative displacement, as can be

seen in Figure 4.5(c), the surface is hydrogen-terminated in the neighbourhood of

the gold atom, which means a relatively lower energy would be required to move the

atom across the surface. However, along the positive displacement, the gold atom

has to move above a carbonyl oxygen atom, which requires much more energy. For

the [110] direction, the predicted energy barriers were also very high, with values

of 2.28 eV and 1.96 eV along the negative and positive displacements respectively

using PBE+TS/REBO. Once again, the accuracy of PBE was benchmarked against

the revTPSS [426] MGGA, which was shown to perform similarly to PBE in Sec-

tion 4.3.3. The calculated curves and energy barriers with revTPSS [426] were found

to agree very well with PBE, as can be seen in Figure 4.12(b) and (c).

Substituting a carbon atom with boron in the surface layers of the diamond

substrate also increases the stability of the gold atom compared to the idealised

system. For the [001] direction, the barrier along the negative displacement is larger

when the boron dopant is in the third layer (0.74 eV) rather than the second layer

(0.16 eV). However, the barrier along the positive displacement is larger when the

boron dopant is in the second layer (0.62 eV) rather than the third layer (0.45 eV).

Along the [110] direction, the boron dopant being within the third layer results in a

barrier of 1.03 eV along the negative displacement, whereas the second-layer boron

results in a barrier of 0.39 eV. Along the positive displacement, the second- and

third-layer barriers are 0.89 eV and 1.04 eV respectively. These barriers are lower

than the ones associated with the SCOV-defective surface but clearly increase the

kinetic stability of the single gold atom.

In general, it can be seen that the idealised, fully-oxygenated diamond (110)

surface results in very low energetic barriers for the single gold atom. However, as

Figure 4.12 shows, the introduction of defects or dopants into the surface signifi-

cantly increase the of the gold atom. Similar to the trend observed with adsorption

energies, the barriers associated with explicitly-modelled boron dopants were not

as large as those associated with the SCOV defect, though they were also found to
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increase the stability of the single gold atom on the surface. Furthermore, the barri-

ers predicted for the idealised and SCOV-defective surfaces were found to be robust

with respect to the choice of DFA. Overall, these barriers suggest that the gold atom

should not move across the surface when they are thermally baked before transfer

to the microscope. However, the low barriers associated with the idealised surface

are unlikely to be large enough to resist the highly energetic electron beam that is

used in STEM experiments, as explained in Section 1.1.1, which means the high

stability of single gold atoms on BDD observed by Hussein et al. [22] is most likely

due to surface defects and dopants that were not seen within the STEM images.

4.3.5 Growth of Aun Nanoclusters, 2 ≤ n ≤ 4

Having studied and identified some stabilisation mechanisms for single gold atoms

on diamond surfaces, the QM/MM methodology can now be used to study the

growth of gold NCs on diamond. Out of all investigated defects and dopants, the

SCOV-defective surface was shown to both thermodynamically and kinetically sta-

bilise single gold atoms the most, and was thus used as the support for gold NCs.

It should be noted though that the surface would comprise a variety of defects and

dopants in reality, but the SCOV-defective surface should still provide a suitable

model to study gold nucleation.

The growth of 2-, 3- and 4-atom gold NCs was studied using PBE+TS/REBO,

which was shown to perform well in describing the adsorption energetics of gold on

SCOV-defective surfaces, with various properties of interest investigated to analyse

the interaction between the NC adsorbate and the diamond surface, as well as to

elucidate interactions within the NC itself. Figure 4.13 shows graphs detailing three

key properties of interest that were used to characterise the nature of NC particle

growth: gold-gold distances within NCs, the adsorption energies of NCsand the

cohesion energies of NCs.
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Figure 4.13. Graphs showing how certain properties of interest within gold NCs
supported by a SCOV-defective oxygen-terminated diamond (110) surface vary with
NC size after PBE+TS/REBO optimisations. Shown are (a) the mean average gold-
gold distances (b) mean average adsorption energies and (c) mean average cohesion
energies, all provided as a function of gold NC size. Error bars for each property of
interest represent one standard deviation of uncertainty.

As can be seen in Figure 4.13(a), the mean average gold-gold distance gen-

erally increases as the NC size increases. Similarly, the adsorption energy of the NC

becomes less negative as the NC size increases, as shown in Figure 4.13(b). However,

the adsorption energy does not include any deformation energy of the gold NC from

its most stable structure in the gas phase. For this reason, the cohesion energy of the

NCs were also calculated using Equation (4.2) and shown in Figure 4.13(c). Unlike

the trend with adsorption energies, the cohesion energy was found to become more

negative as the number of gold atoms within the NC increases. This shows that as

the size of the supported NC increases, the resemblance to its optimal isolated struc-

ture also increases. This trend has also been observed for other supports such as

magnesium oxide (001), graphite (0001), and cerium(IV) oxide (111) surfaces [407],

and suggests that the interaction between the gold atoms increases as NC size in-

creases, while the interaction strength between the NC and the surface substrate

decreases. This hypothesis can be confirmed by evaluating the ratio of the cohesion

and adsorption energies, Ecoh/Eads, which can be used to evaluate which interactions
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dominate the NC structure. Table 4.5 details Ecoh/Eads ratios for varying NC sizes,

and shows that this ratio increases as the NC size increases. For an Au4 NC, the

Ecoh/Eads ratio was calculated to be 1.72, which is fairly similar to values reported for

Au4 NCs supported on graphite and magnesium oxide surfaces by Engel et al. [407].

This is a relatively low number, and indicates that, on the SCOV-defective surface,

gold NCs have a preference to interact with the surface rather than their structure

be dominated by gold-gold interactions within the cluster.

Gold NC Size

(Number of Atoms)

Ecoh/Eads

Ratio

1 0

2 0.87

3 0.90

4 1.72

Table 4.5. Table showing the ratio of the mean average cohesion and adsorption
energies, Ecoh/Eads, for various gold NC sizes.

While generic trends have been identified, it is also prudent to study NCs of

each atom count individually. The following subsections will delve into how NCs of

a particular atom count were generated, as well as compare their different shapes,

properties and interactions. It should be noted that for all studied Aun NCs, the

structures found and presented below are not an exclusive list of all possible dimer,

trimer and tetramer structures respectively. To properly explore the space of all

possible NC structure, for a given atom count, global optimisation algorithms such

as basin-hopping [98; 99] would be required, though no current infrastructure exists

to conduct this with the Py-ChemShell software. However, the following subsec-

tions should provide an indication into which NC geometries are more energetically

favourable and stable on SCOV-defective systems.

Growth of Gold Dimers

As shown in Figure 4.14, five initial locations for the second gold atom were identi-

fied, each with displacement vectors of: (0, 0, 1.5), (1.5, 0, 1.5), (−1.5, 0, 1.5), (0, 1.5, 1.5)

and (0,−1.5, 1.5) (all numbers in angstroms) with respect to the location of the first

gold atom, where the abscissa, ordinate and applicate refer to relative distances

along the [001], [110] and [110] directions respectively. As the first gold atom sits

below the plane of carbonyl oxygen atoms in the SCOV-defective surface, as shown
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in Table 4.1, the applicate was set to 1.5 Å in all displacement vectors to ensure the

second gold atom would be placed above the carbonyl oxygen atoms rather than

occupy the same space as a carbonyl oxygen atom.

Figure 4.14. Plot showing the five initial locations for the second gold atom, shown
as unfilled gold circles, with respect to the position of the first gold atom, shown as
a filled gold circle, on a SCOV-defective oxygen-terminated diamond (110) surface.

Despite five different initial locations for the second gold atom, all systems

optimised to the same structure, which is visualised in Figure 4.15. As can be seen,

the second gold atom preferentially binds to the first gold atom rather than the

diamond surface. While gold dimers have been observed to preferentially adopt a

perpendicular arrangement with respect to the surface upon addition of a second

gold atom, where the gold second atom sits on top of the first gold atom [196; 407],

in this case, the dimer is preferentially tilted towards the surface with an Au–Au–O

angle of 162.8° and a gold-gold distance of 2.51 Å. Similar gold-gold distances within

dimers have been observed on different substrates [407], while a similar Au–Au–O

angle has been reported for dimers atop other oxygen-terminated substrates such

as cerium(IV) oxide (111) surfaces (163.4°) [192; 407]. The addition of the second

gold atom does not have a significant effect on the first gold atom, which still sits

in the SCOV defect site. The bond distance between the first gold atom and the

former-ether oxygen atom reduces from 2.09 Å to 2.01 Å.
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Figure 4.15. Orthographic ball-and-stick visualisations of a gold dimer ad-
sorbed onto a SCOV-defective oxygen-terminated diamond (110) surface after a
PBE+TS/REBO optimisation. Visualisations of the QM region are shown from the
[001] and [110] directions, and surface axes are also shown, with the saturating hy-
drogen link-atoms at the QM region boundary excluded for clarity. Carbon, oxygen,
hydrogen and gold atoms are shown in grey, red, white and gold respectively.

The cohesion energy of this dimer was evaluated to be −1.17 eV, which is

very similar to experimental (−1.16 eV [452]) and computational (−1.15 eV [407]

and −1.16 eV [453]) values in literature. The adsorption energy of the gold dimer

was calculated to be −1.35 eV atom−1, which indicates a fairly strong interaction

between the dimer and the surface. Despite this strong interaction, STEM mea-

surements reported by Hussein et al. observed very few gold dimers on BDD sur-

faces [22]. To understand why, the adsorption and kinetic stabilities of the second

gold atom were investigated. Taking the structure shown in Figure 4.5(b), which

is the complex of a single gold atom supported by a SCOV-defective surface, to

be Esubstrate in Equation (4.1), the adsorption energy of the second gold atom was

calculated to be −2.73 eV, indicating a strong interaction between the second gold

atom and the substrate.

Figure 4.16 shows the kinetic barriers of the second gold atom along the

[001] and [110] directions with respect to the initial adsorption site. Along the [001]

direction, the energy barriers for the second atom were calculated to be 2.07 eV

and 1.36 eV along the negative and positive displacements respectively. The energy

barriers along the [110] direction were calculated to be 2.97 eV and 0.56 eV along

the negative and positive displacements respectively. The barrier is lower along the

positive displacement due to the SCOV defect, which results in there being no oxy-

gen atom within the neighbourhood of the defect site that the second gold atom

needs to move above, as shown in Figure 4.16(c).
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(c)

Figure 4.16. Relative energies, calculated using PBE+TS/REBO, of moving the
second gold atom within a gold dimer adsorbed onto a SCOV-defective oxygen-
terminated diamond (110) surface substrate from its initial adsorption site, which
is placed at the origin, along the (a) [001] and (b) [110] directions. The paths along
these directions are visualised in (c).
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The strong adsorption energy of the second gold atom, and its high barriers,

indicate that gold dimers should be stable on BDD surfaces. However, the lack of

dimers observed by Hussein et al. [22] could be due to factors that were neglected

within this chapter. Firstly, while it is clear that the high stability of single atoms

observed by Hussein et al. [22] is mostly likely due to defects within the BDD sur-

face, there is no experimental evidence that suggests this defect is a SCOV. There

are many other defects that could exist, such as a saturated ether oxygen vacancy

or even vacancies within the carbon layers of the surface, that could stabilise single

atoms and result in different energetics for the second gold atom.

Furthermore, Hussein et al. showed that the effect of the highly energetic

electron beam on atomic movement was negligible under the conditions they em-

ployed for STEM imaging [22]. However, the addition of an electrochemical potential

was found to induce atomic movement across the BDD surface [22]. Experimental

parameters such as the electrochemical potential, solvation and ions were not in-

cluded within the QM/MM model setup, and can clearly have an effect on the sta-

bility of surface-adsorbed atoms. The potential-induced movement of atoms across

the surface was observed to be an important pathway for the formation of BDD-

adsorbed NCs [22]. The high stability of the second gold atom observed here could

suggest that the formation of dimers is the rate-determining step for nucleation,

though this would need to be investigated further to confirm.

Growth of Gold Trimers

Similar to the construction of the gold dimer, five initial locations of the gold atom

were identified, each with displacement vectors of: (0, 0, 1.5), (1.5, 0, 0), (−1.5, 0, 0),

(0, 1.5, 0) and (0,−1.5, 0) (all numbers in angstroms) with respect to the location

of second gold atom, which are shown in Figure 4.17. The applicate was set to 0 Å

in the last four displacement vectors as the second gold atom was already above

the plane of carbonyl oxygen atoms. Despite five different initial locations for the

third gold atom, four of the systems optimised to form a triangular structure per-

pendicular to the surface, as shown in Figure 4.18(a), while one optimised to form a

triangular structure that bridges over the surface along the [001] direction, as shown

in Figure 4.18(b).
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Figure 4.17. Plot showing the five initial locations for the third gold atom, shown as
unfilled gold circles, with respect to the position of the first and second gold atoms,
shown as filled gold circles with the former at the origin, on a SCOV-defective
oxygen-terminated diamond (110) surface.

Figure 4.18. Orthographic ball-and-stick visualisations of two gold trimers adsorbed
onto a SCOV-defective oxygen-terminated diamond (110) surface obtained after
PBE+TS/REBO optimisations. Visualisations of the QM region are shown from
the [001] and [110] directions, and surface axes are also shown, with the saturating
hydrogen link-atoms at the QM region boundary excluded for clarity. Carbon,
oxygen, hydrogen and gold atoms are shown in grey, red, white and gold respectively.
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In the trimer shown in Figure 4.18(a), the third gold atom adsorbs above

the first gold, which forces the second gold atom closer toward the surface and

slightly pulls the first gold atom away from the surface. This can be seen by the

Au–O bond length slightly elongating from 2.01 Å in the dimer to 2.06 Å. The tri-

angular structure is geometrically near-equilateral, with Au–Au–Au angles of 60.4°,
60.6° and 59.0°, while the mean average Au–Au distance was 2.64 Å. The cohe-

sion energy for the triangular NC was calculated to be the same as for the dimer:

−1.17 eV, while the adsorption energy was calculated to be −1.16 eV atom−1, which

is a 0.19 eV atom−1 weaker than the interaction between the dimer and the surface.

In contrast, the trimer is shown in Figure 4.18(b) is more planar than the

other trimer, and the third gold atom adsorbs behind the second gold atom along

the [001] direction to form a structure that bridges over the surface. This triangu-

lar structure is geometrically obtuse and near-isosceles, with Au–Au–Au angles of

123.0°, 28.8° and 28.3°, and Au–Au distances of length 2.62 Å and 2.58 Å between

the first and second gold atoms, and the second and third gold atoms respectively.

The Au–Au–O angle was found to be the same as in the dimer (162.8°), though the

Au–O length increased to 2.08 Å, similar to the single atom value. This structure

was found to be adsorb more strongly to the surface than the near-equilateral NC,

with an adsorption energy of −1.49 eV atom−1, and was also found to have a slightly

larger cohesion energy of −1.22 eV atom−1.

Growth of Gold Tetramers

Both trimers in Figure 4.18 were used as the substrate for the fourth gold atom.

With the first trimer shown in Figure 4.18(a), eight initial sites were identified

for the fourth atom, with directional vectors of (−1.5, 0, 0), (1.5, 0, 0), (0,−1.5, 0)

and (0, 0, 1.5) with respect to the location of the third gold atom, and (−1.5, 0, 0),

(1.5, 0, 0), (0, 1.5, 0) and (0, 0, 1.5) with respect to the second gold atom (all num-

bers in angstroms). With the second trimer shown in Figure 4.18, seven initial sites

for the fourth atom were identified, with directional vectors of (−1.5, 0, 0), (0, 1.5, 0),

(0,−1.5, 0) and (0, 0, 1.5) with respect to the third gold atom, and (0, 1.5, 0), (0,−1.5, 0)

and (0, 0, 1.5) with respect to the second gold atom (all numbers in angstroms). All

initial positions can be seen in Figure 4.19.
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Figure 4.19. Plot showing the initial locations for the fourth gold atom, shown as
unfilled gold circles, with respect to the position of the first, second and third gold
atoms, shown as filled gold circles with the former at the origin, in the trimers shown
in (a) Figure 4.18(a) and (b) Figure 4.18(b).

The resulting Au4 NCs are shown in Figure 4.20, with (a)-(d), originating

from the trimer shown in Figure 4.18(a), and (e)-(g) originating from the trimer

shown in Figure 4.18. Table 4.6 details the adsorption and cohesion energies of the

tetramers visualised in Figure 4.20. As Figure 4.20 shows, there are significantly

more stable structures that arise after the addition of a fourth gold atom. This is

because as the NC size increases, the number of possible sites for an additional atom

increases in a superlinear fashion.
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(a) (c)(b)

(d) (e) (f)

(g)

Figure 4.20. Orthographic ball-and-stick visualisations of seven gold tetramers ad-
sorbed onto a SCOV-defective oxygen-terminated diamond (110) surface obtained
after PBE+TS/REBO optimisations. Visualisations of the QM region are shown
from the [001] and [110] directions, and surface axes are also shown, with the satu-
rating hydrogen link-atoms at the QM region boundary excluded for clarity. Carbon,
oxygen, hydrogen and gold atoms are shown in grey, red, white and gold respectively.

Structure
Adsorption Energy

(eV atom−1)

Cohesion Energy

(eV atom−1)

(a) −0.97 −1.50

(b) −0.99 −1.52

(c) −0.77 −1.52

(d) −0.99 −1.48

(e) −0.85 −1.52

(f) −0.79 −1.48

(g) −0.77 −1.53

Table 4.6. Adsorption and cohesion energies of the supported gold tetramers visu-
alised in Figure 4.20.

The first tetramer, as shown in Figure 4.20(a), is a Y-shaped structure that

can almost be considered an amalgamation of the two trimers from Figure 4.18.

The fourth gold atom adsorbs 2.51 Å behind the third gold atom within the ini-

120



tial near-equilateral triangle to form a ‘tail’ that bridges over the surface along the

[001] direction. As shown in Table 4.6, this particular structure was found to have

an adsorption energy of −0.97 eV atom−1 on the SCOV-defective surface, which

is 0.19 eV atom−1 weaker than its parent trimer, which itself was 0.19 eV atom−1

weaker than its parent dimer. The cohesion energy of this tetramer was calculated

to be −1.50 eV, which is 0.33 eV larger than its parent trimer. The distances be-

tween the first and second atoms, and the second and third atoms were found to

slightly elongate to 2.66 Å (from 2.62 Å) and 2.59 Å (from 2.58 Å) respectively. The

second structure, as can be seen in Figure 4.20(b), is similar in structure to the

first, except the fourth atom preferentially adsorbs to the third gold atom, which

is the apex of the near-equilateral triangle from the [001] viewpoint, rather than

closer to the surface. As can be seen in Table 4.6, this structure not only adsorbs

stronger to the SCOV-defective surface with an adsorption energy 0.02 eV atom−1

more negative than structure (a), but also has a cohesion energy 0.02 eV atom−1

more negative than (a). This indicates that this structure is more stable on the

SCOV-defective surface than structure (a).

The third structure, as shown in Figure 4.20(c), has a slightly different shape

than (a) and (b). The fourth gold atom adsorbs above the second and third gold

atoms, and away from the surface, resulting in the NC structure being rhomdoidal

and an extension of its parent trimer along the [110] direction. In this structure, the

distance between the first and second gold atoms, which are closest to the surface,

elongates to 2.70 Å, and this is reflected by its relatively weaker adsorption energy of

−0.77 eV atom−1 with respect to tetramers (a) and (b). Such a trend in adsorption

energies of gold tetramers has been observed in literature, where Y-shaped structure

generally have stronger adsorption energies on substrates compared to rhomboidal

or parallelogram-like structures [187; 407; 454]. The fourth structure, as visualised

in Figure 4.20(d), is also rhomboidal, with the fourth gold atom adsorbing on the

other side of the third atom as compared to (c) and closer to the surface. The closer

proximity of the fourth atom to the surface means there are more gold atoms at the

NC-surface interface, which results in an adsorption energy 0.22 eV atom−1 more

negative than structure (c).

Three tetramers were found to form from the more stable parent trimer,

which are visualised in Figure 4.20(e)-(g). As can be seen in Table 4.6, these

tetramers generally have weaker adsorption energies than structures (a)-(d). In

structure (e), the fourth gold atom adsorbs above the second and third gold atoms
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to form a near-equilateral triangular structure with Au–Au–Au angles of 58.6°, 66.6°
and 54.8°. The adsorption energy of this structure is −0.85 eV atom−1, which is

0.08 eV atom−1 more negative than structure (c), but not as strongly adsorbed as

the Y-shaped tetramers. Structure (f) is another rhomboidal structure but is pref-

erentially tilted towards the surface rather than perpendicular to it like in (c). As

can be seen in Table 4.6, the adsorption energies between (c) and (g) are quite sim-

ilar, though the cohesion energy of (f) is the same as that of (d). Structure (g) has

similar adsorption and cohesion energies to structure (c) despite having a different

geometry.

4.4 Conclusions

This chapter has shown that embedded cluster models via a QM/MM framework

can be used to study the adsorption and diffusion kinetics of single gold atoms on

oxygen-terminated diamond (110) surfaces. After deciding on an appropriate QM

region size, the framework was used to analyse the effects of local surface defects

and dopants on adsorption energies and barriers. For the idealised, fully-oxygenated

surface, the gold atom was found to weakly adsorb onto the surface. The kinetic bar-

riers associated with this surface along both the [001] and [110] directions were also

found to be very low, and while they are high enough to counter the translational

kinetic energy that arises from thermal baking, the idealised surface is unlikely to

stabilise single gold atoms when studied under experimental STEM conditions. The

introduction of defects and boron dopants into the surface substrate, however, was

found to significantly increase the adsorption energy and barriers of the single gold

atom. In the former case, the introduction of a SCOV into the surface was found to

result in very strong adsorption between the surface and the adatom, which was due

to the formation of a bond between the gold atom and a surface ether oxygen atom.

This means that the high stability of single gold atoms observed on polycrystalline

BDD surfaces observed by Hussein et al. is most likely due to surface defects and

dopants that were not seen in their STEM images or accounted for within their DFT

calculations.

After the identification of stabilisation mechanisms for the single gold atom,

the validity of the trends observed using PBE+TS/REBO method was evaluated by

benchmarking the method against other forcefields, dispersion correction schemes

and DFAs. The REBO forcefield was shown to be an appropriate embedding envi-

ronment for the QM region, while very little dependency was found on the flavour
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of dispersion correction, though a dispersion correction was found to be necessary

to accurately capture the adsorption energetics of the single gold adatom. The PBE

GGA was also found to generally perform very well with respect to other GGAs,

as well as higher-rung MGGAs and HGGAs for calculating adsorption energies and

barriers.

Finally, the PBE+TS method was subsequently used to study, albeit some-

what inefficiently, the formation of small gold NCs on SCOV-defective surfaces.

Overall, the mean average gold-gold distance was found to increase as the size of

the NC increased. Furthermore, the mean average adsorption energy of all struc-

tures was found to become less negative as the NC size increased, while the mean

average cohesion energy was found to become more negative. This indicates that the

NC structure gets closer to its gas-phase optimum as the NC size increases, while

the interaction between the NC adsorbate and the surface weakens. By comparing

the cohesion energy:adsorption energy ratios, the growth of gold NCs was found to

be preferentially determined by their interaction with the SCOV-defective surface

rather than by gold-gold interactions within the clusters. For dimers, the second

gold atom was found to preferentially bind to the first gold atom irrespective of its

initial placement, but the structure was tilted towards the surface rather than or-

thogonal to it. The second gold atom was found to strongly adsorb to the substrate

and also possess large barriers. This indicates that the lack of gold dimers observed

by Hussein et al. [22] is likely due to factors not considered herein, such as the elec-

trochemical potential. For trimers, two stable structures were found depending on

the initial site of the third atom: a near-equilateral triangular arrangement perpen-

dicular to the surface, and a near-isosceles triangular arrangement that bridged over

the surface. Finally, for tetramers, seven structures were found to form, mostly due

to the larger variety of possible initial sites for the fourth atom. Of these tetramers,

Y-shaped structures were found to be more stable than rhomboidal ones.

While some aspects such as the electrochemical potential were neglected

within the QM/MM models, the framework presented in this chapter can be used

to explore the effects of defects and dopants, which have been observed to increase

the stability of adsorbates, as well as study the initial stages of metal NC formation

on defective and doped surfaces.
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Chapter 5

Structures of Gold Nanoclusters

on Diamond

The following chapter presents work published in the paper referenced below. The

au full parameter set used herein was provided by Francis He (Carnegie Mellon Uni-

versity), and the validation dataset used for this parameter set, as visualised in Fig-

ure 5.2, was created with Dr. Adam McSloy (University of Warwick). The training

of MLIPs, as detailed in Section 5.2.2, was conducted by Dr. Julia Westermayr

(University of Warwick).

J. Westermayr, S. Chaudhuri, A. Jeindl, O. T. Hofmann, R. J. Maurer (2022)

‘Long-range dispersion-inclusive machine learning potentials for structure search

and optimization of hybrid organic–inorganic interfaces’ Digital Discovery 1: 463–

475 [455]

5.1 Introduction

The size and geometry of surface-deposited NCs are known to play an integral role

in determining their catalytic ability [456]. The optimisation of such structures

is particularly challenging due to the inherent structural complexity and the large

number of degrees of freedom that exist, such as the geometric shape and surface

coverage [68]. As discussed in Chapter 4, the manual method used to build NCs is

not efficient, and while it can be used to study NCs comprising only a few atoms,

the number of possible sites for an additional gold atom increases at a superlin-

ear rate as the NC size increases. Furthermore, while ab initio methods like DFT

offer a high degree of accuracy, they require a high computational cost to run cal-
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culations [408] and it becomes infeasible to use them as a calculator in structure

exploration methods. Global structure searches using DFT for gas-phase gold NCs

have typically been limited to small structures with diameters below 1.2 nm [457]

and containing 9–13 [458], 12–14 [459], 15–19 [460] or 40 [461] atoms. Thus, there

is a great need for efficient methods that can be used to conduct accurate structure

searches to explore the large configuration space of possible NC structures.

An additional point to note when exploring the configurational space of pos-

sible NC structures is that long-range effects such as vdW forces will have a large

impact on the final geometry as well as the properties exhibited by the NC. Further-

more, for large systems comprising numerous atoms, beyond-pairwise interactions

will have a greater impact on the final NC shape and size. Therefore, any calcu-

lator that is used to conduct structure searches for gold NCs on diamond must be

able to correctly account for beyond-pairwise, long-range effects. Methods such as

DFTB2 [78], as outlined in Section 2.38, have been shown to provide a good com-

promise between computational cost and accuracy, and can also be coupled with nu-

merous dispersion corrections such as DFT-D3 [282], TS [462; 463] and MBD [289]

schemes via the DFTB+ [79] software package. DFTB has been used to explore the

structures of gold NCs gold [464; 465], though these studies have been limited to

isolated NCs not supported by a substrate. This is partly due to the existence of

few reliable parameterisations that can accurately model hybrid organic-inorganic

interfaces [86; 466; 467] as parameterisations are typically developed for a particular

subset of elements for a specific purpose, which means they possess a low transfer-

ability.

MLIPs, as discussed in Section 2.5.2, are another methodology that can not

only offer high computational efficiency, but can also be used to perform calcula-

tions at an ab initio-level of accuracy, if the appropriate training data is supplied,

making it possible to rapidly search chemical space for optimal structures [468; 469;

470]. In particular, MLIPs have been shown to be capable of advancing structure

searches [471; 472; 473] and geometry optimisations [474; 475] of highly complex

and large-scale systems comprising many thousands of atoms [476]. MLIPs have

been used to explore the structures of metallic alloys [477] and various metals [478],

including gold [457; 479; 480; 481; 482], but these are also mostly limited to isolated

structures, and very few investigate the structures of supported NCs [483]. However,

most established MLIP approaches learn short-range interactions between atoms via

a radial cut-off term, within which the atomic interactions are captured. This can
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lead to challenges when attempting to capture long-range interactions [318]. Re-

cent attempts to account for long-range interactions have explicitly treated them

as separate additive contributions to the MLIP [317; 318; 484; 485], such as the

third and higher generation NN potentials of Behler and co-workers [486; 487],

where a charge-equilibration scheme was introduced. Earlier work by Behler and

co-workers [485; 488] has also shown that the simulation of liquid water can be facili-

tated with NNs trained on energies and atomic charges, where the latter was used to

correct for electrostatic interactions. This scheme was later complemented with long-

range dispersion interactions based on the DFT-D3 [282] correction scheme [488].

Atomic charges were further used in TensorMol-0.1 [484] to augment the total en-

ergy with Coulomb and vdW corrections. A similar approach was applied by Unke

and Meuwly in PhysNet, where the total energy was corrected with additive terms

that include electrostatic corrections obtained from partial atomic charges and a

DFT-D3 [282] dispersion correction term [318]. Recently, this description was ex-

tended in SpookyNet, where the total energy was corrected using empirical terms

for the nuclear repulsion based on an analytical short-range term, a term for elec-

trostatics and a term for dispersion interactions [317]. The aforementioned ap-

proaches have been shown to accurately describe spectroscopic signatures [484],

small clusters on surfaces [487], water dimers [489] and clusters [488], crystals [489],

and phase diagrams [490]. However, none of these approaches account for density-

dependent dispersion schemes such as the TS [262] method, nor do they explicitly

account for beyond-pairwise dispersion interactions that are included within the

MBD schemes [285; 286], as explained in Section 2.2.

This chapter will explain the development of an ML method trained on sparse

dispersion-corrected DFT data that can be used to facilitate fast and accurate struc-

ture searches. First, the viability of dispersion-corrected DFTB2 methods as an

alternative to dispersion-corrected DFT will be investigated. This will be done by

benchmarking elemental interactions with gold by comparing the adsorption ener-

getics and structural differences of small organic molecules on gold NCs and gold

NCs on diamond (110) surfaces. After this, the development of a deep learning

approach that combines SchNet-based [315; 333] MLIPs with an established long-

range dispersion correction method will be presented. The accuracy of the MLIPs

will be benchmarked against dispersion-corrected DFT for a variety of supported

gold NCs, and its superior performance with respect to DFTB2 as well as its signif-

icantly cheaper computational cost with respect to both DFTB2 and DFT will be

demonstrated. Finally, the MLIPs will be used to analyse the adsorption of large
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gold NCs on diamond that would otherwise be computationally intractable with

DFT.

5.2 Methods

Similar to Chapter 4, the notation ‘χ+ψ’ is used henceforth to denote specific QM

methods, where χ is the QM method, which is either a DFA, a DFTB2 parameter

set or an MLIP, and ψ is the dispersion correction.

5.2.1 QM Calculation Settings

DFT Calculations

DFT [65; 66] calculations were performed using the FHI-aims [70] software package.

The PBE [229] GGA, which was shown in Chapter 4 to perform well for gold ad-

sorbates on diamond, was used in all calculations along with the MBD@rsSCS [287]

scheme to account for long-range dispersion effects.

DFTB2 Calculation Settings

DFTB2 [78] calculations were performed using the DFTB+ [79] software package.

Calculations were performed using either the publicly-available auorg [86] parame-

terisation or the auorg-derived au full parameterisation that was provided by Francis

He. The latter parameterisation was generated using an ML-based approach similar

to the one outlined by Li et al. [468]. The au full parameterisation retained the

same electronic components as auorg but its repulsive component, as detailed in

Equation (2.39), was instead fitted to energies and forces from DFT calculations,

that were conducted on organic molecules on gold surfaces, using a natural cubic

spline that was constrained to have a strictly positive second derivative. For au full,

the repulsive potential was treated as a function of the sum of interatomic distances

and was therefore defined for every pairwise combination of elements, and the radial

cut-off intervals for all pairwise interactions were set to (0 Å, 10 Å). It should be

noted that at the time of use, the au full parameter set was still in development

and not finalised. The MBD@rsSCS scheme [285; 286; 287] was used to account for

long-range effects within DFTB2 calculations, though some calculations were per-

formed using the DFT-D3 [282] correction scheme, which are clearly stated within

the text.
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5.2.2 Training of MLIPs

Training Dataset

DFT [65; 66] calculations were conducted using the FHI-aims [70] software package

and the PBE+MBD@rsSCS method [229; 287]. Using the Atomic Simulation Environ-

ment [339], gold NCs of various sizes were placed onto the centre of an unterminated

diamond (110) surface and optimised, with all carbon atoms being fully frozen dur-

ing optimisations . 62 geometry optimisations were used as the starting point for

the training dataset, distributed as 5, 4, 8, 8, 9, 10 and 18 geometry relaxations on

gold NCs of size 15, 20, 30, 35, 40, 45 and 50 atoms respectively. Training data

points were collated using every relaxation step of optimisations, which therefore

comprised both optimised and not fully-optimised structures. This resulted in 5368

data points, of which 4500 were used to train four MLIPs on vdW-free energies (E)

and forces (F ), 500 were used for validation and 368 were used for testing. Fur-

thermore, four separate geometry optimisations of Au20, Au30, Au40 and Au50 NCs

were kept as a hold-out set to test the performance of the models.

Input and output files for the structure optimisations conducted to gener-

ate the training data have been uploaded as a dataset to the NOMAD electronic

structure data repository [378] and are freely available under https://doi.org/

10.17172/NOMAD/2021.10.28-1.

SchNet-Based MLIPs

The SchNet [315; 316] NN was used by Dr. Julia Westermayr to create MLIPs by

learning the representation of atomic environments along with its relation to the

targeted output.

Two types of SchNet-based MLIPs were generated, which were combined

to create an overall MBD@rsSCS-corrected SchNet calculator, SchNet+MBD@rsSCS.

The first type, SchNetinitial(E,F ), accounted for short-ranged interactions and was

trained on E and F for each atom from PBE+MBD@rsSCS optimisations by subtract-

ing the long-range vdW contributions to the total energies and forces for each atom.

Energies and forces for the whole system were obtained by summing up the respec-

tive atomic contributions, and F was treated as the derivative of E with respect to

atomic positions r. Four SchNetinitial(E,F ) models were trained, each differing in

the choice of trade-off value, t, that was used within the loss function to weight E

and F during training, with t = 0.03, 0.04, 0.04 and 0.05 being used for each model,
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while the weights within the NN were initialised randomly. The reason for multiple

models was to make use of the query-by-committee approach [491], which takes the

mean average of the predictions (in this case E) of ñ ML models, and can be used

to improve the accuracy and robustness of predictions by a factor
√
ñ.

Equation (5.1) expresses the squared loss function, `2(E,F ), that was used

to train the SchNetinitial(E,F ) and SchNetadapt1.(E,F ) MLIPs for a system with N

atoms. This type of loss function is very sensitive to any outliers as the difference

between the predicted and actual values is squared, which therefore penalises any

large errors. However, for the SchNetadapt2.(E,F ) and SchNetadapt3.(E,F ) MLIPs,

a smooth `1(E,F ) loss function, as expressed in Equation (5.2), was used instead.

This was because the training datasets for these two MLIPs deliberately included

data points which possessed larger forces and energies than most of the data points.

`2(E,F ) = t

∣∣∣∣∣E −
N∑
i=1

EML(i)

∣∣∣∣∣
2

+ (1− t)

∣∣∣∣∣F − ∂

∂r

(
N∑
i=1

EML(i)

)∣∣∣∣∣
2

(5.1)

`1(E,F ) = t

∣∣∣∣∣E −
N∑
i=1

EML(i)

∣∣∣∣∣+ (1− t)

∣∣∣∣∣F − ∂

∂r

(
N∑
i=1

EML(i)

)∣∣∣∣∣ (5.2)

The second MLIP type, SchNet(H), was trained on Hirshfeld volume ratios

(H) on a per-atom basis, which were extracted from PBE+MBD@rsSCS calculations.

For each atom, H was calculated as the ratio between the effective volume of the

atom within a molecule and the volume of the free atom, as expressed in Equa-

tion (2.24). The Hirshfeld partitioning of the electronic density [284] was then used

to rescale the atomic polarisabilities and vdW radii, which was subsequently used to

evaluate a vdW correction based on the MBD@rsSCS [287] scheme, as explained in

Section 2.2.2. It should be noted that this model could also be used to evaluate any

vdW correction based on the Hirshfeld partitioning of the electronic density [284],

such as the TS [262] schemewhich used H to rescale atomic polarisabilities and the

C6 coefficients, as explained in Section 2.2.1. Due to the high accuracy in the H

predictions, only one model was trained and the query-by-committee approach was

not required. Equation (5.3) expresses the squared loss function, `2(H), that was

used to train the SchNet(H) model for a system with N atoms.

`2(H) =
N∑
i=1

|H(i)−HML(i)|2 (5.3)
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Adaptive sampling [319] was used to extend the training dataset by running

global structure searches using a basin-hopping algorithm, as implemented within

the Atomic Simulation Environment [339], with the initial model. NCs of various

sizes, including those featured in the training dataset (15, 20, 30, 35, 40, 45 and 50

atoms) and some new sizes (6, 25, 28, 44 and 66 atoms) were used as the starting

geometry for each basin-hopping run. The variances of the model predictions after

every geometry optimisation step of the basin-hopping run were computed, and ge-

ometries with the largest variances were further optimised using PBE+MBD@rsSCS.

The DFT optimisation steps were subsequently added to the training dataset to im-

prove the performance of the MLIP. In total, three adaptive sampling runs were con-

ducted. The collection of MLIPs after the first adaptive sampling run, SchNetadapt1,

which were obtained after conducting basin-hopping using the SchNetinitial MLIPs,

were trained on 7700 data points and validated using 800 data points. In addi-

tion, 243 single-point calculations of structures with the largest model errors where

conducted to inform the model where not to go during optimisations. Using these

single-point calculations and after conducting a second adaptive sampling run with

the SchNetadapt1 MLIPs, the SchNetadapt2 collection of MLIPs was obtained, which

resulted in 9757 data points in total, of which 8500 were used for training and 800

were once again used for validation. After the third and final adaptive sampling

run with the SchNetadapt2 MLIPs to obtain the collection of SchNetadapt3 MLIPs,

15293 data points were procured, of which 12500 were used for training and 1500

were used for validation.

The installation instructions and the codes used to develop the SchNet-based

MLIPs are freely available from the maurergroup/SchNet-vdW GitHub repository

under https://github.com/maurergroup/SchNet-vdW.

5.2.3 Structure Generation and Analysis

Supported gold NC structures were constructed using the Atomic Simulation Envi-

ronment [339] by placing NCs of various sizes onto the centre of an unterminated

diamond (110) surface, with all carbon atoms being fully frozen during optimisa-

tions. An unterminated surface was used as the oxygenation state of the diamond

(110) surface had not yet been characterised at the time of development. The struc-

tures for gold NCs themselves were manually created by adding atoms at random

sites above the diamond (110) surface substrate using the Atomic Simulation Envi-
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ronment [339], with the exception of Au147 NCs. The icosahedral and cuboctahedral

Au147 NCs were constructed using the ase.cluster package provided within the

Atomic Simulation Environment [339]. The number of shells to create the icosahe-

dron was set to 4, while the number of layers cut at each vertex and the number of

atoms on the square edges of the complete octahedron were set to 3 and 7 respec-

tively to create the cuboctahedron. Cartesian coordinates for the amorphous Au147

NC were taken from Tarrat et al. [465]. All three Au147 NC isomers are visualised

in Figure 5.1.

(a) (b) (c)

Figure 5.1. Orthographic visualisations of the (a) cuboctahedral, (b) icosahedral and
(c) amorphous 147-atom gold NCs investigated. Cartesian coordinates for structure
(c) were taken from Tarrat et al. [465].

To analyse the compactness of the Au147 NCs, Equation (5.4) was used to

calculate the sphericity, S, of a NC, which is defined as ratio of the surface area of

a sphere with the same volume as the given NC to the surface area of the NC [492].

S = 1 for a perfect sphere and as a result of the isoperimetric inequality [493], S < 1

for any other shape.

S =
π1/3(6V )2/3

A
(5.4)

where V and A are the volume and surface area of the NC respectively [492]. For an

edge length l ∈ R, V and A for regular icosahedra (V = 5
12(3 +

√
5)l3, A = 5

√
3l2)

and cuboctahedra (V = (6 + 2
√

3)l3, A = 5
3

√
2l3) are trivially defined. However,

for every irregular shape, such as the amorphous NCs and the NCs after geometry

optimisations, V and A were calculated from the convex hull of the shape, which is

defined as the smallest convex set that contains the shape.
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Figure 5.2. Atomic structures of the twelve organic molecular adsorbates used to
validate the ML-generated au full DFTB2 parameter set provided by Francis He.
Structures were selected with Dr. Adam McSloy.

Figure 5.2 shows the twelve organic molecular adsorbates that were used as the

validation set, which was selected with Dr. Adam McSloy, for the ML-generated

au full DFTB2 parameterisation provided by Francis He. Of these twelve molecules,

all but three (molecular hydrogen, benzene, and uracil) were present within the

original training set for au full. These organic molecules were placed onto 10-, 18-

and 34-atom gold clusters, as well as a periodic gold (111) surface. For heteronuclear

diatomic molecules, A–B (where the letters denote their chemical symbols), both

coaxial binding modes were investigated and were termed ‘AB top’ and ‘AB bottom’

respectively, where the noun refers to the position of B within the molecule with

respect to the surface.
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5.3 Results and Discussion

5.3.1 Viability of Dispersion-Corrected DFTB2

Having explained the need to account for beyond-pairwise interactions in large struc-

tures, two MBD@rsSCS-corrected DFTB2 parameter sets were benchmarked against

MBD@rsSCS-corrected DFT, the first of them being the publicly-available auorg [86]

parameterisation, which is the only (currently) publicly available DFTB2 parameter-

isation that accounts for interactions with gold [86]. However, this parameterisation

was designed to describe optical excitations of thiolates on gold NCs [86], so an-

other parameterisation was sought after that would, in theory, be more applicable

to describe gold NCs on diamond. ML-based DFTB parameterisations focusing on

the repulsive potential, as detailed in Equation (2.39), have been reported to out-

perform existing DFTB2 parameterisations [468; 494; 495; 496], while constrained

splines have successfully been used to generate repulsive pair potentials with a high

level of accuracy and transferability for a range of systems [497; 498]. For this reason,

the performance of an ML-generated, spline-constrained reparameterisation of the

auorg parameter set, au full, provided by Francis He was investigated. The au full

parameter set was designed to describe interactions between organic molecules and

gold surfaces, and should in principle outperform auorg. The accuracy of both

DFTB2 parameterisations was determined by benchmarking them against DFT.

This was done first for the adsorption of the organic molecules, shown in Figure 5.2,

on various gold NC substrates. While these are different systems to gold NCs on

diamond, they can still provide some understanding into how accurately the param-

eter sets describe elemental interactions with gold. Both DFTB2 parameterisations

were subsequently used to optimise 4-atom gold NCs on diamond (110) surfaces and

benchmarked against DFT.

Organic Molecules on Gold Nanoclusters

First, the structural differences after optimisations with auorg, au full and PBE (all

MBD@rsSCS-corrected) investigated. This was done by comparing the RMSDs of

the two DFTB2 parameter sets with respect to PBE+MBD@rsSCS. Figures 5.3(a)

and (b) show the mean average RMSDs with respect to PBE+MBD@rsSCS of all the

organic molecules, substrates and combined systems after auorg+MBD@rsSCS and

au full+MBD@rsSCS optimisations, respectively. Across all structures, the au full pa-

rameterisation was found to result in a larger mean average RMSD value (0.489 Å)

than auorg (0.295 Å), indicating a greater disparity with PBE+MBD@rsSCS. This

is reflected by the larger range of RMSDs observed with au full over auorg. The
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auorg+MBD@rsSCS-optimised geometries for the individual gold substrates and or-

ganic molecules are in close agreement with the DFT results. The RMSDs of op-

timised organic molecules on Au18, Au34 and Au(111) surfaces are all below 1.0 Å,

though some structural disparities were observed. The greatest structural dispari-

ties with respect to DFT were from organic molecules on Au10 NCs. In contrast,

the au full+MBD@rsSCS-optimised larger gold substrates had RMSDs of around 1.0 Å

with respect to DFT. The RMSDs of many adsorbed organic molecules were also

greater than 1.0 Å, with four complexes having RMSDs greater than 2.0 Å. How-

ever, the structures of au full+MBD@rsSCS-optimised individual organic molecules, as

well as the adsorbed molecules on gold (111) surfaces, were in close agreement with

PBE+MBD@rsSCS.

134



Figure 5.3. RMSDs for (a) auorg+MBD@rsSCS- and (b) au full+MBD@rsSCS-optimised
gold substrates, organic molecules and combined systems with respect to their cor-
responding PBE+MBD@rsSCS-optimised structures.

Figures 5.4 and 5.5 summarise the adsorption energies of the molecules in Fig-

ure 5.2 on different gold substrates using au full+MBD@rsSCS and auorg+MBD@rsSCSrespectivelyas

compared to PBE+MBD@rsSCS. As can be seen from Figures 5.4 and 5.5, the mean

absolute errors (MAEs) of adsorption energies with au full+MBD@rsSCS are larger

than auorg+MBD@rsSCS with respect to PBE+MBD@rsSCS for all substrates apart from

the Au34 cluster. This is also reflected in the Pearson correlation coefficients of

adsorption energies, where au full+MBD@rsSCS has values of 0.25 and 0.34 for the
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Au10 and Au18 substrates respectively, which indicates very little correlation with

PBE+MBD@rsSCS. In contrast, auorg+MBD@rsSCS has Pearson correlation coefficients

of 0.94 and 0.56 for the Au10 and Au18 substrates respectively, which indicates

much higher correlation with PBE+MBD@rsSCS. However, au full+MBD@rsSCS has

higher Pearson correlation coefficients for the Au34 and Au(111) substrates.

(a) (b)

(c) (d)

Figure 5.4. Comparison of adsorption energetics of different organic molecules on
different gold substrates, calculated using PBE+MBD and au full+MBD. The Pearson
correlation coefficients and MAEs for each substrate are also provided.

It can be argued that outliers are responsible for skewing the final MAEs and

Pearson correlation coefficients. For example, the adsorption energies of molecular

hydrogen on Au10 and Au18 are calculated to be around−15.0 eV with au full+MBD@rsSCS,

whereas both MBD@rsSCS-corrected auorg and PBE predict very weak adsorption.

The reason for these differences could be because short-range hydrogen-hydrogen

interactions were not included within the training dataset for au full. Molecular

hydrogen was not included as an adsorbate on Au34 and Au(111) surfaces due to

its tendency to desorb on large gold clusters and bulk gold [160; 499]; for these
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substrates, the au full+MBD@rsSCS Pearson correlation coefficients are higher than

auorg+MBD@rsSCS, showing the potential effect of large outliers on correlation and

errors.

(a) (b)

(c) (d)

Figure 5.5. Comparison of adsorption energetics of different organic molecules on
different gold substrates, calculated using PBE+MBD and auorg+MBD. The Pearson
correlation coefficients and MAEs for each substrate are also provided.

The disagreement between MBD@rsSCS-corrected auorg and PBE might be

due to the properties of the auorg parameter set and the nature of its constituent

parameters. While the mio parameterisation, which auorg is an extension of, was de-

signed for the description of interactions within biological and organic molecules [78],

the auorg parameterisation itself was designed to describe optical excitations of thio-

lates chemisorbed on gold NCs [86]. The applicability of the auorg parameterisation

for the description of interactions between gold NCs and organic/carbonaceous ma-

terials is therefore questionable. It should also be noted that at the time of use,

the au full parameter set was still in development and not perfected, and its intrin-

sic properties could be responsible for the observed discrepancies with DFT. For
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example, the smoothing constraint on the second derivative, which was set to be

strictly positive, can result in piece-wise linear behaviour in some of the potentials.

This constraint can interfere with the natural boundary conditions used, where the

second derivative is equal to zero at end points. Furthermore, as observed with

molecular hydrogen, au full is currently unable to accurately model short-range in-

teractions within molecules not in its training dataset. There is scope to improve the

performance of au full, but in its current version, it has been shown to outperform

auorg, in terms of energies, for molecular adsorbates that were included within its

training data. What remains now is to gauge the performance of both gold-based

DFTB2 parameterisations for gold NCs adsorbed on diamond.

Gold Tetramers on Diamond (110) Surfaces

Both the auorg and au full DFTB2 parameterisations were used to benchmark the

adsorption of three gold tetramers adsorbed onto a diamond (110) surface. Gold

atoms were arranged collinearly (‘Geometry 1’), quadrilaterally (‘Geometry 2’) and

tetrahedrally (‘Geometry 3’). Geometry optimisations, with the carbon atoms fully

constrained, were conducted on each system. Table 5.1 details the RMSDs of the

structures as optimised with different methods with respect to the corresponding

PBE+MBD@rsSCS-optimised structure, as well as the adsorption energies of the gold

NCs, while Table 5.2 visualises the three initial geometric structures as well as their

optimised geometries with different methods.

First, the structural differences for the three supported gold tetramers af-

ter DFT and DFTB2 optimisations are analysed. As can be seen in Table 5.2,

PBE+MBD@rsSCS conserves the collinear nature of the four gold atoms with re-

spect to the initial Geometry 1. While three of the gold atoms are collinear with

auorg+MBD@rsSCS, the fourth atom moves above this plane to form an irregular

tetrahedral structure, while auorg+DFT-D3 results in a non-collinear arrangement of

the gold atoms. In contrast, the au full+MBD@rsSCS-optimised Geometry 1 retains

the initial collinear arrangement of gold atoms, similar to PBE+MBD@rsSCS. These

structural differences for Geometry 1 are reflected in the RMSDs of various meth-

ods, where both auorg+MBD@rsSCS and auorg+DFT-D3 result in high RMSDs (2.21 Å

and 1.93 Å respectively) with respect to PBE+MBD@rsSCS. In contrast, the RMSD

of the au full+MBD@rsSCS-optimised structure is 0.32 Å, which is much lower than

both auorg methods and shows a much better agreement with PBE+MBD@rsSCS.

The geometrical differences for Geometry 2 are less profound, with all methods re-

taining the quadrilateral arrangement of the gold atoms. Both dispersion-corrected
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auorg methods result in a more compact arrangement of the gold atoms as com-

pared to PBE+MBD@rsSCS, while au full+MBD@rsSCS results in a structure that is

more rectangular than the rhomboidal-like nature of the PBE+MBD@rsSCS-optimised

structure, as can be seen in Table 5.2. This is reflected in Table 5.1, where both

auorg methods result in structures that possess lower RMSDs (less than 0.9 Å)

than au full+MBD@rsSCS (1.16 Å) with respect to PBE+MBD@rsSCS. For Geometry 3,

all the methods retain the tetrahedral shape of the initial structure, though both

dispersion-corrected auorg methods result in a more compact and regular tetrahedral

shape than PBE+MBD@rsSCS. This structural difference is reflected by the RMSDs

of both dispersion-corrected auorg methods being greater than 1 Å with respect to

PBE+MBD@rsSCS. In contrast, the structure obtained after au full+MBD@rsSCS opti-

misation is more similar to PBE+MBD, as is reflected in its RMSD of 0.52 Å.

Table 5.1 also details the adsorption energies of the gold NCs in the three

geometries. For any given method, all three geometries have similar adsorption

energies. However, DFT-D3-corrected auorg consistently overestimates adsorption

energies; this phenomenon has previously been reported to occur with the DFT-D3

scheme [69]. Between the MBD@rsSCS-corrected methods, auorg predicts fairly

similar adsorption energetics to PBE for all three geometries, despite the rela-

tively large structural differences. In contrast, au full+MBD@rsSCS consistently un-

derestimates adsorption energies, which are at least 0.50 eV atom−1 weaker than

PBE+MBD@rsSCS despite the high agreement in optimised structures. This shows

that the two MBD@rsSCS-corrected gold-based DFTB2 parameterisations inves-

tigated herein either approximate the adsorption energetics of gold NCs well, or

result in a final optimised structure that is similar to the DFT-optimised struc-

ture, but never both (at least for the systems investigated). An alternative method

must therefore be sought that can both optimise geometries correctly and calcu-

late accurate energetics, and thus accurately explore the space of possible gold NC

structures.
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Method
RMSD

(Å)

Adsorption Energy

(eV atom−1)

Geometry 1

PBE+MBD@rsSCS 0 −2.64

au full+MBD@rsSCS 0.32 −2.00

auorg+MBD@rsSCS 2.21 −2.59

auorg+DFT-D3 1.93 −3.33

Geometry 2

PBE+MBD@rsSCS 0 −2.63

au full+MBD@rsSCS 1.16 −2.13

auorg+MBD@rsSCS 0.89 −2.55

auorg+DFT-D3 0.84 −3.62

Geometry 3

PBE+MBD@rsSCS 0 −2.77

au full+MBD@rsSCS 0.52 −2.09

auorg+MBD@rsSCS 1.22 −2.57

auorg+DFT-D3 1.05 −3.65

Table 5.1. Comparison of adsorption energetics and RMSDs of dispersion-corrected
DFTB2 optimisations of the clusters visualised in Table 5.2 with respect to
PBE+MBD@rsSCS-optimised structures.
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Method Geometry 1 Geometry 2 Geometry 3

Initial

PBE+MBD@rsSCS

au full+MBD@rsSCS

auorg+MBD@rsSCS

auorg+DFT-D3

Table 5.2. Orthographic visualisations of the Geometry 1, Geometry 2 and Geome-
try 3 systems, as optimised using various methods. Each structure is a gold tetramer
adsorbed onto a diamond (110) surface, with the gold atoms being arranged (a)
collinearly (Geometry 1), (b) quadrilaterally (Geometry 2) and (c) tetrahedrally
(Geometry 3). Structures are viewed ‘top down’ from the [110] direction, and gold
and carbon atoms are shown in gold and grey respectively.
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5.3.2 Accuracy and Efficiency of MLIPs

Development of MLIPs

As dispersion-corrected DFTB2 was determined to be an inaccurate alternative to

PBE+MBD@rsSCS, the development of an MLIP trained on PBE+MBD@rsSCS data was

sought after instead. Two collections of MLIPs were trained: one set of models was

trained on E and F , while the other was trained on Hirshfeld volume ratios, H.

Four sets of MLIPs were trained (the initial model and three adaptively-sampled

models), and every set comprised four models for (E,F ) predictions, each differing

in the choice of trade-off value, and one model for H predictions.

Table 5.3 details the MAEs of E, F and H predictions on a hold-out set that

the models were not trained on. As can be seen, the largest MAE for H predictions

was from the SchNetadapt3(H) model and was evaluated to be 1.1×10−4, showcasing

the high accuracy of all the models. For E and F , four SchNet(E,F ) models were

trained, each with a specific t valuebut with random weights initialised within the

NN. The MAEs of the four SchNet(E,F ) models range from 0.01–0.18 eV and 0.01–

0.07 eV Å−1 for E and F respectively. The largest errors arise from the SchNetadapt2

and SchNetadapt3 models, but this was to be expected as these MLIPs included

geometries that were energetically unfavourable to ensure the models could identify

less favourable structures. Discounting just eight of these unfavourable geometries,

the MAEs for the E predictions from the SchNetadapt2 and SchNetadapt3 MLIPs

decrease by about a third, while the MAEs for F predictions are almost halved,

making the errors more comparable to the SchNetinitial and SchNetadapt1 MLIPs.
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Model
Energies, E

(eV)

Forces, F

(eV Å−1)

Hirshfeld Volume

Ratios, H

SchNetinitial

(E,F )t=0.03 0.01 0.02 –

(E,F )t=0.04 0.01 0.02 –

(E,F )t=0.04 0.01 0.02 –

(E,F )t=0.05 0.01 0.02 –

(H) – – 8.1× 10−5

SchNetadapt1

(E,F )t=0.03 0.02 0.01 –

(E,F )t=0.04 0.02 0.01 –

(E,F )t=0.04 0.04 0.02 –

(E,F )t=0.05 0.03 0.02 –

(H) – – 3.9× 10−5

SchNetadapt2

(E,F )t=0.03 0.09 0.03 –

(E,F )t=0.04 0.14 0.05 –

(E,F )t=0.04 0.18 0.06 –

(E,F )t=0.05 0.14 0.06 –

(H) – – 6.2× 10−5

SchNetadapt3

(E,F )t=0.03 0.09 0.04 –

(E,F )t=0.04 0.09 0.05 –

(E,F )t=0.04 0.12 0.04 –

(E,F )t=0.05 0.12 0.07 –

(H) – – 1.1× 10−4

Table 5.3. MAEs of E, F and H values compared to PBE+MBD@rsSCS as predicted
by the various SchNet-based MLIPs on a hold-out set that the models were not
trained on. The t parameter denotes the trade-off value that was used within the
loss function to weight energies and forces.
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As NCs can exhibit many metastable geometries, the performance of the

final SchNetadapt3
+MBD@rsSCS model was assessed by comparing interatomic dis-

tances and evaluating the ability of the model to . Figure 5.6 shows the radial

atom distributions of NCs comprising 6, 15, 20, 25, 28, 30, 35, 40, 44, 45, 60

and 66 atoms, and how the interatomic distances change after optimisations with

SchNetadapt3
+MBD@rsSCS and PBE+MBD@rsSCS. As can be seen from Figure 5.6(a),

initial gold-gold distances smaller than 2.6 Å disappear after optimisation with both

methods. Furthermore, both methods result in a peak at around 2.8 Å, showcasing

the accuracy of SchNetadapt3
+MBD@rsSCS with respect to PBE+MBD@rsSCS. Some

deviations can be seen in Figure 5.6(b) at around 2.5 Å for the initial gold-carbon

distances, but the peaks and troughs shift towards the PBE+MBD@rsSCS values after

optimisation with SchNetadapt3
+MBD@rsSCS.

Figure 5.6. Kernel density estimates for the radial atom distributions of (a) gold-
gold and (b) gold-carbon bonds.

Exploration of Possible Supported Gold NC Structures

To further validate the accuracy of the trained MLIPs, the global minimum and

two random local minima were selected from basin-hopping runs conducted using

SchNetinitial
+MBD@rsSCS for the first adaptive sampling run. For 6-, 15- and 40-atom

gold NCs, all three chosen minima were subsequently optimised using MBD@rsSCS-

corrected DFT, DFTB2 and MLIPs. All optimised structures are visualised in

Table B.2, while their RMSDs with respect to the PBE+MBD@rsSCS-optimised struc-

tures are detailed in Table 5.4.
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Method
Global

Minimum

Local

Minimum 1

Local

Minimum 2

Au6

SchNetinitial 1.37 0.66 1.40

SchNetadapt3 1.35 0.11 0.34

auorg 1.31 2.31 2.86

au full 1.87 1.62 2.48

Au15

SchNetinitial 0.14 0.38 4.82

SchNetadapt3 0.13 0.16 4.95

auorg 0.74 1.04 4.95

au full 1.84 1.19 5.64

Au40

SchNetinitial 0.41 0.32 0.36

SchNetadapt3 0.20 0.18 0.31

auorg 0.91 0.87 0.93

au full 1.81 1.94 1.80

Table 5.4. RMSDs (in angstroms) of 6-, 15- and 40-atom gold NCs, adsorbed onto
a diamond (110) surface, optimised with different MBD@rsSCS-corrected meth-
ods with respect to PBE+MBD@rsSCS. For each NC, the global minimum and the
two randomly-chosen local minima are from a basin-hopping run conducted with
SchNetinitial

+MBD@rsSCS for the first adaptive sampling run, and structures were
subsequently optimised with the listed methods.
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Figure 5.7. Relative energies with respect to the energetically lowest NC calculated
using various MBD@rsSCS-corrected methods. Structures are the global minimum
as well as two randomly-chosen local minima from basin-hopping runs conducted
using the SchNetinitial

+MBD@rsSCS MLIP on supported (a) Au6, (b) Au15 and (c)
Au40 NCs visualised in Table B.2 for the first adaptive sampling run.

As can be seen in Table 5.4, the RMSDs of MLIP-optimised structures with

respect to DFT generally improves after adaptive sampling. With the exception

of the second Au15 local minimum, the RMSDs of MLIP-optimised geometries are

generally quite low, indicating close structural agreement with PBE+MBD@rsSCS-

optimised NCs. The large disparities observed with the second Au15 local mini-

mum, where RMSDs were calculated to be greater than 4.8 Å, could indicate that

this structure lies within a region of the potential energy surface that was under-

represented within the training dataset. This is supported by the energy vari-

ance from the query-by-committee approach for this structure (30 meV), which was

around 4 times higher than for other clusters (around 7 meV). The RMSDs of MLIP-

optimised geometries are also typically lower than those of DFTB2 parameterisa-

tions. The au full+MBD@rsSCS methods consistently result in structures with RMSDs

greater than 1.0 Å with respect to DFT, and while the RMSDs of auorg+MBD@rsSCS-

optimised NCs are not as large, they are still larger than MLIP-optimised geometries.

Figure 5.7 details the relative energies of the optimised minima as calculated us-

ing various methods. All adaptively-sampled MLIPs correctly order the energies as

compared to PBE+MBD@rsSCS, though the SchNetinitial
+MBD@rsSCS MLIP incorrectly

orders the Au15 structures. For all three NC sizes, MLIP-calculated relative ener-
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gies become more similar to the PBE+MBD@rsSCS-calculated values as the number of

adaptive sampling steps increases, with the SchNetadapt3
+MBD@rsSCS MLIP resulting

in relative energies that are very similar to DFT. The au full parameterisation cor-

rectly orders 6- and 15-atom energies as compared to DFT, but the relative energies

themselves are generally not as accurate compared to SchNetinitial
+MBD@rsSCS. How-

ever, au full+MBD@rsSCS incorrectly orders the 40-atom minima, while auorg+MBD@rsSCS

consistently orders energies incorrectly for all three NC sizes. This shows that once

again, the DFTB2 parameterisations investigated here either perform well energet-

ically or result in a final optimised structure that is similar to the DFT-optimised

geometry, but never both (at least for the systems investigated). This is in contrast

to the trained MLIPswhich generally perform well structurally and energetically

with respect to DFT.

For the Au6 NCs, the most stable geometry after PBE+MBD@rsSCS optimi-

sation was found to be a rhomboidal frustum, with four gold atoms arranged on

the diamond (110) surface and two gold atoms placed above these four atoms.

This structure has been observed to be the most stable supported gold hexamer

on substrates such as cerium(IV) oxide (111) surfaces [407]. Some structural dispar-

ity can be seen for the SchNetadapt3
+MBD@rsSCS-optimised global minimum, which

has an RMSD greater than 1.3 Å with respect to PBE+MBD@rsSCS. However, both

SchNetadapt3
+MBD@rsSCS-optimised local minima are very similar to their respec-

tive PBE+MBD@rsSCS-optimised structures, with RMSDs below 0.35 Å. While the

auorg+MBD@rsSCS-optimised global minimum has a marginally lower RMSD that

is 0.04 Å smaller than SchNetadapt3
+MBD@rsSCS, the RMSDs for the optimised local

minima are greater than 2.3 Å, showing a large disparity with DFT. As can be seen in

Table B.2, optimisation with auorg+MBD@rsSCS results in the two Au6 local minima

to form highly symmetrical triangles that lie parallel to the diamond (110) sur-

face, and these structures are more energetically stable than the auorg+MBD@rsSCS-

optimised global minimum. Such triangular Au6 structures have been shown to

be the most stable Au6 geometry on various substrates such as magnesium ox-

ide [407; 450] and graphite (0001) surfaces [407], and have also been shown to be

most stable gas-phase Au6 structure [500]. However, of all investigated methods,

auorg+MBD@rsSCS is the only one to result in such a triangular atomic arrangement,

which indicates . As mentioned above, au full+MBD@rsSCS has fairly large RMSDs

with respect to DFT for all three minima and has the largest RMSD among all

investigated methods for the optimised global minimum (1.87 Å)
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For the Au15 NCs, the most stable structure was found to be pyramidal,

with nine gold atoms arranged on the diamond (110) surface to form the poly-

hedron base, five gold atoms above these nine atoms and finally one atom at the

apex of the geometry. A truncated version of this pyramidal geometry with nine

gold atoms at the base and six atoms above them (i.e. no apex) has been ob-

served to be the most stable supported geometry on cerium(IV) oxide (111) sur-

faces, though planar geometries parallel to the substrate surface were observed to

be more stable on magnesium oxide (001) and graphite (0001) surfaces [407]. There

is a high degree of agreement for the global minimum structure after optimisa-

tions with PBE+MBD@rsSCS and the MLIPs, with RMSDs less than 0.15 Å. The

first local minimum after SchNetadapt3
+MBD@rsSCS optimisation is also very simi-

lar to the PBE+MBD@rsSCS-optimised structure, with an RMSD of 0.16 Å, and the

RMSDs of the structures optimised using MLIPs generally decreases as the num-

ber of adaptive sampling runs increases. Despite this discrepancy with DFT, the

MLIPs outperform both DFTB2 parameterisations for all three Au15 minima. For

the global minimum, auorg+MBD@rsSCS predicts a final structure with an RMSD of

0.74 Å, which is 0.60 Å greater than the RMSDs of the MLIPs. For the first local

minimum, the auorg+MBD@rsSCS RMSD is greater than 1.0 Å, while the RMSD for

the second local minimum is 4.95 Å, which shows that it performs no better than

the trained MLIPs. Once again, au full+MBD@rsSCS results in very different struc-

tures with RMSDs greater than 1.1 Å for all three Au15 minima, and has the largest

RMSD for any Au15 NC among all investigated methods.

For the Au40 NCs, the most stable structure after PBE+MBD@rsSCS optimi-

sation was also found to be pyramidal, with 15 gold atoms forming the polyhedron

base, 14 gold atoms above the base, 10 above them and one atom at the apex.

Not much data exists to compare this supported structure against other substrates,

though the pyramidal structure is quite different to the truncated octadehral struc-

ture observed for gas-phase Au40 NCs [501]. However, the pyramidal structure is

similar to the twisted pyramidal gas-phase structure that was calculated to be the

global minimum for Au40 NCs by Jiang and Walter [461] and is also qualitatively

not too dissimilar to the STEM images of BDD-supported Au40 NCs reported by

Hussein et al. [22].
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Structure
Optimised

Geometry

RMSD

(Å)

Geometry 1 1.04

Geometry 2 0.36

Geometry 3 0.77

Table 5.5. Comparison of the final structures after SchNetadapt3
+MBD@rsSCS optimi-

sations of the Geometry 1, Geometry 2 and Geometry 3 gold tetramers visualised
in Table 5.2. RMSD values are with respect to the corresponding PBE+MBD@rsSCS

structure, and relative energies are given with respect to the energetically lowest
tetramer (in this case, Geometry 3). Structures are shown from the [110] direction
as a top view, and gold and carbon atoms are shown in gold and grey respectively.

The accuracy of SchNetadapt3
+MBD@rsSCS was further investigated by using

the MLIP to optimise the three gold tetramers (Geometry 1, Geometry 2 and Ge-

ometry 3) shown in Table 5.2. Four-atom gold NCs were not included within the

training dataset and can therefore be used to gauge the accuracy of the MLIP

for structures outside its training regime. Table 5.5 visualises the final optimised

structures and details their RMSDs with respect to the PBE+MBD@rsSCS-optimised

structures in Table 5.1. Some structural disparity can be seen for Geometry 1 with

an RMSD of 1.04 Å, though this is still better than the RMSDs of 2.21 Å and 1.93 Å

calculated with auorg+MBD@rsSCS and auorg+DFT-D3 respectively. For Geometry

2, the quadrilateral arrangement of the atoms is retained after optimisation with

SchNetadapt3
+MBD@rsSCS and this is reflecting by its low RMSD (0.36 Å) with respect

to PBE+MBD@rsSCS. Finally, for Geometry 3, the optimised geometry is tetrahedral,
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but is more compact and regular than the PBE+MBD@rsSCS-optimised structure. The

RMSD was calculated to be 0.77 Å, which is not as low as the au full+MBD@rsSCS

value (0.52 Å) but is lower than values from dispersion-corrected auorg.

Figure 5.8 details the relative energies of the three tetramers as calculated

with MBD@rsSCS-corrected DFT, DFTB2 and SchNetadapt3. As can be seen, both

DFTB2 methods incorrectly order the tetramer energies as compared to PBE. How-

ever, similar to PBE+MBD@rsSCS, SchNetadapt3
+MBD@rsSCS correctly predicts Geom-

etry 3 to be the most stable NC. However, the MLIP incorrectly orders the Geometry

1 and Geometry 2 energies as compared to DFT. Despite this discrepancy, it should

be noted that the MLIP still outperforms both DFTB2 parameterisations, predicts

final NCs that are in close agreement with the DFT-optimised geometries and was

able to predict the most stable structure despite 4-atom NCs not being within its

training dataset. Adaptive sampling could certainly be utilised to improve the ac-

curacy of the MLIP predictions for structures either under-represented or neglected

within the training dataset.

Figure 5.8. Relative energies with respect to the energetically lowest NC calcu-
lated using various MBD@rsSCS-corrected methods. Structures are the Geometry
1, Geometry 2 and Geometry 3 supported gold tetramers visualised in Table 5.2.

Having established the accuracy of the SchNetadapt3
+MBD@rsSCS MLIP with

respect to PBE+MBD@rsSCS, it is also important to compare its relative computa-

tional efficiency, and showcase its ability to facilitate fast structure optimisations.

150



Method Calculation Time (s)

Geometry 1

PBE 69543

auorg 8929

au full 2784

SchNetadapt3 407

Geometry 2

PBE 74818

auorg 4501

au full 1216

SchNetadapt3 367

Geometry 3

PBE 78534

auorg 2882

au full 1652

SchNetadapt3 212

Table 5.6. Computational costs (rounded to the nearest integer) of geometry opti-
misations conducted using various MBD@rsSCS-corrected approaches. Systems are
the Geometry 1, Geometry 2 and Geometry 3 supported gold tetramers visualised
in Table 5.2. The PBE+MBD@rsSCS calculations were performed using 128 cores (8
nodes with 16 cores per node); all other methods used 1 core.

Table 5.6 shows the computational costs of conducting geometry optimisa-

tions on the Geometry 1, Geometry 2 and Geometry 3 supported gold tetramers

using different methods. The DFTB2 and MLIP optimisations for these tetramers

were performed using 1 core on 1 Fujitsu Primergy RX2530 M5 compute node pro-

vided by the Scientific Computing Research Technology Platform of the University

of Warwick, while the DFT calculations were performed using 128 cores (8 nodes

with 16 cores per node) on Lenovo NeXtScale nx360 M5 servers with dual Intel

Xeon E5-2630 v3 2.4 GHz (Haswell) 8-core processors, also provided by the Scien-

tific Computing Research Technology Platform within their Tinis high-performance

computing cluster. Even with 128 cores used in parallel, the PBE+MBD@rsSCS calcu-

lations took over 19 h to complete. In contrast, using 1 core, MBD@rsSCS-corrected
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DFTB2 optimisations were at least an order of magnitude cheaper than DFT calcu-

lations, while SchNetadapt3
+MBD@rsSCS optimisations required less than 7 min. This

highlights that the MLIPs can be used to facilitate both fast and accurate structure

optimisations.

5.3.3 Supported Au147 Nanoclusters

Having shown the ability of SchNetadapt3
+MBD@rsSCS to facilitate fast and accu-

rate optimisations, the MLIP was subsequently used to optimise large gold NCs

on diamond. 147-atom gold NCs were chosen for this purpose due to their size,

which would be computationally to optimise using DFT. Furthermore, NCs com-

prising certain special numbers of atoms, such as 147, are much more abundant

than others when generated in typical cluster experiments [502; 503]. These num-

bers are termed ‘magic’ and have been studied extensively in literature for their

unique properties [465; 502; 503; 504; 505]. To investigate the stability of Au147

NCs supported on diamond, three isomers were constructed, placed onto a diamond

(110) surface and subsequently optimised using SchNetadapt3
+MBD@rsSCS. Two of

these isomers were highly-symmetric and of regular icosahedral and cuboctahedral

shapes respectively, while a third amorphous isomer identified by Tarrat et al. [465]

was also investigated; all three isomers are visualised in Figure 5.1. Table 5.7 de-

tails the structural and energetic differences between the supported isomers after

optimisation with SchNetadapt3
+MBD@rsSCS, which are visualised in Figure 5.1.

The cuboctahedral NC was found to be the energetically lowest structure of

the three isomers investigated. The icosahedral isomer was calculated to be 0.97 eV

higher in energy, while the energy of the amorphous isomer was 6.37 eV higher than

the cuboctahedral isomer. This indicates that, at least for 147-atom NCs, ordered

structures are more energetically favourable than amorphous structures on diamond

(110) surfaces. Table 5.7 also suggests that as the sphericity decreases, the more

energetically favourable the supported NC is. This is most likely because NCs with

lower sphericities have more atoms closer to the substrate surface, which results in

a greater interaction between the NC adsorbate and diamond surface. Indeed, as

can be seen from the visualisations of the isomers in Figure 5.9, the cuboctahedral

NC has the most atoms (16) directly above the surface, which is six more than

the icosahedral NC (10). In contrast, the amorphous NC only has 4 atoms directly

above the surface. It should be noted that the observed trend between sphericity and

relative energies is most likely not universal, and there will most likely be bounds on

both the NC size and sphericity for this trend to be valid. However, the sphericity
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(a)

(c)

(b)

Figure 5.9. Orthographic visualisations of the optimised Au147 isomers, as optimised
using SchNetadapt3

+MBD@rsSCS. Each structure is adsorbed onto a diamond (110)
surface, with the gold atoms being arranged (a) cuboctahedrally, (b) icosahedrally
and (c) amorphously. Structures are viewed ‘front on’ from the [001] direction and
‘top down’ from the [110] direction, with surface axes presented. Also shown on
the right are the convex hulls (blue) of each surface-adsorbed NC. Gold and carbon
atoms are shown in gold and grey respectively.
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measure can be used to explain the trends in relative energies observed between the

three isomers.

Initial NC

Structure

NC

Sphericity

Relative

Energy (eV)

Cuboctahedral 0.920 0

Icosahedral 0.951 0.97

Amorphous 0.955 6.37

Table 5.7. Sphericities and relative energies of three Au147 isomers supported on a
diamond (110) surface after optimisation with SchNet+MBD@rsSCS. Relative energies
are given with respect to the energetically lowest supported isomer.

As shown in Table 5.7, the optimised cuboctahedral and icosahedral isomers

have sphericities of 0.920 and 0.951, which are both greater than the sphericities for

regular cuboctahedra (0.905) and icosahedra (0.939). The sphericity of the amor-

phous isomer was also observed to marginally increase from 0.953 to 0.955. This

indicates that the adsorbed NCs are more compact and spherical than the initial

atomic arrangement upon adsorption. It should be noted that the small differences

in absolute sphericity values do not correlate with geometrical similarity. While

the RMSD between the pre- and post-optimised cuboctahedral NCs was evaluated

to be 0.22 Å, indicating very similar structures, the RMSD between the initial and

final icosahedral isomers was 0.84 Å. The RMSD between the amorphous NCs was

0.86 Å, indicating some structural disparity despite the sphericity ‘only’ increasing

by 0.002. Moreover, the sphericities reported herein are for irregular polyhedra, and

are thus approximations to the true sphericities. This is because for each irregular

NC, the volume and surface area that enter Equation (5.4) are of its convex hulls,

and are therefore upper bounds on the true volume and surface area of the NC.

Further investigation would therefore be required to ascertain if there exists a true

correlation between sphericity and energetic stability.

While the accuracy and utility of the SchNet-based MLIPs have been show-

cased, it should be noted that there are factors that were not accounted for during

their development. For example, while the MLIPs account for long-range vdW inter-

actions, they do not explicitly treat electrostatic interactions. However, this could

theoretically be achieved by extending the MLIPs to learn partial atomic charges,

similar to the SpookyNet [317] and Behler’s fourth-generation NNs [487] architec-

tures, along with energies, forces and Hirshfeld volume ratios. Furthermore, while
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the MLIPs were able to calculate relative energies and perform structure optimisa-

tions, they do not provide other information that electronic structure methods such

as DFT offer e.g. band gaps.

The effect of the DFA that the models are trained on should also be inves-

tigated. In this chapter, the performance of the MLIPs were only benchmarked

against DFTB2 parameterisations and the PBE [229] GGA. Using the procedure

outlined in this chapter, MLIPs should be trained on different DFAs, including

higher-rung MGGAs and HGGAs. It could also be worthwhile to investigate other

ML and NN architectures for the training of MLIPs. For example, the descriptors

within the SchNet NN are rotationally invariant and therefore do not account for

any directional, equivariant information [333; 506]. The architecture could be used

to train MLIPs using rotationally invariant descriptors that can propagate direc-

tional information [506]. Architectures such as could also be used to train MLIPs

that are even faster than the SchNet-based MLIPs [507] developed herein.

Finally, as was mentioned above, an unterminated substrate was used in lieu

of an oxygen-terminated surface as the diamond (110) surface oxygenation state had

not yet been characterised at the time of MLIP training. The presence of oxygen

groups on the surface would most likely influence the shapes and sizes of surface-

adsorbed NCs. Defects and dopants were also not considered within the MLIP,

which were shown to promote the adsorption of single gold atoms in Chapter 4.

5.4 Conclusions

There is a great need for efficient methods that can be used to conduct accurate

structure searches and explore the large configuration space of possible NC struc-

tures. While ab initio methods such as DFT are accurate, they are very compu-

tationally expensive and typically infeasible to be used as calculators in structure

exploration methods. This chapter investigated the accuracy of two possible al-

ternative methods, DFTB2 parameterisations and MLIPs, that could be used to

conduct efficient structure searches.

First, the auorg and au full DFTB2 parameterisations were benchmarked

against DFT for two sets of systems: organic molecules on gold NCs, and gold

NCs on diamond (110) surfaces. Both DFTB2 parameterisations were deemed to

be unviable alternatives to PBE+MBD@rsSCS for these systems, and typically either
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performed well structurally or energetically, but both. For this reason, a SchNet-

based ML approach that could be combined with long-range dispersion schemes

was developed and used to conduct structure searches of both small and large

gold NCs on diamond (110) surfaces. By making use of adaptive sampling, the

SchNet+MBD@rsSCS MLIPs were able to calculate radial atomic distributions close

to the PBE+MBD@rsSCS optimum. The MLIPs were also shown to outperform the

aforementioned DFTB2 parameterisations for a variety of NC sizes and were mostly

able to identify (un)favourable NC geometries. While some disparities were ob-

served with respect to DFT, it should be noted that the accuracy of the MLIPs

could certainly be improved with further training and adaptive sampling. Never-

theless, the MLIPs developed in this chapter were shown to have a high degree of

accuracy and were also significantly computationally cheaper than both DFT and

DFTB2 approaches.

Having benchmarked the accuracy of SchNetadapt3
+MBD@rsSCS, the MLIPs

were subsequently used to analyse the adsorption of a large 147-atom gold NC onto

a diamond (110) surface. Such large systems would be computationally with DFT

but was able to be investigated using the ML approach developed in this chapter. Or-

dered isomers were calculated to be significantly more energetically favourable than

the amorphous NC, with the cuboctahedral isomer found to be the most favourable

geometry. This could be attributed to its lower sphericity, which means there is a

greater interaction between the NC and the surface.

While there are still aspects that are neglected within the MLIPs, the ML-

based approach presented in this chapter is of general utility for the computational

surface science community and has the potential to drastically reduce the computa-

tional effort of some of the most common tasks in this field, and study the nucleation

of both small and large NCs on surface substrates.
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Chapter 6

Conclusion and Outlook

This thesis sought to characterise the adsorption of gold NCs at the interface be-

tween gold NCs, which have been shown to have many applications due to their

unique optoelectronic properties, and the surfaces of polycrystalline BDD, which is

an attractive substrate for metal electrodeposition due to its electrical conductivity

and high stability. This would help to elucidate the initial stages of NC formation,

as well as study the structures and stabilities of surface-adsorbed NCs.

However, this first required knowledge of the BDD surface oxygenation state,

an understanding of which has been lacking to-datedue to the challenges associated

with growing single-crystal diamond samples of (110) orientation [150; 155], which

has been shown to be the dominant surface crystallography of CVD-grown poly-

crystalline BDD [22; 156]. This is in contrast to (111)- and (100)-oriented sam-

ples which, due to their slower growth rates [139; 150; 151], are much easier to

grow and have thus been the focus of many single-crystal diamond studies. A joint

computational-experimental study was conducted in Chapter 3 to identify the most

stable oxygenation state of diamond (110) surfaces. Using ab initio thermodynam-

ics [335; 373] based on DFT [65; 66], a phase diagram of the most stable oxygenic

surface phases was established. Within the 0–1000 K temperature range, this phase

diagram was found to be dominated by a highly stable phase of coexistent car-

bonyl and ether functional groups, while peroxide groups become more stable at

low temperatures and high oxygen pressures. These findings were found to agree

with experimental spectroscopic data in literature [152; 369; 370; 371], as well as to

be robust with respect to the choices of DFA and dispersion correction. The high sta-

bility of the adjacent carbonyl and ether groups was found to arise from cooperative

effects that mitigate surface deformation and satisfy all valencies. However, a lower-

157



coverage form of this phase was found to produce simulated core-level shifts that

were in closer agreement with experimental XPS data collected after the removal

of surface-adsorbed contaminants. This could indicate that the full-coverage phase

may not be able to be realised due to kinetic hindrance and coverage limitations on

realistic surfaces. The combined computational and experimental analyses outlined

in Chapter 3 provide a much improved understanding of the oxygen-terminated dia-

mond (110) surface, which has been lacking to-date, and showcase how the synergy

between theory and experiment can be used to enrich the field.

Chapter 4 focused on identifying stabilisation mechanisms for single gold

atoms on oxygen-terminated diamond (110) surfaces. This was done by using em-

bedded cluster models within a hybrid QM/MM framework to investigate the ad-

sorption and kinetic stability of single gold atoms. Such an approach allowed for

the effects of local surface defects and dopants to be analysed. The fully-oxygenated

surface is unlikely to stabilise single gold atoms due to the very weak adsorption

interaction as well as the fairly low kinetic barriers associated with it, which is in

agreement with other DFT calculations from literature [22]. The low kinetic bar-

riers for the idealised surface are unlikely to be large enough to resist the highly

energetic electron beam that is used in STEM experiments, this surface is unlikely

to stabilise single gold atoms. This is supported by the significantly stronger ad-

sorption energies and larger kinetic barriers of single gold atomthat were observed

after the introduction of defects or dopants into the substrate surface. In the former

case, the introduction of a SCOV into the surface was found to result in very high

stability of the gold atom, though it should be noted that realistic surfaces would

possess a myriad of coexistent defects and dopants. The strong adsorption and large

kinetic barriers associated with the SCOV-defective surface can be attributed to the

formation of a bond between the gold atom and a surface ether oxygen atom. This

means that the high stability of single gold atoms on BDD observed by Hussein et

al. [22] is most likely due to surface defects and dopants that were not seen within

the STEM images or accounted for within their DFT calculations. The observed

adsorption and kinetic trends were found to be robust with respect to the choices

of embedding forcefield and dispersion correction. Adsorption energies were found

to have some dependency on the choice of DFA. The PBE [229] GGA was generally

found to perform well with respect to other GGAs, as well as higher-rung MGGAs

and HGGAs, after the inclusion of long-range dispersion effects, for the calcula-

tion of adsorption energies and kinetic barriers on the idealised and SCOV-defective

surfaces, while other DFAs such as the RPBE [233] GGA and TPSS [234] MGGA
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were generally found to perform poorly for these systems. The agreement between

PBE and higher-rung DFAs is of particular importance due to the lack of reliable

experimental data that exists about adsorption structures and energetics on semi-

conducting materials such as BDD. While the PBE [229] GGA was able to capture

the adsorption of the single gold atom on delocalised triel-doped surface with respect

to the idealised surface, some discrepancies were observed between PBE [229] and

higher-rung DFAs, which means higher-rung HGGAs are perhaps more appropriate

for this surface.

The SCOV-defective oxygen-terminated diamond (110) surface was then used

in Section 4.3.5 to study the formation of surface-adsorbed gold dimers, trimers and

tetramers by iteratively building NCs. The NC structure was found to be closer

to its gas-phase optimum as the NC size increased, while the interaction between

the NC and the surface was found to weaken . The ratio between the cohesion

and adsorption energies indicated that the growth of gold NCs is preferentially de-

termined by their interaction with the SCOV-defective surface rather than by the

gold-gold interactions within the NCs. Preferred structural trends of NCs of a given

atom count were also established, such as the preferential binding of a second gold

to the first gold atom irrespective of its initial adsorption site, which resulted in

a dimer structure tilted towards the surface. Here, the second gold atom was ob-

served to have a strong adsorption energy as well as large diffusion barriers. For

trimers, two stable structures were found depending on the initial site of the third

atom: a near-equilateral triangular arrangement perpendicular to the surface, and

a near-isosceles triangular arrangement that bridged over the surface. The num-

ber of structures however significantly increased upon the addition of a fourth gold

atom. Of the seven tetramers observed, Y-shaped structures were generally found

to be more stable than rhomboidal ones. Chapter 4 shows how the QM/MM frame-

work can be used to study the adsorption and nucleation of single metal atoms

and small metal NCs on surfaces whilst accounting for surface defects and dopants

that are likely to, and have been shown to, stabilise adsorbates. The methodology

used in Chapter 4 shows how computational approaches can be used to study the

early stages of metal nucleation on an atomistic level whilst explicitly accounting for

some conditions that are encountered in experiment such as surface heterogeneity

and dopants.

However, the manual method used to build NCs in Chapter 4 is not efficient,

and while it can be used to study NCs comprising only a few atoms, the number of
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possible sites for an additional gold atom increases at a superlinear rate as the NC

size increases. For this reason, Chapter 5 looked into methods that could be used

alongside existing structure search algorithms [98; 99] to explore the configurational

space of NC shapes and sizes, whilst retaining the accuracy of ab initio methods

such as DFT at a fraction of their computational cost. Dispersion-corrected DFTB2

was determined to be an inaccurate alternative to dispersion-corrected DFT, which

necessitated the development of an MLIP based on the SchNet [315; 333] NN trained

on DFT data. By making use of adaptive sampling and training one set of mod-

els on vdW-free energies and forces, and another on Hirshfeld volume ratios for

the calculation of a dispersion correction, the combined ML approach was able to

calculate radial atomic distributions close to the DFT optimum. Furthermore, the

MLIPs were shown to outperform the aforementioned DFTB2 parameterisations for

a variety of NC sizes and enable accurate structure optimisations of supported gold

NC at a fraction of the computational cost of DFT. The MLIPs were mostly able to

identify (un)favourable NC geometries, though some disparities were observed with

respect to DFT. However, it should be noted that the number of structures within

the training dataset was very low, and the accuracy of the MLIPs could certainly

be improved with further training and adaptive sampling. The MLIPs were finally

used to analyse the structures and stabilities of three 147-atom gold NC isomers on

diamond, systems that would be computationally intractable with DFT. Ordered

isomers were calculated to be significantly more energetically favourable than the

amorphous NC, with the cuboctahedral isomer found to be the most favourable

geometry. This could be attributed to its lower sphericity, which means there is a

greater interaction between the NC and the surface.

Overall, the aim of this thesis was to use computational approaches to in-

vestigate the nucleation of gold NCs on diamond surfaces. To this end, the initial

stages of gold NC formation has been studied, which will aid in the development

of atomistic nucleation theories along with the scientific effort in understanding the

interaction between metal-diamond interfaces. This thesis will contribute to a vari-

ety of fields and can act as the foundation for future works.

That being the case, future works should aim to extend and complement the

work presented in this thesis as there are still many existing factors that can further

current understanding. If possible, all work in this thesis should be benchmarked

against higher-level methods such as coupled cluster theory [508], Møller–Plesset

perturbation theory [509] or the random-phase approximation [510; 511; 512] which,
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despite being very computationally demanding, can aid in improving the accuracy

of computational studies. The QM/MM framework used in Chapter 4 should be

extended to investigate other defects such as interstitials, lattice vacancies and com-

binations thereof, as well as other dopants, to elucidate the best stabilisation mech-

anism for metal NC growth. The manual iterative preparation of gold NCs used in

Chapter 4 could also be transformed into a much more efficient ML method similar

to the G-SchNet architecture, which generates molecules in an autoregressive man-

ner by placing one atom after another in 3D Euclidean space [513].

The vast multitude of experimental techniques that exist should also be

used to validate the predictions made using any computational simulations, such

as those in Chapters 4 and 5, as well as for any future work. Experimental meth-

ods such as temperature-programmed desorption and adsorption calorimetry have

been used to evaluate the adsorption energies of metals on well-defined oxide sur-

faces [514; 515; 516; 517] and could be used to validate some of the findings within

this thesis. The work in this thesis should also be used to complement experimental

data: as was explained in Section 1.1.1, it is often difficult to assess the 3D structure

of surface-adsorbed structures from experimental STEM images, which means there

is an opportunity to use the MLIP outlined in Chapter 5 to augment existing STEM

experiments of gold NCs on BDD surfaces [22] and improve the synergy between

experiment and simulation.

Future atomistic simulations based on this work should also seek to replicate

more realistic conditions and aim to account for experimental variables such as the

electrochemical potential, the solvent and ions. The surfaces studied in this thesis

were also modelled as vacuum-exposed rather than electrochemical solid-liquid in-

terfaces. It would certainly be of great interest to see how the trends and results

presented within this thesis would alter, if at all, after the inclusion of such electro-

chemical variables. To achieve this goal though, it should be noted that significant

software developments would be required. This was briefly discussed in Chapter 4,

where no infrastructure currently exists in the Py-ChemShell [301] software to con-

duct global structure searches with embedded cluster models. Another example is

the lack of infrastructure to conduct grand-canonical QM/MM calculations, which

would allow for the explicit inclusion of an electrochemical potential as well as local

surface defects and dopants for covalent systems. While the GPAW [72; 73] soft-

ware package has been used alongside the Atomic Simulation Environment [339] to

run hybrid QM/MM calculations [518; 519; 520] and can be used to model more
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realistic electrochemical environments [23; 24; 67; 521; 522; 523], it currently can

not be used to run QM/MM calculations on covalently-bound systems such as BDD.

There are many open avenues and opportunities that remain, but this thesis

has contributed to the development of modern atomistic theories of atom-by-atom

particle growth. All being well, this thesis will play a useful part in solving any

outstanding questions that remain, as well as help guide the controlled design of

nanostructured catalysts in the future.
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Appendix A

Codes and Scripts

A.1 Example Software Input Files

Listing A.4. Example dftb in.hsd input file for DFTB+ calculations.

1 Geometry = GenFormat {

2 <<< "geometry.gen"

3 }

4 Driver = LBFGS{

5 AppendGeometries = YES

6 LatticeOpt = NO

7 MaxSteps = -1

8 }

9 Hamiltonian = DFTB{

10 Filling = Fermi{

11 Temperature [eV] = 0.1

12 }

13 MaxAngularMomentum = {

14 C = "p"

15 Au = "d"

16 }

17 SpinPolarisation = {

18 }

19 Mixer = Broyden{

20 MixingParameter = 0.01

21 InverseJacobiWeight = 0.01

22 MinimalWeight = 1.0

23 MaximalWeight = 1E5

24 WeightFactor = 1E-2

25 }

26 ShellResolvedSCC = YES

27 SCC = YES
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28 SCCTolerance = 1E-6

29 MaxSCCIterations = 3000

30 SlaterKosterFiles = Type2FileNames{

31 Prefix = "[path to/auorg-1-1]"

32 Separator = "-"

33 Suffix = ".skf"

34 }

35 }

36 Analysis{

37 CalculateForces = YES

38 }
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Listing A.5. Example control.in input file for FHI-aims calculations.

1 xc pbe

2 occupation_type gaussian 0.1

3 relativistic atomic_zora scalar

4 spin none # Can also be 'collinear'

5 default_initial_moment 0

6

7 # Self-consistency settings

8 sc_accuracy_etot 1E-06

9 sc_accuracy_eev 1E-02

10 sc_accuracy_rho 1E-05

11

12 # For geometry optimisations

13 sc_accuracy_forces 1E-04

14 relax_geometry trm 1E-02

15

16 # For periodic surface calculations

17 k_grid 16 16 1

18 use_dipole_correction

19

20 # 'tight' basis set for carbon

21

22 ################################################################################

23 #

24 # FHI-aims code project

25 # Volker Blum, Fritz Haber Institute Berlin, 2009

26 #

27 # Suggested "tight" defaults for C atom (to be pasted into control.in file)

28 #

29 ################################################################################

30 species C

31 # global species definitions

32 nucleus 6

33 mass 12.0107

34 #

35 l_hartree 6

36 #

37 cut_pot 4.0 2.0 1.0

38 basis_dep_cutoff 1e-4

39 #

40 radial_base 34 7.0

41 radial_multiplier 2

42 angular_grids specified

43 division 0.2187 50
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44 division 0.4416 110

45 division 0.6335 194

46 division 0.7727 302

47 division 0.8772 434

48 # division 0.9334 590

49 # division 0.9924 770

50 # division 1.0230 974

51 # division 1.5020 1202

52 # outer_grid 974

53 outer_grid 434

54 ################################################################################

55 #

56 # Definition of "minimal" basis

57 #

58 ################################################################################

59 # valence basis states

60 valence 2 s 2.

61 valence 2 p 2.

62 # ion occupancy

63 ion_occ 2 s 1.

64 ion_occ 2 p 1.

65 ################################################################################

66 #

67 # Suggested additional basis functions. For production calculations,

68 # uncomment them one after another (the most important basis functions are

69 # listed first).

70 #

71 # Constructed for dimers: 1.0 A, 1.25 A, 1.5 A, 2.0 A, 3.0 A

72 #

73 ################################################################################

74 # "First tier" - improvements: -1214.57 meV to -155.61 meV

75 hydro 2 p 1.7

76 hydro 3 d 6

77 hydro 2 s 4.9

78 # "Second tier" - improvements: -67.75 meV to -5.23 meV

79 hydro 4 f 9.8

80 hydro 3 p 5.2

81 hydro 3 s 4.3

82 hydro 5 g 14.4

83 hydro 3 d 6.2

84 # "Third tier" - improvements: -2.43 meV to -0.60 meV

85 # hydro 2 p 5.6

86 # hydro 2 s 1.4

87 # hydro 3 d 4.9

88 # hydro 4 f 11.2

89 # "Fourth tier" - improvements: -0.39 meV to -0.18 meV
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90 # hydro 2 p 2.1

91 # hydro 5 g 16.4

92 # hydro 4 d 13.2

93 # hydro 3 s 13.6

94 # hydro 4 f 17.6

95 # Further basis functions - improvements: -0.08 meV and below

96 # hydro 3 s 2

97 # hydro 3 p 6

98 # hydro 4 d 20

99 ################################################################################

100 #

101 # For methods that use the localized form of the "resolution of identity" for

102 # the two-electron Coulomb operator (RI_method LVL), particularly Hartree-Fock and

103 # hybrid density functional calculations, the highest accuracy can be obtained by

104 # uncommenting the line beginning with "for_aux" below, thus adding an extra g

radial↪→

105 # function to the construction of the product basis set for the expansion.

106 # See Ref. New J. Phys. 17, 093020 (2015) for more information, particularly Figs. 1

and 6.↪→

107 #

108 ################################################################################

109 #

110 # for_aux hydro 5 g 6.0
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A.2 Py-ChemShell Source Code Changes

Listing A.6. The amended getGeomBuff() Python function used
to parse in initial spin moments and initial charges within the
chemsh/interfaces/FHIaims/ init .py file in the 21.0 release of Py-ChemShell.
Amendments to the file by the author are on lines 131-142.

121 def getGeomBuff(self):

122 '''String buff containing the geometry information'''

123

124 from numpy.core import defchararray, full

125

126 strbuff = '#FHI-aims ChemShell calculation'+ '\n'

127 # Print atoms

128 strbuff_atoms = self.frag.coords2str(coords=9, atoms='names', order='ca',

indent=' ', delimiter=' ',↪→

129 inserts=[(0,'atom')], unit='angstrom')

130

131 # Enumerate as index i directly corresponds to atom number

132 for i, line in enumerate(strbuff_atoms.splitlines()):

133 line += '\n'

134 if line.split()[4] in self.initial_moment:

135 line += 'initial_moment ' +

str(self.initial_moment[line.split()[4]]) + '\n'↪→

136 if i in self.initial_moment:

137 line += 'initial_moment ' + str(self.initial_moment[i]) + '\n'

138 if line.split()[4] in self.initial_charge:

139 line += 'initial_charge ' +

str(self.initial_charge[line.split()[4]]) + '\n'↪→

140 if i in self.initial_charge:

141 line += 'initial_charge ' + str(self.initial_charge[i]) + '\n'

142 strbuff += line

143

144 # Print ECPs. Only occurs if doing QMMM, else self.ecp is undefined.

145 if self.ecps:

146 self._ecprange = self.frag.bqs.getRegion(2)

147 # prefix with 'bq_' and suffix with '_e'

148 ecpnames = defchararray.add(full((self.ecps.natoms,), 'bq_',

dtype='S3'), self.ecps.names)↪→

149 ecpnames = defchararray.add(ecpnames, full((self.ecps.natoms,), '_e',

dtype='S2'))↪→

150 strbuff += self.ecps.coords2str(coords=9, atoms=None, order='ca',

indent=' ', delimiter=' ',↪→

151 inserts=[(0,'pseudocore'),(4,ecpnames)],

unit='angstrom')↪→

152
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153 # Print BQs

154 if self.frag.nbqs:

155 multipole_str = 'multipole'

156 multipole_order = '0'

157 atomstr = 'empty'

158 self._ghost_list = []

159

160 # nbqs is initialised to zero so no harm in just setting this for loop

to run over this variable↪→

161 for ibq in range(self.frag.nbqs):

162

163 # Check BQ is not an ECP centre. If no ECPs, this list is empty

164 if ibq not in self._ecprange:

165 # AJL, March 2019: Get BQ coords, convert to Angstrom

166 # Made this an if statement so I can match settings for the TCL

version of ChemShell (giving Bohr2Angstrom) and validate

setup

↪→

↪→

167 coords = [ (float(coord)*unitconvert.Bohr2Angstrom) for coord in

list(self.frag.bqs.coords[ibq]) ]↪→

168 strbuff = ''.join([strbuff, '%10s %16.9f %16.9f %16.9f

%2s %12.8f\n'%(multipole_str, coords[0], coords[1],

coords[2],

↪→

↪→

169 multipole_order,

self.frag.bqs.charges[ibq])])↪→

170

171 # AJL, April 2019: Check to see if we need an empty site on this

BQ.↪→

172 # In short, this is necessary as it removes the integration

grids from being right on top of the point charge during

the

↪→

↪→

173 # numerical integrations. Without it, you get spurious,

uncontrollable results with singularities if the BQs are

close to QM atoms

↪→

↪→

174 # The default ghost_cutoff is set to 5 angstrom, so by default

this check is made. First we look at atom-bq interactions↪→

175 if self.frag.selectByRadius(radius=self.ghost_max_cutoff *

unitconvert.Angstrom2Bohr,

centre=list(self.frag.bqs.coords[ibq])).size > 0:

↪→

↪→

176

177 if self.ghost_species:

178 # Now we need to check for bq-bq interactions. We cannot

put empty sites on top of each other so if we have↪→

179 # BQs very close together (0.001 au) then we only add an

empty site over the first instance↪→
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180 ghost_close_neighbours =

self.frag.bqs.selectByRadius(radius=self.ghost_min_cutoff

* unitconvert.Angstrom2Bohr,

centre=list(self.frag.bqs.coords[ibq]))

↪→

↪→

↪→

181

182 if len(ghost_close_neighbours) == 1 or any(jbq > ibq for

jbq in ghost_close_neighbours):↪→

183 #print('**** Adding an integration grid to protect

from QM-BQ energy singularities')↪→

184 strbuff = ''.join([strbuff, '%10s %16.9f

%16.9f %16.9f %7s\n'%(atomstr, coords[0],

coords[1], coords[2],

↪→

↪→

185 self.ghost_species)])

186 #Need to keep count of the empty sites we add so

that we can include gradients information

post-calculation

↪→

↪→

187 self._ghost_list.append(ibq)

188

189 else:

190 # I've made this verbose so the user understands the

error↪→

191 print('****')

192 print('**** A QM and BQ site have been identified in

close proximity. Due to the numerical')↪→

193 print('**** integrations used in FHI-aims, an "empty"

site **must** be placed on the BQ to protect')↪→

194 print('**** against Coulomb singularities. Please define

the "empty" site species (ghost_species)')↪→

195 print('**** Note: this error can be silenced by setting

ghost_max_cutoff = 0.')↪→

196 print('****')

197 # I'd like a hard stop here but not sure this works as

desired?↪→

198 # Someone should check the coding for me as I can't find

a good example in the codebase↪→

199 #errors.ChemShModuleError('ghost_species must have a

species name for the "empty" sites')↪→

200 assert false, 'Ghost_species must have a species name

for the empty sites. Check control.in and update

input'

↪→

↪→

201

202 return strbuff
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Listing A.7. The amended chemsh/dl find/opt.py Python file within Py-
ChemShell used to parse in a frozen partial mask. Corresponding line numbers
are also included. Amendments to the file by the author are on lines 58 and 308–338.

1 # Copyright (C) 2017 The authors of Py-ChemShell

2 #

3 # This file is part of Py-ChemShell.

4 #

5 # Py-ChemShell is free software: you can redistribute it and/or modify

6 # it under the terms of the GNU Lesser General Public License as

7 # published by the Free Software Foundation, either version 3 of the

8 # License, or (at your option) any later version.

9 #

10 # Py-ChemShell is distributed in the hope that it will be useful,

11 # but WITHOUT ANY WARRANTY; without even the implied warranty of

12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

13 # GNU Lesser General Public License for more details.

14 #

15 # You should have received a copy of the GNU Lesser General Public

16 # License along with Py-ChemShell. If not, see

17 # <http://www.gnu.org/licenses/>.

18

19 from numpy import asarray, full, zeros, float64, int64

20 from .dl_find import DL_FIND # this is the DL_FIND-like task class

21 from .. import dl_find # the DL_FIND module

22 from ..utils import objutils

23

24 # now we only got DL_FIND but will have more

25 # we provide users some synonyms

26 _synons = { 'dl_find': dl_find,

27 'dl-find': dl_find,

28 'dlfind' : dl_find,

29 'dlf' : dl_find }

30

31 class Opt(DL_FIND):

32 '''Geometry Optimisation'''

33

34 _attrs = {

35 'active' :[],

36 'algorithm' :'lbfgs',

37 # 'buff' : asarray([[1.0,2.0,3.0]]),

38 'callback' : lambda x:999,

39 'carthessian' : False,

40 'cell_only' : False,

41 'coords2' : zeros(shape=(0,3), dtype=float64),
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42 'conint' :'no',

43 'coordinates' :'cartesian',

44 'coupled_states' : True,

45 'cycle' : 0,

46 'delta' : 0.01,

47 'derivatives' : zeros((1,), dtype=float),

48 'dump' : 5,

49 'dim' :'2D',

50 'dimer' : False,

51 'dimer_interpolate': True,

52 'distort' : 0.0,

53 'frag2' : None,

54 'fric0' : 0.3,

55 'fricfac' : 0.95,

56 'fricp' : 0.3,

57 'frozen' : full((1), -1, dtype=int64),

58 'frozen_partial' : [],

59 'genetic' : False,

60 'gp_c3' : 1.0,

61 'gp_c4' : 0.9,

62 'icoord' :-1,

63 'include_res' : False,

64 'inithessian' :-1,

65 'initial_hessian' :'external',

66 'inner_atoms' : None,

67 'inner_residues' : None,

68 'iopt' :-1,

69 'lbfgs_mem' :-1,

70 'list_option' :'medium',

71 'ln_t1' : 0.0001,

72 'ln_t2' : 1.0,

73 'mass' : zeros(shape=(0,), dtype=float64),

74 'maxcycle' : 100,

75 'maxene' : 100000,

76 'maxmicrocycle' : 100,

77 'maxrot' : 10,

78 'maxstep' : 0.5,

79 'maxupdate' : 50,

80 'microiterative' : False,

81 'micro_esp_fit' : False,

82 'minstep' : 0.00001,

83 'neb' :'no',

84 'nebk' : 0.01,

85 'neb_cart' : False,

86 'neb_climb_test' : 3.0,

87 'neb_freeze_test' : 1.0,

172



88 'neb_path_sampling': -1.0,

89 'nframes' : 0,

90 'nimages' :-1,

91 'nzero' :-1,

92 'optimiser' :'dl_find',

93 'parameterise' : False,

94 'parameters' :[],

95 'pf_c1' : 5.0,

96 'pf_c2' : 5.0,

97 'po_contraction' : 0.9,

98 'po_death_rate' : 0.5,

99 'po_distribution' :'force_bias',

100 'po_init_pop_size' : 50,

101 'po_maxcycle' : 10000,

102 'po_mutation_rate' : 0.15,

103 'po_nsave' : 10,

104 'po_pop_size' : 25,

105 'po_radius' : 1.0,

106 'po_reset' : 500,

107 'po_scalefac' : 10.0,

108 'po_tolerance_g' : 0.001,

109 'po_tolerance_r' : 1.0E-8,

110 'qts' : False,

111 'qtsrate' : False,

112 'rate' : False,

113 'restart' : False,

114 # attribute name taken by `self.result`

115 # 'result' :'dl_find.result',

116 'result_file' :'dlf_result.pun',

117 'save_path' : False,

118 'scale_step' : 1.0,

119 'setParameters' : lambda x:999,

120 'soft' : 1.0E20,

121 'state_i' : 1,

122 'state_j' : 2,

123 'stochastic' : False,

124 'thermal' : False,

125 'timestep' : 1.0,

126 'tolerance' : -1.0,

127 'tolerance_e' : -1.0,

128 'tolrot' : 5.0,

129 'tsplit' : False,

130 'tsrelative' : False,

131 'trust_radius' :'constant',

132 'update' :-1,

133 'update_method' :'bofill',
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134 'weights' : None

135 }

136

137 _internals = {

138 'coords2' : zeros(shape=(0,3), dtype=float64),

139 '_iter' : 0,

140 '_task' :'standard',

141 '_convergences': zeros(shape=(0,5), dtype=float64), # convergence

information: energy, max grad, max step, RMS grad, RMS step↪→

142 }

143

144 _synons = { 'coordstype': 'coordinates',

145 'coordtype' : 'coordinates',

146 }

147

148 _priorities = 'theory', 'cell_only', 'dim', 'parameters'

149

150

151 @property

152 def frag2(self):

153 '''Auxiliary second fragment (needed by, e.g., NEB)'''

154

155 return self._frag2

156

157 @frag2.setter

158 def frag2(self, val):

159 '''Setter of frag2'''

160

161 try:

162 self.coords2 = val.coords

163 self._frag2 = val

164 self.nframes = 1

165 except:

166 from ..objects import fragment

167 merged = fragment.Fragment()

168 merged.merge(*val, noself=True)

169 self._frag2 = merged

170 self.coords2 = merged.coords

171 self.nframes = len(val)

172

173

174 @property

175 def neb(self):

176 '''NEB method'''

177

178 # set default when frag2 given
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179 if not self.frag2 and self._neb != 'no':

180 self._neb = 'no'

181 print(" ChemShell >>> NEB turned off since frag2 not given")

182

183 if self.frag2 and self._neb != 'no':

184 self._neb = 'frozen'

185

186 return self._neb

187

188 @neb.setter

189 def neb(self, val):

190 '''Setter of NEB method'''

191

192 # force to switch off NEB

193 if val.lower() == 'no':

194 self.frag2 = None

195

196 self._neb = val.lower()

197

198 @property

199 def coords2(self):

200 '''Second coords'''

201

202 return self._coords2

203

204 @coords2.setter

205 def coords2(self, val):

206 '''Setter of second coords'''

207 from ..base import nparray

208

209 # TODO

210 # nparray.setField(self._coords2, val)

211 self._coords2 = asarray(val).flatten()

212

213

214 @property

215 def neb_path_sampling(self):

216 '''Return the sampling density of images along the reaction path'''

217

218 # AJL Aug 2020

219 # Unclear if this should be the private or public equivalent of this variable?

220 # There isn't a clear guide as to what is used where - e.g. coords2 and _coords2 are

used above, as are neb/_neb↪→

221 return self._neb_path_sampling

222

223 @neb_path_sampling.setter

175



224 def neb_path_sampling(self, val):

225 '''Setter for NEB path sampling - will also then work out a value for

nimages'''↪→

226

227 self._neb_path_sampling = val

228

229 # It would make more sense to me if this property was a redirection of

self.theory.frag,↪→

230 # rather than using different calls for each sets of coords, but I presume there is

a reason this is absent?↪→

231 # print(self._coords)

232 # print(self.theory.frag.coords)

233 # print(self._coords2.reshape(self.theory.frag.coords.shape))

234 #

print(self.theory.frag.coords-self._coords2.reshape(self.theory.frag.coords.shape))↪→

235

236 from numpy.linalg import norm

237 # None of this needs storing - it can be broken up if you want the variables

to be more readable↪→

238 linear_interpolation_path_distance =

norm(self.theory.frag.coords-self._coords2.reshape(self.theory.frag.coords.shape))↪→

239 self.nimages =

int(linear_interpolation_path_distance/self.neb_path_sampling)↪→

240

241 @property

242 def nimages(self):

243 '''Return the number of images along the reaction trajectory'''

244

245 if not self.frag2 and self._neb != 'no':

246 if self._nimages == -1:

247 self.neb_path_sampling = 0.5 # A very conservative default value

248

249 return self._nimages

250

251 @nimages.setter

252 def nimages(self, val):

253 '''Set the number of images, as this value is hidden by default'''

254

255 self._nimages = val

256

257 @property

258 def active(self):

259 '''List of active centres (complementary to frozen)'''

260

261 return self._active

262
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263

264 @active.setter

265 def active(self, val):

266 '''Setter of active'''

267

268 from numpy import arange, ones

269

270 self._active = asarray(self.theory.frag.getRange(val))

271

272 # only if val is non-empty

273 if self._active.size:

274 self.theory.frag.frozen[:] = 0

275 mask = ones(self.theory.frag.frozen.shape, dtype=bool)

276 try:

277 mask[self._active] = False

278 except IndexError as e:

279 print(e)

280 print("\n >>> ERROR: it's possible theory.frag hasn't been

assigned.\n")↪→

281 self.theory.frag.frozen[mask] = -1

282 self._frozen = arange(self.theory.frag.natoms)[mask]

283

284

285 @property

286 def frozen(self):

287 '''List of frozen centres (complementary to active)'''

288

289 return self._frozen

290

291

292 @frozen.setter

293 def frozen(self, val):

294 '''Setter of frozen'''

295

296 from numpy import arange, in1d, ones

297

298 self._frozen = asarray(self.theory.frag.getRange(val))

299

300 # only if val is non-emtpy

301 if self._frozen.size:

302 self.theory.frag.frozen[:] = 0

303 self.theory.frag.frozen[self._frozen] = -1

304 mask = ones(self.theory.frag.frozen.shape, dtype=bool)

305 mask[self._frozen] = False

306 self._active = arange(self.theory.frag.natoms)[mask]

307
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308 @property

309 def frozen_partial(self):

310

311 return self._frozen_partial

312

313 @frozen_partial.setter

314 def frozen_partial(self, val):

315 '''val should be entered as a list of tuples e.g. frozen_partial = [(A,

ax),...], where A is either↪→

316 an integer corresponding to the atom number (e.g. 1) or a string of the atom

label (e.g. 'C'), and↪→

317 ax is a string containing the axes that should be constrained (e.g. 'xy')

for atom A'''↪→

318

319 from numpy import ones

320

321 for entry in val:

322 if isinstance(entry[0], str):

323 indices = [i for i, name in enumerate(self.theory.frag.names) if

name==bytes(entry[0].encode())]↪→

324 for index in indices:

325 val.append((index, entry[1]))

326 val.remove(entry)

327 val2 = [(A, ''.join(sorted(ax)).lower()) for A, ax in val]

328

329 self._frozen_partial = ones((self.theory.frag.natoms, 3), dtype=float)

330 for i in range(self.theory.frag.natoms):

331 for entry in val2:

332 if i == entry[0]:

333 if 'x' in entry[1]:

334 self._frozen_partial[i, 0] = 0

335 if 'y' in entry[1]:

336 self._frozen_partial[i, 1] = 0

337 if 'z' in entry[1]:

338 self._frozen_partial[i, 2] = 0

339

340

341 @property

342 def lbfgs_mem(self):

343 ''''''

344

345 return self._lbfgs_mem

346

347 @lbfgs_mem.setter

348 def lbfgs_mem(self, val):

349 ''''''
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350

351 self._lbfgs_mem = val

352

353

354 @property

355 def tolerance_e(self):

356 '''Convergence criterion for the energy change (a.u.)'''

357

358 if self._tolerance_e < 0:

359 return self.tolerance/450.0

360 else:

361 return self._tolerance_e

362

363 @tolerance_e.setter

364 def tolerance_e(self, val):

365 '''Setter of tolerance_e'''

366

367 self._tolerance_e = val

368

369

370 @property

371 def nframes(self):

372 '''Number of frames'''

373

374 if self._nframes > 100:

375 print(" >>> ERROR: nframes cannot be greater than 100")

376 quit(1)

377 return self._nframes

378

379 @nframes.setter

380 def nframes(self, val):

381 '''Setter of nframes'''

382

383 self._nframes = val

384

385

386 @property

387 def parameterise(self):

388 '''Parameterisation mode'''

389

390 return self.cell_only or len(self.parameters) > 0

391

392

393 @property

394 def parameters(self):

395 '''Variables to parameterise'''
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396

397 from numpy import array, copy

398

399 if self.cell_only:

400 self._task = 'cell_only'

401 if self.dim.upper().strip() in [ '2D' ]:

402 self.theory.dim = '2D'

403 if len(self._parameters) != 3:

404 self._parameters = array([0.0,0.0,0.0])

405 self.derivatives.resize(3, refcheck=False)

406 elif self.dim.upper().strip() in [ '3D' ]:

407 self.theory.dim = '3D'

408 if len(self._parameters) != 6:

409 self._parameters = array([0.0,0.0,0.0,0.0,0.0,0.0])

410 self.derivatives.resize(6, refcheck=False)

411 else:

412 print("\n ChemShell ERROR: we currently only support 2D and 3D

cell-only optimisation\n")↪→

413 exit(112)

414

415 return self._parameters

416

417

418 @parameters.setter

419 def parameters(self, val):

420 '''Setter of parameters'''

421

422 from ..utils import iterutils

423

424 # flatten

425 self._parameters = iterutils.getFlattenedIter(val, sort=False)

426

427

428 @property

429 def thermal(self):

430 '''Hessian and thermal corrections only'''

431

432 return self._thermal

433

434

435 @thermal.setter

436 def thermal(self, val):

437 '''Setter of thermal'''

438

439 self._thermal = bool(val)

440 if self._thermal:
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441 self.algorithm = 'thermal'

442

443

444 def run(self, dryrun=False, info_filename='_profile_opt.npz', **kwargs):

445 '''Run geometry optimization'''

446

447 from sys import stdout

448 from numpy import copy, savez_compressed, vstack

449 from ..base import run

450 from ..utils import strutils

451

452 # YL: cell-only optimisation

453 if self.cell_only:

454 # compute the strains

455 self.theory._strains = True

456 # save the original vectors: the strains being optimised are targeting

the original vectors!↪→

457 self._vectors0 = copy(self.theory.frag.cell.vectors)

458

459 # make sure gradients are always computed for optimisation

460 self.theory._gradients = True

461

462 # if path can be imported as module call run.runLib(), otherwise

run.runExec() (see <dict> run.run().runTypes)↪→

463 optimiser = strutils.importAsModule(_synons[self.optimiser].__name__)

464

465 # YL 26/01/2021: it's safe to cite the reference because callback funtions

are not invoked unless during an optimisation↪→

466 optimiser.callback._taskObj = self

467 optimiser.callback._dryrun = dryrun

468 optimiser.callback._info_filename = info_filename

469 optimiser.setParameters._taskObj = self

470

471 # YL 26/01/2021: handles of functions

472 self.callback = optimiser.callback

473 self.setParameters = optimiser.setParameters

474

475 # run

476 optimiser.run(self.theory, self.options, **kwargs)

477

478 # report final results

479 if self.cell_only:

480 _printFinalCell(self)

481

482 # convergence information: max_gradient, max_step, RMS_gradient, RMS_step
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483 self._convergences = vstack((self._convergences,

self.theory._result.convergences.T))↪→

484 # dump the information of convergence path to a compressed NumPy .npz file

485 # we do it every step in case the optimisation job fails

486 savez_compressed(info_filename,

487 energies = self._convergences[:,0],

488 max_gradient = self._convergences[:,1],

489 max_step = self._convergences[:,2],

490 RMS_gradient = self._convergences[:,3],

491 RMS_step = self._convergences[:,4]

492 )

493

494 print()

495 stdout.flush()

496

497 # switch off strains by default

498 self.theory._strains = False

499

500 return self

501

502

503 # aliases

504 Optimisation = Opt

505 Optimization = Opt

506 Optimise = Opt

507 Optimize = Opt

508

509

510 def _printFinalCell(_self):

511 '''Print the final results of cell-only optimisation'''

512

513 if _self.dim.upper().strip() in [ '2D' ]:

514 print("\n Optimised 2D cell vectors (a.u.):\n")

515 print(" X {:>15.9f} {:>15.9f}".format(*_self.theory.frag.cell.vectors[0]))

516 print(" Y {:>15.9f} {:>15.9f}".format(*_self.theory.frag.cell.vectors[1]))

517 print("\n Original 2D cell vectors (a.u.):\n")

518 print(" X {:>15.9f} {:>15.9f}".format(*_self._vectors0[0]))

519 print(" Y {:>15.9f} {:>15.9f}".format(*_self._vectors0[1]))

520 print("\n Strain tensor matrix applied to the original cell:\n")

521 print(" {:>15.9f} {:>15.9f}".format(*_self.theory.frag.cell.strains[0]))

522 print(" {:>15.9f} {:>15.9f}".format(*_self.theory.frag.cell.strains[1]))

523 elif _self.dim.upper().strip() in [ '3D' ]:

524 print("\n Optimised 3D cell vectors (a.u.):\n")

525 print(" X {:>15.9f} {:>15.9f}

{:>15.9f}".format(*_self.theory.frag.cell.vectors[0]))↪→
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526 print(" Y {:>15.9f} {:>15.9f}

{:>15.9f}".format(*_self.theory.frag.cell.vectors[1]))↪→

527 print(" Z {:>15.9f} {:>15.9f}

{:>15.9f}".format(*_self.theory.frag.cell.vectors[2]))↪→

528 print("\n Original 3D cell vectors (a.u.):\n")

529 print(" X {:>15.9f} {:>15.9f} {:>15.9f}".format(*_self._vectors0[0]))

530 print(" Y {:>15.9f} {:>15.9f} {:>15.9f}".format(*_self._vectors0[1]))

531 print(" Z {:>15.9f} {:>15.9f} {:>15.9f}".format(*_self._vectors0[2]))

532 print("\n Strain tensor matrix applied to the original cell:\n")

533 print(" {:>15.9f} {:>15.9f}

{:>15.9f}".format(*_self.theory.frag.cell.strains[0]))↪→

534 print(" {:>15.9f} {:>15.9f}

{:>15.9f}".format(*_self.theory.frag.cell.strains[1]))↪→

535 print(" {:>15.9f} {:>15.9f}

{:>15.9f}".format(*_self.theory.frag.cell.strains[2]))↪→

536 print("\n Final stress tensor matrix (GPa):\n")

537 print(" X Y Z")

538 print(" X {:>15.9f} {:>15.9f}

{:>15.9f}".format(*_self.theory.frag.cell.stress_tensor[0]))↪→

539 print(" Y {:>15.9f} {:>15.9f}

{:>15.9f}".format(*_self.theory.frag.cell.stress_tensor[1]))↪→

540 print(" Z {:>15.9f} {:>15.9f}

{:>15.9f}".format(*_self.theory.frag.cell.stress_tensor[2]))↪→
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Listing A.8. The amended dlf get gradient() Fortran subroutine
used to run constrained optimisations, which was used within the
chemsh/dl find/dlf routines.f90 file in Py-ChemShell. Corresponding
line numbers are also included. New additions to the subroutine are on lines 575,
643, 647, 668–669 and 682.

552 subroutine dlf_get_gradient(nvar, &

553 coords, &

554 energy, &

555 gradients, &

556 iimage, &

557 kiter, &

558 status)

559

560 use iso_c_binding

561 use dlf_parameter_module, only: rk

562 use ChemShellDLFModule , only: PyFrag, PyResult, PyCallback, PyOptions,

PySetParams, ierror↪→

563 use dlf_convergence , only: valg, valrmsg, vals, valrmss

564

565 implicit none

566 integer , intent(in) :: nvar

567 real(rk), target , intent(in) :: coords(nvar)

568 real(rk) , intent(out) :: energy

569 real(rk) , intent(out) :: gradients(nvar)

570 integer , intent(in) :: iimage

571 integer , intent(in) :: kiter

572 integer , intent(out) :: status

573

574 integer :: i, debug, natoms, iparameterise

575 real(rk), pointer :: onedimdbl(:), twodimdbl(:,:),

gradients_frozen(:,:)↪→

576 real(rk), pointer :: temp(:)

577 integer(kind=8), pointer :: onedimint(:)

578

579 real :: start_time, end_time

580

581 logical :: parameterise

582

583 status = 0

584

585 call PyOptions%get("debug", debug)

586

587 call PyOptions%get("parameterise", iparameterise)

588 parameterise = iparameterise.eq.1
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589

590 ! atomic mode

591 if(.not.parameterise) then

592

593 call PyFrag%get('npts' , natoms)

594

595 allocate(onedimint(natoms))

596 call PyFrag%get("znums", onedimint)

597

598 if(debug > 3) then

599 allocate(twodimdbl(3,natoms))

600 call PyFrag%get('xyz', twodimdbl)

601 write(*,'(/" DL_FIND original coords (a.u.):"/)')

602 write(*,'(3X,"index",1X,"Z-number",12X,"X",15X,"Y",15X,"Z"/)')

603 do i = 1, natoms

604 write(*,'(1X,I6,3X,I6,3X,3F16.9)') i-1, onedimint(i), twodimdbl(:,i)

605 enddo

606 call flush(6)

607 deallocate(twodimdbl)

608 endif

609

610 ! update coords

611 call PyFrag%set('xyz', reshape(coords, (/3,natoms/)))

612

613 ! CALLBACK

614 if(debug > 0) then

615 write(*,'(/" >>> DL_FIND module is calling callback function for

gradients evaluation..."/)')↪→

616 endif

617

618 call cpu_time(start_time)

619

620 ! energy of the previous step

621 allocate(onedimdbl(1))

622 call PyResult%get('energy', onedimdbl)

623 energy = onedimdbl(1)

624 ! save the energy, max grad, max step, RMS grad, RMS step

625 call PyResult%set('convergences', (/energy,valg,vals,valrmsg,valrmss/))

626

627 ! do calculations on the Python side

628 ierror = PyCallback()

629 call flush(5)

630 call flush(6)

631 if(ierror.ne.0) then

632 ! print *, ">>> ERROR: DL_FIND failed to run callback function.

Exiting..."↪→
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633 call exit(ierror)

634 endif

635 call cpu_time(end_time)

636 if (debug > 4) then

637 print *, ">>> DL_FIND: PyCallback() costs ", end_time - start_time, "

seconds"↪→

638 endif

639 ! END OF CALLBACK

640

641 ! note the shape!

642 allocate(twodimdbl(3,natoms))

643 allocate(gradients_frozen(3,natoms))

644

645 call PyResult%get('energy' , onedimdbl)

646 call PyResult%get('gradients', twodimdbl)

647 call PyOptions%get('frozen_partial', gradients_frozen)

648

649 ! update energy and gradients

650 ! note: energy in Python is an array!

651 energy = onedimdbl(1)

652

653 ! can use c_f_pointer to reshape without copying, too

654 ! call c_f_pointer(c_loc(twodimdbl), onedimdbl, [nvar])

655 ! gradients = onedimdbl(:)

656

657 if(debug > 3) then

658 write(*,'(/" DL_FIND energy (a.u.) of updated coordinates:"/)')

659 write(*,'(4XF16.9)') energy

660 endif

661

662 if(debug > 3) then

663 write(*,'(/" DL_FIND gradients (a.u.) of updated coordinates:"/)')

664 write(*,'(3X,"index",1X,"Z-number",12X,"X",15X,"Y",15X,"Z"/)')

665 endif

666

667 do i = 1, natoms

668 gradients(i*3-2:i*3) = twodimdbl(:,i)*gradients_frozen(:,i)

669 write(*,*) i, gradients(i*3-2:i*3)

670 if(debug > 3) then

671 ! atomic numbers

672 write(*,'(1X,I6,3X,I6,3X,3F16.9)') i-1, onedimint(i),

gradients(i*3-2:i*3)↪→

673 endif

674 enddo

675

676 if(debug > 3) then

186



677 write(*,'(//)')

678 endif

679 call flush(6)

680

681 deallocate(onedimdbl, twodimdbl)

682 deallocate(onedimint, gradients_frozen)

683

684 ! parameterisation mode

685 else

686

687 allocate(onedimdbl(nvar))

688 call PyOptions%get('parameters', onedimdbl)

689 write(*,'(/" DL_FIND original parameters:"/)')

690 do i = 1, nvar

691 write(*,'(3X,I6,F20.12)') i-1, onedimdbl(i)

692 enddo

693

694 ! update parameters

695 call PyOptions%set('parameters', coords)

696 call flush(6)

697 if(PySetParams() /= 0) then

698 write(*, '(A)') ">>> ChemShell ERROR: DL_FIND failed to run

PySetParams(). Exiting..."↪→

699 status = 1

700 endif

701

702 ! CALLBACK

703 write(*,'(/" >>> DL_FIND is running the callback function for derivatives

evaluation..."/)')↪→

704 ! do calculations on the Python side

705

706 call cpu_time(start_time)

707 call flush(6)

708

709 ! run callback function to calculate the gradients

710 if(PyCallback() /= 0) then

711 print *, ">>> ERROR: DL_FIND failed to run callback function.

Exiting..."↪→

712 status = 1

713 stop

714 endif

715

716 call cpu_time(end_time)

717 if(debug > 3) then

718 write (*, '(1X,A,F12.3,1X,A)') ">>> DL_FIND: CPU time for the callback

function is", end_time-start_time, "s"↪→
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719 endif

720 call PyOptions%get('derivatives', onedimdbl)

721 gradients(:) = onedimdbl(:)

722

723 if(debug > 3) then

724 write(*,'(/" DL_FIND derivatives of updated parameters:"/)')

725 write(*,'(3X,"index",7X,"derivative"/)')

726 do i = 1, nvar

727 write(*,'(1X,I6,3X,F16.9)') i-1, onedimdbl(i)

728 enddo

729 write(*,'(//)')

730 call flush(6)

731 endif

732 deallocate(onedimdbl)

733

734 ! note: energy in Python is an array!

735 allocate(onedimdbl(1))

736 call PyResult%get('energy', onedimdbl)

737 energy = onedimdbl(1)

738

739 deallocate(onedimdbl)

740 ! END OF CALLBACK

741

742 endif

743

744 endsubroutine dlf_get_gradient
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Appendix B

Additional Results

B.1 Oxygen-Terminated Diamond (110) Surface Phases

Table B.1. Table showing all the distinct identified optimised oxygenated diamond
(110) surfaces, with their orthographic ball-and-stick visualisations of the first three
carbon layers shown from the [001] and [110] directions; their adsorption energies
per oxygen adsorbate, Eads, and per surface area, Eads/A; and their oxygen coverages.
Carbon, oxygen and hydrogen atoms are shown in grey, red and white respectively,
and the unit cell outline is shown as dashed black lines.

Surface Visualisation Direction Eads Eads/A Coverage

Phase [001] [110] (eV atom−1) (eV Å−2) (atoms nm−2)

p(1× 1)

Ether3

1.77 0.20 11.1

p(2× 1)

Ether3

1.77 0.10 5.5

p(1× 2)

Ether3

1.79 0.10 5.5
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p(2× 2)

Ether3

1.78 0.05 2.8

p(1× 1)

Ether5

1.52 0.17 11.1

p(1× 2)

Ether5

1.56 0.09 5.5

p(2× 2)

Ether5

1.68 0.05 2.8

p(1× 1)

Peroxide
1.42 0.31 22.2

p(2× 1)

Peroxide
2.04 0.23 11.1

p(1× 2)

Peroxide
1.14 0.13 11.1

p(2× 2)

Peroxide
1.78 0.10 5.5

p(2× 1)

Keto–

Ether5

3.03 0.34 5.5
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p(2× 2)

Keto–

Ether5

2.25 0.25 2.8

p(1× 1)

OHsingle

0.52 0.06 11.1

p(2× 1)

OHsingle

0.46 0.03 5.5

p(1× 2)

OHsingle

0.62 0.03 5.5

p(2× 2)

OHsingle

0.47 0.01 2.8

p(2× 1)

Ether5–OH
1.26 0.14 11.1

p(1× 1)

OH–H
0.52 0.06 11.1

p(2× 1)

OH–H
0.46 0.03 5.5

p(1× 2)

OH–H
0.62 0.03 5.5
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p(2× 2)

OH–H
0.47 0.01 2.8

Figure B.1. Free energy plot showing the relationship between ∆Gads and ∆µO for
all of the identified oxygenated (110) surface phases. All (∆µO,∆Gads) coordinates
within the convex hull of ∆Gads are shaded, with the dashed black lines showing
the boundaries between the thermodynamically most stable phases.
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B.2 Cluster Models for Core-Level Binding Energy Sim-

ulations

(a) (b)

(c) (d)

(e) (f)

Figure B.2. Orthographic ball-and-stick visualisations of the cluster models of radii
(a–b) 9 a0, (c–d) 12 a0, and (e–f) 15 a0 of the p(2×1)Keto-Ether5 phase, shown from
two different perspectives (the first column is in the [001] direction as a ‘front-on’
view, and the third column is in the [110] direction as a ‘top-down’ view). Carbon,
oxygen and hydrogen atoms are shown in grey, red and white respectively.
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(a) Periodic (b) Cluster of radius 9 a0

(c) Cluster of radius 12 a0 (d) Cluster of radius 15 a0

Figure B.3. A comparison of the projected density of states for the periodic and
cluster models of various radii of the p(2× 1)Keto-Ether5 phase. The black dashed
vertical line indicates the position of the highest occupied molecular orbital.
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B.3 Optimised Structures of Supported Gold Nanoclus-

ters

Method
Global

Minimum

Local

Minimum 1

Local

Minimum 2

Au6

SchNetinitial
+MBD@rsSCS

PBE+MBD@rsSCS

SchNetadapt3
+MBD@rsSCS

auorg+MBD@rsSCS

au full+MBD@rsSCS

Au15

195



SchNetinitial
+MBD@rsSCS

PBE+MBD@rsSCS

SchNetadapt3
+MBD@rsSCS

auorg+MBD@rsSCS

au full+MBD@rsSCS

Au40

SchNetinitial
+MBD@rsSCS
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PBE+MBD@rsSCS

SchNetadapt3
+MBD@rsSCS

auorg+MBD@rsSCS

au full+MBD@rsSCS

Table B.2. Orthographic visualisations of Au6, Au15 and Au40 NCs optimised us-
ing PBE+MBD@rsSCS and SchNetadapt3

+MBD@rsSCS. Initial structures are the global
minima and two randomly-chosen local minima from basin-hopping runs conducted
using SchNetinitial

+MBD@rsSCS for the first adaptive sampling run. Structures are
shown from the [110] direction as a top view, and gold and carbon atoms are shown
in gold and grey respectively.
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[68] Hofmann, O. T., Zojer, E., Hörmann, L., Jeindl, A. & Maurer, R. J. First-

principles calculations of hybrid inorganic–organic interfaces: from state-of-

the-art to best practice. Phys. Chem. Chem. Phys. 23, 8132–8180 (2021).

205

https://doi.org/10.1016/j.electacta.2021.138278
https://doi.org/10.1016/j.electacta.2021.138278
https://doi.org/10.1021/ja4075387
https://doi.org/10.1021/ja4075387
https://doi.org/10.1039/C3CP52756E
https://doi.org/10.1016/j.susc.2007.04.208
https://doi.org/10.1016/j.susc.2007.04.208
https://doi.org/10.1063/1.1480858
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1016/j.coelec.2021.100749


URL https://doi.org/10.1039/D0CP06605B. (pages: 5, 21, 22, 23, 30, 31,

57, 70, 71, 76, 90, 91, and 124)

[69] Maurer, R. J. et al. Advances in Density-Functional Calculations for Materials

Modeling. Annu. Rev. Mater. Sci. 49, 1–30 (2019). URL https://doi.org/

10.1146/annurev-matsci-070218-010143. (pages: 5, 21, 22, 30, 57, 71, 90,

91, 93, 96, and 139)

[70] Blum, V. et al. Ab initio molecular simulations with numeric atom-centered

orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009). URL https://

doi.org/10.1016/j.cpc.2009.06.022. (pages: 5, 24, 40, 48, 51, 73, 76, 77,

127, and 128)

[71] Clark, S. et al. First principles methods using CASTEP. Z. Kristallogr. 220,

567–570 (2005). URL https://doi.org/10.1524/zkri.220.5.567.65075.

(pages: 5, 50)

[72] Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid imple-

mentation of the projector augmented wave method. Phys. Rev. B 71, 035109

(2005). URL https://doi.org/10.1103/PhysRevB.71.035109. (pages: 5,

23, and 161)

[73] Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space

implementation of the projector augmented-wave method. J. Phys. Condens.

Matter 22, 253202 (2010). URL https://doi.org/10.1088/0953-8984/22/

25/253202. (pages: 5, 23, and 161)

[74] Ganesh Balasubramani, S. et al. TURBOMOLE: Modular program suite for ab

initio quantum-chemical and condensed-matter simulations. J. Chem. Phys.

152, 184107 (2020). URL https://doi.org/10.1063/5.0004635. (page: 5)

[75] Kühne, T. et al. CP2K: An electronic structure and molecular dynamics

software package - Quickstep: Efficient and accurate electronic structure cal-

culations. J. Chem. Phys. 152, 194103 (2020). URL https://doi.org/10.

1063/5.0007045. (page: 5)

[76] Guest, M. F. et al. The GAMESS-UK electronic structure package: algo-

rithms, developments and applications. Mol. Phys. 103, 719–747 (2005). URL

https://doi.org/10.1080/00268970512331340592. (page: 5)

[77] Valiev, M. et al. NWChem: A comprehensive and scalable open-source solu-

tion for large scale molecular simulations. Comput. Phys. Commun. 181,

206

https://doi.org/10.1039/D0CP06605B
https://doi.org/10.1146/annurev-matsci-070218-010143
https://doi.org/10.1146/annurev-matsci-070218-010143
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1524/zkri.220.5.567.65075
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1063/5.0004635
https://doi.org/10.1063/5.0007045
https://doi.org/10.1063/5.0007045
https://doi.org/10.1080/00268970512331340592


1477–1489 (2010). URL https://doi.org/10.1016/j.cpc.2010.04.018.

(page: 5)

[78] Elstner, M. et al. Self-consistent-charge density-functional tight-binding

method for simulations of complex materials properties. Phys. Rev. B

58, 7260–7268 (1998). URL https://doi.org/10.1103/PhysRevB.58.7260.

(pages: 5, 28, 30, 40, 125, 127, and 137)

[79] Hourahine, B. et al. DFTB+, a software package for efficient approximate

density functional theory based atomistic simulations. J. Chem. Phys. 152,

124101 (2020). URL https://doi.org/10.1063/1.5143190. (pages: 5, 28,

29, 30, 40, 125, and 127)

[80] Grimme, S., Bannwarth, C. & Shushkov, P. A Robust and Accurate Tight-

Binding Quantum Chemical Method for Structures, Vibrational Frequencies,

and Noncovalent Interactions of Large Molecular Systems Parametrized for All

spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 13, 1989–2009

(2017). URL https://doi.org/10.1021/acs.jctc.7b00118. (page: 5)

[81] Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—An Accurate

and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chem-

ical Method with Multipole Electrostatics and Density-Dependent Disper-

sion Contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019). URL

https://doi.org/10.1021/acs.jctc.8b01176. (page: 5)

[82] Li, Y. & Qi, Y. Transferable Self-Consistent Charge Density Functional Tight-

Binding Parameters for Li–Metal and Li-Ions in Inorganic Compounds and

Organic Solvents. J. Phys. Chem. C 20, 10755–10764 (2018). URL https:

//doi.org/10.1021/acs.jpcc.8b01839. (page: 5)
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[92] Pihlajamäki, A. et al. Monte Carlo Simulations of Au38(SCH3)24 Nanocluster

Using Distance–Based Machine Learning Methods. J. Phys. Chem. A 124,

4827–4836 (2020). URL https://doi.org/10.1021/acs.jpca.0c01512.

(page: 6)

[93] Vilhelmsen, L. B. & Hammer, B. A genetic algorithm for first principles

global structure optimization of supported nano structures. J. Chem. Phys.

141, 044711 (2014). URL https://doi.org/10.1063/1.4886337. (page: 6)

208

https://doi.org/10.1021/ct900422c
https://doi.org/10.1021/ct900422c
https://doi.org/10.1002/jcc.24046
https://doi.org/10.1002/jcc.24046
https://doi.org/10.1016/j.coelec.2019.11.003
https://doi.org/10.1016/j.coelec.2019.11.003
https://doi.org/10.1021/ct800531s
https://doi.org/10.1021/ct2005616
https://doi.org/10.1063/1.5048290
https://doi.org/10.1063/1.5048290
https://doi.org/10.1021/acs.jctc.6b01119
https://doi.org/10.1021/acs.jpca.0c01512
https://doi.org/10.1063/1.4886337


[94] Wolf, M. D. & Landman, U. Genetic Algorithms for Structural Cluster

Optimization. J. Phys. Chem. A 102, 6129–6137 (1988). URL https:

//doi.org/10.1021/jp9814597. (page: 6)

[95] Shao, G. et al. An improved genetic algorithm for structural optimization of

Au–Ag bimetallic nanoparticles. Appl. Soft Comput. 73, 39–49 (2018). URL

https://doi.org/10.1016/j.asoc.2018.08.019. (page: 6)

[96] Logsdail, A., Paz-Borbón, L. O. & Johnston, R. L. Structures and Stabilities of

Platinum–Gold Nanoclusters. J. Comput. Theor. Nanosci. 6, 857–866 (2009).

URL https://doi.org/10.1166/jctn.2009.1118. (page: 6)

[97] Sørensen, K. H., Jørgensen, M. S., Bruix, A. & Hammer, B. Accelerating

atomic structure search with cluster regularization. J. Chem. Phys. 28, 241734

(2018). URL https://doi.org/10.1063/1.5023671. (page: 6)

[98] Wales, D. J. & Doye, J. P. K. Global Optimization by Basin-Hopping and

the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110

Atoms. J. Phys. Chem. A 101, 5111–5116 (1997). URL https://doi.org/

10.1021/jp970984n. (pages: 6, 41, 75, 112, and 160)

[99] Doye, J. P. K. & Wales, D. J. Thermodynamics of Global Optimization.

Phys. Rev. Lett. 80, 1357–1360 (1998). URL https://doi.org/10.1103/

PhysRevLett.80.1357. (pages: 6, 41, 75, 112, and 160)

[100] Goedecker, S. Minima Hopping: An Efficient Search Method for the Global

Minimum of the Potential Energy Surface of Complex Molecular Systems. J.

Chem. Phys. 120, 9911–9917 (2004). URL https://doi.org/10.1063/1.

1724816. (page: 6)

[101] Ahmad, Z., Xie, T., Maheshwari, C., Grossman, J. C. & Viswanathan,

V. Machine Learning Enabled Computational Screening of Inorganic Solid

Electrolytes for Suppression of Dendrite Formation in Lithium Metal An-

odes. ACS Cent. Sci. 4, 996–1006 (2018). URL https://doi.org/10.1021/

acscentsci.8b00229. (page: 6)

[102] Westermayr, J., Gastegger, M., Schütt, K. T. & Maurer, R. J. Perspective
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[222] Klimeš, J. & Michaelides, A. Perspective: Advances and challenges in treating

van der Waals dispersion forces in density functional theory. J. Chem. Phys.

137, 120901 (2012). URL https://doi.org/10.1063/1.4754130. (pages: 21,

24)

[223] Rohlfing, M., Temirov, R. & Tautz, F. S. Adsorption structure and scan-

ning tunneling data of a prototype organic-inorganic interface: PTCDA on

222

https://doi.org/10.1002/adfm.200400049
https://doi.org/10.1002/adfm.200400049
https://doi.org/10.1002/andp.19273892002
http://doi.org/10.1017/S0305004100021162
http://doi.org/10.1017/S0305004100021162
https://doi.org/10.1007/BF02980631
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1063/1.1390175
https://doi.org/10.1016/j.progsurf.2016.05.001
http://doi.org/10.1039/C3RA47187J
https://doi.org/10.1063/1.4754130


Ag(111). Phys. Rev. B 76, 115421 (2007). URL http://doi.org/10.1103/

PhysRevB.76.115421. (page: 21)

[224] Romaner, K., Nabok, D., Puschnig, P., Zojer, E. & Ambrosch-Draxl, C. The-

oretical study of PTCDA adsorbed on the coinage metal surfaces, Ag(111),

Au(111) and Cu(111). New J. Phys. 11, 053010 (2009). URL http:

//doi.org/10.1088/1367-2630/11/5/053010. (page: 21)

[225] Saranya, G., Nair, S., Natarajan, V. & Senthilkumar, K. Adsorption of perflu-

oropentacene on aluminum (1 0 0) surface: Structural and electronic proper-

ties from first principle study. Comput. Mater. Sci. 89, 216–223 (2014). URL

http://doi.org/10.1016/j.commatsci.2014.03.049. (page: 21)

[226] Mart́ınez, J. I., Abad, E., Flores, F. & Ortega, J. Simulating the

organic-molecule/metal interface TCNQ/Au(111). Phys. Status Solidi B

248, 2044–2049 (2011). URL http://doi.org/10.1002/pssb.201147136.

(page: 21)

[227] Liu, W. et al. Benzene adsorbed on metals: Concerted effect of covalency

and van der Waals bonding. Phys. Rev. B 86, 245405 (2012). URL http:

//doi.org/10.1103/PhysRevB.86.245405. (page: 21)

[228] Riley, K. E., Brothers, E. N., Ayers, K. B. & Merz, K. M. Accurate Atomic

and Molecular Calculations without Gradient Corrections: Scaled SVWNV

Density Functional. J. Chem. Theory Comput. 1, 546–553 (2005). URL http:

//doi.org/10.1021/ct050007c. (page: 21)

[229] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approxi-

mation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). URL https:

//doi.org/10.1103/physrevlett.77.3865. (pages: iv, 22, 40, 48, 50, 57, 58,

76, 86, 91, 93, 96, 98, 99, 100, 102, 104, 105, 108, 127, 128, 155, 158, and 159)

[230] Van Noorden, R., Maher, B. & Nuzzo, R. The top 100 papers. Nature 514,

550–553 (2014). URL https://doi.org/10.1038/514550a. (page: 22)

[231] Zhang, Y. & Yang, W. Comment on “Generalized Gradient Approximation

Made Simple”. Phys. Rev. Lett. 80, 890 (1998). URL https://doi.org/10.

1103/PhysRevLett.80.890. (pages: 22, 48, 57, 58, 76, 93, 96, 98, 99, 100,

102, 104, 105, and 106)

[232] Perdew, J. P. et al. Restoring the Density-Gradient Expansion for Exchange

in Solids and Surfaces. Phys. Rev. Lett. 100, 136406 (2008). URL https:

223

http://doi.org/10.1103/PhysRevB.76.115421
http://doi.org/10.1103/PhysRevB.76.115421
http://doi.org/10.1088/1367-2630/11/5/053010
http://doi.org/10.1088/1367-2630/11/5/053010
http://doi.org/10.1016/j.commatsci.2014.03.049
http://doi.org/10.1002/pssb.201147136
http://doi.org/10.1103/PhysRevB.86.245405
http://doi.org/10.1103/PhysRevB.86.245405
http://doi.org/10.1021/ct050007c
http://doi.org/10.1021/ct050007c
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1038/514550a
https://doi.org/10.1103/PhysRevLett.80.890
https://doi.org/10.1103/PhysRevLett.80.890
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406


//doi.org/10.1103/PhysRevLett.100.136406. (pages: 22, 76, 94, 95, 96,

98, 99, 100, 102, 104, and 105)

[233] Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics

within density-functional theory using revised Perdew-Burke-Ernzerhof func-

tionals. Phys. Rev. B 59, 7413–7421 (1999). URL https://doi.org/10.

1103/PhysRevB.59.7413. (pages: 22, 48, 57, 58, 76, 93, 94, 95, 96, 97, 98, 99,

100, 101, 102, 104, 105, and 158)

[234] Tao, J., Perdew, J. P., Staroverov, V. N. & Scuseria, G. E. Climbing the Den-

sity Functional Ladder: Nonempirical Meta–Generalized Gradient Approxi-

mation Designed for Molecules and Solids. Phys. Rev. Lett. 91, 14601 (2003).

URL https://doi.org/10.1103/PhysRevLett.91.146401. (pages: 22, 48,

57, 58, 76, 93, 94, 96, 97, 98, 100, 101, 104, 105, and 158)

[235] Zhao, Y. & Truhlar, D. G. A new local density functional for main-

group thermochemistry, transition metal bonding, thermochemical kinetics,

and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006). URL

https://doi.org/10.1063/1.2370993. (pages: 22, 76, 94, 96, 104, 105,

and 106)

[236] Constantin, L. A., Fabiano, E. & Della Sala, F. Semilocal dynamical cor-

relation with increased localization. Phys. Rev. B 86, 035130 (2012). URL

https://doi.org/10.1103/PhysRevB.86.035130. (pages: 22, 76, 94, 96, 98,

100, 101, 104, and 105)

[237] Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly Constrained and Ap-

propriately Normed Semilocal Density Functional. Phys. Rev. Lett. 115,

036402 (2015). URL https://doi.org/10.1103/PhysRevLett.115.036402.

(pages: 22, 76, 77, 94, 96, 97, 98, 103, and 104)

[238] Sun, J., Perdew, J. P. & Ruzsinszky, A. Semilocal density functional obeying

a strongly tightened bound for exchange. Proc. Natl. Acad. Sci. 112, 685–689

(2015). URL https://doi.org/10.1073/pnas.1423145112. (pages: 22, 94)

[239] Perdew, J. P., Ruzsinszky, A., Sun, J. & Burke, K. Gedanken densities and

exact constraints in density functional theory. J. Chem. Phys. 140, 18A533

(2014). URL https://doi.org/10.1063/1.4870763. (pages: 22, 94)

[240] Lieb, E. H. & Oxford, S. Improved lower bound on the indirect Coulomb

energy. Int. J. Quantum Chem. 19, 427–439 (1981). URL https://doi.org/

10.1002/qua.560190306. (pages: 22, 94)

224

https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevLett.100.136406
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1103/PhysRevLett.91.146401
https://doi.org/10.1063/1.2370993
https://doi.org/10.1103/PhysRevB.86.035130
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1073/pnas.1423145112
https://doi.org/10.1063/1.4870763
https://doi.org/10.1002/qua.560190306
https://doi.org/10.1002/qua.560190306


[241] Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on

a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

URL https://doi.org/10.1063/1.1564060. (pages: 22, 23, 77, 95, 96, 98,

and 108)

[242] Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence

of the exchange screening parameter on the performance of screened hybrid

functionals. J. Chem. Phys. 125, 224106 (2006). URL https://doi.org/10.

1063/1.2404663. (pages: 22, 23, 77, 95, 96, 98, 104, 105, 106, and 108)

[243] Adamo, C. & Barone, V. Toward reliable density functional methods without

adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6170

(1999). URL https://doi.org/10.1063/1.478522. (pages: 22, 23, 77, 95,

96, 98, 104, 105, and 106)

[244] del Campo, J. M., Gázquez, J. L., Trickey, S. B. & Vela, A. Non-empirical

improvement of PBE and its hybrid PBE0 for general description of molecular

properties. J. Chem. Phys. 136, 104108 (2012). URL https://doi.org/10.

1063/1.3691197. (pages: 22, 23, 77, 93, 95, 96, 97, 98, 104, and 105)

[245] Mosquera, M. A., Borca, C. H., Ratner, M. A. & Schatz, G. C. Con-

nection between Hybrid Functionals and Importance of the Local Density

Approximation. J. Phys. Chem. A 120, 1605–1612 (2016). URL https:

//doi.org/10.1021/acs.jpca.5b10864. (page: 22)

[246] Hui, K. & Chai, J.-D. SCAN-based hybrid and double-hybrid density func-

tionals from models without fitted parameters. J. Chem. Phys. 144, 044114

(2016). URL https://doi.org/10.1063/1.4940734. (page: 22)

[247] Balabin, R. M. Communications: Intramolecular basis set superposition error

as a measure of basis set incompleteness: Can one reach the basis set limit

without extrapolation? J. Chem. Phys. 132, 211103 (2010). URL https:

//doi.org/10.1063/1.3430647. (page: 23)

[248] Morgante, P. & Peverati, R. The devil in the details: A tutorial review on

some undervalued aspects of density functional theory calculations. Int. J.

Quantum Chem. 120, e26332 (2020). URL https://doi.org/10.1002/qua.

26332. (page: 23)

[249] van Duijneveldt, F. B., van Duijneveldt-van de Rijdt, J. G. C. M. & van

Lenthe, J. H. State of the Art in Counterpoise Theory. Chem. Rev. 94,

1873–1885 (1994). URL https://doi.org/10.1021/cr00031a007. (page: 23)

225

https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.2404663
https://doi.org/10.1063/1.2404663
https://doi.org/10.1063/1.478522
https://doi.org/10.1063/1.3691197
https://doi.org/10.1063/1.3691197
https://doi.org/10.1021/acs.jpca.5b10864
https://doi.org/10.1021/acs.jpca.5b10864
https://doi.org/10.1063/1.4940734
https://doi.org/10.1063/1.3430647
https://doi.org/10.1063/1.3430647
https://doi.org/10.1002/qua.26332
https://doi.org/10.1002/qua.26332
https://doi.org/10.1021/cr00031a007


[250] Hellmann, H. A New Approximation Method in the Problem of Many Elec-

trons. J. Chem. Phys. 3, 61 (1935). URL http://doi.org/10.1063/1.

1749559. (page: 23)

[251] Pickett, W. E. Pseudopotential methods in condensed matter applications.

Comput. Phys. Rep. 9, 115–197 (1989). URL http://doi.org/10.1016/

0167-7977(89)90002-6. (page: 23)
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[462] Stöhr, M., Michelitsch, G. S., Tully, J. C., Reuter, K. & Maurer, R. J. Commu-

nication: Charge-population based dispersion interactions for molecules and

materials. J. Chem. Phys. 144, 151101 (2016). URL https://doi.org/10.

1063/1.4947214. (page: 125)

[463] McNellis, E. R., Meyer, J. & Reuter, K. Azobenzene at coinage metal surfaces:

Role of dispersive van der Waals interactions. Phys. Rev. B 80, 205414 (2009).

URL https://doi.org/10.1103/PhysRevB.80.205414. (page: 125)

[464] Tarrat, N. et al. Global optimization of neutral and charged 20- and 55-atom

silver and gold clusters at the DFTB level. Comput. Theor. Chem. 1107,

102–114 (2017). URL https://doi.org/10.1016/j.comptc.2017.01.022.

(page: 125)

[465] Tarrat, N., Rapacioli, M. & Spiegelman, F. Au147 nanoparticles: Ordered or

amorphous? J. Chem. Phys. 148, 204308 (2018). URL https://doi.org/

10.1063/1.5021785. (pages: xv, 125, 131, and 152)
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