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Density-based representations of atomic environments that are invariant under Euclidean symmetries
have become a widely used tool in the machine learning of interatomic potentials, broader data-driven
atomistic modeling, and the visualization and analysis of material datasets. The standard mechanism used
to incorporate chemical element information is to create separate densities for each element and form tensor
products between them. This leads to a steep scaling in the size of the representation as the number of
elements increases. Graph neural networks, which do not explicitly use density representations, escape this
scaling by mapping the chemical element information into a fixed dimensional space in a learnable way. By
exploiting symmetry, we recast this approach as tensor factorization of the standard neighbour-density-
based descriptors and, using a new notation, identify connections to existing compression algorithms. In
doing so, we form compact tensor-reduced representation of the local atomic environment whose size does
not depend on the number of chemical elements, is systematically convergable, and therefore remains
applicable to a wide range of data analysis and regression tasks.
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Over the past decade, machine learning methods for
studying atomistic systems have become widely adopted
[1–3]. Most of these methods utilize representations of
local atomic environments that are invariant under relevant
symmetries—typically rotations, reflections, translations
and permutations of equivalent atoms [4,5]. Enforcing
these symmetries allows for greater data efficiency during
model training and ensures that predictions are made in a
physically consistent manner. There are many different
ways of constructing such representations which are
broadly split into two categories: (i) descriptors based on
internal coordinates, such as the Behler-Parrinello atom-
centered symmetry functions [6], and (ii) density-based
descriptors such as smooth overlap of atomic positions
(SOAP) [7] or the bispectrum [8,9], which employ a
symmetrized expansion of ν correlations of the atomic
neighborhood density (ν ¼ 2 for SOAP and ν ¼ 3 for the
bispectrum). A major drawback of all these representations
is that their size increases dramatically with the number of

chemical elements S in the system. For instance, the
number of features in the linearly complete atomic cluster
expansion (ACE) [10,11] descriptor which unifies, extends,
and generalizes the aforementioned representations, scales
as Sν for terms with correlation order ν (i.e., a body order of
νþ 1). This poor scaling severely restricts the use of these
representations in many applications. For example, in the
case of machine learned interatomic potentials for systems
with many (e.g. more than five) different chemical ele-
ments, the large size of the models results in memory
limitations being reached during parameter estimation as
well as significantly reducing evaluation speed.
Multiple strategies to tackle this scaling problem have

been proposed including element weighting [12,13] or
embedding the elements into a fixed small dimensional
space [14,15], directly reducing the element-sensitive
correlation order [16], low-rank tensor-train approxima-
tions for lattice models [17] and data-driven approaches for
selecting the most relevant subset or combination of the
original features for a given dataset [18–20]. A rather
different class of machine learning methods is message
passing neural networks (MPNNs) [21,22]. Instead of
constructing full tensor products, these models also embed
chemical element information in a fixed size latent space
using a learnable transformation RS → RK where K is the
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dimension of the latent space, and thus avoid the poor
scaling with the number of chemical elements. Recently
these methods have achieved very high accuracy [23–25],
strongly suggesting that the true complexity of the relevant
chemical element space does not grow as Sν.
In this Letter we introduce a general approach for

significantly reducing the scaling of density-based repre-
sentations like SOAP and ACE. We show that by exploiting
the tensor structures of the descriptors and applying low-
rank approximations we can derive new tensor-reduced
descriptors which are systematically convergeable to the
original full descriptor limit. We also verify this with
numerical experiments on real data. We also show that
there is a natural generalization to compress not only the
chemical element information but also the radial degrees of
freedom, yielding an even more compact representation.
When fitting interatomic potentials for organic molecules
and high-entropy alloys, we achieve a tenfold reduction in
the number of features required when using linear (ACE)
and nonlinear kernel models [Gaussian approximation
potential (GAP) using SOAP]. We also fit a linear model
to a dataset with 37 chemical elements which would be
infeasible without the tensor-reduced features.
All many-body density-based descriptors can be under-

stood in terms of ACE [10]. In ACE, the first step in
describing the local neighborhood N ðiÞ ¼ fj∶rij < rcutg
around atom i is forming the one-particle basis
ϕznlmðrij; ZjÞ as a product of radial basis functions Rn,
spherical harmonics Ym

l , and an additional element index
shown in Eq. (1), where rij and Zj denote the relative
position and atomic number of neighbor j. Permutation
invariance is introduced by summing over neighbor atoms
in Eq. (2) after which (νþ 1)-body features are formed in
Eq. (3) by taking tensor products of the atomic basis Ai;znlm

with itself ν times. Finally, Eq. (4) shows how the product
basis Ai;znlm is rotationally symmetrized using the gener-

alized Clebsch-Gordon coefficients Clηm, where η enumer-
ates all possible symmetric couplings for a given l resulting
in invariant features [10,11,18].

ϕznlmðrij; ZjÞ ¼ RnðrijÞYm
l ðr̂ijÞδzZj

; ð1Þ

Ai;znlm ¼
X

j∈N ðiÞ
ϕznlmðrij; ZjÞ; ð2Þ

Ai;znlm ¼
Yν
t¼1

Ai;ztntltmt
ð3Þ

Bi;znlη ¼
X
m

ClηmAi;znlm: ð4Þ

A linear ACE model can then be fit to an invariant atomic
property φi as

φi ¼
X
znlη

cznlηBi;znlη ð5Þ

where cznlη are the model parameters and for practical
reasons the expansion is truncated using νmax, lmax, and
nmax ≔ N, the number of radial basis functions. Note that
as Bi;znlη is invariant under ðza; na; laÞ ↔ ðzb; nb; lbÞ sym-
metrically equivalent terms are usually omitted from
Eq. (5); again see Refs. [10,11,18] for the details. For
some l there is no invariant component of Ai;znlm so that

Clηm ¼ 0 and the corresponding trivial Bi;znlη are removed
from Eq. (5).
Crucially, the tensor product in Eq. (3) causes the

number of features (and therefore the number of model
parameters) to grow rapidly as OðNνSνÞ. Previous work
[10,14,19] has reduced this to OðKνÞ by first embedding
the chemical and radial information into K channels
[Eq. (6)] and then taking a full tensor product across the
Āi;klm [Eq. (7)]:

Āi;klm ¼
X
zn

Wk
znAi;znlm; k ¼ 1…K ð6Þ

Āi;klm ¼
Yν
t¼1

Āi;ktltmt
: ð7Þ

This approach is also used in moment tensor potentials
[15,26] and in Gaussian moment descriptors [27]. The
embedding can be identified in Eq. (3) of Ref. [26], where μ
indexes the embedded channels and ν is similar to l in ACE.
Then taking tensor products across the embedded channels
corresponds to forming products of the moments Mμν. In
general, the embedding weights are optimized either before
or during fitting [10,14,26] with the latter causing the
models to be nonlinear.
We propose a principled approach to further reduce the

size of the basis toOðKÞwhich can be understood from two
different angles. First, we identify the model parameters
cη ≡ cznlη in Eq. (5) as a symmetric tensor, invariant under
ðza; na; laÞ ↔ ðzb; nb; lbÞ, which can be expanded as a sum
of products of rank-1 tensors [28] as

cη ¼
XK
k¼1

λkηwk ⊗ wk… ⊗ wk|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ν times

; ð8Þ

or in component form

cznlη ¼
XK
k

λkη
Yν
t¼1

Wk
ztntlt

; ð9Þ

where Wk
ztntlt

are the components of wk. This expansion is
exact for finite K, as c is finite due to basis truncation and is
equivalent to eigenvalue decomposition of a symmetric
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matrix when ν ¼ 2. Note that we choose to use the same
weights Wk

ztntlt
for all ν and η, which significantly reduces

the number of weights that need be specified. In practice,
we can choose to expand over the zn or z indices only (see
the Supplemental Material [29] for details) and then
substitute the expansion into Eq. (5) as

φi ≈
X
klη

λklη

�X
m

Clηm
X
zn

Yν
t¼1

Wk
ztntlt

Ai;ztntltmt

�
ð10Þ

¼
X
klη

λklη

�X
m

Clηm
Yν
t¼1

Ãi;kltmt

�
ð11Þ

¼
X
klη

λklηB̃i;klη; ð12Þ

where B̃i;klη are the new tensor-reduced features and the
approximation arises because in practice we truncate the
tensor decomposition early. The key novelty is that only
elementwise products are taken across the k index of the
embedded channels Ãi;kltmt

when forming the many-body
basis, rather than a full tensor product, i.e., k does not have
a t subscript in Eq. (10) (see Table I for the full definitions).
For completeness, we note that applying this tensor
reduction to the elements only and using K ¼ 2 is
equivalent to the element-weighting strategies used in
Refs. [12,13,30].
There are multiple natural strategies for specifying the

embedding weights Wkl
zn, including approximating a pre-

computed cznlη or treating the weights as model parameters
to be estimated during the training process, as is done in
MACE [25]. Here we investigate using randomweights as a
simpler alternative. This ensures that Eq. (12) remains a
linear model and allows the B̃i;klη to be used directly in
other tasks such as data visualization.

We now show that the resulting tensor-reduced features
can also be understood from the perspective of directly
compressing the original Bi;znlη features. Random
Projection (RP) [32,33] is an established technique where
general high dimensional feature vectors fx⃗1;…; x⃗Ng ⊂ Rd

are compressed as x̃i ¼ Wx⃗i ∈ RK, with the entries of the
matrix W being normally distributed. This approach is
simple, offers a tuneable level of compression, and is
underpinned by the Johnson-Lindenstrauss Lemma [34]
which bounds the fractional error made in approximating
x⃗Ti x⃗j by x̃Ti x̃j. RP can also be used to reduce the cost of
linear models, with a closely related approach recently used
in Ref. [35]. In compressed least-square regression (CLSR)
[36–38], features are replaced by their projections, thus
reducing the number of model parameters. Loosely speak-
ing, the approximation errors incurred in CLSR (and RP in
general) are expected to decay as 1=

ffiffiffiffi
K

p
, and we refer to

Refs. [36,38,39] for more details. The drawback of RP is
that it requires the full feature vector to be constructed
so that applying RP to ACE would not avoid the unfav-
orableOðNνSνÞ scaling. We propose using tensor sketching
[40–43], as used in Refs. [44,45] to approximate the
neural tangent kernel, instead of RP. For vectors with
tensor structure x⃗ ¼ y⃗ ⊗ z⃗ where x⃗ ∈ Rd1d2 , y⃗ ∈ Rd1 , and
z⃗ ∈ Rd2 , the random projection Wx⃗ can be efficiently
computed directly from y⃗ and z⃗ as

Wx⃗ ¼ ðW 0y⃗Þ ⊙ ðW 00z⃗Þ; ð13Þ

where ⊙ denotes the elementwise (Hadamard) product.
Similarly, the ACE product basis can be tensor sketched,
across the zn indices, as

Âi ¼ ðW1A⃗iÞ⊗⊙
lm

k
ðW2A⃗iÞ…⊗

⊙
lm

k
ðWνA⃗iÞ; ð14Þ

where ⊗
⊙
lm
k denotes taking the tensor product over the upper

indices lm and the elementwise product over the lower

TABLE I. The density projection A⃗i is viewed as a vector with a composite index ðz; n; l; mÞ whereas the embedded density
projections Āi ¼ ðWA⃗iÞ, etc. are indexed by ðk; l; mÞ. The most general tensor-reduced many-body density projection (“Tensor sketch”)
and its special case (“Tensor decomposition”) are shown together with their scaling with the number of radial basis functions N, number
of chemical elements S, and number of embedding channels K. The symbol ⊗

⊙
lm
k

means full tensor product across l and m but
elementwise product across k whereas ⊗ indicates a full tensor product across all indices.

Name Product basis Index notation Basis size

ACE Ai ¼ A⃗i ⊗ A⃗i… ⊗ A⃗i
Ai;znlm ¼ Q

ν
t¼1 Ai;ztntltmt

OðNSÞν
[10]
Embedding Āi ¼ ðWA⃗iÞ ⊗ ðWA⃗iÞ… ⊗ ðWA⃗iÞ Āi;klm ¼ Q

ν
t¼1 Āi;ktltmt

OðKνÞ
[10,14,15,19,31] Āi;ktltmt

¼ P
zn W

kt
znAi;znltmt

Tensor decomposition Ãi ¼ ðWA⃗iÞ⊗⊙lm
k
ðWA⃗iÞ…⊗

⊙
lm
k
ðWA⃗iÞ Ãi;klm ¼ Q

ν
t¼1 Ãi;kltmt

OðKÞ
[25] Ãi;kltmt

¼ P
zn W

k
znlt

Ai;znltmt

Tensor sketch Âi ¼ ðW1A⃗iÞ⊗⊙lm
k
ðW2A⃗iÞ…⊗

⊙
lm
k
ðWνA⃗iÞ Âi;klm ¼ Q

ν
t¼1 Âit;kltmt

OðKÞ
Âit;kltmt

¼ P
zn W

tk
znAi;znltmt
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index k and W1, W2, etc. are independent identically
distributed random matrices; see the Supplemental
Material [29] for details. The Âi;klm can then be sym-
metrized as in Eq. (4), yielding

B̂i;klη ¼
X
m

Clηm
Yν
t¼1

Âit;kltmt
; ð15Þ

where Âit;kltmt
is defined more precisely in Table I. Finally,

we note that because the embedded channels are indepen-
dent, the error in approximating inner products using the
average across K channels is expected to decrease as
1=

ffiffiffiffi
K

p
, just as with standard RP. Based on this, we

conjecture that similar bounds derived for the errors made
in CLSR may also apply here. A summary comparing
standard ACE, element-embedding, and tensor-reduced
ACE is given in Table I, where it is clear that the features
derived using tensor decomposition are equivalent to the
tensor-sketched features with the choice of using equal
weights in each factor.
We now turn to numerical results and first demonstrate

that the tensor-reduced features are able to efficiently and
completely describe a many-element training set. We
consider a dataset comprised of all symmetry inequivalent
fcc structures made up of five elements with up to six atoms
per unit cell [46]. A set of features is complete on this
dataset if the design matrix for a linear model fit to total
energies has full (numerical) row rank, where each row
corresponds to a different training configuration.
Figure 1 shows the numerical rank of the design matrix

as a function of the basis set size. At a given correlation
order the standard ACE basis set is grown by increasing the
polynomial degree, and the tensor-reduced basis set is
enlarged by increasing K, the number of independent

channels. In both cases once the rank stops increasing at
the given correlation order we increment ν. The colors in
Fig. 1 correspond to three different geometrical variations:
blue contains on-lattice configurations only whilst in
magenta and red the atomic positions have been perturbed
by a random Gaussian displacement with mean 0 and
standard deviation of 0.025 and 0.25 Å, respectively. The
dotted lines corresponds to the standard ACE basis,
whereas the solid lines corresponds to the tensor-reduced
version from Eq. (12). Although the standard ACE basis
can always achieve full row rank since it is a complete
linear basis, it does this very inefficiently. In contrast, the
row rank using the tensor-reduced basis grows almost
linearly. Thus the tensor-reduced basis, having removed
unnecessary redundancies, still retains the expressive
power of the full basis.
Next, we fit a linear ACE [47] model on a training set of

400 different organic molecules of size 19–168 atoms,
randomly selected from the QMugs dataset [48] that are
made up of ten different chemical elements (H, C, N, O, F,
P, S, Cl, Br, I). The conformers were created by running
GFN2-xTB [49] 800 K NVT molecular dynamics for 1 ps
starting from a published minimum energy structure. The
test set is composed of 1000 different molecules sampled
the same way. This is a small-data regime task (∼60 000
scalar targets) that is particularly challenging due to the
chemical and conformational diversity. Figure 2 shows the
convergence of the energy error with the number of basis
functions for the fully coupled and the tensor-reduced ACE
models, both using νmax ¼ 3 (4-body) basis functions. By
increasing the number of uncoupled channels K we can
converge the accuracy to the previous level, whilst reducing
the size of the model by a factor of 10.
The tensor-reduction techniques proposed in this Letter

can be directly applied to other density-based descriptors

FIG. 1. The row rank of the design matrix as a function of basis
set on a dataset of all symmetry inequivalent fcc lattices of five
chemical elements and unit cell sizes of up to six atoms. The inset
enlarges the x ¼ y region. The colors denote the size of the
rattling around the crystal sites of an ideal fcc lattice, the markers
correspond to increasing body order of the basis, and the line
style compares the fully coupled and tensor-reduced ACE
versions.

FIG. 2. Convergence of the energy mean absolute error (MAE)
of organic molecules on the independent test set with respect to
the number of basis functions is shown for linear models using
standard and tensor-reduced (tensor decomposition) ACE fea-
tures. Error bars show the standard error in the mean, computed
across five fits using independently chosen random weights.
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and used with alternative models. To demonstrate this we
used the tensor-reduced SOAP power spectrum to fit GAP
[8] models to the quinary high-entropy alloy dataset
(∼400 000 scalar targets) from Ref. [50]. The descriptors
were computed using turbosoap [51], and fitting was
performed using the GAP code [52]. To provide a baseline
for comparison, reference models were fit using the full
power spectrum evaluated with a varying number of basis
functions; nmax ¼ 2lmax. All compressed descriptors were
constructed using the largest values of nmax ¼ 8, lmax ¼ 4;
see the Supplemental Material [29] for details. The force
errors achieved on the independent test set are shown as a
function of descriptor length in Fig. 3. For this dataset,
mixing only the chemical elements did not help, which is
likely due to the minimal savings made as a result of the low
correlation order ν. However, using the fully element-radial
tensor-reduced descriptor allowed for similar accuracy to be
achieved using approximately ten times fewer features.
Furthermore, the errors achieved with all compressed
descriptors are shown to converge to the error achieved
with the full SOAP vector they were derived from. Finally, in
the high accuracy regime, descriptor length > 300, models
using the tensor-sketch element-radial reduction matched the
accuracy achieved using full RP.
The information content of these SOAP based descrip-

tors was also measured using the information imbalance
[53]. It was found that the fully element-radial tensor-
reduced descriptors offered comparable data efficiency to
a random projection and that taking an elementwise
product across embedded channels outperformed taking
a full tensor product; see the Supplemental Material [29] for
tests on various datasets [54–56].

Finally, we assess the effect of optimizing the embedding
weights using the MACE architecture [25]. A typical
MACE model is a two-layer message passing network
which utilizes tensor-reduced ACE features to efficiently
represent equivariant body-ordered messages. Normally,
the embedding weights are optimized using backpropaga-
tion along with all other model parameters, but it is possible
to fix these weights to random values. As such, whilst a
multilayer MACE is a multi-center polynomial model, a
single-layer MACE with frozen embedding weights is
equivalent to a linear model using tensor-reduced ACE
features [24]. Furthermore, within MACE the embedding
weights used in the tensor decomposition (see Table I) are
approximated as Wklt

zn ¼ UznV
klt
n so that the element

weights Uzn and the radial weights Vklt
n can be optimized

or frozen independently.
We use the HME21 dataset [57,58] (∼1700 000 scalar

targets) for this test due to its exceptional diversity, both
chemically with 37 elements, and structurally with configu-
rations including isolated molecules, bulk crystals, surfaces,
clusters, and disorderedmaterials.We fit severalmodels (see
Supplemental Material [29] for details), and the energy and
force errors on the independent test set are summarized in
Table II. Strikingly, using random element-embedding
weights leads to almost no degradation in model accuracy
compared with using optimized element-embedding
weights. In contrast, randomizing both the element and
radial embedding weights leads to significantly larger
prediction errors. A two-layermodelwith optimizedweights
achieves state of the art accuracy on HME21, showing the
power of the message passing architecture and further
highlighting the effectiveness of the tensor-reduced features.
In conclusion, we introduced a tensor-reduced form of

the ACE basis for modeling symmetric functions of local
atomic neighbor environments that eliminates the OðNνSνÞ
scaling of the basis set size with the number of chemical
elements and radial basis functions. Intuitively, the con-
struction can be thought of as mixing the element and radial
channels and then only coupling these channels to them-
selves when constructing the higher order many-body
basis. We derived this new embedded basis from a
symmetric tensor decomposition and explored its connec-
tion to tensor sketching. We showed that this reduced basis

FIG. 3. Convergence of force root-mean-square error (RMSE)
on the high-entropy alloy test set as a function of descriptor
length for various GAP models. Error bars show the standard
error in the mean, computed across fit fits using independently
chosen random weights. The tensor reduction is denoted using
TD for tensor-decomposition (12) and TS for tensor-sketching
(15), and the reduction is performed over the indices after the
hyphen.

TABLE II. Mean absolute errors on the HME21 dataset. Energy
(E, meV) and force (F, eV/Å) errors of models. The labels, (1) or
(2), of the MACE models indicate the number of message passing
layers. MACE errors are an average across three seeds.

MACE
(1)

MACE
(1)

MACE
(1)

MACE
(2)

TeaNet
[59]

NequIP
[23]

Uzn opt rand rand opt
Vklt
n opt opt rand opt

E 53.8 54.7 254.8 16.5 19.6 47.8
F 0.194 0.193 0.451 140.2 0.174 0.199
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is also systematic, and that in practice it can enable a
tenfold reduction in basis set size for diverse datasets with
many elements, including organic molecules and high
entropy alloys. When used in a two-layer message passing
network, MACE [25], the tensor decomposition yields state
of the art performance.
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