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Abstract Accurate inference of who infected whom in an infectious disease outbreak is critical16

for the delivery of effective infection prevention and control. The increased resolution of17

pathogen whole-genome sequencing has significantly improved our ability to infer transmission18

events. Despite this, transmission inference often remains limited by the lack of genomic19

variation between the source case and infected contacts. Although within-host genetic diversity is20

common among a wide variety of pathogens, conventional whole-genome sequencing21

phylogenetic approaches exclusively use consensus sequences, which consider only the most22

prevalent nucleotide at each position and therefore fail to capture low frequency variation within23

samples. We hypothesized that including within-sample variation in a phylogenetic model would24

help to identify who infected whom in instances in which this was previously impossible. Using25

whole-genome sequences from SARS-CoV-2 multi-institutional outbreaks as an example, we26

show how within-sample diversity is partially maintained among repeated serial samples from27

the same host, it can transmitted between those cases with known epidemiological links, and28

how this improves phylogenetic inference and our understanding of who infected whom. Our29

technique is applicable to other infectious diseases and has immediate clinical utility in infection30

prevention and control.31

32

Introduction33

Understandingwho infects whom in an infectious disease outbreak is a key component of infection34

prevention and control (Didelot et al., 2012). The use of whole-genome sequencing allows for35

detailed investigation of disease outbreaks, but the limited genetic diversity of many pathogens36

often hinders our understanding of transmission events (Campbell et al., 2018). As a consequence37

of the limited diversity, many index case and contact pairs will share identical genotypes, making38
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it difficult to ascertain who infected whom.39

Within-sample genetic diversity is common among awide variety of pathogens (Mongkolrattan-40

othai et al., 2011; Lieberman et al., 2016; Dinis et al., 2016; Leitner, 2019; Popa et al., 2020). This41

diversity may be generated de novo during infection, by a single transmission event of a diverse42

inoculum or by independent transmission events from multiple sources (Worby et al., 2014). The43

maintenance and dynamic of within-host diversity is then a product of natural selection, genetic44

drift, and fluctuating population size (Didelot et al., 2012). The transmission of within-host varia-45

tion between individuals is also favored as a large inoculum exposure is more likely to give rise to46

infection (Murphy et al., 1984; Han et al., 2019; Lee et al., 2022; Sender et al., 2021; Spinelli et al.,47

2021; Trunfio et al., 2021). The amount of within-sample diversity transmitted from index-case to48

contact is determined by the bottleneck size (Zwart and Elena, 2015), with stringent bottlenecks49

limiting the number of genotypes transmitted from the host to the recipient, and wide bottlenecks50

allowing for the transmission of higher levels of genetic diversity (Worby et al., 2014).51

Phylogenetic analysis provide information regarding the structure of the genetic diversity among52

pathogen isolates. Moreover, pathogen phylogenetic trees can be used as input for many down-53

stream analysis, including inference of transmission events, population size dynamics or estima-54

tion of parameters of epidemiological models (Didelot et al., 2018). Most genomic and phyloge-55

netic workflows involve either genome assembly or alignment of sequencing reads to a reference56

genome. In both cases, conventionally the resulting alignment exclusively represents the most57

common nucleotide at each position. This is often referred to as the consensus sequence. Al-58

though genome assemblers may output contigs (combined overlapping reads) representing low59

frequency haplotypes, only themajority contig is kept in the final sequence. In amapping approach,60

a frequency threshold for the major variant is usually pre-determined, under which a position is61

considered ambiguous. The lack of genetic variation between temporally proximate samples and62

the slow mutation rate of many pathogens results in direct transmission events sharing exact se-63

quences between the hosts when using the consensus sequence approach. For instance, the sub-64

stitution rate of SARS-CoV-2 has been inferred to be around 2 mutations per genome per month65

(Harvey et al., 2021). Given its infectious period of 6 days (Byrne et al., 2020), most consensus66

sequences in a small-scale outbreak will show no variation between them. This lack of resolution67

and poor phylogenetic signal complicate phylogenetic inference, limiting the downstream analysis68

and conclusions that can be extracted from the phylogenetic tree. Previous work has shown the69

advantages of using within-host diversity to infer transmission events compared to using consen-70

sus sequences (Wymant et al., 2018; De Maio et al., 2018). Aside from transmission inference, the71

use of the within-host pathogen genetic data directly within phylogenetic inference will improve72

any downstream analysis using a phylogenetic tree as starting point.73

We hypothesize that the failure of consensus sequence approaches to capture within-sample74

variation arbitrarily excludes meaningful data and limits pathogen phylogenetic and transmission75

inference, and that including within-sample diversity in a phylogenetic model would significantly76

increase the evolutionary and temporal signal and thereby improve our ability to infer infectious77

disease phylogenies and transmission events.78

We tested our hypothesis onmulti-institutional SARS-CoV-2 outbreaks across London hospitals79

thatwere part of the COVID-19Genomics UK (COG-UK) consortia (COVID-19Genomics UK (COG-UK),80

2020). Technical replicates, repeated longitudinal sampling from the same patient, and epidemio-81

logical data allowed us to evaluate the presence and stability of within-sample diversity within the82

host and in independently determined transmission chains. We also evaluated the use of within-83

sample diversity in phylogenetic analysis by conducting outbreak and phylogenetic simulations84

of sequencing data using a phylogenetic model that accounts for the presence and transmission85

of within-sample variation. We show the effects on phylogenetic inference of using consensus se-86

quences in the presence of within-sample diversity, and propose that existing phylogeneticmodels87

can leverage the additional diversity given by the within-sample variation and reconstruct the phy-88

logenetic relationship between isolates. Lastly, we show that by taking into account within-sample89
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diversity in a phylogenetic model we improve the temporal signal in SARS-CoV-2 outbreak analysis.90

Using both phylogenetic outbreak reconstruction and simulation we show that our approach is91

superior to the current gold standard whole-genome consensus sequence methods.92

Results93

Sampling, demographics and metadata94

Between March 2020 and November 2020, 451 healthcare workers, patients and patient contacts95

at the participating North London Hospitals were diagnosed at the Camelia Botnar Laboratories96

with SARS-CoV-2 by PCR as part of a routine staff diagnostic service at Great Ormond Street Hospi-97

tal NHS Foundation Trust (GOSH). A total of 289 isolates were whole-genome sequenced using the98

Illumina NextSeq platform, which resulted in 522 whole-genome sequences including longitudinal99

and technical replicates (Supplementary file 1). Themean participant age was 40 years old (median100

38.5 years old, interquartile range (IQR) 30-50 years old), and 60% of the participants were female101

(Supplementary file 2). All samples were SARS-CoV-2 positive with real time qPCR cycle threshold102

(C𝑡) values ranging from 16 to 35 cycles (Supplementary file 2). The earliest sample was collected103

on 26th March 2020, while the latest one dated to 4th November 2020 (Figure 1—figure Supple-104

ment 1a). A total of 291 samples had self-reported symptom onset data, for which the mean time105

from symptom onset to sample collection date was 5 days (IQR 2-7 days, Figure 1—figure Supple-106

ment 1b). More than 90% of the samples were taken from hospital staff, while the rest comprised107

patients and contacts of either the patients or the staff members (Supplementary file 2).108

Genomic analysis of SARS-CoV-2 sequences109

A total of 454 whole-genomes with mean coverage higher than 10x were kept for further analysis,110

resulting in an average coverage across isolates of 2457x (Figure 1—figure Supplement 2). Allele111

frequencies were extracted using the pileup functionality within bcftools (Danecek et al., 2011) with112

a minimum base and mapping quality of 30, which represents a base call error rate of 0.1%. Vari-113

ants at low frequency at positions where the mapped reads support more than one allele were114

coined as minor or low-frequency variants. Variants were filtered further for read position bias115

and strand bias. Only minor variants with an allele frequency of at least 2% were kept as puta-116

tive variants. Samples with a frequency of missing bases higher than 10% were excluded, keeping117

350 isolates for analysis. The mean number of low frequency variants was 12 (median 3, IQR 1.00 –118

9.75), although both the number of variants and its deviation increased at high C𝑡 values (Figure 1—119

figure Supplement 3).120

Within-sample variation in technical replicates121

To understand the stability of within-sample variation and minimize spurious variant calls, we se-122

quenced and analyzed technical replicates of 17 samples. Overall, when the variant was present in123

both duplicates the correlation of the variant frequencies was high (R2 = 0.9, Figure 1a right). The124

high correlation was also maintained at low variant frequencies (Figure 1a left).125

Minor variants were less likely to be shared when one or more of the paired samples had low126

viral load. These discrepancies may appear because of amplification bias caused by low genetic127

material, base calling errors due to low coverage, or low base quality. The mean proportion of128

discrepant within-sample variants between duplicated samples was 0.39 (sd = 0.29), although this129

varied between duplicates (Figure 1—figure Supplement 4). C𝑡 values in RT-PCR obtained during130

viral amplification are inversely correlated with viral load (Tom and Mina, 2020). The proportion of131

shared intra-host variants was negatively correlated with C𝑡 values in a logistic model (estimate=-132

0.78, p-value=0.008), with higher C𝑡 values associated with a lower amount of shared intra-host133

variants (Figure 1c). The number of within-sample variants detected also increased with C𝑡 value,134

as well as the deviation in the number of variants between duplicates (Figure 1d). This could be135

explained either by an increase in the number of spurious variants at low viral loads (Tonkin-Hill136
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Figure 1. Genomic analysis of technical duplicates before filtering. a Allele frequency comparisonbetween technical replicates for all frequencies (right) and for frequencies up to 1% (left). Colors representthe C𝑡 value for the sample. b Proportion of shared minor variants between technical replicates in relation tothe C𝑡 value. c Total number of minor variants in relation to the C𝑡 value. Lines linked two technical replicates.Each sequence has a different color, with sequences from the same patient having a different shade of thesame color.
Figure 1—figure supplement 1. Collection date distribution and time from symptom and days from
symptom onset
Figure 1—figure supplement 2. Sample mean coverage distribution
Figure 1—figure supplement 3. Effects of C𝑡 value on whole-genome sequencing data
Figure 1—figure supplement 4. Proportion of shared minor variants between technical replicates using
different filters of allele frequency

et al., 2021), biased amplification of low level sub-populations minor rare alleles (McCrone and137

Lauring, 2016), or due to the accumulation of within-host variation through time, as late stages of138

infection are usually characterized by high C𝑡 values (low viral load).139

Based on these results, only samples with a C𝑡 value equal or lower than 30 cycles were consid-140

ered, which resulted in 249 samples kept for analysis. Additionally, only variants with a frequency141

higher or equal than 2% were used. For the filtered dataset, 414 out of 29903 positions were poly-142

morphic for the consensus sequence, while the alignment with within-sample diversity had 1039143

SNPs. Of these, 699 positions had intra-host diversity, of which 78% (549/699) were singletons. The144

majority of samples (207/249, 83%) contained at least 1 positionwith a high quality within-host vari-145

ant, and the median amount of intra-host variants per sample was 2 (IQR 1-4.5).146

Within-sample variation in epidemiologically linked samples147

Given the limited genomic information in the consensus sequences, epidemiological data is often148

necessary to infer the directionality of transmission. We categorized our samples within the fol-149

lowing groups: samples that a) did not have any recorded epidemiological link, b) were from the150

same hospital (possibly linked), c) samples that were part of the same department within the same151

hospital (probable link), d) samples that had an epidemiological link within the same department152

of the same hospital (proven link), e) were a longitudinal replicate from the same patient and f) a153

technical replicate from the same sample.154

We tested the concordance between epidemiological and genomic data by determining the SNP155

distance between pairs of samples with epidemiological links and without them. Pairs of samples156

from the same hospital, department, epidemiologically linked, or longitudinal and technical repli-157

cates had a lower SNP distance (were more closely related) than those samples that did not have158

any relationship, although this difference was small in the case of pairs of samples from the same159

hospital (Table 1).160

To understand the distribution of shared low frequency variants among different groups of161

samples, we performed a pairwise comparison of all samples and calculated the proportion of162
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Table 1. SNP distance between pairs of samples.

Sample relationship Estimate (95%CI) p-value

None 11.04 (10.94 - 11.15) Reference
Hospital 9.78 (9.48 - 10.09) <1 × 10−4

Department 5.15 (4.54 - 5.83) <1 × 10−4

Epidemiological 1.5 (1.22 - 1.78) <1 × 10−4

Longitudinal duplicates 0 (0 - 0.2) <1 × 10−4

Technical replicate 0 (0 - 0.2) <1 × 10−4

shared within-sample variants (shared variants divided by total variants in the pair) within groups163

with epidemiological links and without them. The proportion of shared within-host variants was164

higher between technical replicates, longitudinal duplicates, epidemiologically linked samples, and165

samples taken from individuals from the same department when compared to pairs with no epi-166

demiological links, although the range of this probability was large (Figure 2, Figure 2—figure Sup-167

plement 1). The probability of sharing a low frequency variant was inferred using a logistic regres-168

sion model (Figure 2—figure Supplement 2). There was a tendency for the probability to increase169

with variant frequency, but the association was not strong (Odds ratio 1.8, 95% CI 0.9 – 3.5, p=0.08).170

The probability of sharing a low frequency variant for samples with no epidemiological links was171

9.5×10−6 (95% CI 8.8×10−6 – 1.02×10−5). Samples from the same hospital did not have a probability172

significantly higher than those without any link (3.3 × 10−3, 95% CI 2.7 × 10−3 – 4.03 × 10−3). On the173

other hand, pairs from the same department, with epidemiological links, replicates or technical174

replicates all had a significantly higher probability of sharing a low frequency variant when com-175

pared to those pairs with no link (all Wald test p-values < 0.001). The inferred probabilities for pairs176

from the sample department was 1.4% (95% CI 0.9% – 2.1%), which increased to 5% for pairs with177

epidemiological links (95% CI 4.2% – 6.4%). For longitudinal replicates, the probability was inferred178

to be 38% (95% CI 35% – 41%), and were shared between multiple time points (Figure 2—figure179

Supplement 3). Technical replicates were estimated to have the highest probability (70%, 95% CI180

64% – 76%).181
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Figure 2. Probability of sharing within-host variants in sample pairs. The probability of variants sharedbetween pairs of samples calculated as the number of low frequency variants in both samples divided by thetotal number of variants between the pair. Colors grouped samples by their relationship. Points representthe mean probability a variant is shared between all pairwise samples within a group and allele frequency.Error bars show the 95th and 5th percentiles.
Figure 2—figure supplement 1. Allele frequency comparison in pairwise sample pairs.
Figure 2—figure supplement 2. Probability that minor variants are shared.
Figure 2—figure supplement 3. Dynamics of low frequency variants in longitudinal duplicates.
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Within-host diversity model outperforms the consensus model in simulations182

The effect of within-sample diversity in phylogenetic inference was tested by evaluating the accu-183

racy in the reconstruction of known phylogenetic trees using a conventional phylogenetic model184

and a model that accounts for within-sample variation.185

The presence of within-sample diversity was coded in the genome alignment using existing186

IUPAC nomenclature (IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), 1984).187

For the consensus sequence alignment, only the 4 canonical nucleotides were used (Figure 3a,b),188

while the proposed alignment retained the major and minor allele information as independent189

character states (Figure 3c,d).190
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Figure 3. Model of within-host diversity.Proposed evolutionary model of within-host diversity in genomic sequences. Uppercase letters represent themajor variant in the population, while lowercase letters indicate presence of a minor variant alongside themajor one. a, c Genome sequences where some positions show within-sample variation (top), represented bya major allele (big size letter) and a minor one (smaller size), as well as its representation in the alignment(bottom). b, dModels of nucleotide evolution. Character transitions are indicated by arrows. a Consensussequence, where only the major allele is represented in the alignment. bModel of nucleotide evolution usingthe consensus sequence, with four character states representing the four nucleotides. c Sequence withwithin-sample variation, represented by an uppercase letter for the major allele and a lower case letter for theminor allele. dModel of nucleotide evolution with 16 character states accounting for within-sample variation.
In order to evaluate the differences in tree inference with and without the inclusion of within-191

sample diversity, we simulated genome alignments for 100 random trees using a phylogenetic192

model where both major and minor variant combinations were considered, resulting in a total of193

16 possible states (Figure 3d). In the proposed model, transitions and transversions between the194

four nucleotides in the population occur in the following steps: first a minority variant evolves at195

low frequency, then the minor variant increases its frequency to become the majority nucleotide,196

and finally the variant is fixed (Figure 3d), with all the steps being reversible. Therefore, within-197

host evolutionary dynamics are modelled by explicitly considering base change as a process of198

minor variant evolution and eventual fixation. The substitution rates chosen for the simulations,199

as shown in Supplementary file 4, were selected to reflect a slow rate of minor variant evolution200

and a fast rate at which minor variants are lost or fixated in the population, which in turns results201

in a highly dynamic landscape of within-sample variation, with the four canonical nucleotides 100202
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times more likely to be present than low frequency variants.203

From the simulated genomes, two types of alignments were generated: a consensus sequence,204

where only the major allele was considered (Figure 3a); and an alignment that retained the ma-205

jor and minor allele information as independent character states (Figure 3c). From the simulated206

alignments, RaxML-NG was used to infer phylogenetic trees (Kozlov et al., 2019). The consensus207

sequence was analyzed with a GTR+𝛾 model, while the PROTGTR+𝛾 model was used in order to ac-208

commodate the extra characters of the alignment with within-sample diversity and major/minor209

variant information.210

The two models were evaluated for their ability to infer the known phylogeny that included211

within-host diversity. The estimated phylogenies were compared to the known tree using differ-212

ent measures to capture dissimilarities in a variety of aspects relevant to tree inference (Supple-213

mentary file 3). For all the metrics employed, the phylogenies inferred explicitly using within-host214

diversity as independent characters approximated better to the initial tree than the one using the215

consensus sequence (Figure 4). Additionally, the transition/transversion rates inferred by the phy-216

logenetic models accounting for within-host diversity accurately reflect the rates used for the sim-217

ulation of genomic sequences (Supplementary file 4, 5 and 6).218
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Figure 4. Similarity scores for inferred trees.Comparison of the phylogenetic trees inferred using simulated sequences from known random starting treesand different phylogenetic models. Colors differentiate the metrics used for the comparison.
Figure 4—figure supplement 1. Similarity scores for inferred trees with different rates.
Figure 4—figure supplement 2. Similarity scores for inferred trees from coalescent simulations.

As different pathogens are likely to show different dynamics of within-host variation and the219

rates used for the simulations will inevitably affect the improvement of using the 16-state model,220

we simulated genomes with different parameters. As expected, choosing rates that promote an221

abundant and stable landscape of low frequency variation (rate of minor variant acquisition of222

20, and rates of variant switch and lost of 1) made the 16-state model to perform better than the223

model using consensus sequences, which improved as the proportion of low frequency variants224

decreased (Figure 4—figure Supplement 1) . Conversely, in simulations using a Jukes-Cantor DNA225

model, and therefore without any low frequency variation, both models showed similar results226

(Figure 4—figure Supplement 1).227

To understand the effects of genetic linkage between sites in the phylogenetic model due to the228

clonal relationships between genomes, we evaluated another set of simulations where the starting229

tree was generated using the coalescent model, which increases the correlation between sites.230

For all metrics used, the model using low frequency variants inferred phylogenies more similar to231

the starting coalescent tree than those inferred using the consensus sequence (Figure 4—figure232

Supplement 2).233

We further assessed the effect of within-host diversity in phylogenetic inference by simulating234

pathogen evolution throughout the time frame of infectious disease outbreaks (De Maio et al.,235

2018). We simulated outbreaks using TransPhylo (Didelot et al., 2017) with a host population vary-236
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ing between 10 and 15 hosts, no recombination, complete sampling of the outbreak and selecting237

epidemiological parameters to match the transmission dynamics of SARS-CoV-2. For each out-238

break, we simulated the evolution and transmission of the pathogen population within each host239

with varying values of mutation rates and transmission bottlenecks using fastsimcoal2 (Excoffier240

et al., 2013) as previously described by De Maio et al. (2018). We compared the resulting phylo-241

genetic trees to the real outbreak phylogeny using the Kuhner-Felsenstein distance (Kuhner and242

Felsenstein, 1994). Even though using consensus sequences performed better than a random243

distribution of trees, using within-host diversity outperformed the consensus sequence in all in-244

stances (Figure 5). The phylogenies inferred using within-host diversity were more similar to the245

real outbreak phylogeny for wider bottleneck sizes, with the best performance when no bottleneck246

was present. As expected, both the consensus sequences and the sequences reflecting within-247

sample diversity were more informative at higher mutation rates, even though the consensus se-248

quence only showed improvement with a mutation rate of 10−3 mutations per base per generation249

cycle (Figure 5).250
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Within-host diversity improves the resolution in SARS-CoV-2 phylogenetics251

Genome sequences collected at different time points are expected to diverge as time progresses,252

resulting in a positive correlation between the isolation date and the number of accumulated mu-253

tations (temporal signal) (Rieux and Balloux, 2016). The alignment with consensus sequences and254

the one reflecting within-sample variation were used to infer two different phylogenetic trees (Fig-255

ure 6—figure Supplement 1). Longitudinal samples in the phylogeny inferred using within-host256

diversity reflected the expected temporal signal, with an increase in genetic distance as time pro-257

gressed between the longitudinal pairs in a linear model (coefficient 2.24, 0.59 - 3.88 95% CI, p =258

0.019, Figure 6—figure Supplement 2). The difference in C𝑡 value among longitudinal duplicates259

was not correlated with higher genetic distances (coefficient 1.62, -0.66 - 3.91 95% CI, p = 0.2).260

Similarly, we analyzed the number of low frequency variants within outbreaks by counting the261

number of within-sample variants for each isolate belonging to a specific outbreak and inferred262

their change through time taking the earliest isolate date as the starting point of the outbreak. In263

general, as the outbreaks progressed the number of low frequency variants increased (coefficient264

0.16, 0.06 - 0.27 95% CI, p = 0.003, 𝑟2 = 0.19, Figure 6—figure Supplement 3).265

We analyzed the impact of using within-sample variation on the temporal structure of the phy-266

logeny by systematically identifying clusters of tips in the phylogenetic tree with an identical con-267

sensus sequence and no temporal signal. We then performed a root-to-tip analysis using the tree268
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inferred with intra-sample diversity. Only clusters with more than 3 tips were used for the root-to-269

tip analysis. The majority of clusters (10/11) showed a positive correlation between the distance of270

the tips to the root and the collection dates, demonstrating a significant temporal signal between271

samples when there was none using the conventional consensus tree (Figure 6).272

Apr 03 Apr 08 Apr 13

35

40

45

50

R
oo

t t
o 

tip
di

st
an

ce

Mar 24 Apr 03 Apr 13

30

35

40

45

50

55

60

Mar 29 Apr 03 Apr 08 Apr 13

40

45

50

55

Oct 03 Oct 07 Oct 11 Oct 15

70

75

80

85

90

95

Mar 29 Apr 02 Apr 06 Apr 10

40

45

50

55

R
oo

t t
o 

tip
di

st
an

ce

Mar 29 Apr 18

10

15

20

25

30

35

Mar 27 Mar 31 Apr 04

12

14

16

18

20

22

24

Apr 03 Apr 08 Apr 13

10

15

20

25

Sep 11 Sep 15 Sep 19

70

72

74

76

78

80

82

R
oo

t t
o 

tip
di

st
an

ce

Collection date

Oct 05 Oct 15

60

80

100

120

Collection date

Apr 08 Apr 18

35

40

45

50

Collection date
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diversity.A set of 11 outbreak clusters (one per panel, each plotting the root to tip distance in number of substitutionsper genome against time) in which all samples had identical consensus genomes sequences (and thereforeno temporal signal). Blue colors indicate those regressions that after utilizing within sample diversity nowhave a positive slope (temporal signal), and red shows those regressions that have a negative slope(misleading or false positive temporal signal).
Figure 6—figure supplement 1. Phylogenetic trees for SARS-CoV-2.
Figure 6—figure supplement 2. Genetic distance between longitudinal samples.
Figure 6—figure supplement 3. Number of low frequency variants within outbreaks as the outbreak
progresses.

To illustrate the downstream application of the improved phylogenetic resolution, we inferred273

a time-calibrated phylogeny from the phylogeny inferred using the 16-character state model with274

the collection dates of the tips using BactDating (Didelot et al., 2018) (Figure 7—figure Supple-275

ment 1) and calculated the likelihood of transmission events within potential epidemiologically276

identified outbreaks using a Susceptible-Exposed-Infectious-Removed (SEIR) model (Lekone and277

Finkenstädt, 2006; Eldholm et al., 2016). The SEIR model was parameterized with an average la-278

tency period of 5.5 days (Xin et al., 2022), an infectious period of 6 days (Byrne et al., 2020), and279

a within-host coalescent rate of 5 days as previously estimated for SARS-CoV-2 (Wang et al., 2020).280

The likelihood of transmission was calculated for every pair of samples, while the Edmonds algo-281

rithm as implemented in the R package RBGL (Carey et al., 2021) was used to infer the graph with282
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the optimum branching (Figure 7c,d; Figure 7—figure Supplement 2).283
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Figure 7. Within-sample variation improves resolution of infectious disease outbreaks. Effect of usinglow frequency variants in phylogenetic inference. aMaximum likelihood phylogeny using the consensussequences (left) and the alignment leveraging within-sample variation. Replicates of the same sample sharethe same color. Sample IDs are coded as follows: SF, for staff members; P, for patients; and PC, for patientcontacts. b Transmission network inferred using within sample variation. Edge width is proportional to thelikelihood of direct transmission using a Susceptible-Exposed-Infectious-Removed (SEIR) model. Colorededges represent the Edmunds optimum branching and thus the most likely chain. c Heatmap of thelikelihood of direct transmission between all pairwise pairs of samples using a SEIR model. Vertical axis is theinfector while the horizontal axis shows the infectee.
Figure 7—figure supplement 1. Time calibrated phylogenetic trees for SARS-CoV-2.
Figure 7—figure supplement 2. Phylogenetic and transmission for SARS-CoV-2 outbreaks.

Figure 7 represents an example of an outbreak involving 4 hosts, with one patient, one patient284

contact, and two hospital staff members. All samples have one technical replicate, while patient285

sample also has two serial samples (which were removed for transmission inference). The ML tree286

inferred using the consensus sequences (Figure 7a, left) shows that most isolates have the exact287

same consensus sequence. Although this suggests that all isolates belong to the same outbreak,288

the similarity between sequences precludes exact transmission inference. However, the ML tree289

inferred using sequences with low frequency variants correctly clusters technical and longitudinal290

replicates, and groups the isolates in distinctive sets that better inform transmission inference (Fig-291

ure 7b,c). We applied the same analysis to other potential outbreaks and obtained similar results292

(Figure 7—figure Supplement 2).293

Discussion294

Detailed investigation of transmission events in an infectious disease outbreak is a prerequisite for295

effective prevention and control. Althoughwhole-genome sequencing has transformed the field of296

pathogen genomics, insufficient pathogen genetic diversity between cases in an outbreak limits the297

ability to infer who infected whom. Using multi-hospital SARS-CoV-2 outbreaks and phylogenetic298

simulations, we show that including the genetic diversity of subpopulations within a clinical sample299

improves phylogenetic reconstruction of SARS-CoV-2 outbreaks and determines the direction of300

transmission when using a consensus sequence approach fails to do so.301

The majority of samples sequenced harbored variants at low frequency. However, most vari-302

ants were not consistently called in technical replicates, suggesting they were spurious or unreli-303

able. Within-sample variation was less consistent between paired technical replicates with lower304

viral load (higher C𝑡). This is likely to be a consequence of low starting genetic material giving rise305

to amplification bias during library preparation and sequencing. Establishing a cut-off for high C𝑡306

values is therefore important to accurately characterize within-host variation. In our study, we ex-307

cluded samples with a C𝑡 value higher than 30 cycles based on the diagnostic PCR used at GOSH.308
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Since C𝑡 values are only a surrogate for viral load and are not standardized across different assays309

(Evans et al., 2021), appropriate thresholds would need to be determined for other primary PCR310

testing assays. Similarly, variant calls at very low frequency were less likely to be present in both311

technical replicates. These variants at low frequency are thus potentially not genuine and the re-312

sult of sequencing and variant calling errors. For our work, we removed any variants with an allele313

frequency lower than 2%. Until sequencing and variant calling technologies improve for low fre-314

quency variants, technical replicates will remain essential for the study of pathogen within-host315

diversity in order to distinguish genuine variation from sequencing noise. The effect of this noise316

on phylogenetic inference will depend on the signal-to-noise ratio and the amount of variation317

already present in the consensus sequences. Spurious low frequency variation will likely affect318

only the branch length estimation in phylogenetic inference by adding potentially erroneous calls,319

unless there is presence of batch bias which could artificially cluster epidemiologically unrelated320

isolates together.321

The generation, maintenance and evolution of subpopulations within the host reflect evolu-322

tionary processes which are meaningful from phylogenetic and epidemiological perspectives. Sub-323

populations within a host can emerge from three mechanisms: de novo diversification in the host,324

transmission of a diverse inoculum, or multiple transmission events from different sources. If the325

subpopulations are the result of de novomutations, nucleotide polymorphisms within the subpop-326

ulations accumulate over time andmay therefore result in a phylogenetic signal useful for phyloge-327

netic inference. In our data, longitudinal samples taken at later time points were demonstrated to328

accrue genomic variation. Although this pattern can be confounded by decreasing viral load as in-329

fection progresses, C𝑡 values in our dataset were not correlated with a higher genetic distance, and330

clusters in our data containing both longitudinal and technical replicates also corroborate these331

results. Transmission of a diverse inoculum also gives rise to phylogenetically informative shared332

low frequency variants, as our results show that transmission pairs are more likely to share vari-333

ants at low frequency. The effect of multiple transmission events in the phylogeny depends on the334

relatedness of both index cases and the bottleneck size in each transmission event.335

Paired samples with epidemiological links and from the same department shared a higher pro-336

portion of low frequency variants and were located closer in the consensus tree than samples with337

no relationship. These patterns suggest that the distribution of low frequency variants is linked to338

events of epidemiological interest. The fact that technical duplicates shared more within-host di-339

versity than longitudinal replicates of the same sample suggests that much of the variation within340

hosts is transitory. Therefore, within-host diversity may be relevant on relatively short time scales,341

which is precisely where consensus sequences lack resolution. Combining the data derived from342

fixed alleles in the consensus sequences and transient within-sample minor variation enables an343

improved understanding of the relatedness of pathogen populations between hosts.344

The effects of neglecting within-host diversity in phylogenetic inference were analyzed by us-345

ing simulated sequences under a phylogenetic model that reflects the presence and evolution of346

within-host diversity. We compared a conventional consensus phylogenetic model and a model347

that leverages within-sample diversity, and evaluated their ability to infer the known phylogeny.348

Our proposed phylogenetic model incorporates within-sample variation by explicitly coding ma-349

jor and minor nucleotides as independent characters in the alignment. We demonstrated that350

phylogenies inferred using the conventional consensus sequence approach were unresolved and351

unrepresentative of the known structure of the simulated tree. However, sequences that included352

within-host diversity showed higher resolution that resulted in phylogenetic trees more similar to353

the simulated phylogeny. As other mutational models, our 16-state model assumes independence354

between sites in the alignment. This assumption can be violated due to the presence of genetic link-355

age, which can be caused by multiple biological processes, such as clonal relationships between356

microorganisms, recombination or selection of co-evolving sites. To increase the amount of ge-357

netic linkage due to clonal relationships between organisms, we repeated our simulations using358

a coalescent model to create the starting tree, and confirmed that the 16-state model still outper-359
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formed the conventional consensus sequence in the presence of high linkage. Other sources of360

genetic linkage are not accounted for, and their inclusion in phylogenetic inference is out the scope361

of this work.362

The proposed phylogenetic model used for the simulations did not include direct base transi-363

tions and transversions, but rathermodelled base change as a process ofminor variant acquisition364

and fixation. Therefore, a base change is composed of the following steps: first a minor variant365

is gained; then the minor variant increases in frequency and becomes the majority variant; and fi-366

nally the new variant is fixed. In this way, within-host evolution is partially included in the model as367

a process of minor variant evolution and eventual lost or fixation. As shown in the simulations, this368

process of within-host evolution is also captured when the minor bases are simply incorporated369

as additional states in the Markov chain without explicitly limiting the possible transitions.370

We complemented the phylogenetic simulations with tree inference of outbreaks simulated us-371

ing TransPhylo (Didelot et al., 2017). We parameterized the simulations to reflect the transmission372

dynamics of SARS-CoV-2, including a generation time of 5 days and a sampling time of 7 days. Given373

this parameters, most simulated outbreaks lasted less than a month. We then simulated genetic374

sequences within the outbreak using fastsimcoal2 (Excoffier et al., 2013) as previously described375

by De Maio et al. (2018). Using a mutation rate of 5 × 10−6 mutations per base per replication cycle,376

as previously described for SARS-CoV-2 and other betacoronaviruses (Sender et al., 2021; Amicone377

et al., 2022), and varying bottleneck sizes, we showed that tree inference usingwithin-sample diver-378

sity improves as the transmission bottleneck widens, although even at low bottleneck sizes trees379

inferred using within-sample diversity are more accurate than those inferred using consensus se-380

quences. Similarly, using varying mutation rates and a constant bottleneck size of 10 pathogens,381

we showed that tree inference wasmore accurate asmutation rates increased, although inference382

using consensus sequences improved only at a very high mutation rate of 10−3 mutations per base383

per cycle, which has mostly been observed in some HIV studies (Cuevas et al., 2015). Together,384

our simulations show that at the short time frame of disease transmission, phylogenetic inference385

using alignments that contain information regarding within-sample diversity outperform phyloge-386

nies inferred with consensus sequences, even at narrow transmission bottlenecks and very low387

mutation rates. Since TransPhylo simulates phylogenetic trees alongside the outbreak simulation,388

we could directly compare our inferred phylogenies with the known simulated trees. However, al-389

though phylogenetic trees can inform transmission inference, phylogenetic trees themselves and390

transmission trees are not interchangeable. Nevertheless, increasing the resolution of phyloge-391

netic trees can improve inference of transmission chains and calculation of the likelihood of trans-392

mission events.393

Previous studies have addressed the use of within-host variation to infer transmission events.394

Wymant et al. (2018) employed a framework based on phylogenetic inference and ancestral state395

reconstruction of each set of populations detectedwithin read alignments using genomic windows.396

Our study extends this work by coding genome-wide diversity within the host directly in the align-397

ment and the phylogenetic model. DeMaio et al. (2018) proposed direct inference of transmission398

from sequencing data alongside host exposure time and sampling date within the bayesian frame-399

work BEAST2 (Bouckaert et al., 2014). Our approach is focused on directly improving the temporal400

and phylogenetic signal of whole-genome sequences, and it’s especially suited for use in applica-401

tions and analysis that employ a phylogenetic tree as input to infer transmission (Didelot et al.,402

2017).403

Apart from transmission inference, phylogenetic trees can be used to infer many parameters404

of epidemiological interest, such as R0 or the effective population size. In our work, we showed that405

the temporal signal of clusters where all isolates had the same sequences increased with the inclu-406

sion of within-sample diversity, which in turns allows better inference of phylogenetic trees. When407

analyzing specific outbreaks, we showed that groups of samples without genetic differences were408

clustered apart from other isolates of the outbreak, providing additional information on genetic409

relationships that could be used for transmission inference or to better understand the genetic410
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structure of the outbreak. Even though transmission inference can be improved with epidemio-411

logical data such as collection dates even when all isolates have the same genetic sequences, such412

data can’t provide information regarding how samples cluster within the outbreak. Additionally,413

the order of collection dates not always correspond to the order of infection.414

Future work will extend this model by including allele frequency data in addition to indepen-415

dent characters for major and minor variants. Moreover, to limit the number of character states416

we only allowed two variants at each position. Transmission inference of pathogens with high lev-417

els of within-host diversity, for instance as observed in HIV, could benefit from includingmore than418

two alleles. In those cases, the number of possible character state combinationswould be too large,419

and therefore other methods such as phyloscanner Wymant et al. (2018) could resolve transmis-420

sion eventsmore accurately. However, it’s important to note that the low frequency of a third allele421

could result in more sequencing and mapping errors which could in turn bias phylogenetic infer-422

ence and genomic analysis. Phylogenetic models that explicitly include dynamics of within-sample423

variation and sequencing error may further improve phylogenetic inference or allow researchers424

to better estimate parameters of interest, including R0, bottleneck size, transmissibility and the425

origin of outbreaks.426

In line with conventional consensus sequencing approaches, we used a reference sequence for427

genome alignment and variant calling. Although widely used, one limitation of this approach is a428

potential mapping bias causing some reads to reflect the reference base at low frequencies at a429

position where only a variant should be present. Although we applied stringent quality filtering,430

we cannot rule out the persistence of some false positive minor variants. Using genome graphs431

to map to a reference that encompasses a wider spectrum of variation may alleviate this problem,432

and could be an interesting addition to pathogen population genomic analysis.433

Our results demonstrate that within-sample variation can be leveraged to increase the reso-434

lution of phylogenetic trees and improve our understanding of who infected whom. Using SARS-435

CoV-2 hospital outbreaks and simulations, we show that variants at low frequencies are consistent436

within sample replicates, phylogenetically informative and are more often shared among epidemi-437

ologically related contacts. By coding within-sample variation directly in the alignment, the ad-438

ditional genetic information can be easily incorporated in phylogenetic inference, facilitating its439

application within existing epidemiology pipelines and public health infrastructure. We propose440

that pathogen phylogenetic models should accommodate within-host variation to improve the un-441

derstanding of infectious disease transmission and aid infection control measures.442

Materials and Methods443

Model for within-host diversity444

To test the accuracy of different models at inferring known phylogenies, 100 random phylogenetic445

trees with 100 tips each were generated using the function rtree within the R package ape (Par-446

adis et al., 2004). Whole-genome alignments were simulated from the random 100 phylogenies447

with the function SimSeq of the R package phangorn (R Core Team and R Foundation for Statis-448

tical Computing, 2021; Schliep, 2011) using a model with 16 character states that represent the449

combinations of the 4 nucleotides with each other as minor and major alleles (Figure 3d). Three450

substitution rates for themodel were considered: a rate at whichminor variants evolve, equal to 1;451

the rate at which minor variants are lost, leaving only the major nucleotide at that position, equal452

to 100; and the rate at which minor/major variants are switched, equal to 200. This rates result in453

fixed bases (A, C, G, and T) being 100 times more frequent than low frequency bases. A different454

set of simulations was performed using rates that promote a high rate of low frequency variation455

by having a lower rate of variant loss and switch (rates 1, 10, 10 for minor variant evolution, loss456

and switch, respectively); a low amount of low frequency variation by increasing the rates of variant457

switch and loss (1, 10, 100); and using a Jukes-Cantor model of sequence evolution and therefore458

resulting in no minor variants.459

13 of 21



Two types of alignments were generated from the simulated genomes: a consensus sequence,460

where only the major allele was considered; and an alignment that retained the major and minor461

allele information as independent character states. RaxML-NG (Kozlov et al., 2019) was used to462

infer phylogenetic trees. The consensus sequence was analyzed with a GTR+𝛾 model, while the463

PROTGTR+𝛾 model was used for the alignment with intra-host diversity and major/minor variant464

information.465

Several metrics were used to compare the 200 inferred phylogenetic trees with their respective466

starting phylogeny from which the sequences were simulated (Supplementary file 3). We chose467

metrics available in R suitable for unrooted trees, using the option ‘rooted=FALSE’ where appro-468

priate. The Robinson-Foulds (RF) distance (Robinson and Foulds, 1981) calculates the number of469

splits differing between both phylogenetic trees. For the weighted Robinson-Foulds (wRF), the dis-470

tance is expressed in terms of the branch lengths of the differing splits. The Kuhner-Felsenstein471

distance (Kuhner and Felsenstein, 1994) considers the edge length differences in all splits, regard-472

less of whether the topology is shared or not. Last, the Penny-Steel distance or path difference473

metric (Steel and Penny, 1993) calculates the pairwise differences in the path of each pair of tips,474

with the weighted Penny-Steel distance (wPS) using branch length to compute the path differences.475

All functions were used as implemented in the package phangorn (Schliep, 2011) within R (R Core476

Team and R Foundation for Statistical Computing, 2021).477

Outbreak simulations478

Disease outbreaks of size between 10 and 15 hosts were simulated using TransPhylo (Didelot et al.,479

2017), with amean generation time of 5 days and amean sampling time of 7 days, both parameters480

with standard deviation of 1 day (Wang et al., 2020; Hart et al., 2022). To ensure that the outbreak481

ends, the negative binomial distribution for the offspring number was set with a mean of 1 and a482

dispersion parameter of 0.5, resulting in a basic reproductive number (R0) of 1. To simplify the sim-483

ulations, all hosts from the outbreak were sampled. A total of 20 outbreaks were simulated. The484

population evolution within and between hosts was simulated using fastsimcoal2 (Excoffier et al.,485

2013) as previously described by DeMaio et al (DeMaio et al., 2018), where transmissions are incor-486

porated as population migrations with a given bottleneck size and populations evolve with a given487

mutation rate per generation time. Sequences were simulated for a within-host population size of488

1000 and a genome size of 1000bp. To understand the effect of transmission bottleneck size in489

phylogenetic inference, varying values of bottleneck size were used along a constant mutation rate490

of 5 × 10−6 mutations per base per generation cycle. Additionally, sequences were simulated at dif-491

ferent mutation rates with a constant bottleneck size of 10 pathogens. Sequences with the varying492

bottleneck sizes and mutation rates were simulated using the same 20 simulated outbreaks. Phy-493

logenetic trees were inferred from the alignments using RaxML-NG as previously described. The494

resulting trees were time-calibrated using the additive uncorrelated relaxed clock model (ARC) as495

implemented in BactDating (Didelot et al., 2018). The root of the outbreak was inferred as part of496

the dating model. The inferred trees were compared to the known simulated phylogenies using497

the Kuhner-Felsenstein distance (Kuhner and Felsenstein, 1994).498

Amplification and whole-genome sequencing499

SARS-CoV-2 real-time qPCR confirmed isolates from London hospitals were collected as part of the500

routine diagnostic service at Great Ormond Street Hospital NHS Foundation Trust (GOSH) (Storey501

et al., 2021) and the COVID-19 Genomics UK Consortium (COG-UK) (COVID-19 Genomics UK (COG-502

UK), 2020) between March and December 2020, in addition to epidemiological and patient meta-503

data (Supplementary file 2). Multiple types of samples were collected: isolates from different pa-504

tients; longitudinal replicates, where multiple isolates were collected from the same patient at505

different time points; and technical replicates, where multiple sequencing runs were performed506

from the same biological isolate. SARS-CoV-2 whole-genome sequencing was performed by UCL507

Genomics. cDNA and multiplex PCR reactions were prepared following the ARTIC nCoV-2019 se-508
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quencing protocol (Tyson et al., 2020). The ARTIC V3 primer scheme (ARTIC Network, 2021) was509

used for themultiplex PCR, with a 65°C, 5min annealing/extension temperature. Pools 1 and 2mul-510

tiplex PCRs were run for 35 cycles. 5µL of each PCR were combined and 20µL nuclease-free water511

added. Libraries were prepared on the Agilent Bravo NGSworkstation option B using Illumina DNA512

prep (Cat. 20018705) with unique dual indexes (Cat. 20027213/14/15/16). Equal volumes of the513

final libraries were pooled, bead purified and sequenced on the Illumina NextSeq 500 platform514

using a Mid Output 150 cycle flowcell (Cat. 20024904) (2 x 75bp paired ends) at a final loading515

concentration of 1.1pM.516

Whole-genome sequence analysis of SARS-CoV-2 sequences517

Raw illumina reads were quality trimmed using Trimmomatic (Bolger et al., 2014) with a minimum518

mean quality per base of 20 in a 4-base wide sliding window. The 5 leading and trailing bases of519

each read were removed, and reads with an average quality lower than 20 were discarded. The520

resulting reads were aligned against the Wuhan-Hu-1 reference genome (GenBank NC_45512.2,521

GISAID EPI_ISL_402125) using BWA-mem v0.7.17 with default parameters (Li and Durbin, 2010).522

The alignments were subsequently sorted by position using SAMtools v1.14 (Li et al., 2009). Primer523

sequences were masked using ivar (Grubaugh et al., 2019).524

Single-nucleotide variants were identified using the pileup functionality of samtools (Li et al.,525

2009) via the pysam package in Python (https://github.com/pysam-developers/pysam). Variants526

were further filtered using bcftools (Danecek et al., 2011). Only variants with a minimum depth527

of 50x and a minimum base quality and mapping quality of 30 were kept. Additionally, variants528

within low complexity regions identified by sdust (https://github.com/lh3/sdust) were removed.529

Previously identified problematic sites were masked to avoid systematic sequencing errors and530

phylogenetic bias (De Maio et al., 2020). For positions where only one base was present, the min-531

imum depth was 20 reads, with at least 5 reads in each direction. Positions with low frequency532

variants were filtered if the total coverage at that position was less than 100x, with at least 20533

reads in total and 5 reads in each strand supporting each of the main two alleles.534

Two different alignments were prepared from the data. First, an alignment of the consensus535

sequence where the most prevalent base at each position was kept. Variants where the most536

prevalent allele was not supported by more than 60% of the reads were considered ambiguous.537

Additionally, an alignment reflecting within-sample variation at each position as well as which base538

is the most prevalent and which one appears at a lower frequency by using the IUPAC nomencla-539

ture for amino acids (IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), 1984).540

For the twodifferent alignments,maximum likelihoodphylogenieswere inferredbyusing RAxML-541

NG (Kozlov et al., 2019) with 20 starting trees (10 random and 10 parsimony), 100 bootstrap repli-542

cates, and a minimum branch length of 10−9. For the consensus sequence, the GTR model was543

used. For the alignment reflecting within-host diversity, a model with amino acid nomenclature544

(PROTGTR) was used. All models allowed for a 𝛾 distributed rate of variation among sites. Phy-545

logenetic trees were time-calibrated using the known collection dates and the ARC model within546

BactDating (Didelot et al., 2018). For transmission inference, the dated phylogeny was used with547

the longitudinal replicates removed by keeping the earliest sampled isolate. The likelihood of trans-548

missionwas calculated using a Susceptible-Exposed-Infectious-Removed (SEIR)model (Lekone and549

Finkenstädt, 2006; Eldholm et al., 2016).550

Data availability551

Samples sequenced as part of this study have been submitted to the European Nucleotide Archive552
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https://github.com/arturotorreso/scov2_withinHost.git.556
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Appendix Figures and Tables773

Supplementary file 1. Study participants metadata.
Supplementary file 2. Sample collection and demographics.
Supplementary file 3. Metrics used for phylogenetic tree comparison.
Supplementary file 4. Transition/transversion rates and base frequencies of theknown simulated tree.
Supplementary file 5. Inferred transition/transversion rates and base frequencieswhen using the consensus sequence. Numbers show the average of 100simulations.
Supplementary file 6. Inferred transition/transversion rates and base frequencieswhen accounting for within-host diversity. Numbers show the average of 100simulations
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Figure 1—figure supplement 1. Collection date distribution and time from symptom and
days from symptom onset.
(a)Distribution of collection dates. (b)Histogramof time from symptomonset to sample collection.
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Figure 1—figure supplement 2. Sample mean coverage distribution.
Density distribution of mean coverage.
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Figure 1—figure supplement 3. Effects of C𝑡 value on whole-genome sequencing data.
a Higher C𝑡 values were linked to a higher number of within-sample variation. b Correlation be-
tween C𝑡 value and isolate sequencing mean coverage. Lower coverage was associated to higher
C𝑡 values (R2 = 0.13, t-statistic p-value < 0.001).
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Figure 1—figure supplement 4. Proportion of sharedminor variants between technical repli-
cates using different filters of allele frequency.
Individual plots of shared within-host variants between technical duplicates using increasing
thresholds of allele frequency. Colors represent C𝑡 value, while the size of the point shows the
total number of within-host variants between the two samples.
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Figure 2—figure supplement 1. Allele frequency comparison in pairwise sample pairs.
Pairwise allele frequency comparison between isolate pairs with different relationships. Allele fre-
quencies were compared between isolates with no relationship, from the same hospital, from the
same department, with epidemiological links, as well as between longitudinal and technical repli-
cates.
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Figure 2—figure supplement 2. Probability that minor variants are shared.
Probability that low frequency variants are shared inferred with a logistic model with allele fre-
quency and epidemiological relationship as independent variable and whether a variant is shared
or not as dependent variable. Y-axis in logarithmic scale for representation.
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Figure 2—figure supplement 3. Dynamics of low frequency variants in longitudinal dupli-
cates.
Variant frequency of low frequency variants through time in longitudinal duplicates. Each panel
represents a single individual, with variants indicated by dots at each time point. The same variant
at different time points is linked by lines. Yellow colors represent variants that are consistently
found at each time point, while grey dots show variants that present in the first sampling event
but lost in subsequent isolates.
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Figure 4—figure supplement 1. Similarity scores for inferred trees with different rates.
Comparison of the phylogenetic trees inferred using simulated sequences with different transi-
tion/transversion rates to reflect different within-host diversity levels. Colors show the different
rates of within-host evolution. Light colors represent trees inferred with consensus alignments,
while dark colors show trees inferred with the model accounting for within-host diversity.

781



Consensus Within-host
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Consensus Within-host
0

50

100

150

200

250

Consensus Within-host
0

0.01

0.02

0.03

0.04

0.05

Consensus Within-host
0

500

1000

1500

2000

Consensus Within-host
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Kuhner Felsenstein Robinson Foulds Weighted Robinson Foulds Steel and Penny Weighted Steel and Penny
D

is
ta

nc
e 

fro
m

 re
al

 tr
ee

Figure 4—figure supplement 2. Similarity scores for inferred trees from coalescent simula-
tions.
Comparison of the phylogenetic trees inferred using simulated sequences from known coalescent
starting trees and different phylogenetic models. Colors differentiate themetrics used for the com-
parison.
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Figure 6—figure supplement 1. Phylogenetic trees for SARS-CoV-2.
SARS-CoV-2 phylogenetic trees inferred from consensus sequences (left) and an alignment with
major and minor variant information (right).
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Figure 6—figure supplement 2. Genetic distance between longitudinal samples.
The genetic distance in the phylogenetic tree inferred using within-sample diversity increased as
the between longitudinal samples progressed. Black line shows the best fit in a linear model, while
the blue shaded area represents the 95% CI.
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Figure 6—figure supplement 3. Number of low frequency variants within outbreaks as the
outbreak progresses.
Y-axis shows the number of low frequency variants for each isolate within an outbreak, while the
x-axis represents the days since that particular outbreak started. Black line shows the best fit in a
linear model, while the blue shaded area represents the 95% CI.
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Figure 7—figure supplement 1. Time calibrated phylogenetic trees for SARS-CoV-2.
SARS-CoV-2 phylogenetic trees inferred from consensus sequences (left) and an alignment with
major and minor variant information (right). Branch lengths are measured in years.
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Figure 7—figure supplement 2. Phylogenetic and transmission for SARS-CoV-2 outbreaks.
a-d Phylogenies of SARS-CoV-2 outbreaks. The branch lengths are in units of substitutions per
genome, and the scales are shown under the trees. Colors represent samples from the same
individual. Samples with the same name are technical replicates. Left tree of each panel shows the
phylogeny inferred with the consensus alignment. Right tree represents the phylogeny inferred
using within-sample variation. Heatmap shows the likelihood of direct transmission for each pair
of samples in a SEIR model of transmission. Vertical axis is the infector while the horizontal axis
shows the infectee.
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