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Abstract

The study of the initial value problem in General Relativity by means of conformal methods

was initiated by H. Friedrich in 1986. In this seminal work, the standard conformal Einstein

field equations are used to prove the non-linear stability of the de Sitter spacetime. These

equations constitute the main technical tool of this thesis. In the first part of this thesis, a

technique based on a more general formulation of these equations, the extended conformal

Einstein field equations, and a conformal Gaussian gauge is used to establish the non-linear

stability of de Sitter-like spacetimes. The gauge freedom associated to the field equations is

fixed using the properties of the conformal geodesics. The conformal Gaussian gauge system

allows recasting the evolution equations as a symmetric hyperbolic system, which enables

the use of standard Cauchy stability results. The same strategy is used to study the non-

linear stability of the Cosmological region of the Schwarzschild-de Sitter spacetime. The key

observation is that this region can be covered by a non-intersecting congruence of conformal

geodesics. Thus, the future domain of dependence of suitable spacelike hypersurfaces can

be expressed in terms of a conformal Gaussian gauge. A perturbative argument allows

then to prove existence and stability results close to the conformal boundary, excluding

the asymptotic points where the Cosmological horizon intersects the conformal boundary.

In the second part of this thesis, the asymptotic properties of the Maxwell-scalar field

system on a flat spacetime are studied by means of the framework of the cylinder at

spatial infinity. The analysis is aimed to understand the effects of the non-linearities of

this system on the regularity of solutions and polyhomogeneous expansions at the critical

sets. The main result is that the non-linear interaction causes both fields to be more

singular at the conformal boundary than when the fields are non-interacting.
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Chapter 1

Introduction

“ The views of space and time which I wish to lay before you have sprung

from the soil of experimental physics, and therein lies their strength.

They are radical. Henceforth, space by itself, and time by itself, are

doomed to fade away into mere shadows, and only a kind of union of the

two will preserve an independent reality. ”
Hermann Minkowski, 1908

In 1911, Einstein formulated the equivalence principle, thus drawing attention to grav-

itation for the first time since Newton. This principle postulates that the mechanical

phenomena, but also the optical and electromagnetic ones, in a gravitational field and a

field produced by an accelerated observer are equivalent. Einstein deduced the redshift of

the spectral lines of the Sun and the deflection of the light rays around a star during a total

eclipse. However in the latter case, he predicted only the partial deviation since his work

still relies on Newton’s law of gravitation. The equivalence principle laid the foundation

for a general theory of gravity not only restricted to uniform motions, as it indicated a

way to counter the objections raised in the past against such an extension since Newton’s
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Chapter 1. Introduction

time. At first, this approach seemed to suggest that it was impossible to dispute the criti-

cism until one removes the possibility of complications associated with gravitation. Even

though Einstein had overcome the major hurdles in developing his theory in 1913, this was

published in its complete form in 1916.

Einstein’s Theory of General Relativity is the most successful theory of gravity. Since

its formulation, its predictions have been confirmed via several observational tests. The

most recent one represented by the first image of the supermassive black hole at the centre

of our galaxy — known as Sagittarius A∗ — has been published by the Event Horizon

Telescope (EHT) Collaboration in May 2022. This image shows a dark central region —

the black hole shadow — surrounded by a bright ring-like structure generated by glowing

gas. Thus, it describes the light bent by the powerful gravity of the black hole, which is

four million times more massive than the Sun.

One of the main differences with Newton’s theory of gravity, is that in Einstein’s gravity

the gravitational field acquires its own dynamical properties. Its evolution is complicated

even in the absence of matter. In stark contrast with Newton’s theory, in which the field

equation —i.e. the Poisson equation — combines with the boundary condition that the

field vanishes at infinity so that the gravitational field vanishes when there is no matter.

In Einstein’s theory of General Relativity, the equations governing the gravitational field,

known as Eintein field equations, allow an idealised situation representing gravitational

waves in an otherwise empty universe without any matter source. This reflects the different

mathematical nature of the equations involved in these two cases. The Poisson equation

is elliptic, whereas the Einstein equations are ‘essentially’ hyperbolic. More precisely,

the latter are gauge hyperbolic, meaning they are hyperbolic by imposing suitable gauge

conditions. Solutions of hyperbolic equations can be determined uniquely by their values

on a suitable initial hypersurface.

The Cauchy problem is the task of establishing a one-to-one correspondence between

solutions and initial data and studying the properties of this correspondence. The solution

determined by particular initial data may be global —i.e. defined on the whole space

where the equations are defined, or local —i.e. only defined on a neighbourhood of the
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1.1. The Cauchy problem in General Relativity

initial hypersurface. For linear hyperbolic equations it is, in general, possible to solve the

Cauchy problem globally. For non-linear hyperbolic equations this is much more difficult

and whether it can be done or not must be decided on a case-by-case basis.

The previous discussion shows that studying the Einstein field equations corresponds

to analysing a system of non-linear hyperbolic equations. For these equations, one must

expect to encounter the problem that generically solutions of the Cauchy problem for non-

linear hyperbolic equations do not exist globally. This issue is complicated by the fact that

the distinction between local and global solutions made above does not apply: to define the

notions of local and global we used the concept of background space —i.e. the space where

the equations are defined. As will be seen in the following, in the case of the Einstein field

equations there is no background space; the spacetime manifold is part of the solution.

Thus, one talks about the local and global properties of the solutions and not about local

and global solutions. On the other hand, the lack of background space is also responsible

for the existence of solutions of the Einstein field equations with global features such as

the formation of black holes.

1.1 The Cauchy problem in General Relativity

The study of the Cauchy problem in General Relativity started in the decade 1950 with

the work of Fourès-Bruhat [18]. In this work, it was shown that if the gauge is fixed

appropriately, the equations governing General Relativity split into constraint equations

and evolution equations. In more detail, the equations representing the core of Einstein’s

theory of gravitation —i.e. the Einstein field equations— in the vacuum case with vanishing

cosmological constant are

R̃ab = 0. (1.1)

In terms of the local coordinates xµ satisfying the condition

∇̃ν∇̃νxµ = 0,
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known as the harmonicity condition, these equations can be recasted as a system of equa-

tions for the metric coefficients g̃ of the form

g̃λρ∂λ∂ρg̃µν = Qµν(g̃, Γ̃), (1.2)

where the right-hand side depends on these coefficients and the Christoffel symbols Γ̃,

which are given by

Γ̃µ
ν

λ = 1
2 g̃

νρ(∂µg̃ρλ + ∂λg̃µρ − ∂ρg̃µλ).

Now, by defining

H̃µν ≡ R̃µν − 1
2 S̃µν ,

where

S̃µν ≡ Γ̃α
µ

β∂µg̃
αβ + g̃αβ∂µΓ̃α

µ
β + Γ̃α

ν
β∂ν g̃

αβ + g̃αβ∂νΓ̃α
ν

β,

one is led to consider a Cauchy problem for the reduced Einstein field equations

H̃µν = 0, (1.3)

which constitute a system of wave equations for the metric components g̃µν .

The spacetime is foliated by a family of 3-dimensional spacelike Cauchy hypersurfaces

S̃. Since the spacetime metric g̃ is constrained by the Einstein equations, one expects

that the induced metric h̃ and extrinsic curvature K̃ are also constrained. In fact, let S̃

denote a 3-dimensional spacelike hypersurface with normal ñµ. By projecting the Einstein

field equations along the normal direction to S̃, we obtain the so-called Hamiltonian and

momentum constraints. Moreover, by projecting the Einstein field equations on S̃, one

obtains a set of evolution equations for the data h̃ and K̃. Thus, one can formulate an

initial value problem for the equations (1.3) supplemented with data

g̃µν |S̃ = h̃µν , ñα∂αg̃µν |S̃ = 2K̃µν ,

satisfying

g̃αβΓ̃α
µ

β|S̃ = 0, ñν∂ν(g̃αβΓ̃α
µ

β)|S̃ = 0,

where h̃µν is a 3-dimensional Riemannian metric and K̃µν is a symmetric tensor on S̃. In

this formulation of General Relativity, the initial data corresponds to a triple (S̃, h̃, K̃).
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1.2. Penrose’s proposal

Conversely, one can ask whether an initial data set satisfying the constraint equations

gives rise to a unique spacetime upon evolution. A fundamental result in this regard

was proven by Choquet-Bruhat and Geroch in [11] where it was shown that associated to

each triple (S̃, h̃, K̃) satisfying the constraint equations in vacuum, there exists a unique

maximal globally hyperbolic development (M̃, g̃). The adjective hyperbolic refers to the

fact that the evolution equations obtained in this formulation of the Einstein field equations

are hyperbolic. This property is fundamental as it allows us to formulate and establish

relativistic causality within General Relativity.

1.2 Penrose’s proposal

In order to have a better understanding of Einstein’s theory of General Relativity, it is

necessary to understand the causal structure in the context of the Einstein field equations.

In any investigation of the problem, the consequences of these equations must be taken

into account. However, gaining control of the evolution process defined by these equations

remains a significant challenge. Along with the question of how to combine the analysis of

the Einstein field equations with that of the causal structure, which are closely related in

Einstein’s theory. The causal structure is determined by the null cones of the metric due

to the local causality requirement. On the other hand, it can be used to reconstruct the

null cone structure. Moreover, the null hypersurfaces defined by the solutions determine

the physical characteristics of the field equations that govern the evolution process. These

relationships between causal structure, null cone structure, and physical characteristics

offer opportunities for the desired analysis but also contribute to the quasi-linearity of the

equations—see [29].

The work of Bondi, van der Burg and Metzner [7], Sachs [62, 63], Newman and Penrose

[58] paved the way towards the formulation of the geometric concept of asymptotic simplic-

ity based on the aforementioned relationships. In 1963, Penrose introduced this concept

which suggests analysing the asymptotic behaviour of gravitational fields in terms of the

smooth extensibility of the conformal structure through null infinity [59, 60].
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The basic model is provided by Minkowski spacetime (M̃, η̃), with M̃ = R4 and line

element η̃ written in Cartesian coordinates (x̃µ) = (t̃, x̃α) as

η̃ = ηµνdx̃µ ⊗ dx̃ν ,

where ηµν = diag(−1, 1, 1, 1). By introducing spatial spherical coordinates (ρ̃, θ, ϕ) defined

by ρ̃2 ≡ δαβx̃
αx̃β where δαβ = diag(1,1,1), and an arbitrary choice of (θ, ϕ) on S2, the

metric η̃ can be written as

η̃ = −dt̃⊗ dt̃+ dρ̃⊗ dρ̃+ ρ̃2σ, (1.4)

with t̃ ∈ (−∞,∞), ρ̃ ∈ [0,∞) and where σ denotes the standard metric on S2. By

introducing the coordinate transformation

t̃(τ, χ) = sin τ
cos τ + cosχ, ρ̃(τ, χ) = sinχ

cos τ + cosχ,

and introducing a conformal rescaling

η = Θ2η̃ (1.5)

with conformal factor Θ = cos τ + cosχ, one obtains the conformal metric η in the form

η = −dτ ⊗ dτ + dχ⊗ dχ+ sin2 χσ. (1.6)

This metric is locally identical to the metric gE of a spherically symmetric spacetime

(ME , gE) with ME ≡ R × S3 known as Einstein static universe—see Chapter 5 of [44].

Consequently, the rescaling procedure compactifies Minkowski spacetime into a region of

the Einstein cylinder corresponding to the domain

M̃ = {p ∈ ME | |τ ± χ| < π, χ ≥ 0}.

One can analytically extend (1.6) to the whole of the Einstein static universe, where −∞ <

τ < ∞ and χ, θ, ϕ are regarded as coordinates on S3. Even though these coordinates

are singular at χ = 0, χ = π and θ = 0, θ = π, these singularities can be removed by

transforming to other local coordinates in the neighbourhood where (1.6) is singular. Thus,
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1.2. Penrose’s proposal

the conformal metric, the conformal factor and the underlying manifold can be smoothly

extended to yield the conformally compactified Minkowski spacetime with manifold

M = {p ∈ ME | |τ ± χ| ≤ π, χ ≥ 0} = M̃ ∪ I ∪ i0 ∪ i+ ∪ i−.

The boundary of M may be thought of as representing the conformal structure of infinity

of Minkowski spacetime. The set I represents the conformal boundary which is the set of

points where Θ = 0 and dΘ ̸= 0. The two components

I = I + ∪ I − = {p ∈ ME | |τ ± χ| = π, χ > 0}

represent future and past null infinity. They are generated by the future and past endpoints,

respectively, acquired by the null geodesics. Moreover, since η(dΘ,dΘ)|I ± = 0 these are

null hypersurfaces with respect to the conformal metric η.

The two points

i+ = {p ∈ ME | τ = π, χ = 0}, i− = {p ∈ ME | τ = −π, χ = 0},

where Θ = 0, dΘ = 0 and HessηΘ = −η correspond to the future and past endpoints of

the timelike geodesics and thus represent future and past timelike infinity.

Finally, the point

i0 = {p ∈ ME | τ = 0, χ = π},

where Θ = 0, dΘ = 0 and HessηΘ = η corresponds to the point where spacelike geodesics

run in both directions and thus represents spacelike infinity. By including this point,

the Cauchy hypersurface corresponding to t = 0 of the Minkowski spacetime with metric

induced by η conformally extends to the sphere S3 endowed with its standard metric.

The conformal structure of Minkowski spacetime just described is regarded as the ‘nor-

mal’ behaviour of a spacetime at infinity. One can obtain spacetimes locally identical

to (M̃, η̃) but with different topological properties. Moreover, it is possible to obtain

alternative conformal representations of Minkowski spacetime —see Chapter 6.

The process of extending the differential structure and the conformal structure of a

Minkowski spacetime (M̃, η̃) to obtain a smooth conformal extension (M,η) was largely
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generalised by Penrose in [59]. In this work, it is suggested that this construction applies to

many solutions to the Einstein field equations, allowing us to relate the null cone structure

to the structure of the field equations and the large-scale behaviour of their solutions. In

the case of the solution to the vacuum Einstein field equations near I , the latter is a

null hypersurface for the conformal metric g representing future (past) null infinity. This

structure allows us to obtain the precise fall-off behaviour required in asymptotic analysis.

In case I is sufficiently smooth, local differential geometry can be used to simplify the

analysis.

1.3 The conformal Einstein field equations

Although the study of the initial value problem in General Relativity started in the decade

1950 with the work of Fourès-Bruhat, the global non-linear stability of generic solutions to

the Einstein field equations is still an open problem. The first global non-linear stability

results in General Relativity appeared in the decade of 1980 and are due to the work of

Friedrich [23, 24]. One of the main features in these works is the use of the so-called

conformal Einstein field equations to pose an initial value problem. The central concept of

the conformal Einstein field equations is that of a conformal transformation.

The relevance of the construction introduced by Penrose in 1963 goes beyond the study

of asymptotics and isolated gravitational systems. In his proposal, one considers a physical

spacetime (M̃, g̃), where M̃ is a 4-dimensional manifold and g̃ is a Lorentzian metric,

which is a solution to the Einstein field equations

R̃ab − 1
2R̃g̃ab + λg̃ab = κT ab, (1.7)

where R̃ab and R̃ are the Ricci tensor and the Ricci scalar of g̃ respectively, λ is the

Cosmological constant and T̃ ab is the energy momentum tensor. Then, one conformally

embeds the physical spacetime (M̃, g̃) into the unphysical spacetime (M, g) via a conformal

rescaling with conformal factor Ξ. Since the unphysical metric g contains the same causal

information as the physical metric g̃, a natural question is how the Einstein field equations
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1.3. The conformal Einstein field equations

behave under a conformal transformation of the metric. The theory proposed by Einstein

gives no reason to expect that the field equations would be particularly well-behaved un-

der conformal rescalings. These equations being chosen to determine isometry classes of

solutions are not conformally covariant. This can be seen from the transformation law of

the Ricci tensor

Rab − R̃ab = − 2
Ξ∇a∇bΞ − gabg

cd

(
1
Ξ∇c∇dΞ − 3

Ξ2 ∇cΞ∇dΞ
)
, (1.8)

where the righthand side ∇ denotes the connection associated to g. If the Einstein field

equations (1.7) are assumed in this relation and the conformal factor Ξ is considered as a

given function on the solution manifold, one obtains an equation for the conformal metric

g. The resulting equation has two deficiencies. One is the occurrence of factors Ξ−1 which

makes the equation singular when Ξ = 0. The second one is due to the function Ξ and the

manifold underlying the solution not being given a priori. They are related to the global

geometry of the solution and must be determined jointly with the metric.

Nevertheless, the Einstein equations allow us to resolve these problems. The resulting

equations are known as conformal Einstein field equations. These equations are confor-

mally regular in the sense that there exists a conformal representation of these equations

which do not contain factors Ξ−1. This is in stark contrast with the conformally singular

equations like the massive Klein-Gordon equations and conformally invariant equations

like the Maxwell or Yang-Mills equations. Furthermore, the conformal Einstein field equa-

tions constitute a system of differential conditions on the curvature tensors with respect

to the Levi-Civita connection of g and the conformal factor Ξ. The original formulation of

these equations requires the introduction of so-called gauge source functions to construct

evolution equations —see e.g. [22]. An alternative approach to gauge fixing is to adapt the

analysis to a congruence of curves. A natural candidate for congruence is given by confor-

mal geodesics —a conformally invariant generalisation of the standard notion of geodesics.

Using these curves to fix the gauge allows us to define a conformal Gaussian gauge system.

To combine this gauge choice with the conformal Einstein field equations it is necessary to

make use of a more general version of the latter —the extended conformal Einstein field

equations.
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In this thesis, we discuss the origin, the properties and some applications of the con-

formal Einstein field equations.

1.4 Main results in this thesis

One of the problems one encounters whilst analysing the conformal Einstein field equations

is the issue of gauge freedom. In the classical treatment of the Cauchy problem in General

Relativity, a suitable choice of coordinates allows us to reduce the equations to a system

of wave equations for the metric components. In the original treatment of the conformal

Einstein field equations, the hyperbolic reduction strategy used led to a first-order system

of equations. In the case of the extended conformal Einstein field equations, the gauge

fixing is performed by exploiting a congruence of curves with special conformal properties:

conformal geodesics. This hyperbolic reduction strategy leads to a first-order system of

symmetric hyperbolic equations. The latter approach is used to discuss the non-linear

stability of the de Sitter-like spacetime in Chapter 3. This spacetime is a solution to the

vacuum Einstein field equations with positive Cosmological constant with spatial sections

of constant negative scalar curvature. In this chapter, perturbations of exact initial data

corresponding to the de Sitter-like spacetime are considered. Then the theory of symmetric

hyperbolic systems with compact spatial sections is used to obtain a non-linear stability

result for small perturbation of the exact solution.

A common feature that is exploited in the analysis of constant curvature spacetimes

using conformal methods is that they can be conformally embedded in a cylinder. The

latter is convenient as an explicit solution to the conformal Einstein field equations can be

identified. In other words, most of the existence and stability results using the conformal

Einstein field equations have been restricted to the analysis of perturbations of conformally

flat spacetimes. Therefore, an interesting question is whether the conformal Einstein field

equations can be exploited in the analysis of global properties of non-conformally flat

spacetimes and, in particular, in the analysis of the stability of black hole spacetimes.

On the other hand, from a physical point of view, observations have established that the
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1.4. Main results in this thesis

Universe is expanding. Therefore, spacetimes describing isolated systems embedded in a

de Sitter universe constitute a class of physically relevant spacetimes to be analysed. Given

these remarks, in Chapter 4 the Schwarzschild-de Sitter spacetime is analysed using the

extended conformal Einstein field equations. The presence of a Cosmological constant with

a de Sitter-like value is of importance as it implies that the conformal boundary is spacelike.

The insight gained from the analysis of the evolution of the exact initial data corresponding

to the Schwarzschild-de Sitter spacetime is used to discuss non-linear perturbations of this

exact data by exploiting the theory of symmetric hyperbolic systems. The spacetimes

constructed in this way can be regarded as perturbations of the Schwarzschild-de Sitter

spacetime. In view of the domain of dependence properties of the solutions to the Einstein

field equations, the stability of the asymptotic region can be analysed independently of the

black hole exterior region. Hence, in the discussion in Chapter 4, the domain of dependence

of the initial data is contained in the region corresponding to the Cosmological region of

the Schwarzschild-de Sitter spacetime.

One of the main difficulties in establishing a global result for the stability of the

Minkowski spacetime using conformal methods lies in the fact that the initial data for

the conformal Einstein field equations are not smooth at spatial infinity i0. In the case of

the problem of spatial infinity, a milestone in the resolution of this problem is the construc-

tion of a new representation of spatial infinity known as the cylinder at spatial infinity.

With this motivation in mind, in Chapter 6, this framework is used to study the behaviour

of the Maxwell-scalar field system near spatial infinity. In particular, it is shown that un-

less the initial data is fine-tuned, this system exhibits a singular behaviour at the critical

sets where null infinity meets spatial infinity.

Collectively, these results show how the conformal Einstein field equations and, more

generally, conformal methods can be employed to analyse perturbations of spacetimes of

interest and extract information about their conformal structure.
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1.5 Outline of the thesis

This thesis consists of two parts. In Chapter 2, the various formulations of the conformal

Einstein field equations are introduced along with a discussion concerning hyperbolic re-

duction strategies. This chapter includes the mathematical preliminaries of the two parts.

The first part of this thesis is concerned with the question of the non-linear stability of

Cosmological spacetimes. In Chapter 3, we discuss the non-linear stability of de Sitter-like

spacetimes with spatial sections of negative scalar curvature, which is the first result of

this thesis. In Chapter 4, the same approach is used to discuss the non-linear stability

of the Cosmological region of the Schwarzschild-de Sitter spacetime. The second part of

this thesis is devoted to the problem of spatial infinity. In Chapter 5, the space-spinor

formalism is introduced to obtain a hyperbolic reduction. In Chapter 6, this procedure is

paired with Friedrich’s representation of spatial infinity to study the asymptotic properties

of the Maxwell-scalar field system propagating on Minkowski spacetime. Altogether, these

results show how conformal methods can be used to study the non-linear perturbations of

spacetimes to obtain information about the global regularity of these solutions and their

asymptotic properties.

1.6 Notations and Conventions

The signature convention for Lorentzian spacetime metrics will be (−,+,+,+). In the

rest of this thesis {a,b ,c , ...} denote spacetime abstract tensor indices and {a,b ,c , ...} will

be used as spacetime frame indices taking the values 0, ..., 3. In this way, given a basis

{ea} a generic tensor is denoted by Tab while its components in the given basis are denoted

by Tab ≡ Tabea
aeb

b. The Greek indices µ, ν , . . . denote spacetime coordinate indices while

the indices α, β, . . . denote spatial coordinate indices. In addition to the index notation

described above, when convenient, it is also used an index-free notation. Given a 1-form

ω and a vector v, the action of ω on v is denoted by ⟨ω,v⟩. The musical isomorphisms ♯

and ♭ are used to denote the contravariant version ω♯ of ω and the covariant version v♭ of
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v with respect to a given Lorentzian metric g. This notation can be extended to tensors

of higher rank.

Part of the analysis will require the use of spinors. In this respect, the notation and

conventions of Penrose & Rindler [61] will be followed. In particular, capital Latin in-

dices {A,B ,C , ...} will denote abstract spinor indices while boldface capital Latin indices

{A,B ,C , ...} will denote frame spinorial indices with respect to a specified spin dyad {ϵA
A}.

The conventions for the curvature tensors are fixed by the relation

(∇a∇b − ∇b∇a)vc = Rc
dabv

d.
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Chapter 2

Methods of conformal geometry

2.1 Introduction

Given Penrose’s characterisation of the asymptotic behaviour of gravitational fields in terms

of the extensibility of the conformal structure across null infinity [59, 60], it is possible

to deduce the global structure of spacetimes from an analysis of the behaviour under

conformal rescalings of the Einstein field equations. This requires a suitable conformal

representation consisting of a system of equations for all the conformal fields which is

regular at the conformal boundary and whose solutions imply solutions to the Einstein

field equations. The resulting equations are the so-called conformal Einstein field equations

and were originally introduced by Friedrich in 1981 [19].

This chapter will discuss two different versions of the conformal Einstein field equa-

tions: the standard conformal Einstein field equations and a more general version of these

equations, the extended conformal Einstein field equations. Particular emphasis is given to

the relation between the frame formulations of these two versions. Since all the applica-

tions of the conformal Einstein field equations discussed in this thesis are concerned with

the vacuum case, we only consider the conformal formulations equivalent to the vacuum

Einstein field equations. The rest of the chapter provides a brief overview of the tools of

conformal geometry inspired by [81], which serve as mathematical preliminaries for the
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analysis in the following chapters.

2.2 Conformal transformation relations

This section presents the formalism necessary to introduce the conformal Einstein field

equations. These equations provide a conformal equivalent of the vacuum Einstein field

equations—see [27, 81].

2.2.1 Conformal rescalings

Let (M̃, g̃) denote a physical spacetime. In order to construct an unphysical spacetime

(M, g) whose manifold M has a boundary I and a metric g, one introduces a conformal

rescaling

g = Ξ2g̃, (2.1)

where Ξ is the so-called conformal factor. This relation is such that M̃ is conformal to

the interior of M and maps points belonging to the infinity of M̃ to a finite position in I

—see Figure 2.1. The function Ξ on M is a boundary defining function. In particular, the

conformal boundary I is defined as the set of all points characterised by a vanishing Ξ.

Accordingly, the unphysical spacetime can be defined as the union of the physical spacetime

with the conformal boundary

M ≡ M̃ ∪ I ,

where I = I + ∪ I − is the union of future null infinity and past null infinity. These

spacetimes have the same causal structure — i.e. a trajectory which is timelike, spacelike

or lightlike with respect to g̃ is so also with respect to g.

The conformal rescaling gives rise to an equivalence class of metrics conformally related

to g̃ on M̃, known as the conformal structure [g̃].

33



Chapter 2. Methods of conformal geometry

g = Ξ2g̃ I

Figure 2.1: The infinite physical spacetime manifold M̃ is mapped into the unphysical

conformally equivalent manifold M with boundary I . This picture is adapted from [81].

2.2.2 The change of connection

Let ∇ and ∇̃ denote the Levi-Civita connections of the metrics g and g̃ related to each

other by Equation (2.1). The action of (∇ − ∇̃) on a function f is defined by

(∇a − ∇̃a)f = 0.

Moreover, since

(∇a − ∇̃a)(fvb) = f(∇a − ∇̃a)vb,

one can define the transition tensor Qa
c
b so that

(∇a − ∇̃a)vb = Qa
b
cv

c. (2.2)

From these relations, by setting f = ωbv
b, one finds that the action of (∇ − ∇̃) on a

covector ω is given by

(∇a − ∇̃a)ωb = −Qa
c
bωc. (2.3)

Hence, given the connection ∇̃ one can obtain the connection ∇ by finding the specific

form of the transition tensor Qa
c
b. Since these connections are torsion-free, one can show

that Qa
c
b = Q(a

c
b) —i.e. the transition tensor is a symmetric tensor.
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2.2.3 Transformation formulae

Transformation formula for the connection

In order to find the explicit form of the transition tensor Qa
c
b, one considers the action of

(∇ − ∇̃) on the metric g obtained from Equation (2.3) as follows

(∇a − ∇̃a)gbc = −Qa
d

bgdc −Qa
d

cgbd. (2.4)

Now, since ∇agbc = 0, ∇̃ag̃bc = 0 and gbc = Ξ2g̃bc, one has that

2(Ξ∇̃aΞ)g̃bc = Qa
d

bgdc +Qa
d

cgbd, (2.5)

from which

2(Ξ−1∇aΞ)gbc = Qa
d

bgdc +Qa
d

cgbd. (2.6)

This equation can be paired with two equations obtained from Equation (2.6) by means of

cyclic permutations of the indices abc

2(Ξ−1∇bΞ)gca = Qb
d

cgda +Qc
d

bgad, (2.7a)

2(Ξ−1∇cΞ)gab = Qc
d

agdb +Qb
d

agcd. (2.7b)

By adding Equations (2.7a)-(2.7b), subtracting Equation (2.6) and by using the symmetry

properties of gab and Qa
c
b, it follows that

(Ξ−1∇bΞ)gca + (Ξ−1∇cΞ)gab − (Ξ−1∇aΞ)gbc = Qb
d

cgda.

Thus, by solving for Qb
d

c and upon defining

Sbc
da ≡ δb

aδc
d + δb

dδc
a − gadgbc, Υa ≡ Ξ−1∇aΞ, Υb

d
c ≡ Sbc

daΥa, (2.8)

one has that

Qb
d

c = Sbc
da(Υa). (2.9)

In conclusion, one has that ∇ and ∇̃ are related to each other via

∇a − ∇̃a = Sab
cd(Υd). (2.10)

It is worth noticing that the tensor Sbc
da is conformally invariant since

δb
aδc

d + δb
dδc

a − gadgbc = δb
aδc

d + δb
dδc

a − g̃adg̃bc.
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Transformation formulae for the curvature

The relation between the Levi-Civita connections ∇ and ∇̃ provided by Equation (2.10)

can be used to obtain the transformation formulae relating the curvature tensors of these

connections. More precisely, from the definition the Riemann tensor R̃ of the connection

∇̃, by recalling that this connection is torsion-free and by using Equation (2.9), one has

that the relation between the Riemann tensor of the connections ∇ and ∇̃ is given by

R̃c
dab −Rc

dab = 2∇[aΥb]
c
d + 2Υ[a

c
|e|Υb]

e
d. (2.11)

This transformation formula can be used to obtain the relation between the Ricci tensor

of the connections ∇̃ and ∇ as given by Equation (1.8), as well as the following relation

between the Ricci scalar of these connections

R − Ξ−2R̃ = − 6
Ξ∇c∇cΞ + 12

Ξ2 ∇cΞ∇cΞ. (2.12)

The presence of terms containing negative powers of Ξ on the right-hand side of Equations

(1.8) and (2.12) makes these quantities singular at the conformal boundary.

Transformation formulae for the concomitants

The Riemann tensor R̃c
dab admits an irreducible decomposition in terms of the Schouten

tensor L̃ab and the Weyl tensor Cc
dab as

R̃c
dab = Cc

dab + 2Sd[a
ceL̃b]e. (2.13)

The Schouten tensor L̃ab of the connection ∇̃ is defined as

L̃ab = 1
2

(
R̃ab − 1

6R̃g̃ab

)
. (2.14)

The transformation formula for the Schouten tensor of the connections ∇̃ and ∇

Lab − L̃ab = 1
2

(
Rab − R̃ab

)
− 1

12

(
R − Ξ−2R̃

)
gab

is given by means of the transformation formulae provided by Equations (1.8)-(2.12) as

Lab − L̃ab = − 1
Ξ∇a∇bΞ + 1

2Ξ2 ∇cΞ∇cΞgab. (2.15)
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2.3. The standard conformal Einstein field equations

The transformation formula for the Weyl tensor Cc
dab is obtained from the irreducible

decomposition of the Riemann tensor (2.13) and the transformation formulae for the Rie-

mann Rc
dab and Schouten Lab tensors, (2.11) and (2.15). From this, one finds that the

Weyl tensor is an invariant of the conformal class [g̃] —i.e. Cc
dab = C̃c

dab. This invariance

along with Equation (2.10) gives the following identity for this tensor

∇a(Ξ−1Ca
bcd) = Ξ−1∇̃aC

a
bcd.

2.3 The standard conformal Einstein field equations

The first conformal formulation of the Einstein field equations goes back to the seminal

work of Friedrich [20] and is known as the conformal Einstein field equations, also known

as standard conformal Einstein field equations. This formulation consists of a system

of equations for the conformal fields appearing in the Einstein field equations which are

written in terms of the Levi-Civita connection of the conformally rescaled spacetime and

are regular up to the conformal boundary. A solution to these equations implies, under

suitable conditions, a solution to the Einstein field equations.

2.3.1 The vacuum Einstein field equations

The discussion of the following chapters assumes no matter content. As a result, this

analysis can be restricted to the vacuum case for the Einstein field equations (1.7). The

vacuum Einstein field equations are given by

R̃ab − 1
2R̃g̃ab + λg̃ab = 0, (2.16)

with

R̃ = 4λ, (2.17)

where R̃ab and R̃ represent, respectively the Ricci tensor and Ricci scalar of the metric g̃ab.

The definition of the physical Schouten tensor (2.14) can be used to rewrite the Einstein

field equations in terms of L̃ab as

L̃ab = 1
6λg̃ab. (2.18)
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2.3.2 Derivation of the conformal Einstein field equations

Equation for the conformal factor

Since the transformation law (1.8) provides a Ricci tensor which is singular at the conformal

boundary, this suggests starting from the transformation law for the Schouten tensor,

Equation (2.15). This equation contains two singular terms on the right-hand side that

need to be regularised. This can be done by using Equation (2.12) to replace Ξ−2∇cΞ∇cΞ

along with Equation (2.14) for L̃ab and by introducing the Friedrich scalar

s ≡ 1
4∇a∇aΞ + 1

24RΞ, (2.19)

where R is the Ricci scalar of the metric g. Nonetheless, one obtains an expression for

Lab still containing formally singular terms. This problem can be solved by looking at the

resulting equation as an equation for

∇a∇bΞ = −ΞLab + sgab. (2.20)

This change of perspective is such that in Equation (2.20) the Friedrich scalar s and the

Schouten tensor Lab are to be considered as unknowns. Hence, suitable equations for these

fields need to be constructed.

Equation for the Friedrich scalar

To obtain a suitable equation for the Friedrich scalar s, one applies ∇c to Equation (2.20),

commutes the covariant derivatives and then contracts the indices b and c so that

∇a(∇c∇cΞ) +Rca∇cΞ = −Lca∇cΞ − Ξ∇cLac + ∇cs. (2.21)

Then by using the definition of the Schouten tensor (2.14) and the Friedrich scalar (2.19)

in Equation (2.21) one has

3∇as− 1
6Ξ∇aR = −3Lac∇cΞ − Ξ∇cLac. (2.22)
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2.3. The standard conformal Einstein field equations

Now, upon introducing the Einstein tensor of the metric g

Gab ≡ Rab − 1
2Rgab,

one recalls that ∇aGab = 0 which can be written in terms of the Schouten tensor Lab and

replaced in Equation (2.22) so that one has

∇as = −Lac∇cΞ, (2.23)

providing an equation for s.

Equation for the Schouten tensor

Since Equation (2.20) contains the physical Schouten tensor L̃ab one needs to provide a

differential condition on L̃ab. In order to achieve this one introduces the second Bianchi

identity for the Riemann tensor of the metric g̃

∇̃[eR̃
a

|b|cd] = 0. (2.24)

Then by replacing the irreducible decomposition of the Riemann Tensor (2.13) in (2.24)

one has

∇̃cL̃db − ∇̃dL̃cd = ∇̃aC
a

bcd. (2.25)

Since the Riemann tensor of the metric g satisfies equations analogous to (2.13) and (2.24)

it follows that by the computation just described one obtains

∇cLdb − ∇dLcd = ∇aC
a

bcd. (2.26)

Now, to find an expression for this equation in terms of undifferentiated fields one intro-

duces the physical Cotton tensor Ỹ cdb defined as

Ỹ cdb = ∇̃cL̃db − ∇̃dL̃cd, (2.27)

and makes use of the identity

∇a(Ξ−1Ca
bcd) = Ξ−1∇̃aC

a
bcd

39



Chapter 2. Methods of conformal geometry

so that Equation (2.25) reads as

Ξ−1Ỹ cdb = ∇a(Ξ−1Ca
bcd). (2.28)

This equation is singular at I due to the presence of Ξ−1 terms. To regularise this equation

it is convenient to define the rescaled Weyl tensor dc
dab via the relation

dc
dab ≡ Ξ−1Cc

dab, (2.29)

and the rescaled Cotton tensor via

T cdb ≡ Ξ−1Ỹ cdb (2.30)

to be replaced in (2.28) so that one has

T cdb = ∇ad
a

bcd, (2.31)

which is formally regular. Since the rescaled Cotton tensor T cdb provides the coupling with

the matter fields, in vacuum one has that T cdb = 0—see Chapter 10 of [81]. Thus, it follows

that in a vacuum one has

∇ad
a

bcd = 0. (2.32)

Eventually, by using the definition of the rescaled Weyl Tensor (2.29) and Equation (2.31)

in Equation (2.26) one obtains the so-called Cotton equation

∇cLdb − ∇dLcd = da
bcd∇aΞ, (2.33)

which is regular for Ξ = 0.

Equation of propagation for the Cosmological constant

To relate the solution of the conformal Einstein field equations to solutions of the Einstein

field equations, one needs to regularise the transformation relation for the Ricci scalar (1.8).

To achieve this, one multiplies Equation (1.8) by Ξ2, uses the equation for the physical

Ricci scalar (2.17) and the definition of the Friedrich scalar (2.19) so that one has

λ = 6Ξs− 3∇cΞ∇cΞ. (2.34)
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2.3. The standard conformal Einstein field equations

This equation plays the role of a constraint which is preserved during the evolution by

virtue of the other conformal field equations—see Chapter 8 of [81]. In particular, one has

the following lemma:

Lemma 1 (Propagation of the Cosmological constant). If Equations (2.20) and

(2.23) are satisfied on M and Equation (2.34) holds at a point p ∈ M, then this equation

is also satisfied on M.

2.3.3 The metric formulation of the conformal Einstein field equa-

tions

The discussion of the previous sections leads to the definition of the conformal Einstein

field equations as

∇a∇bΞ = −ΞLab + sgab, (2.35a)

∇as = −Lac∇cΞ, (2.35b)

∇cLdb − ∇dLcb = da
bcd∇aΞ, (2.35c)

∇ad
a

bcd = 0, (2.35d)

6Ξs− 3∇cΞ∇cΞ = λ, (2.35e)

complemented by the irreducible decomposition of the Riemann tensor (2.13).

In order to formulate these equations in a compact form it is useful to introduce the

so-called zero-quantities

Zab ≡ ∇a∇bΞ + ΞLab − sgab,

Za ≡ ∇as+ Lac∇cΞ,

∆bcd ≡ ∇cLdb − ∇dLcb − da
bcd∇aΞ,

Λbcd ≡ ∇ad
a

bcd,

Z ≡ 6Ξs− 3∇cΞ∇cΞ − λ,
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so that the conformal Einstein field equations can be written as

Zab = 0, Za = 0, ∆bcd = 0, Λbcd = 0, Z = 0. (2.37)

A solution to the conformal Einstein field equations is a collection of fields {gab,Ξ, s, Lab, d
a

bcd}

satisfying (2.37). This solution is in turn a solution to the vacuum Einstein field equations

as shown in Chapter 8 of [81] and summarised by the following proposition

Proposition 1 (Solutions to the conformal Einstein field equations as solutions

to the Einstein field equations). Let

{gab,Ξ, s, Lab, d
a

bcd}

denote a solution to the Equations (2.35a)-(2.35d) such that Ξ ̸= 0 on an open set U ⊂ M.

If, in addition, Equation (2.35e) is satisfied at a point p ∈ U , then the metric

g̃ab = Ξ−2gab

is a solution to the Einstein field equations on U .

2.3.4 The frame formulation of the conformal Einstein field equa-

tions

This derivation of the frame version of Equations (2.35a)-(2.35e) requires the introduction

of a frame. Let {ea} be a frame on M with {ωa} associated coframe so that ⟨ωa, eb⟩ = δb
a.

Accordingly, one defines the frame metric as the frame

gab ≡ ea
aeb

bgab = g(ea, eb).

Upon choosing the frame {ea} to be orthonormal with respect to the metric g so that

g(ea, eb) = diag(−1, 1, 1, 1).

Thus, the metric gab is expressed in terms of the coframe {ωa} as

gab = gabωa
aω

b
b = g♯(ωa,ωb).
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2.3. The standard conformal Einstein field equations

In terms of the frame {ea} the connection coefficients Γa
c

b of Levi-Civita connection ∇

are defined via

∇aeb = Γa
c

bec,

with ∇a ≡ ea
a∇a denotes the covariant directional derivative in the direction of ea. The

torsion Σ of ∇ can be expressed in terms of the frame {ea} and the connection coefficients

Γa
c

b via

Σa
c

bec = [ea, eb] − (Γa
c

b − Γb
c

a)ec.

The components of the Riemann tensor Ra
bcd of the Levi-Civita connection ∇ are written

in terms of the connection coefficients Γa
c
b as

Rc
dab ≡ ∂a(Γb

c
d) − ∂b(Γa

c
d) + Γf

c
d(Γb

f
a − Γa

f
b) + Γb

f
dΓa

c
f − Γa

f
dΓb

c
f

and will be referred as the geometric curvature Rc
dab of ∇. The expression of the irreducible

decomposition of the Riemann tensor is

ρc
dab ≡ Ξdc

dab + 2Sd[a
ceLb]e

and will be referred as the algebraic curvature ρc
dab. In the latter expression, Lab is the

Schouten tensor of the metric g and da
bcd is the rescaled Weyl tensor.

Using these definitions, the frame formulation of the conformal Einstein field Equations

is provided by the following set of equations

∇a∇bΞ = −ΞLab + sηab,

∇as = −Lac∇cΞ,

∇cLdb − ∇dLcb = da
bcd∇aΞ,

∇ad
a

bcd = 0,

6Ξs− 3∇cΞ∇cΞ = λ.

and is complemented by the structure equations

Σc
c

b = 0,

Rc
dab = ρc

dab,
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which expresses the fact that for the Levi-Civita connection ∇, its torsion must vanish

and its geometric and algebraic curvature must coincide.

To formulate these equations in a compact form it is useful to introduce the following

set of zero-quantities:

Σab ≡ Σa
c

bec, (2.40a)

Ξc
dab ≡ Rc

dab − ρc
dab, (2.40b)

Zab ≡ ∇a∇bΞ + ΞLab − sηab, (2.40c)

Za ≡ ∇as+ Lac∇cΞ, (2.40d)

∆cdb ≡ ∇cLdb − ∇dLcb − da
bcd∇aΞ, (2.40e)

Λbcd ≡ ∇ad
a

bcd, (2.40f)

Z ≡ 6Ξs− 3∇cΞ∇cΞ − λ. (2.40g)

In terms of these zero quantities, the frame version of the conformal Einstein field equations

can be written as

Σab = 0, Ξc
dab = 0, Zab = 0, Za = 0, (2.41a)

∆cdb = 0, Λbcd = 0, Z = 0. (2.41b)

Accordingly, a solution to the frame conformal Einstein field equations is a collection

{ea,Γa
c

b,Ξ, s, Lab, d
a

bcd} satisfying the previous set of equations. The equations associated

to the zero quantities Σab and Ξc
dab provide differential conditions for the components of

the frame vectors {ea} and for the coefficients Γa
b

c. The role of the equations associated

to the zero quantities Zab, Za, ∆cdb, Λbcd, Z and Ma is similar to that of their metric

counterparts.

Considering a frame version of the conformal field equations introduces further gauge

freedom in the system. This gauge freedom corresponds to the Lorentz transformations

preserving the g-orthonormality of the frame vectors {ea}. In this case, one speaks of a

frame gauge freedom.

The relation between the solution to the frame conformal Einstein field equations and

the solution to the Einstein field equations is provided by the following lemma —see [81]
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2.4. The extended conformal Einstein field equations

Lemma 2 (Solutions to the frame conformal Einstein field equations as solutions

to the Einstein field equations). Let

{ea,Γa
c

b,Ξ, s, Lab, d
a

bcd} (2.42)

denote a solution to the Equations (2.41) with Γa
b

c satisfying the metric compatibility

condition

Γa
d

cηdc + Γa
d

cηbd = 0

and such that

Ξ ̸= 0, det(ηabea ⊗ eb) ̸= 0,

in an open set U ⊂ M. Then the metric

g̃ = Ξ−2ηabω
a ⊗ ωb

is a solution to the Einstein field Equations on U .

The proof of this Lemma exploits the geometrical significance that the conformal Ein-

stein field equations encode. In particular, if Σc
c

b = 0 then Γa
d

c correspond to the con-

nection coefficients with respect of {ea} of the Levi-Civita connection of g = ηabω
a ⊗ ωb.

Equations Ξc
dab = 0, ∆cdb = 0 and Λbcd = 0 ensure that Lab and Ca

bcd are the components

of the Schouten and Weyl tensors of ∇ with respect to the frame {ea}. Finally, equations

Zab = 0 and Za = 0 imply that g̃ab = Ξ−2gab satisfy the Einstein field equations expressed

as Equation (2.18).

2.4 The extended conformal Einstein field equations

This section presents the formalism necessary to introduce the extended conformal Ein-

stein field equations. These equations provide a more general formulation of the conformal

Einstein field equations—see [27, 28, 81]. More precisely, whereas the latter are conformal

field equations formulated in terms of the Levi-Civita connection of the unphysical metric

g, the extended conformal Einstein field equations is a system of equations providing a
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conformal representation of the Einstein field equations written in terms of Weyl connec-

tions. The use of Weyl connections introduces further freedom in the equations that can

be exploited to incorporate conformal gauges.

2.4.1 Weyl connections

A Weyl connection is a torsion-free connection ∇̂ such that

∇̂agbc = −2fagbc, (2.43)

where fa is a fixed smooth covector. It follows from the above that the connections ∇a

and ∇̂a are related to each other by

∇̂av
b − ∇av

b = Sac
bdfdv

c, Sac
bd ≡ δa

bδc
d + δa

dδc
b − gacg

bd, (2.44)

where va is an arbitrary vector. Given that

∇av
b − ∇̃av

b = Sac
bd(Ξ−1∇aΞ)vc,

one has that

∇̂av
b − ∇̃av

b = Sac
bdβdv

c, βd ≡ fd + Ξ−1∇dΞ.

In the following, it will be convenient to define

da ≡ Ξfa + ∇aΞ, (2.45)

so that da = Ξβ.

2.4.2 The core equations

Let R̂c
dab and L̂ab denote, respectively, the Riemann and Schouten tensors of the Weyl

connection ∇̂a. Since the Weyl connection ∇̂ is torsion-free, the Riemann tensor R̂c
dab can

be decomposed in terms of the Schouten tensor L̂ab and the conformally invariant Weyl

tensor Cc
dab. Furthermore, for a generic Weyl connection, one has that L̂ab ̸= L̂ba. Thus,

one has the decomposition

R̂c
dab = 2Sd[a

ceL̂b]e + Cc
dab.
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The (vanishing) torsion of ∇̂a is denoted by Σ̂a
c

b. The Schouten tensors of the connections

∇̃, ∇ and ∇̂ are related to each other via

L̂ab − Lab = ∇afb − 1
2Sab

cdfcfd, (2.46a)

L̂ab − L̃ab = ∇̂aβb − 1
2Sab

cdβcβd, (2.46b)

Lab − L̃ab = ∇a(Ξ−1∇bΞ) + 1
2Ξ−2Sab

cd∇cΞ∇dΞ. (2.46c)

Using the relations above, the relation between the covariant derivatives ∇̂ and ∇

∇̂aL̂bc = ∇aL̂bc − Sab
effeL̂fc − Sac

effeL̂bf

and ∇̂aSbc
de = 0, one has

∇̂aL̂bc − ∇̂bL̂ac = ∇aLbc − ∇bLac + (∇b∇a − ∇a∇b)fc

+ Sbc
effe(∇aff − Laf ) − Sac

effe(∇bff − Lbf ).
(2.47)

Using Equation (2.46a) and the properties of Sab
cd, one has that

Sbc
effe(∇aff − Laf ) − Sac

effe(∇bff − Lbf ) = Sac
effe(L̂bf ) − Sbc

effe(L̂af )

= 2Sc[a
ef L̂b]ffe.

Eventually, by recalling the splitting of the Riemann tensor

R̂c
dab = Cc

dab + 2Sd[a
ceL̂b]e,

one has that

∇̂aL̂bc − ∇̂bL̂ac = ∇aLbc − ∇bLac − Ce
cabfe.

Hence, by recalling Equation (2.26) and the definition (2.45), it follows that the Weyl

connection version of the Cotton equation (2.35c) is given by

∇̂aL̂bc − ∇̂bL̂ac = ded
e
cab. (2.48)

To obtain the Weyl connection equivalent of the Bianchi equation

∇ad
a

bcd = 0, (2.49)
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one considers

∇̂ad
a

bcd = ∇ad
a

bcd − Sae
faffd

e
bcd + Sab

feffd
a

ecd

+ Sac
feffd

a
bed + Sad

feffd
a

bce

= ∇ad
a

bcd − 4fad
a

bcd + δb
efad

a
ecd + δa

efbd
a

ecd − gabg
feffd

a
ecd

+ δc
efad

a
bed + δa

efcd
a

bed − gacg
feffd

a
bed + δd

efad
a

bce

+ δa
efdd

a
bce − gadg

feffd
a

bce

= ∇ad
a

bcd − fad
a

dcb + fad
a

cdb

= ∇ad
a

bcd − fad
a

bcd,

(2.50)

where we used the Bianchi identity

da
bcd + da

cdb + da
dbc = 0.

Eventually, the Bianchi Equation (2.49) expressed in terms of the Weyl connection ∇̂ reads

as

∇̂ad
a

bcd = fad
a

bcd.

In conclusion, one has a system of core equations

∇̂aL̂bc − ∇̂bL̂ac = ded
e
cab, (2.51a)

∇̂ad
a

bcd = fad
a

bcd, (2.51b)

providing differential conditions on the Schouten tensor of the Weyl connection L̂ab and the

rescaled Weyl tensor da
bcd. These equations need to be supplemented by a set of equations

providing information about the metric gab and which allows determining the covector fa

defining the Weyl connection ∇̂. The most convenient way of doing this is by providing a

frame formulation of the extended conformal Einstein field equations.
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2.4. The extended conformal Einstein field equations

2.4.3 The frame formulation of the extended conformal Einstein

field equations

Let {ea}, a = 0, . . . ,3 denote a g-orthogonal frame with associated coframe {ωa}. Thus,

one has that

g(ea, eb) = ηab, ⟨ωa, eb⟩ = δb
a.

Given a vector v, its components with respect to the frame {ea} are denoted by va.

Let Γa
c

b and Γ̂a
c

b denote, respectively, the connection coefficients of ∇a and ∇̂a with

respect to the frame {ea}. It follows then from equation (2.44) that

Γ̂a
c

b = Γa
c

d + Sab
cdfd.

In particular, one has that

fa = 1
4Γ̂a

b
b.

In order to formulate the frame version of the extended conformal Einstein field equations

it is convenient to introduce the geometric curvature R̂c
dab and the algebraic curvature

ρ̂c
dab given, respectively, by

R̂c
dab ≡ ∂a(Γ̂b

c
d) − ∂b(Γ̂a

c
d) + Γ̂f

c
d(Γ̂b

f
a − Γ̂a

f
b) + Γ̂b

f
dΓ̂a

c
f − Γ̂a

f
dΓ̂b

c
f , (2.52a)

ρ̂c
dab ≡ Ξdc

dab + 2Sd[a
ceL̂b]e (2.52b)

and define the following zero-quantities:

Σ̂a
c

bec ≡ [ea, eb] − (Γ̂a
c

b − Γ̂b
c

a)ec, (2.53a)

Ξ̂c
dab ≡ R̂c

dab − ρ̂c
dab, (2.53b)

∆̂cdb ≡ ∇̂cL̂db − ∇̂dL̂cb − dad
a

bcd, (2.53c)

Λ̂bcd ≡ ∇̂ad
a

bcd − fad
a

bcd, (2.53d)

where Σ̂a
c

b, L̂ab and dc
dab denote the components of the torsion, of the Schouten tensor

of ∇̂a and the rescaled Weyl tensor with respect to the frame {ea}. In terms of these
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quantities, one can write the the frame version of the extended conformal Einstein field

equations as given by the conditions

Σ̂a
c

bec = 0, Ξ̂c
dab = 0, ∆̂cdb = 0, Λ̂bcd = 0. (2.54)

In the above equations the fields Ξ and da —cfr. (2.45)— are regarded as conformal gauge

fields which are determined by supplementary conditions. In order to account for this it is

convenient to define

δa ≡ da − Ξfa − ∇̂aΞ, (2.55a)

γab ≡ L̂ab − ∇̂a(Ξ−1db) − Ξ−2Sab
cddcdd + 1

6λΞ−2ηab, (2.55b)

ςab ≡ L̂[ab] − ∇̂[afb]. (2.55c)

The conditions

δa = 0, γab = 0, ςab = 0, (2.56)

will be called the supplementary conditions. Equation (2.55a) provides the relation be-

tween the covectors d, f and the conformal factor Ξ. Equation (2.55b) provides the

relation between the Schouten tensor L̂ab of the Weyl connection and the Schouten tensor

L̃ab determined by the Einstein field equations —i.e. an analogue to the standard con-

formal equation Zab = 0. Eventually, Equation (2.55c) encodes the relation between the

antisymmetry of the Schouten tensor L̂ab and the derivatives of the covector fa. Altogether

these equations play a role in relating the extended conformal Einstein field equations to

the Einstein field equations and also in the propagation of the constraints.

The correspondence between the extended conformal Einstein field equations and the

Einstein field equations is given by the following —see Proposition 8.3 in [81] and [31]:

Proposition 2 (Solutions to the frame extended conformal Einstein field equa-

tions as solutions to the Einstein field equations). Let

{ea, Γ̂a
b

c, L̂ab, d
a

bcd}

50



2.5. Conformal geodesics and conformal Gaussian gauge systems

denote a solution to the extended conformal Einstein field equations (2.54) for some choice

of the conformal gauge fields {Ξ, da} satisfying the supplementary conditions (2.56). Fur-

thermore, suppose that

Ξ ̸= 0 and det(ηabea ⊗ eb) ̸= 0

on an open subset U . Then the metric

g̃ = Ξ−2ηabω
a ⊗ ωb

is a solution to the Einstein field equations (4.1) on U .

2.5 Conformal geodesics and conformal Gaussian gauge

systems

In this section, the notion of conformal geodesic is introduced along with the definition

of a conformal Gaussian gauge system. Moreover, since the extended conformal Einstein

field equations are naturally suited to the use of a gauge based on conformal geodesics, it

will be discussed how to use the conformal geodesic equations to fix this gauge. Then, it is

also discussed how to obtain a system of evolution equations from the extended conformal

Einstein field equations. The last part of this section is devoted to the discussion of the

propagation of the constraints.

2.5.1 Conformal Geodesics

A conformal geodesic on a spacetime (M̃, g̃) is a pair (x(τ),β(τ)) consisting of a curve

x(τ) on M̃, with parameter τ ∈ I ⊂ R, tangent ẋ(τ) and a covector β(τ) along x(τ)

satisfying the equations

∇̃ẋẋ = −2⟨β, ẋ⟩ẋ + g̃(ẋ, ẋ)β♯, (2.57a)

∇̃ẋβ = ⟨β, ẋ⟩β − 1
2 g̃♯(β,β)ẋ♭ + L̃(ẋ, ·), (2.57b)
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where L̃ denotes the Schouten tensor of the Levi-Civita connection ∇̃. Associated to a

conformal geodesic, it is natural to consider a frame {ea} which is Weyl propagated along

x(τ).

A frame {ea} on M̃ is said to be Weyl propagated along the conformal geodesic

(x(τ),β(τ)) if it satisfies

∇̃ẋea = −⟨β, ea⟩ẋ − ⟨β, ẋ⟩ea + g̃(ea, ẋ)β♯, (2.58)

the so-called Weyl propagation equation.

The motivation for considering these curves is understood when one observes their

behaviour under conformal transformations and transition to Weyl connections. Given the

1-form f defining the Weyl connection as in Equation (2.43). If one defines

β̂ = β − f ,

the pair (x(τ), β̂(τ)) will satisfy the equations

∇̂ẋẋ = −2⟨β̂, ẋ⟩ẋ + g̃(ẋ, ẋ)β̂♯, (2.59a)

∇̂ẋβ̂ = ⟨β̂, ẋ⟩β̂ − 1
2 g̃♯(β̂, β̂)ẋ♭ + L̂(ẋ, ·), (2.59b)

where L̂ denotes the Schouten tensor of the Weyl connection ∇̂. Notice that if one chooses

this connection so that f = β, then the conformal geodesic equations reduce to

∇̂ẋẋ = 0, L̂(ẋ, ·) = 0 (2.60)

and the Weyl propagation equation reduces to the usual propagation equation

∇̂ẋea = 0. (2.61)

2.5.2 Reparametrisations of conformal geodesics

Given two solutions to the conformal geodesic Equations (2.57a)-(2.57b), (x(τ),β(τ)) and

(x̄(τ̄), β̄(τ̄)), it is natural to ask under which conditions x(τ) and x̄(τ̄) coincide locally as

sets of points so that τ = τ(τ̄) and x(τ(τ̄)) = x̄(τ̄). Let

ẋ ≡ dx

dτ
, x̄′ ≡ dx̄

dτ̄
(2.62)
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denote the corresponding tangent vectors and assume that these curves do not describe

null geodesics —i.e. g̃(ẋ, ẋ) ̸= 0 and g̃(x̄′, x̄′) ̸= 0. By definition, the tangent vector x̄′

satisfies

∇̃x̄′x̄′ = −2⟨β̄, x̄′⟩x̄′ + g̃(x̄′, x̄′)β̄♯, (2.63a)

∇̃x̄′β̄ = ⟨β̄, x̄′⟩β̄ − 1
2 g̃♯(β̄, β̄)x̄′♭ + L̃(x̄′, ·). (2.63b)

Now, by letting τ ′ ≡ dτ
dτ̄

one has that

x̄′ = dx̄

dτ̄
= dx(τ(τ̄))

dτ̄
= dτ

dτ̄

dx

dτ
= τ ′ẋ,

which, in turn, implies

∇̃x̄′x̄′ = ∇̃τ ′ẋ(τ ′ẋ) = τ ′′ẋ + τ ′2∇̃ẋẋ.

Then by using the Equation (2.57a) for ∇̃ẋẋ one has

∇̃x̄′x̄′ = τ ′′ẋ + τ ′2(−2⟨β, ẋ⟩ẋ + g̃(ẋ, ẋ)β♯).

By replacing the latter into Equation (2.63a) and using x̄′ = τ ′ẋ, one has

τ ′′ẋ + τ ′2(−2⟨β, ẋ⟩ẋ + g̃(ẋ, ẋ)β♯) = −2⟨β̄, τ ′ẋ⟩τ ′ẋ + g̃(τ ′ẋ, τ ′ẋ)β̄♯,

so that

τ ′′ẋ + 2τ ′2⟨β̄ − β, ẋ⟩ẋ − τ ′2g̃(ẋ, ẋ)(β̄♯ − β♯) = 0. (2.64)

Thus, the difference β̄♯ − β♯ has components only along ẋ and one can write

β̄ − β = αẋ♭ (2.65)

with α ∈ R. By replacing this into Equation (2.64) one obtains the following differential

equation

τ ′′ẋ + ατ ′2g̃(ẋ, ẋ)ẋ = 0. (2.66)

Now, by considering

∇̃x̄′β̄ = ⟨β̄, x̄′⟩β̄ − 1
2 g̃♯(β̄, β̄)x̄′♭ + L̃(x̄′, ·)
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by replacing x̄′ = τ ′ẋ and using Equation (2.57b), one has

τ ′∇̃ẋβ̄ = τ ′⟨β̄, ẋ⟩β̄ − 1
2τ

′g̃♯(β̄, β̄)ẋ♭ + τ ′L̃(ẋ, ·).

This equation can be simplified so that

∇̃ẋβ̄ = ⟨β̄, ẋ⟩β̄ − 1
2 g̃♯(β̄, β̄)ẋ♭ + L̃(ẋ, ·).

By subtracting the Equation (2.57b) for β

∇̃ẋ(β̄ − β) = ⟨β̄ − β, ẋ⟩(β̄ − β) − 1
2(g̃♯(β̄, β̄) − g̃♯(β,β))ẋ♭,

and using the Equation (2.65) for α one obtains

α̇ẋ♭ + α∇̃ẋẋ♭ = −1
2α

2g̃(ẋ, ẋ)ẋ♭.

Eventually, by using Equation (2.57a) for ∇̃ẋẋ one has

α̇ = 2⟨β, ẋ⟩α + 1
2 g̃(ẋ, ẋ)α2. (2.67)

This Equation, along with Equations (2.65) and (2.66), encodes the requirement that the

curves x(τ) and x̄(τ̄) coincide as sets.

Now, let us consider the following

∇̃ẋ(αg̃(ẋ, ẋ)) = α∇̃ẋg̃(ẋ, ẋ) + g̃(ẋ, ẋ)α̇.

By means of Equation (2.67) one has that

∇̃ẋ(αg̃(ẋ, ẋ)) = α∇̃ẋg̃(ẋ, ẋ) + g̃(ẋ, ẋ)
(
2⟨β, ẋ⟩α + 1

2 g̃(ẋ, ẋ)α2
)
. (2.68)

A direct computation using Equations (2.57a) and (2.57b) shows that

∇̃ẋg̃(ẋ, ẋ) = −2⟨β, ẋ⟩g̃(ẋ, ẋ),

which can be replaced into Equation (2.68) so that

∇̃ẋ(αg̃(ẋ, ẋ)) = 1
2(g̃(ẋ, ẋ)α)2.
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This equation can be solved to obtain

αg̃(ẋ, ẋ) = 2α⋆g̃(ẋ⋆, ẋ⋆)
1 − α⋆g̃(ẋ⋆, ẋ⋆)(τ − τ⋆)

where α⋆ ≡ α(τ⋆), ẋ⋆ ≡ ẋ(τ⋆) and τ⋆ denotes a fiduciary value of the parameter τ . This

value can be replaced into Equations (2.65) and (2.66) so that one has

x̄′ = 4X
1 + 2Xα⋆g̃(ẋ⋆, ẋ⋆)(τ − τ⋆)

ẋ, (2.69a)

β̄ = β + 2α⋆g̃(ẋ⋆, ẋ⋆)
(1 − α⋆g̃(ẋ⋆, ẋ⋆)(τ − τ⋆))g̃(ẋ, ẋ) ẋ♭, (2.69b)

τ = τ⋆ + 4X (τ̄ − τ̄⋆)
1 + 2Xα⋆g̃(ẋ⋆, ẋ⋆)(τ̄ − τ̄⋆)

, (2.69c)

where X is a non-zero real constant. This discussion is summarised in the following lemma:

Lemma 3. The admissible reparametrisations of non-null conformal geodesics to non-null

conformal geodesics are given by transformations of the form

τ → aτ + b

cτ + d
(2.70)

with a, b, c, d ∈ R.

For further discussion on this topic see [31, 81].

2.5.3 Geodesics as conformal geodesics

It is natural to ask what is the relation between conformal geodesics and metric geodesics.

For null conformal geodesics, this relation can be readily established. If (x(τ),β(τ)) denotes

a null conformal geodesic, it follows from Equation (2.57a) that

∇̃x′x′ = −2⟨β,x′⟩x′ + g̃(x′,x′)β♯ = −2⟨β,x′⟩x′.

Using the same argument as the previous section one finds that null conformal geodesics

are, up to a reparametrisation, null geodesics.

The situation for non-null conformal geodesics is more complicated and requires re-

strictions of the Schouten tensor of the spacetime. In particular, one has the following

result
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Lemma 4. Any non-null g̃-geodesic in an Einstein spacetime (M̃, g̃) is, up to a reparametri-

sation, a non-null conformal geodesic.

The proof of this lemma can be found in [37, 81].

2.5.4 Conformal Gaussian gauge systems

The main reason to introduce conformal geodesics in the analysis of spacetimes by means

of the extended conformal Einstein field equations is that they provide a way for fixing the

gauge fields (Ξ,d). Let (M̃, g̃) be a solution to the vacuum Einstein field equations and

U being an open set on M̃. By assuming that this set is covered by a non-intersecting

congruence of conformal geodesics and by identifying the timelike leg of the frame {ea}

with e0 = ẋ, one can single out a metric g ∈ [g̃] by means of a canonical conformal factor

Θ such that

g(ẋ, ẋ) = −1, g = Θ2g̃. (2.71)

From the above conditions, it follows that

Θ̇ = ⟨β, ẋ⟩Θ.

Taking further derivatives with respect to τ and using the conformal geodesic equations

(2.57a)-(2.57b) together with the Einstein field equations written in terms of the Schouten

tensor (2.18) leads to the relation
...
Θ = 0.

From the latter one has the following result:

Proposition 3. Let (M̃, g̃) denote a vacuum spacetime with positive Cosmological con-

stant. Suppose that (x(τ),β(τ)) is a solution to the conformal geodesic equations (2.57a)-

(2.57b) and that {ea} is a g-orthonormal frame which is Weyl propagated along the curve

x(τ). If Θ satisfies (2.71) and τ⋆ ∈ R is an arbitrary constant defining the value of τ at a

fiduciary point of the conformal geodesic, then one has that

Θ(τ) = Θ⋆ + Θ̇⋆(τ − τ⋆) + 1
2Θ̈⋆(τ − τ⋆)2, (2.72)

56



2.5. Conformal geodesics and conformal Gaussian gauge systems

where the coefficients

Θ⋆ ≡ Θ(τ⋆), Θ̇⋆ ≡ Θ̇(τ⋆) Θ̈⋆ ≡ Θ̈⋆(τ⋆)

are constant along the conformal geodesic and are subject to the constraints

Θ̇⋆ = ⟨β⋆, ẋ⋆⟩Θ⋆, Θ⋆Θ̈⋆ = 1
2 g̃♯(β⋆,β⋆) − 1

6λ.

Moreover, along each conformal geodesic, one has that

Θβ0 = Θ̇, Θβi = Θ⋆βi⋆,

where βa ≡ ⟨β, ea⟩.

A proof of the above result can be found in [81], Proposition 5.1 in Section 5.5.5.

Thus, if a spacetime can be covered by a non-intersecting congruence of conformal

geodesics, then the location of the conformal boundary is known a priori in terms of data

at a fiduciary initial hypersurface S⋆.

These curves can be used to specify the gauge field d via d ≡ Θβ. The constraints for

the initial data for Θ can then be written in terms of d as

Θ̇⋆ = ⟨d⋆, ẋ⋆⟩, Θ⋆Θ̈⋆ = 1
2 g̃♯(d⋆,d⋆) − 1

6λ.

Remark 1. The conformal factor is canonical in the sense that if g = Θ2g̃ with g̃ as

a solution to the vacuum Einstein field equations. Thus, requiring the normalisation

g(ẋ(τ), ẋ(τ)) = −1 fixes the form of the conformal factor to be a quadratic function

of τ .

Conformal Gaussian gauges

Now, assume as before that U is a region of the spacetime (M̃, g̃) which is covered by a

non-intersecting congruence of conformal geodesics (x(τ),β(τ)). Moreover, suppose that

ẋ ≡ ẋ(τ⋆) is orthogonal to a fiduciary spacelike hypersurface S⋆ ⊂ U determined by the

condition τ = τ⋆ so that g(ẋ, ẋ) = −1. From Proposition 3, it follows that this requirement

57



Chapter 2. Methods of conformal geometry

singles out a canonical representative g of the conformal class [g̃]. In particular, the

conformal factor is explicitly known as given by formula (2.72) once the initial data Θ⋆, Θ̇⋆

and Θ̈⋆ are specified on S⋆. The construction of a conformal Gaussian system requires the

introduction of a g-orthonormal frame {ea} which is Weyl propagated along the conformal

geodesics and whose time leg is given by e0 = ẋ. Since one can choose a Weyl connection

∇̂ so that the 1-form fa coincides with the 1-form βa of the conformal geodesics. It follows

that for this connection one has

Γ̂0
a

b = 0, f0 = 0, L̂0a = 0.

This gauge choice can be supplemented by choosing the parameter τ of the conformal

geodesics as the time coordinate so that

e0 = ∂τ .

Furthermore, one can construct a spacetime system of coordinates by choosing some local

spatial coordinates x = (xα) on S⋆. Since the congruence of conformal geodesics is non-

intersecting, one can extend the coordinates x off S⋆ by requiring them to remain constant

along the conformal geodesic which intersects S⋆ at the point p on S⋆ with coordinates x.

The spacetime coordinates x = (τ, xα) obtained in this way are known as conformal Gaus-

sian coordinates. More generally, the collection of conformal factor Θ, Weyl propagated

frame {ea} and coordinates (τ, xα) obtained by the procedure outlined in the previous

paragraph is known as a conformal Gaussian gauge system. This choice of gauge leads to

a natural 1 + 3 decomposition of the field equations. More details on this construction can

be found in [81], Section 13.4.1.

2.5.5 The g̃-adapted conformal geodesic equations

In the last section, it has been shown that as a consequence of the normalisation condition

(2.71), the parameter τ is the g-proper time of the curve x(τ). In some computations it is

more convenient to consider a parametrisation in terms of a g̃-proper time τ̃ as it allows to
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(τ, xα)

(τ⋆, x
α)

S⋆

Figure 2.2: Schematic depiction of the construction of conformal Gaussian coordinates.

The hypersurface in purple represents the initial hypersurface S⋆. The black line represents

a conformal geodesic leaving the initial hypersurface at τ = τ⋆. The coordinates x = xα

of a point p ∈ S⋆ are propagated off the hypersurface along the conformal geodesic. This

picture is adapted from [81].

work directly with the physical metric. To this end, consider the parameter transformation

τ̃ = τ̃(τ) given by
dτ
dτ̃ = Θ, so that τ̃ = τ̃⋆ +

∫ τ

τ⋆

ds
Θ(s) , (2.73)

with inverse τ = τ(τ̃). In what follows, let x̃(τ̃) ≡ x(τ(τ̃)). It can then be verified that

x̃′ ≡ dx̃
dτ̃ = dτ

dτ̃
dx
dτ = Θẋ, (2.74)

so that

g̃(x̃′, x̃′) = −1.

Hence, τ̃ is, indeed, the g̃-proper time of the curve x̃(τ̃). In order to write the equation for

the curve x̃(τ̃) in a convenient way, one considers the split

β = β̃ +ϖẋ♭ with ϖ ≡ ⟨β, ẋ⟩
g̃(ẋ, ẋ) (2.75)
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and where the covector β̃ satisfies

⟨β̃, ẋ⟩ = 0, g♯(β,β) = ⟨β, ẋ⟩2 + g♯(β̃, β̃). (2.76)

It can be readily verified that

g̃(ẋ, ẋ) = −Θ−2, ⟨β, ẋ⟩ = Θ−1Θ̇, ϖ = ΘΘ̇. (2.77)

Using the split (2.75) in equations (2.57a)-(2.57b) and taking into account the relations

in (2.74), (2.76) and (2.77) one obtains the following g̃-adapted equations for the

conformal geodesics:

∇̃x̃′x̃′ = β̃♯, (2.78a)

∇̃x̃′β̃ = β̃2x̃′♭ + L̃(x̃′, ·) − L̃(x̃′, x̃′)x̃′♭, (2.78b)

where L̃ is given by Equation (2.18) and β̃2 ≡ g̃♯(β̃, β̃). The latter is a consequence of

(2.76) as the covector β̃ is spacelike and, thus, the definition of β̃2 makes sense.

The Weyl propagation equation (2.58) can also be cast in a g̃-adapted form. A calcu-

lation shows that

∇̃x̃′(Θv) = −⟨β̃,Θv⟩x̃′ + g̃(Θv, x̃′⟩β̃♯. (2.79)

2.6 Hyperbolic reduction procedure

The tensorial nature of the conformal Einstein field equations requires the derivation of a

suitable symmetric hyperbolic evolution system from them to discuss the existence and the

asymptotic properties of their solutions. This procedure is known as hyperbolic reduction.

The starting point of this procedure consists of the specification of the gauge. The extended

conformal Einstein field equations, being expressed in terms of Weyl connections, contain

a bigger gauge freedom than the standard conformal Einstein field equations. In this

case, the hyperbolic reduction procedure consists of adapting the gauge to a congruence of

conformal geodesics to construct conformal Gaussian gauge systems. As discussed before,

one of the advantages of this procedure is that, in a vacuum, the properties of conformal
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geodesics single out a conformal factor from the conformal class [g̃] — see Proposition 3.

This means that one gains an a priori knowledge of the location of the conformal boundary.

Moreover, the connection coefficients and components of the Schouten tensor concerning a

Weyl propagated g̃-orthonormal frame satisfy certain relations which lead to a particularly

simple system of evolution equations. The evolution of all the geometric unknowns, with

an exception made for the components of the rescaled Weyl tensor, are either fixed by

the gauge or given by transport equations along the congruence. A direct study of the

conformal Einstein field equations shows that these are overdetermined. There are more

equations than unknown, even by taking into account all the possible symmetries of the

tensorial fields. Thus, the process of hyperbolic reduction for the conformal field equations

necessarily requires discarding some of the equations. The discarded equations are treated

as constraints. These constraints will satisfy in turn a system of evolution equations, the

so-called subsidiary evolution system. From this system, it will follow that the constraint

equations will be satisfied if they hold at some initial hypersurface and the evolution

equations are imposed. This construction is called the propagation of the constraints. The

solution of the evolution system together with the propagation of the constraints yields

the required solution of the conformal Einstein field equations.

2.6.1 The main evolution system

One of the main advantages of writing the extended conformal field equations in terms of

zero-quantities and using a frame formalism

Σ̂a
c

bec = 0, Ξ̂c
dab = 0, ∆̂cdb = 0, Λ̂bcd = 0

is that the various evolution equations can be readily identified as certain components of

the zero-quantities.

The required evolution equations for the frame components, the connection coefficients,

the components of the Schouten tensor and the electric and magnetic part of the rescaled

Weyl tensor are obtained from the conditions

Σ̂0
c

bec = 0, Ξ̂c
d0b = 0, ∆̂0bc = 0, Λ̂(a|0|b) = 0, Λ̂∗

(a|0|b) = 0,
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where Λ̂∗
bcd = 1

2ϵcd
ef Λ̂bef . In particular, the evolution equation for components of the

covector fa defining the Weyl connection is given by

Ξ̂c
c0b = 0.

Using the definitions of the zero-quantities given in Equations (2.53a)-(2.53d) and making

use of the gauge conditions

Γ̂0
a

b = 0, L̂0a = 0, f0 = 0 and e0 = ∂τ ,

one obtains the evolution equations

∂0eb
ν = −Γ̂b

c
0ec

ν , (2.80a)

∂0Γ̂b
c

d = −Γ̂f
c

dΓ̂b
f

0 + 2ηd0η
ceL̂be − 2δd

cL̂b0 − 2δ0
cL̂bd − Θdc

d0b, (2.80b)

∂0L̂bc = Γ̂0
d

bL̂dc + Γ̂0
d

cL̂bd + dad
a

c0b. (2.80c)

These equations constitute a system of transport equations along the conformal geodesics.

The evolution equations for the components of the rescaled Weyl tensor are obtained by

using the following expressions

dabcd = 2(hb[cdd]a − ha[cdd]b) − 2(τ[cd
∗

d]eϵ
e

ab + τ[ad
∗

b]eϵ
e

cd) (2.81)

and

d∗
abcd = 2(hb[cd

∗
d]a − hf [cd

∗
d]b) + 2(τ[cdd]eϵ

e
ab + τ[adb]eϵ

e
cd), (2.82)

for the decomposition of the Weyl candidate in its electric and magnetic parts in the

Equations

∇adabcd = 0 and ∇ad∗
abcd = 0,

from which one obtains

Λ̂b0d = e0d
∗

bd + Dfdfbd − afdfbd − acdbcd − 2χfc(hb[cdd]f − hf [cdd]b)

+ 2χfc(τ[cd
∗

d]eϵ
e

fb + τ[fd
∗

b]eϵ
e

cd),

Λ̂∗
b0d = e0dbd − Dfd∗

fbd + afd∗
fbd + acd∗

bcd + 2χfc(hb[cd
∗

d]f − hf [cd
∗

d]b)

− 2χfc(τ[cdd]eϵ
e

fb + τ[fdb]eϵ
e

cd),
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where

hab ≡ gab − τaτb, χab = ha
c∇cτb, χ = habχab, aa ≡ τ b∇bτa.

These equations are completely general. In the particular case of a conformal Gaussian

gauge system, one has e0 = ∂τ .

2.6.2 The subsidiary evolution system

This section addresses the construction of a system of subsidiary equations for the evolution

equations discussed in the previous section. The particular problem consists of constructing

evolution equations for the zero-quantities

Σ̂a
c

b, Ξ̂c
dab, ∆̂cdb, Λ̂bcd

encoding the extended conformal Einstein field equations. In addition, in the present

hyperbolic reduction procedure, one also needs to construct evolution equations for the

additional zero-quantities

δa, γab, ςab,

which play the role of constraints of the conformal equations. The necessity of the extra

zero quantities can be traced back to Proposition 2. These subsidiary equations need to be

homogeneous in zero-quantities so that the vanishing of the latter on an initial hypersurface

readily implies a unique vanishing solution. The basic assumption in the construction of the

subsidiary system is that the evolution equations associated with the extended conformal

field equations are satisfied. That is, one assumes that

Σ̂a
c

bec = 0, Ξ̂c
dab = 0, ∆̂cdb = 0

hold, together with the standard system for the components of the Weyl spinor

Λ̂bcd = 0, Λ̂∗
bcd = 0.

These evolution equations have been constructed using the gauge conditions

Γ̂0
a

b = 0, f0 = 0, L̂0a = 0,
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which, therefore can also be used in the construction of the subsidiary system. Moreover,

in the present gauge

d0 = Θβ0 = ∇0Θ

so that one has

δ0 = 0.

Similarly, by virtue of the gauge conditions and the evolution equation for βa

∇̂0βa + β0βa − 1
2η0a(βeβ

e − 2λΘ−2) = 0,

one has

γ0b = L̂0b − ∇̂0βb − 1
2S0b

efβeβf + λΘ−2η0b = 0.

Finally, as a result of the evolution equation for the covector f one has

ς0b = −L̂0b − ∇̂0fb + −Γ̂b
e

0fe = 0.

The construction of subsidiary equations is similar to the one discussed for the main evo-

lution system. There are however certain differences. The most conspicuous one is the

fact that one is now working with a non-metric connection. A detailed derivation of the

subsidiary system and a comprehensive discussion can be found in Chapter 3 — see also

[27, 28, 81].

2.7 The conformal constraint equations

The conformal constraint Einstein equations are a set of intrinsic equations implied by the

standard conformal Einstein field equations on spacelike hypersurfaces S of the unphysical

spacetime (M, g). A derivation of these equations in their frame form can be found in

[81], Section 11.4.

Let S denote a spacelike hypersurface in the unphysical spacetime (M, g). The metric

g induces a 3-dimensional metric

h = φ∗g on S,
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via the embedding φ : S → M. Since one considers the setting where the 1-form f

vanishes on S, the initial data for the extended conformal evolution equations and those

implied by the hyperbolic reduction of the standard conformal Einstein field equations are

the same. Now, let {ea} denote a g-orthonormal frame adapted to S. That is, the vector

e0 is chosen to coincide with the unit normal vector to the hypersurface and while the

spatial vectors {ei}, i = 1, 2, 3 are intrinsic to S. In our signature conventions, we have

that g(e0, e0) = −1. The extrinsic curvature is described by the components χij of the

Weingarten tensor χab. One has that χij = χji and, moreover

χij = −Γi
0

j .

We denote by Ω the restriction of the spacetime conformal factor Ξ to S and by Σ the

normal component of the gradient of Ω. The field lij denote the components of the Schouten

tensor of the induced metric hij on S. With the above conventions, the conformal constraint

equations in the vacuum case are given by —see [81]:

DiDjΩ = Σχij − ΩLij + shij , (2.84a)

DiΣ = χi
kDkΩ − ΩLi, (2.84b)

Dis = LiΣ − LikD
kΩ, (2.84c)

DiLjk −DjLik = Σdkij +DlΩdlkij − (χikLj − χjkLi), (2.84d)

DiLj −DjLi = dlijD
lΩ + χi

kLjk − χj
kLik, (2.84e)

Dkdkij = −(χk
idjk − χk

jdik), (2.84f)

Didij = χikdijk, (2.84g)

λ = 6Ωs+ 3Σ2 − 3DkΩDkΩ, (2.84h)

Djχki −Dkχji = Ωdijk + hijLk − hikLj , (2.84i)

lij = Ωdij + Lij − χ(χij − 1
4χhij) + χkiχj

k − 1
4χklχ

klhij , (2.84j)

with the understanding that

hij ≡ gij = δij

and where we have defined

Li ≡ L0i, dij ≡ d0i0j , dijk ≡ di0jk.

65



Chapter 2. Methods of conformal geometry

The fields dij and dijk correspond, respectively, to the electric and magnetic parts of the

rescaled Weyl tensor and the scalar s denotes the Friedrich scalar defined as in Equation

(2.19). Finally, Lij denote the spatial components of the Schouten tensor of g.

In the derivation of the equations (2.84a)-(2.84j) it has been assumed that the connec-

tion D is the Levi-Civita connection of the intrinsic metric h. Thus, by analogy to the full

conformal field equations, one also has the relations

σi
k

j = 0, Πk
lij = πk

lij , (2.85)

where σi
k

j , Πk
lij and πk

lij are given by

σi
k

jek ≡ [ei, ej ] − (γi
k

j − γj
k

i)ek, (2.86a)

Πk
lij ≡ ei(γj

k
l) − ej(γi

k
l) + γm

k
l(γj

m
i − γi

m
j) + γj

m
lγi

k
m − γi

m
lγj

k
m, (2.86b)

πklij ≡ hikllj − hillkl + hjllki − hjklli (2.86c)

and denote, respectively, the components of the torsion, the geometric curvature and the

algebraic curvature of the connection D.

Proposition 4. A solution to the conformal constraint equations on S is a collection

u⋆ ≡ {Ω,Σ, s, ei, γi
k

j, χij, Lij, Li, dij, dijk}

satisfying (2.84a)-(2.84j) together with the supplementary conditions (2.85).

2.7.1 The Hamiltonian and momentum constraints

An alternative way of discussing the conformal constraint equations is to start with the

usual Hamiltonian and momentum constraints in the physical space (S̃, h̃)

r̃ + χ̃2 − χ̃abχ̃
ab = 2λ, (2.87a)

D̃bχ̃ab − D̃aχ̃ = 0, (2.87b)

where r̃ is the Ricci scalar of h̃, λ is the Cosmological constant. Given the conformal

transformation

h = Ω2h̃,
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2.7. The conformal constraint equations

and the frame {ei} introduced in the previous section, a direct computations of (2.87a)-

(2.87b) gives the so-called Hamiltonian and momentum constraints:

2ΩDiD
iΩ − 3DiΩDiΩ + 1

2Ω2r + 3Σ2 − 1
2Ω2(χ2 − χijχ

ij) − 2ΩΣχ = λ, (2.88a)

Ω3Di(Ω−2χik) − Ω(Dkχ− 2Ω−1DkΣ) = 0, (2.88b)

where r is the Ricci scalar of h. Those equations containing terms involving Ω−1 and Ω−2

are not formally regular at Ω = 0.

The relation between the conformal Hamiltonian and momentum constraint equations

(2.88a)-(2.88b) and the conformal constraint equations (2.84a)-(2.84j) is the content of the

following lemma

Lemma 5. A solution {S,u⋆} to the conformal constraint equations (2.84a)-(2.84j) im-

plies a solution to the conformal Hamiltonian and momentum constraint (2.88a)-(2.88b).

Conversely, a solution {S,h,χ,Ω,Σ} of (2.88a)-(2.88b) give rise to a solution to (2.84a)-

(2.84j) on the points of S for which Ω ̸= 0.

The proof can be found in Chapter 11 of [81] – see also [21]. It follows from this lemma

that the formulation of a Cauchy problem for the conformal field equations, by prescribing

initial data on a 3-dimensional manifold S in which Ω = 0 requires using equations (2.84a)-

(2.84j) to determine initial data for the conformal evolution equations.
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Chapter 3

The non-linear stability of de

Sitter-like spacetimes with spatial

sections of negative scalar curvature

3.1 Introduction

In the Mathematical Relativity literature, a Cosmological spacetime is usually understood

as a spacetime with compact spatial sections. Understanding the long-time evolution of

generic examples of these spacetimes in, say the vacuum case, is one of the open challenges

in the area. Although generic initial data is expected to form singularities towards the

future, it is nevertheless essential to address the stability of those solutions which are

known to be geodesically complete. The fundamental example of a geodesically complete

Cosmological spacetime is given by the de Sitter spacetime. Its non-linear stability was

analysed in the seminal work by Friedrich [23, 24]. A central aspect of this result is the use

of conformal methods to transform the question of the global existence of solutions to a

finite existence problem. An alternative approach to the study of the non-linear stability of

vacuum Cosmological solutions to the Einstein field equations by means of so-called CMC

foliations has been used by Andersson & Moncrief [3, 4] to prove the non-linear stability
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of 4-dimensional Friedmann-Lemaître-Robinson-Walker (FLRW) vacuum solutions. Using

similar methods, in [17] Fajman & Kröncke studied the non-linear stability of large classes of

Cosmological solutions to the vacuum Einstein field equations with a positive Cosmological

constant in arbitrary dimensions. These solutions are characterised by having spatial

sections with constant scalar curvature which can be either positive or negative.

The purpose of this chapter is to show that, in four dimensions, the stability results

for spacetimes with spatial sections of constant negative scalar curvature given in [17]

can be addressed via a generalisation of the conformal methods developed by Friedrich

[23, 26, 27, 34] —see also [81]. This discussion exploits the hyperbolic reduction procedure

discussed in Chapter 2 and is based on:

M. Minucci and J. A. Valiente Kroon, A conformal approach to the stability of Einstein

spaces with spatial sections of negative scalar curvature, Class. Quantum Grav. 38, 145026

(2021) https://doi.org/10.1088/1361-6382/ac0356.

3.1.1 De Sitter-like spacetimes

In what follows, for a de Sitter-like spacetime is understood a vacuum spacetime with a

positive value of the Cosmological constant and compact spatial sections of negative scalar

curvature. General results on conformal geometry show that if these spacetimes admit

a conformal compactification à la Penrose then the conformal boundary of the spacetime

must be spacelike —see e.g. [81], Theorem 10.1. Following the standard usage, we refer

to the conformal extension of a de Sitter-like spacetime as the unphysical spacetime. The

usefulness of this conformal extension lies in the fact that points representing the infinity

of the physical spacetime (e.g. the endpoints of timelike geodesics) are mapped to a finite

location in the unphysical spacetime.

In this particular case, we consider de Sitter-like spacetimes which can be conformally

embedded into a portion of a cylinder whose sections have negative scalar curvature. The

conformal embedding is realised by means of a conformal factor Θ which depends quadrat-

ically on the affine parameter τ of conformal geodesics, and the affine parameter is used as
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a time coordinate for the physical metric.

Key in the conformal approach is that the unphysical metric provides a solution to the

conformal Einstein field equations [22, 81]. In this chapter we make use of a more general

version of these equations, the extended conformal Einstein field equations, allowing the

use of conformal Gaussian coordinate systems in which coordinates are propagated along

conformal geodesics.

As already mentioned, the appeal of conformal methods in the study of solutions to the

Einstein field equations lies in the observation that local results for the unphysical space-

time can, in principle, be translated into global results for the physical spacetime. In the

original formulation of the conformal Einstein field equations the conformal factor realising

the conformal embedding of the physical spacetime in a compact manifold is an unknown

of the problem. However, remarkably, the use of conformal Gaussian coordinates systems

provide a natural conformal factor which singles out a representative of the conformal class

of the spacetime. Accordingly, the location of the conformal boundary is known a priori,

thus simplifying further the analysis of the evolution equations. The extended conformal

Einstein field equations expressed in terms of a conformal Gaussian system can be shown

to imply a conformal evolution system which takes the form of a symmetric hyperbolic

system —i.e. a class of evolution systems for which there exists a well-developed existence,

uniqueness and stability theory [49].

3.1.2 The main result

The analysis of the conformal properties of de Sitter-like spacetimes with compact spatial

sections allows us to formulate a result concerning the existence of solutions to the initial

value problem for the Einstein field equations.

Our main result can be stated as:

Main Result 1. Given smooth initial data (h,K) for the Einstein field equations on S

which is suitably close (as measured by a suitable Sobolev norm) to the data implied by the

metric ˚̃g of de Sitter-like spacetime, there exists a smooth metric g̃ defined over [0,∞) × S
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3.2. The background solution

which is close to ˚̃g (again, in the sense of Sobolev norms) and solves the vacuum Einstein

field equations with Cosmological constant λ = 3. The spacetime ([0,∞) × S,˚̃g) is future

geodesically complete.

Remark 2. A precise formulation of this result is given in Theorem 1 in Section 3.7. The

construction of the initial data required in the above result has been analysed in [82].

This analysis is part of the general programme in Mathematical Relativity to under-

stand the endpoint of the evolution of “Cosmological spacetimes” (i.e. spacetimes with

compact sections) under the Einstein field equations, the so-called Einstein flow. In par-

ticular, it identifies a class of spacetimes for which it is possible to show non-linear stability

and the existence of a regular conformal representation. These special properties are not

shared by generic Cosmological solutions. Thus, it is important to identify the situations

in which this is the case.

3.2 The background solution

In the following let (M̃,˚̃g) denote the solution to the vacuum Einstein field equations with

positive Cosmological constant

R̃ab = 3g̃ab, (3.1)

given by M̃ = R × S and
˚̃g = −dt⊗ dt+ sinh2 t γ̊, (3.2)

where γ̊ is a positive definite Riemannian metric of constant negative curvature over a

compact manifold S such that

r[γ̊] = −6.

The spacetime (M̃,˚̃g) is future geodesically complete —see Appendix A.2.

Remark 3. The value λ = 3 for the Cosmological constant is conventional and set for

convenience. This analysis can be carried out for any other positive value. Indeed, given
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λ > 0 define the metric ḡab via the relation

ḡab = 3
λ
gab.

As this is a constant conformal rescaling, the Ricci tensor is invariant —i.e. R̄ab = Rab;

see e.g. equation (5.6a) on page 116 in [81]. It follows then that equation (4.1) implies

R̄ab = λḡab.

Remark 4. The existence of compact 3-manifolds with constant negative scalar curvature

has been analysed in the mathematical literature —see [48]. These 3-manifolds are locally

isometric to quotients of the hyperbolic space H3. The admissible topologies are discussed

in [6]. This class of manifolds is sometimes called conformally rigid hyperbolic manifolds

as, despite being conformally flat, they do not admit globally defined conformal Killing

vectors nor non-trivial trace-free Codazzi tensors. These properties play a crucial role in

the perturbative construction of initial data for the conformal evolution system as discussed

in Section 3.4.

The Riemann curvature tensor ri
jkl[γ̊] of the metric γ̊ is given by

rijkl [̊γ] = γ̊il̊γjk − γ̊ikγ̊jl.

From the above expressions it follows that

R̃ = 12,

so that

L̃ab = 1
2 g̃ab. (3.3)

A spacetime of the form given by (M̃,˚̃g) is known as a background solution. In the

rest of this section, we analyse this class of solutions to the Einstein field equations from

the point of view of conformal geometry. In particular, we use the conformal geodesics to

provide a canonical conformal extension —see Proposition 3.
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3.2.1 A class of conformal geodesics

Let x(s) be metric geodesics on (M̃,˚̃g) whose tangent vector is proportional to ∂t —i.e.

ẋ = α∂t for some proportionality function α and where the overdot denotes differentiation

with respect to the affine parameter s ∈ R. The geodesic equation

∇̃ẋẋ = 0

implies that

∇̃∂t(α∂t) = ∇̃tα + ∇̃∂t∂t

= ∇̃tα + Γt
µ

t∂µ.

A direct calculation for the metric (3.2) shows that Γt
µ

t = 0 so that one concludes that

∂tα = 0 —that is, α is constant along the integral curves of ∂t. Without loss of generality,

we then set α = 1 so that g̃(ẋ, ẋ) = −1. In summary, we have that the curves

x(t) = (t, x⋆), x⋆ ∈ S,

are non-intersecting timelike g̃-geodesics over M̃. In a slight abuse of notation, the coor-

dinate t has been used as a parameter of the curve.

Reparametrisation as conformal geodesic

In the following, we use the methods in the proof of Lemma 4 to recast the family of

geodesics discussed in Subsection 3.2.1 as conformal geodesics —see also [81]. Accordingly,

we consider a reparametrisation of the form

τ 7→ t(τ),

while we look for a 1-form β̃ given by the Ansatz

β̃ = α(τ)x′♭ = α(t)dt,

where ′ denotes derivatives with respect to t. From the chain rule, it follows that

ẋ = dt
dτ

dx
dt = ṫx′, ṫ ≡ dt

dτ .

73



Chapter 3. The non-linear stability of de Sitter-like spacetimes with spatial sections of
negative scalar curvature

In particular, one readily has that

∇̃ẋẋ = ṫ2∇̃x′x′ + ẗx′.

Substituting the previous expressions into equations (2.57a) and (2.57b), taking into ac-

count expression (3.3) for the components of the Schouten tensor one obtains the system

of ordinary differential equations

ẗ+ αṫ2 = 0, (3.4a)

α̇ = 1
2 ṫ(α

2 − 1). (3.4b)

The general solution to the above system can be found to be

α(τ) = c1τ + c2,

t(τ) = −2arctanh(c1τ + c2) + c3,

with c1, c2, c3 ∈ R constants. For simplicity, one can, e.g. set c1 = −1, c2 = c3 = 0 to get

the simpler expressions

α(τ) = −τ,

t(τ) = 2arctanh τ.

Thus, observing that

sinh
(
2arctanh τ

)
= 2τ

1 − τ 2 ,
d
dτ
(
2arctanh τ

)
= 2

1 − τ 2 ,

it follows that the pair (x(τ), β̃(τ)), τ ∈ (−1, 1) with

x(τ) = (2 arctanh τ, x⋆), β̃(τ) = − 2τ
1 − τ 2 dτ,

give rise to a congruence of non-intersecting conformal geodesics on the background space-

time (M̃,˚̃g). Using the parameter τ as a new coordinate in the metric (3.2) one concludes

that
˚̃g = 4

(1 − τ 2)2

(
− dτ ⊗ dτ + τ 2γ̊

)
. (3.5)

Notice that the metric is singular at τ = ±1.
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The canonical factor associated to the congruence of conformal geodesics

The line element (3.5) readily suggest the conformal factor

Θ ≡ 1
2(1 − τ 2).

Remark 5. Alternatively, we can make use of the equation

Θ̇ = ⟨β̃, ẋ⟩Θ, ⟨β̃, ẋ⟩ = αṫ = − 2τ
1 − τ 2 ,

implied by the condition Θ2g̃(ẋ, ẋ) = −1. Integrating one readily finds that

Θ
Θ⋆

= 1 − τ 2

1 − τ 2
⋆

,

where Θ⋆ is the value of the conformal factor at a fiduciary time τ⋆. Observe, also, that

β̃(τ) = − 2τ
1 − τ 2 dτ,

= d
(

ln Θ(τ)
)
. (3.6)

Following expression (3.5) we introduce a new unphysical metric g̊ via the relation

g̊ = Θ2˚̃g, Θ ≡ 1
2(1 − τ 2),

so as to ensure that Θ ≥ 0 for |τ | ≤ 1. It follows then that

g̊ = −dτ ⊗ dτ + τ 2γ̊ (3.7)

is well defined for τ ∈ [τ⋆, 1] with τ⋆ > 0. For future use, we define the spatial metric h̊

h̊ ≡ τ 2γ̊,

with associated Levi-Civita connection to be denoted by D̊. Also, denote by D̊ the Levi-

Civita connection of the metric γ̊. A Penrose diagram of the conformal representation of

the background solution described by the metric (3.7) is given in Figure 3.1.

Remark 6. Observe that as the metrics γ̊ and h̊ are conformally related via a conformal

factor independent of the spatial coordinates, it follows then that expressed in terms of

local (spatial) coordinates one has that

D̊α = D̊α.
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S?, I �

I +

I �

I +

S?

Figure 15.5 Penrose diagrams of de Sitter-like spacetimes obtained from Theorems 30 and
31: to the left the spacetime obtained from a standard Cauchy initial value problem; to
the right the spacetime obtained from the asymptotic initial value problem.

15.4.3 Geodesic completeness and asymptotic analysis

The analysis of the existence and stability of de Sitter-like spacetimes developed

in Sections 15.3 and 15.4 can be refined to include geodesic completeness. As the

exact de Sitter spacetime is geodesically complete, it is to be expected that suitably

small perturbations thereof will also share this property. More precisely:

Proposition 29 (geodesic completeness of de Sitter-like spacetimes) Suit-

ably small perturbations (M̃, g̃) of the de Sitter spacetime are null and timelike

g̃-geodesically complete.

In particular, the above proposition together with the existence and stability

results obtained in the previous sections show that suitably small perturbations of

the de Sitter spacetime are asymptotically simple spacetimes.

It is convenient to divide the analysis of Proposition 29 into two cases.

Null geodesics

The key observation required to prove null geodesic completeness is the following:

given the conformal representation (R⇥S3, ḡE ) any null ḡE -geodesic starting within

the unphysical spacetime reaches the conformal boundary for a finite value of its

a�ne parameter.

In what follows, let (M̄, ḡ) be one of the de Sitter-like spacetimes obtained from,

say, a standard Cauchy initial value problem with data prescribed on a hypersur-

face S?. Making use of a perturbative argument similar to the ones employed in

Propositions 26 and 28 and by reducing ", if necessary, it can be shown that given

a point p 2 S? and a fixed � > 0, for all points q 2 S? lying in an h-metric ball of

radius � centred at p, the future directed null ḡ-geodesics starting at q will reach

I + in a finite value of their a�ne parameter. As S? is a compact hypersurface, it

I +

S⋆

Γ1 Γ2

Figure 3.1: Penrose diagram of the background solution. The conformal representation

discussed in the main text has compact sections of negative scalar curvature. The vertical

lines Γ1 and Γ2 correspond to axes of symmetry. The solution has a singularity in the past

and a spacelike future conformal boundary. Hence, in our discussion, we only consider the

future evolution of the initial hypersurface S⋆.

Remark 7. A computation readily shows that the integral curves of the vector field ∂τ

are geodesics of the metric g̊ given by equation (3.7) —that is, one has that

∇∂τ ∂τ = 0.

Remark 8. Taking into account the expression (3.6), the conformal transformation law

for conformal geodesics gives that

β = β̃ − d
(

ln Θ(τ)
)

= 0.

To any (non-singular) congruence of conformal geodesics one can associate a Weyl connec-

tion ∇̂ via the rule

∇̂ − ∇̃ = S(β̃).

In the present case, β̃ is a closed 1-form and, thus, the Weyl connection is, in fact, a

Levi-Civita connection which coincides with ∇.
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3.2.2 The background spacetime as a solution to the conformal

Einstein field equations

In this subsection, we show how to recast the unphysical spacetime (M, g̊) with M =

[τ⋆,∞) × S as a solution to the conformal Einstein field equations. This construction is

conveniently done using an adapted frame formalism.

The frame

Let {c̊i}, i = 1, 2, 3, denote a γ̊-orthonormal frame over S with associated cobasis {α̊i}.

Accordingly, one has that

γ̊(c̊i, c̊j) = δij , ⟨α̊j , c̊i⟩ = δi
j ,

so that

γ̊ = δijα̊i ⊗ α̊j .

The above frame is used to introduce a g̊-orthonormal frame {e̊a} with associated cobasis

{ω̊b} so that ⟨ω̊b, e̊a⟩ = δa
b. We do this by setting

e̊0 ≡ ∂τ , e̊i ≡ 1
τ

c̊i,

ω̊0 ≡ dτ, ω̊i = τα̊i,

so that

g̊ = ηabω̊
a ⊗ ω̊b.

Remark 9. It follows that all the coefficients of the frame are smooth (C∞) over [τ⋆,∞)×S,

τ⋆ > 0.

The connection coefficients

The connection coefficients γ̊i
k

j of the Levi-Civita connection D̊ with respect to the frame

{c̊i} are defined through the relations

D̊ic̊j = γ̊i
k

j c̊k, γi
k

j ≡ ⟨α̊k, D̊ic̊j⟩.
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Similarly, for the connection coefficients Γ̊i
k

j of the Levi-Civita connection ∇̊ with respect

to the frame {e̊a} one has that

∇̊ae̊b = Γ̊a
c

be̊c, Γ̊a
c

b ≡ ⟨ω̊c, ∇̊ae̊b⟩.

We now proceed to compute the various connection coefficients.

The coefficients Γ̊i
k

j. Recalling the definition of the connection coefficients and the basis

fields {e̊i} and {ω̊j} one has that

Γ̊i
k

j = ⟨ωk, ∇̊ie̊j⟩ = ⟨ωk, e̊i
α∇̊αe̊j⟩

= 1
τ

⟨α̊k, c̊i
α∇̊αc̊j⟩ = 1

τ
⟨α̊k, c̊i

αD̊αc̊j⟩ = 1
τ

⟨α̊k, D̊ic̊j⟩

= 1
τ
γ̊i

k
j .

The coefficients Γ̊0
a

0. Recall that e̊0 = ∂τ is tangent to geodesics —see Remark 7.

Thus,

∇̊0e̊0 = Γ̊0
c

0e̊c,

from where it follows that

Γ̊0
a

0 = 0.

The coefficients Γ̊i
j

0 and Γ̊i
0

j. In this case, we have that

Γ̊i
j

0 = ⟨ω̊j , ∇̊ie̊0⟩ = χ̊i
j ,

where χi
j denote the components of the Weingarten tensor. Defining χ̊ij ≡ ηjkχ̊i

k, one has

that χ̊ij = χ̊(ij) as the congruence defined by ∂τ can readily be verified to be hypersurface

orthogonal. Thus, in this case χ̊ij coincides with the components of the extrinsic curvature

of the hypersurfaces of constant τ . To compute χ̊ij recall that

χab = −1
2L∂τhab,

where L∂τ denotes the Lie derivative along the direction of ∂t. As

L∂τ h̊ = L∂τ

(
τ 2γ̊

)
= 2τ γ̊ = 2

τ
h̊,
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one concludes that

χ̊ij = −1
τ
δij .

Exploiting the metricity of the connection ∇̊ one finds that, moreover,

Γ̊i
0

j = −χ̊ij = 1
τ
δij .

The coefficients Γ̊0
j

i. In this case one readily finds that

Γ̊0
j

i = ⟨ω̊j , ∇̊0e̊i⟩ = ⟨ω̊j , ∇̊0

(
1
τ

c̊i

)
⟩

= − 1
τ 2 ⟨ω̊j , c̊i⟩ = − 1

τ 2 ⟨τα̊j , c̊i⟩

= −1
τ
δi

j .

The coefficients Γ̊0
0

i. In this case, one readily finds that

Γ̊0
0

i = ⟨ω̊0, ∇̊0e̊i⟩ = ⟨ω̊0, ∇̊0

(
1
τ

c̊i

)
⟩ = − 1

τ 2 ⟨dτ, c̊i⟩ = 0.

The coefficients Γ̊i
0

0. Observing that [e̊i, e̊0] = 0 and recalling that in the absence of

torsion one has that

[e̊i, e̊0] =
(

Γ̊i
c

0 − Γ̊0
c

i

)
ec,

it follows from the previous results that

Γ̊i
0

0 = 0.

Remark 10. It follows that all the coefficients of the connection are smooth (C∞) over

[τ⋆,∞) × S.

Remark 11. For later use it is observed that the extrinsic curvature (Weingarten tensor)

can be written in abstract index notation as

χ̊ij = −1
τ
h̊ij. (3.8)
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Conformal fields

The next step is the computation of the components of the conformal fields appearing in

the extended conformal Einstein field equations. To this end, we make use of the conformal

Einstein constraints discussed in Section 2.7.

We make use of an adapted frame with e0 = ∂τ and make the identification Ω 7→ Θ in

equations (2.84a)-(2.84j). Observe that one has that

D̊iΩ = 0.

The scalars Σ and s. By definition one has that

Σ̊ ≡ n(Θ) = −∂τ Θ = τ.

The minus sign arises from the fact that in our conventions (dτ)♯ = −∂τ . Using the latter

in the conformal equation (2.84h) with λ = 3 one readily concludes

s̊ = 1.

Components of the Schouten tensor. The constraint (2.84b) readily yields for Θ ≥ 0

that

L̊i = 0.

The spatial components, L̊ij, are computed using the constraint (2.84a). Observing that

in our case D̊iD̊jΘ = 0 one readily concludes that

L̊ij = 0.

Thus, all the components of the Schouten tensor, except for its trace, vanish. This trace

is proportional to the Ricci scalar of the metric (3.7).

Components of the rescaled Weyl tensor. The constraint (2.84i) offers an easy way

of computing the magnetic part of the rescaled Weyl tensor. As D̊jχ̊ki = 0 and we already

know that L̊i = 0, it follows then that d̊ijk = 0 so that, in fact,

d̊∗
ij = 0.
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3.2. The background solution

To compute the electric part of the rescaled Weyl tensor we make use of the constraint

equation (2.84j). This equation requires knowing the value of the Schouten tensor l̊ij of

the metric h̊. From the definition of the 3-dimensional Schouten tensor one readily finds

that if r[γ̊] = −6, then

Schouten[γ̊] = −1
2 γ̊.

Now, we have that h̊ = τ 2γ̊ so that h̊ and γ̊ are conformally related. However, the

conformal factor does not depend on the spatial coordinates. It follows then, from the

conformal transformation rule of the Schouten tensor that

Schouten[γ̊] = Schouten [̊h].

Hence, one has that

l̊ij = −1
2 γ̊ij = − 1

2τ 2 h̊ij.

Now, a calculation using equation (3.8) reveals that

l̊ij = −χ̊
(
χ̊ij − 1

4 χ̊̊hij

)
+ χ̊kiχ̊j

k − 1
4 χ̊klχ̊

kl̊hij

so that

d̊ij = 0.

Remark 12. In summary, one has that the metric (3.7) is conformally flat.

Ricci scalar. Finally, although it does not appear as an unknown in the extended con-

formal Einstein equations, it is of interest to compute the Ricci scalar of the metric. To

do this we observe that from the definition of the Friedrich scalar one has that

R̊Θ = 24
(
s− 1

4∇̊c∇̊cΘ
)
.

A computation readily yields ∇̊c∇̊cΘ = −2 so that one concludes that

R̊ = 72
1 − τ 2 .

That is, the Ricci scalar is singular at τ = 1.

Remark 13. Although the Ricci scalar of the background solution is singular, this will

not pose any difficulty in our subsequent analysis as the Ricci scalar does not appear as

an unknown in the extended conformal Einstein field equations.
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3.3 Evolution equations

In this section, we discuss the evolution system associated to the extended conformal

Einstein equations (2.54) written in terms of a conformal Gaussian system. This evolution

system is central in the discussion of the stability of the background spacetime. In addition,

we also discuss the subsidiary evolution system satisfied by the zero-quantities associated to

the field equations (2.53a)-(2.53d) and the supplementary zero-quantities (2.55a)-(2.55c).

The subsidiary system is key in the analysis of the so-called propagation of the constraints

which allows to establish the relation between a solution to the extended conformal Einstein

equations (2.54) and the Einstein field equations (4.1).

3.3.1 The conformal Gaussian gauge

In order to obtain suitable evolution equations for the conformal fields, we make use of

a conformal Gaussian gauge. More precisely, we assume that we are working on a region

U ⊂ M which can be covered by a congruence of non-intersecting conformal geodesics.

Then Proposition 3 gives the conformal factor associated to the curves of the congruence

Θ(τ) = 1
2
(
1 − (τ − τ⋆)2

)
, (3.9)

by choosing

Θ⋆ = 1
2 , Θ̇⋆ = 0, Θ̈⋆ = −1

2 ,

for τ = τ⋆, τ⋆ ∈ (0, 1). This choice of initial data for the the conformal factor is associated

to a congruence that leaves orthogonally a fiduciary initial hypersurface S⋆ with τ = τ⋆ —

notice, however, that the congruence of conformal geodesics is, in general, not hypersurface

orthogonal.

Remark 14. Since the conformal factor Θ given by equation (3.9) does not depend on the

initial data for the evolution equations it can be regarded as universal —i.e. valid not only

for the background solution but also for perturbations thereof. Similarly, a consequence

of Proposition 3, it follows that the components da of the the covector d are, in the same

sense, universal.
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Along the congruence of conformal geodesics, one considers a g-orthogonal frame {e0}

which is Weyl-propagated and such that τ = e0. The Weyl connection ∇̂a associated to

the congruence then satisfies

∇̂τ ea = 0, L̂(τ, ·) = 0,

which is equivalent to

Γ̂0
b

c = 0, f0 = 0, L̂0a = 0, (3.10)

—see e.g. [81], Section 13.4, page 366. By choosing the parameter, τ , of the conformal

geodesics as time coordinate one gets the additional gauge condition

e0 = ∂τ , e0
µ = δ0

µ.

On S⋆ we choose some local coordinates x = (xα). Assuming that each curve of the con-

gruence intersects S⋆ only once, one can extend the coordinates off the initial hypersurface

by requiring them to be constant along the conformal geodesic which intersects S⋆ at the

point with coordinates x. The coordinates x = (τ, x) thus obtained are known as conformal

Gaussian coordinates.

3.3.2 The main evolution system

The required evolution equations for the frame components, connection coefficients and

components of the Schouten tensor are obtained from the conditions

Σ̂0
c

bec = 0, Ξ̂c
d0b = 0, ∆̂0bc = 0. (3.11)

In particular, the evolution equation for components of the covector fa defining the Weyl

connection is given by

Ξ̂c
c0b = 0.

In the following, we analyse each of these equations in more detail.
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Evolution equations for the components of the frame

Now, starting from equation (2.53a)

Σ̂a
c

bec ≡ [ea, eb] − (Γ̂a
c

b − Γ̂b
c

a)ec

and writing ea = ea
µ∂µ, it follows that the condition Σ̂a

c
bec = 0 implies

(∂aeb
ν − ∂bea

ν) = (Γ̂a
c

b − Γ̂b
c

a)ec
ν , ∂a ≡ ea

µ∂µ.

Setting a = 0 it follows that the evolution equation for the components of the frame takes

the form

∂0eb
ν = −Γ̂b

c
0ec

ν . (3.12)

Evolution equations for the components of the connection

In order to obtain the evolution equation for the components of the frame not determined

by the gauge conditions one considers the condition Ξ̂c
d0b = 0.

Now, since

R̂c
d0b = ∂0(Γ̂b

c
d) − ∂b(Γ̂0

c
d) + (Γ̂b

f
dΓ̂0

c
f − Γ̂0

f
dΓ̂b

c
f ) + Γ̂f

c
d(Γ̂b

f
0 − Γ̂0

f
b),

then using the gauge condition Γ̂0
c

d = 0 one has that

R̂c
d0b = e0(Γ̂b

c
d) + Γ̂f

c
dΓ̂b

f
0.

In addition, observing that

Sd[0
ceL̂b]e = δd

cL̂b0 + δ0
cL̂bd − gd0g

ceL̂be − δd
cL̂0b − δb

cL̂b0 + gdbg
ceL̂0e,

together with the gauge condition L̂0a = 0, it follows that

ρ̂c
d0b = Θdc

d0b + 2δd
cL̂b0 + 2δ0

cL̂bd − 2ηd0η
ceL̂be,

where it has been used that gd0g
ce = ηd0η

ce. It follows that the evolution equation for the

coefficients of the connection not determined by the gauge is given by

∂0(Γ̂b
c

d) + Γ̂f
c

dΓ̂b
f

0 = 2ηd0η
ceL̂be − 2δd

cL̂b0 − 2δ0
cL̂bd − Θdc

d0b.
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The above expression can be written in terms of the Levi-Civita connection coefficients

Γa
b

c and the 1-form fa through the relation

Γ̂a
b

c = Γa
b

c + Sab
cdfd.

In particular, since

fa = 1
4Γ̂a

b
b,

it follows from the gauge condition f0 = 0 and Ξ̂c
c0b = 0 that

∂0fi = −fjΓ̂i
j

0 + L̂i0. (3.13)

Evolution equations for the components of the Schouten tensor

The evolution equations for the components of the Schouten tensor not determined by the

gauge are obtained from the condition ∆̂0db = 0. It follows then that

∇0L̂db − ∇dL̂0b − dad
a

b0d = 0.

However, in the conformal Gaussian gauge one has that L̂0b = 0 so that the evolution

equation for the components of the Schouten tensor can be simplified to

∂0L̂db = Γ̂0
c

dL̂cb + Γ̂0
c

bL̂dc + dad
a

b0d = 0,

as Γ̂0
c

d = 0.

Evolution equations for the components of the rescaled Weyl tensor

The evolution equations for the components of the Weyl tensor are extracted from the de-

composition of the zero-quantity Λ̂bcd. As this zero-quantity contains a contracted deriva-

tive, the decomposition is more involved than for the other zero-quantities. As in the case

of the conformal constraint equations, this analysis is best done using the decomposition

of the rescaled Weyl tensor in its electric and magnetic parts with respect to the tangent

to the congruence of conformal geodesics on which our gauge is based.
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In the following, let ha
b denote the projector to the hyperplanes orthogonal to the

tangent vector field τa to the congruence of conformal geodesics. One has that

ha
b = δa

b − τaτ
b,

so that

Λ̂bcd = ∇a(δa
fdfbcd) = δa

f∇adfbcd

= τfτa∇adfbcd + ha
f∇adfbcd

= τfDdfbcd + Dfdfbcd,

where Da ≡ ha
b∇b and D ≡ τa∇a denote, respectively, the Sen and Fermi covariant deriva-

tives associated to the congruence. Now, observing that the acceleration and Weingarten

tensor of the congruence is given, respectively by

aa ≡ τ b∇bτa = Dτa,

χab ≡ ha
c∇cτb = Daτb,

it follows that

Λ̂bcdτ
c = Λ̂b0d = τ cD(τfdfbcd) + τ cDfdfbcd − afτ cdfbcd

= D(τfτ cdfbcd) + Dfdfb0d − afdfb0d − acd0bcd − χfcdfbcd,

so that

Λ̂b0d = Dd0b0d + Dfdfb0d − afdfb0d − acd0bcd − χfcdfbcd.

To further simplify we make use of the decomposition

dabcd = 2(lb[cdd]a − la[cdd]b) − 2(τ[cd
∗

d]eϵ
e

ab + τ[ad
∗

b]eϵ
e

cd),

of the rescaled Weyl tensor in terms of its electric part dab and magnetic part d∗
ab with

respect to the vector field τa where lab = hab − τaτb to obtain

Λ̂b0d =Ddbd + Dfdfbd − afdfbd − acdbcd − 2χfc(lb[cdd]f − lf [cdd]b)

+ 2χfc(τ[cd
∗

d]eϵ
e

fb + τ[fd
∗

b]eϵ
e

cd).
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To finally extract the required evolution equation we consider Λ̂(b|0|d). Observing that all

the involved tensors are spatial one obtains, after some simplification, that

Λ̂(i|0|j) = ∂0dij + ϵkl
(iD|l|d

∗
j)k − 2alϵ

kl
(id

∗
j)k + χdij − 2χk

(idj)k = 0. (3.14)

To complete the system of evolution equations for the components of the Weyl tensor

one carries out a completely analogous calculation with the zero-quantity

Λ̂∗
bcd ≡ ∇ad∗

abcd

and the decomposition

d∗
abcd = 2(lb[cd

∗
d]a − lf [cd

∗
d]b) + 2(τ[cdd]eϵ

e
ab + τ[adb]eϵ

e
cd),

where the Hodge dual of the rescaled Weyl tensor is defined as

d∗
abcd ≡ 1

2ϵab
efdcdef .

More precisely, the decomposition

Λ̂∗
bcd = τaDd∗

abcd + Dad∗
abcd,

leads, after a lengthy computation, to the evolution equation

Λ̂∗
(i|0|j) = ∂0d

∗
ij − ϵk

l(iD
ldj)k − 2alϵl(i

kdj)k + χd∗
ij − 2χk

(id
∗

j)k = 0, (3.15)

in which all the fields are spatial.

Remark 15. The zero-quantities Λ̂bcd and Λ̂∗
bcd are not independent. In fact, Λ̂bcd = 0 if

and only if Λ̂∗
bcd = 0.

Remark 16. Equations (3.14) and (3.15) imply a symmetric hyperbolic evolution system

for the (ten) independent components of the fields Eab and Bab —see e.g. [2] for explicit

expressions of the associated matrices.
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3.3.3 The subsidiary evolution system

The analysis of the relation between the solutions to the evolution equations and actual

solutions to the full conformal Einstein field equations, the so-called propagation of the

constraints, requires the construction of a system of subsidiary evolution equations for the

zero-quantities associated to the conformal equations (2.53a)-(2.53d) and the gauge condi-

tions (2.55a)-(2.55c). For the standard argument of the propagation of the constraints to

follow through, the subsidiary system is required to be homogeneous in the zero-quantities.

If this is the case, then it follows from the uniqueness of solutions to symmetric hyperbolic

systems that if the zero-quantities vanish initially, then they will vanish for all later times

as the vanishing (zero) solution is always a solution of a homogeneous evolution equation.

General remarks

The basic assumption in the construction of the subsidiary evolution system is that the evo-

lution equations associated to the extended conformal field equations are satisfied. Hence,

we assume that

Σ̂0
c

b = 0, Ξ̂c
d0b = 0, ∆̂0bc = 0,

together with

Λ̂(i|0|j) = 0, Λ̂∗
(i|0|j) = 0.

These evolution equations have been constructed using the gauge conditions

f0 = 0, Γ̂0
b

c = 0, L̂0b = 0.

These gauge conditions will also be used in the construction of the subsidiary evolution

system. Accordingly, the construction requires the evolution equations for the additional

zero-quantities δa, γab and ςab which are associated to the gauge. In our gauge d0 = 0 so

that

δ0 = 0.
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3.3. Evolution equations

Since L̂0b = 0, by virtue of the definition (2.8) and the evolution equation for the covector

βa, namely,

∇̂0βa + β0βa − 1
2η0a(βeβ

e − 2λΘ−2) = 0,

it follows that

γ0b = L̂0b − ∇̂0βb − 1
2S0b

efβeβf + λΘ−2η0b = 0.

As a result of the Θ−2 in the last term of this equation, it can only be used away from the

conformal boundary —this is, however, not a problem in our analysis as the propagation

of the constraints only need to be considered in the regions where Θ ̸= 0. Moreover, by

virtue of the gauge conditions (3.10) and the evolution equation (3.13), we have

ς0b = −L̂b0 − ∇̂0fb + Γ̂b
e

0fe = 0.

The subsidiary equation for the torsion

To obtain the subsidiary equation for the no-torsion condition we consider the totally

antisymmetric covariant derivative ∇̂[aΣ̂b
d

c] and observe that

3∇̂[0Σ̂b
d

c] = ∇̂0Σ̂b
d

c − Γ̂b
e

0Σ̂c
d

e − Γ̂c
e

0Σ̂e
d

b. (3.16)

On the other hand, from the first Bianchi identity

R̂d
[cab] + ∇̂[aΣ̂b

d
c] + Σ̂[a

e
bΣ̂c]

d
e = 0,

and the definition of Ξ̂d
cab one obtains

∇̂[aΣ̂b
d

c] = −Ξ̂d
[cab] − Σ̂[a

e
bΣ̂c]

d
e, (3.17)

where it has been used that, by construction, ρ̂d
[cab] = 0. The desired evolution equation

is obtained combining equations (3.16) and (3.17) to yield

∇̂0Σ̂b
d

c = −1
3Γ̂c

e
0Σ̂e

d
b − 1

3Γ̂c
e

0Σ̂e
d

b − Ξ̂d
0bc. (3.18)

This evolution equation is homogeneous in the various zero-quantities.
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The subsidiary equation for the Ricci identity

To obtain a subsidiary equation for the Ricci identity, we consider the totally symmetrised

covariant derivative ∇̂[aΞ̂d
|e|bc] and observe that

3∇̂[0Ξ̂d
|e|bc] = ∇̂0Ξ̂d

ebc − Γ̂b
f

0Ξ̂d
ecf − Γ̂c

f
0Ξ̂d

efb. (3.19)

Using the second Bianchi identity

∇̂[aR̂
d

|e|bc] + Σ̂[a
f

bR̂
d

|e|c]f = 0

and the definition (2.53c) it follows that

∇̂[aΞ̂d
|e|bc] = −Σ̂[a

f
bR̂

d
|e|c]f − ∇̂[aρ̂

d
|e|bc]. (3.20)

The first term on the right-hand side is already of the required form. The second one needs

to be analysed in more detail. For this, one makes use of the definition (2.52b) so that

∇̂[aρ̂
d

|e|bc] = ∇̂[aC
d
|e|bc] + 2Se[b

df∇̂aL̂c]f .

To further expand this expression we consider the combination ϵf
abc∇̂aρ̂

d
ebc. A direct

computation shows that

∇̂[aC
d

|e|bc] = ∇[aC
d

|e|bc] + δ[a
df |fC

f
e|bc] + ηe[af

fCd
|f |bc].

Moreover, one has

ϵf
abc∇aC

d
ebc = −ϵe

dgh∇aC
a

fgh.

Thus, by using that Cc
dab = Θdc

dab and the definition (2.53d) it follows that

ϵf
abc∇̂aC

d
ebc = Θϵe

dghΛ̂fgh + 2∇gΘd∗d
efg + 2Θfgd∗

gef
d + 2Θfgd∗d

gfe.

A similar computation using the definition (2.53c) yields

2ϵf
abcSeb

dg∆̂acg = 2Θβgd
∗g

ef
d − 2Θβgd

∗gd
fe.

Thus, using the symmetries of d∗
cdab and the definition (2.55a) one concludes that

ϵf
abc∇̂aρ̂

d
ebc = Θϵe

dghΛ̂fgh − 2Θδgd∗d
efg + ϵf

abcSeb
dg∆̂acg.
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Alternatively, using the properties of the generalised Hodge duals we can write

∇̂[aρ̂
d

|e|bc] = 1
6Θϵf

abcϵe
dghΛ̂fgh − 1

3Θϵf
abcδ

gd∗d
efg − Se[b

dg∆̂ac]g.

Combining the expressions, we obtain the following evolution equation

∇̂0Ξ̂d
ebc =Γ̂b

f
0Ξ̂d

ecf + Γ̂c
f

0Ξ̂d
efb − Σ̂b

f
cR̂

d
e0f − 1

2Θϵf
0bcϵe

dghΛ̂fgh

+ ϵf
0bcδ

gd∗d
efg + 3Se0

dg∆̂cbg,

(3.21)

which is homogeneous in the zero-quantities.

Subsidiary equation for the Cotton equation

Now, to compute the subsidiary equation for the Cotton equation we consider ∇̂[a∆̂bc]d.

On the one hand, a direct computation yields

3∇̂[0∆̂bc]d = ∇̂0∆̂bcd − Γ̂b
e

0∆̂ced − Γ̂c
e

0∆̂ebd.

On the other hand, using the definition of Ξ̂e
cab and the symmetries of ρ̂e

cab one obtains

∇̂[a∆̂bc]d = −Ξ̂e
[cab]L̂ed −Ξ̂e

d[abL̂c]e − ρ̂e
d[abL̂c]e +Σ̂[a

e
b∇̂|e|L̂c]d −∇̂[ad|ed

e
d|bc] −de∇̂[ad

e
|d|bc].

Using the definition of δa and γab one finds that

∇̂[ad|ed
e

d|bc] = −Θδ[aβ|ed
e

d|bc] − Θγ[a|ed
e

d|bc] − Θf[aβ|ed
e

d|bc] + ΘL̂[a|ed
e

d|bc].

Finally, a calculation shows that ϵf
abc∇ad

e
dbc = ϵd

egh∇ad
e

fgh, so that using

∇̂[aC
d

|e|bc] = ∇[aC
d

|e|bc] + δ[a
df|fC

f
e|bc] + ηe[af

fCd
|f |bc],

and the properties of the generalised duals we find that

∇̂[ad
e

|d|bc] = 1
6ϵabc

fϵd
eghΛ̂fgh + δ[a

ef|fd
f

d|bc] + ηd[af
fde

|f |bc].

Combining the above expressions and using the properties of the decomposition of ρ̂c
dab

we obtain the expression

∇̂[a∆̂bc]d = −Ξ̂e
[cab]L̂ed−Ξ̂e

d[abL̂c]e+Σ̂[a
e

b∇̂|e|L̂c]d+Θδ[aβ|ed
e

d|bc]+Θγ[a|ed
e

d|bc]−
1
6ϵabc

fϵd
eghΛ̂fghβe

91



Chapter 3. The non-linear stability of de Sitter-like spacetimes with spatial sections of
negative scalar curvature

and, eventually, the evolution equation

∇̂0∆̂bcd =Γ̂b
e

0∆̂ced + Γ̂c
e

0∆̂ebd − Ξ̂e
0bcL̂ed + δbded

e
dc0 + δcded

e
d0b

+ Θγbed
e

dc0 + Θγced
e

d0b − 1
2ϵ0bc

fϵd
eghΛ̂fghβe,

which is homogeneous in zero quantities as required.

Subsidiary equations for the Bianchi identity

Finally, we are left to show the propagation of the physical Bianchi identity. In view of the

contracted derivative appearing in this equation, the construction of suitable subsidiary

equations is more involved.

Since ha
b = δa

b + τaτ
b, it follows then that

Λ̂abc = δa
dΛ̂dbc = (ha

d − τaτ
d)Λ̂dbc = ha

dΛ̂dbc − τaτ
dΛ̂dbc. (3.22)

Now, let

Ωabc ≡ ha
dΛ̂dbc, Ωbc ≡ τ dΛ̂dbc.

By construction, the tensor Ωbc is antisymmetric, hence it admits a decomposition in

electric and magnetic parts. That is, one can write

Ωbc = Ω[bc] = Ω∗
eϵ

e
bc − 2Ω[bτ c],

where

Ωa ≡ Ωcbτ
bha

c, Ω∗
a ≡ Ω∗

cbτ
bha

c.

Furthermore, one also has that

Ωdbc = Ωd[bc] = H∗
deϵ

e
dc − 2Hd[bτ c],

where

Hda ≡ Ωdcbτ
bha

c, H∗
da ≡ Ω∗

dcbτ
bha

c.

Substituting the above expressions for Ωbc and Ωdbc into equation (3.22) it follows then

that

Λ̂abc = ha
d(H∗

deϵ
e
dc − 2Hd[bnc]) − na(Ω∗

eϵ
e
bc − 2Ω[bnc]). (3.23)

92



3.3. Evolution equations

Crucially, one can verify that if the evolution equations (3.14) and (3.15) for the electric

and magnetic part of the rescaled Weyl tensor are satisfied then

Hda = 0, H∗
da = 0.

If the above holds, then equation (3.23) reduces to

Λ̂abc = na(2Ω[bnc] − Ω∗
eϵ

e
bc) = naΩbc.

Remark 17. The tensors Ωa and Ω∗
a encode, respectively, the Gauss constraints for the

electric and magnetic parts of the Weyl tensor —that is, the equations

Dadab = 0, Dad∗
ab = 0.

To conclude the computation, it remains to compute ∇aΛ̂abc. A direct calculation gives

∇aΛ̂abc = ∇aτaΩbc + τa∇aΩbc = ∇aτaΩbc + ∂τ Ωbc. (3.24)

An alternative computation of ∇aΛ̂abc using the commutator of the covariant derivative ∇

gives

2∇bΛ̂bcd = 2∇[b∇a]dabcd = 2Re
[c

badd]eab − 2Re
a

badebcd + Σb
e
a∇ed

ab
cd.

Observing that Σ̂a
c
b = Σa

c
b as ∇̂ − ∇ = S(f), it follows that the equation

R̂a
bcd −Ra

bcd = 2(δa
[c∇̂d]f̂b + ∇̂[cf̂

aĝd]b − δa
b∇̂[cf̂d] − δa

[cf̂d]f̂b + ĝb[cf̂d]f̂
a + δa

[cĝd]bf̂ef̂
e)

together with the definitions of the zero quantities Ξ̂c
dab and ςab and the symmetries of

dabcd so that after projecting the equations with respect to the frame one obtains

∇bΛ̂bcd = Ξ̂e
[c

badd]eab − Ξ̂e
a

badebcd + 1
2Σ̂b

e
a∇ed

ab
cd + ςabdabcd, (3.25)

which is homogeneous in zero quantities. Hence, combining equations (3.24) and (3.25),

we obtain the following equation for the components of Ωab:

∂0Ωbc = Ξ̂e
[b

afdc]efa − Ξ̂e
f

afdeabc + 1
2Σ̂a

e
f∇ed

fa
bc + ςfadfabc − χΩbc.
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Subsidiary equations for the gauge conditions

To conclude our discussion of the subsidiary equations, we are left with the task of providing

evolution equations for the zero-quantities associated to the gauge. In order to do so we

expand ∇̂[0δb], ∇̂[0γb]c and ∇̂[0ςbc] to get

2∇̂[0δb] = ∇̂0δb + Γ̂b
e

eδe,

2∇̂[0γb]c = ∇̂0γbc + Γ̂b
e

0γec,

2∇̂[0ςbc] = ∇̂0ςbc − Γ̂b
e

0ςce − Γ̂c
e

0ςeb.

We then compute ∇̂[aδb], ∇̂[aγb]c and ∇̂[aςbc] explicitly making use of the definitions of the

zero-quantities and re-expressing the result in terms of zero-quantities so as to obtain

2∇̂[aδb] = −γ[ab] + ςab − 1
2Θ−1Σa

e
b∇̂eΘ,

2∇̂[aγb]c = ∆̂abc + βeΞ̂e
cab − Σ̂a

e
b∇̂eβc + 2βcγ[ab] − 2β[aγb]c

+ηc[aβ
eγb]e + 2λΘ−2δ[aηb]c + β[aηb]cβeβ

e − 2λΘ−2ηc[aβb],

∇̂[aςbc] = 1
2∆̂[abc] + 1

2Ξ̂e
[cab]fe − 1

2Σ̂[a
e

b∇̂|e|fc].

From the above expressions, it follows that the evolution equations for δa, γab and ςab are

given by

∇̂0δi = γi0 − Γ̂i
e

0δe, (3.26a)

∇̂0γic = −γjcΓ̂i
j

0 − β0γic − βcγi0 + η0c(βeγie − 2λΘ−2δi), (3.26b)

∇̂0ςjk = Γ̂j
e

0ςke + Γk
e

0ςej + 1
2∆̂jk0 + 1

2Ξ̂e
0jkfe + 1

2Σ̂j
e

kΓ̂e
f

0ff , (3.26c)

where, in particular, the evolution equation for the covector βa,

∇̂0βa + β0βa − 1
2η0a(βeβ

e − 2λΘ−2) = 0,

has been used in the derivation of equation (3.26b). Again, as required, the equations

(3.26a)-(3.26c) are homogeneous in various zero-quantities.

Remark 18. Observe that equation (3.26b) contains the potentially singular term λΘ−2δi.

As such, this equation can only be used away from the conformal boundary where Θ ̸= 0.
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This is a consequence of the use of a conformal Gaussian gauge hinged on a standard

Cauchy hypersurface. This singular behaviour is of no consequence in our analysis as

one is only interested on solutions to the subsidiary equations away from the conformal

boundary.

3.3.4 Summary: structural properties of the evolution and sub-

sidiary equations

As a conclusion of the long computations in this section, we now provide a summary of

the conformal evolution equations, the associated subsidiary system and the structural

properties of these systems which will be required in the reminder of our analysis.

The computations discussed in the previous subsections show that, in a conformal

Gaussian gauge, the various fields associated to the extended vacuum conformal Einstein

field equations satisfy the evolution equations

∂τeb
ν = −Γ̂b

c
0ec

ν , (3.27a)

∂τ L̂db = Γ̂0
c

dL̂cb + Γ̂0
c

bL̂dc + dad̂
a

b0d, (3.27b)

∂τfi = −fjΓ̂i
j

0 + L̂i0, (3.27c)

∂τ (Γ̂b
c

d) = −Γ̂f
c

dΓ̂b
f

0 − Ξd̂c
d0b − 2δd

cL̂b0 − 2δ0
cL̂bd + 2gd0g

ceL̂be, (3.27d)

∂τdbd + ϵef
(dDfd

∗
b)e = 2afϵ

ef
(d d

∗
b)e − χdbd + 2χf

(bdd)f , (3.27e)

∂τd
∗
bd − ϵe

f(dD
fdb)e = 2afϵf(d

edb)e − χd∗
bd + 2χf

(bd
∗
d)f . (3.27f)

Letting e, Γ, L̂ and ϕ denote, respectively, the independent components of the coefficients

of the frame, the connection coefficients, the Schouten tensor of the Weyl connection and

the rescaled Weyl tensor and setting, for convenience, û ≡ (υ̂, ϕ̂), υ̂ ≡ (e, Γ̂, L̂), one has

that equations (3.27a)-(3.27f) can be written, schematically, in the form

∂τ υ̂ = Kυ̂ + Q(υ̂, υ̂) + L(x̄)ϕ̂, (3.28a)

(I + A0(e))∂τ ϕ̂ + Aα(e)∂αϕ̂ = B(Γ̂)ϕ̂, (3.28b)
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where K and Q denote, respectively, a matrix and a quadratic form, both with constant

coefficients while L is a matrix with coefficients depending smoothly on the coordinates.

Moreover, Aµ(e) denote, for µ = 0, . . . , 3 Hermitian matrix-valued functions depending

smoothly on e. In particular I + A0(e) is positive definite for e suitably close to the

background solution —with closeness understood in the sense of Sobolev norms. Finally,

B(Γ̂) denotes a smooth matrix-value function of the component of the connection.

Remark 19. Altogether, the conformal evolution system described by equations (3.28a)-

(3.28b) constitutes a quasilinear symmetric hyperbolic system for which a well-posedness

theory is available —see [49], also [81] for an abridged version. This theory will be used

in the remaining sections of this article to establish the stability of the solution to the

Einstein field equations given by the metric (3.2).

Remark 20. A remarkable structural property of the conformal evolution system (3.28a)-

(3.28b) is that the equations in (3.28a) are, in fact, mere transport equations along con-

formal geodesics. The true hyperbolic content of the system is contained in the Bianchi

subsystem (3.28b). This property does not play any particular role in our analysis, but it

may prove key in, for example, the analysis of the formation of singularities.

Regarding the subsidiary evolution system, the key conclusion from the system

∇̂0Σ̂b
d

c = −1
3Γ̂c

e
0Σ̂e

d
b − 1

3Γ̂c
e

0Σ̂e
d

b − Ξ̂d
0bc, (3.29a)

∇̂0Ξ̂d
ebc = Γ̂b

f
0Ξ̂d

ecf + Γ̂c
f

0Ξ̂d
efb − Σ̂b

f
cR̂

d
e0f − 1

2Θϵf
0bcϵe

dghΛfgh (3.29b)

+ϵf
0bcδ

gd∗d
efg + 3Se0

dg∆̂cbg, (3.29c)

∇̂0∆̂bcd = Γ̂b
e

0∆̂ced + Γ̂c
e

0∆̂ebd − Ξ̂e
0bcL̂ed + δbded

e
dc0 + δcded

e
d0b (3.29d)

+Θγbed
e

dc0 + Θγced
e

d0b − 1
2ϵ0bc

fϵd
eghΛfghβe, (3.29e)

∇̂0Ω̂bc = Ξ̂e
[b

afdc]efa − Ξ̂e
f

afdeabc + 1
2Σ̂a

e
f∇ed

fa
bc + ςfadfabc − χΩbc, (3.29f)

∇̂0δi = γi0 − Γ̂i
e

0δe; (3.29g)

∇̂0γic = −γjcΓ̂i
j

0 − β0γic − βcγi0 + η0c(βeγie − 2λΘ−2δi), (3.29h)

∇̂0ςjk = Γ̂j
e

0ςke + Γk
e

0ςej + 1
2∆̂jk0 + 1

2Ξ̂e
0jkfe + 1

2Σ̂j
e

kΓ̂e
f

0ff , (3.29i)
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is that the zero-quantities Σ̂a
c

b, Ξ̂a
bcd, ∆̂abc, Λ̂abc, δab, γab and ςab satisfy, if the conformal

evolution equations (3.27a)-(3.27e) hold, a symmetric hyperbolic system which is homo-

geneous in the zero-quantities —accordingly, the particular situation in which all the zero

quantities vanish identically giving rise to the subsidiary evolution system. The subsidiary

system is regular away from the conformal boundary —i.e. the sets for which the conformal

factor vanishes.

3.4 Initial data for the evolution equations

Given a solution (S, h̃, K̃) to the Einstein constraint equations (i.e the Hamiltonian and

the momentum constraints), there exists an algebraic procedure to compute initial data for

the conformal evolution equations —see e.g. [81], Lemma 11.1, page 265. Now, a suitable

perturbative existence theorem which covers perturbations of the initial data implied by

the metric (3.2) on the hypersurfaces of constant t has been provided in [82] —see Theorem

1. From this result one can deduce the following assertion:

Proposition 5. Let (S, h̊, K̊) with S compact, ˚̃h a smooth Riemannian metric of constant

negative curvature and K̊ = κh̊ with κ a constant, denote an initial data set for the

vacuum Einstein field equations with positive Cosmological constant. Then for each pair

of sufficiently small (in the sense of suitable Sobolev norms) tensors Tij and T̄ij over S,

transverse-tracefree with respect to h̊, and each sufficiently small scalar field Φ over S, there

exists a solution of the Einstein constraint equations (S,h,K) with positive Cosmological

constant which is suitably close to (S, h̊, K̊) and such that tr̊h(K − K̊) = Φ and for

which the electric and magnetic parts of the Weyl tensor (restricted to S) of the resulting

spacetime development take the form

dij = L̊(X)ij + Tij − 1
3 trh(L̊(X) + T )hij,

d∗
ij = L̊(X̄)ij + T̄ij − 1

3 trh(L̊(X̄) + T̄ )hij,

for some covectors X, X̄ over S and where L̊ denotes the conformal Killing operator with

respect to h̊.
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Remark 21. Thus, choosing the free data Tij, T̄ij and Φ suitably small one can ensure

that the perturbed data (S,h,K) is close to (S, h̊, K̊). Accordingly, the associated initial

data for the conformal evolution equations will be close to initial data for the background

solution.

Remark 22. Theorem 1 in [82] applies to the broader class of conformally rigid hyperbolic

compact manifolds —that is, Einstein manifolds with negative Ricci scalar which do not

admit a non-trivial Codazzi tensor; see the discussion in Section 3.4.3 of this reference.

The precise statement of the result also excludes values of κ which are related in a specific

manner to the eigenvalues of the Laplacian of h̊ —however, we do not require this level of

detail in the subsequent discussion.

3.5 Analysis of the existence and stability of solutions

In this section, we develop the theory of the existence, uniqueness and stability of solutions

to the Einstein field equations which can be regarded as perturbations of the background

solution. The argument proceeds in several steps: first, the Cauchy stability of solutions

to symmetric hyperbolic systems is used to conclude the existence of solutions to the

conformal evolution system (3.27a)-(3.27f); in a second step the uniqueness of solutions to

the subsidiary system (3.29a)-(3.29i) to argue the propagation of constraints; finally general

theory of the conformal Einstein field equations is invoked to establish the connection

between solutions to the conformal equations and actual solutions to the Einstein field

equations.

3.5.1 A symmetric hyperbolic evolution system

In the following, we look for solutions to the system (3.28a)-(3.28b) of the form

û = ů + ŭ,

where ů is the solution to the conformal evolution equations (3.27a)-(3.27f) implied by a

background solution, while ŭ denotes a small perturbation. Accordingly, making use of
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the schematic notation of equations (3.28a)-(3.28b) one can set

υ̂ = υ̊ + ῠ, ϕ̂ = ϕ̆, (3.30a)

ê = e̊ + ĕ, Γ̂ = Γ̊ + Γ̌. (3.30b)

Now, we have found that on the initial surface S⋆ described by the condition τ = τ⋆ one can

write ů⋆ = (υ̊⋆, ϕ̊⋆) = (υ̊⋆, 0). As the conformal factor Θ and the covector d are universal,

it follows that

∂τ υ̊ = Kυ̊ + Q(υ̊, υ̊).

Substituting (3.30a) and (3.30b) into equations (3.28a) and (3.28b) yields evolution equa-

tions for ŭ = (ῠ, ϕ̆) which, schematically, take the form

∂τ ῠ = Kῠ + Q(Γ̊ + Γ̆)ῠ + Q(Γ̆)υ̊ + L(x̄)ϕ̆, (3.31a)

(I + A0(e̊ + ĕ))∂τ ϕ̆ + Aα(e̊ + ĕ)∂αϕ̆ = B(Γ̊ + Γ̆)ϕ̆. (3.31b)

Now, in the following, it is convenient to define

Ā0(τ, x, ŭ) ≡

I 0

0 I + A0(e̊ + ĕ)

 , Āα(τ, x, ŭ) ≡

0 0

0 Aα(e̊ + ĕ)


and

B̄(τ, x, ŭ) ≡ ŭQ̄ŭ + L̄(x̄)ŭ + K̄ŭ,

where

ŭQ̄ŭ ≡

ῠQῠ 0

0 B(Γ̆)ϕ̆

 , L̄(x̄)ŭ ≡

υ̊Qῠ + Q(Γ̆)υ̊ L(x̄)ϕ̆

0 0

 ,

K̄ŭ ≡

Kῠ 0

0 B(̊Γ)ϕ̆

 ,
denote, respectively, quadratic, linear and constant terms in the unknowns. In terms of

the latter it is possible to rewrite the system (3.31a) and (3.31b) in the form

Ā0(τ, x, ŭ)∂τ ŭ + Āα(τ, x, ŭ)∂αŭ = B̄(τ, x, ŭ). (3.32)
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From the discussion in the previous sections, it follows that the system described by (4.30)

is a symmetric hyperbolic system for which the theory of [49] can be applied. The natural

domain of the solutions to this system is of the form

M = [τ⋆, τ•) × S, τ⋆ ∈ (0, 1), τ• ≥ 1.

3.5.2 The existence, uniqueness and Cauchy stability of the so-

lution

The existence of de Sitter-like solutions to the conformal evolution system (4.30) is given

by the following proposition:

Proposition 6 (existence and uniqueness of the solutions to the perturbed de

Sitter-like evolution equations). Given u⋆ = ů⋆ + ŭ⋆ and m ≥ 4, one has that:

(i) There exists ε > 0 such that if

||ŭ⋆||S,m < ε, (3.33)

then there exists a unique solution ŭ ∈ Cm−2(
[
τ⋆,

3
2

)
× S,RN) to the Cauchy problem

for the conformal evolution equations (4.30) with initial data u(τ⋆, x) = ŭ⋆, τ⋆ > 0

and with N denoting the dimension of the vector u.

(ii) Given a sequence of initial data ŭ(n)
⋆ such that

||ŭ(n)
⋆||S,m < ε, and ||ŭ(n)

⋆||S,m
n→∞−−−→ 0,

then for the corresponding solutions ŭ(n) ∈ Cm−2
([
τ⋆,

3
2

)
×S,RN

)
, one has ||ŭ(n)||S,m →

0 uniformly in τ ∈
[
τ⋆,

3
2

)
as n → ∞.

Remark 23. In the above proposition ||ŭ⋆||S,m denotes the standard L2-Sobolev norm

over S of order m ≥ 4 of the independent components of the vector ŭ⋆.

Proof. The proof is an application of the existence and stability results for symmetric hy-

perbolic systems with compact spatial sections —see e.g. [81], Section 12.3 which, in turn,
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follows from Kato’s theory for symmetric hyperbolic systems over Rn [49]. More precisely,

since the 3-dimensional manifold S is compact, there exists a finite cover consisting of open

sets R1, . . . ,RM ⊂ S such that ∪i=1
MRi = S. On each of the open sets Ri it is possible to

introduce coordinates xi ≡ (xα
i) which allow one to identify Ri with open subsets Bi ⊂ R3.

As S is assumed to be a smooth manifold, the coordinate patches can be chosen so that

the change of coordinates on intersecting sets is smooth. The initial data ŭ⋆ : S → RN is a

smooth function on S and can be restricted to a particular open set Ri. The restriction ŭi⋆,

in local coordinates xi can be regarded as a function ŭi⋆ : Bi → RN . Now, assuming that

R ⊂ R3 is bounded with smooth boundary ∂R, it is possible to extend ŭi⋆ to a function

Eŭi⋆ : R3 → RN —see e.g. Proposition 12.2 in [81]. Using these extensions it is possible

to define the Sobolev norm

||ŭ⋆||S,m ≡
M∑

i=1
||ŭi⋆||R3,m.

Now, for each of the Eŭi⋆ one can formulate an initial value problem of the form

Ā0(τ, x, ŭ)∂τ ŭ + Āα(τ, x, ŭ)∂αŭ = B(τ, x, ŭ),

ŭ(τ⋆, x) = Eŭi⋆(x) ∈ Hm(S,RN) for m ≥ 4.

For this initial value problem, it is observed that:

(a) The matrices Āµ(τ, x, Eŭi⋆) are positive definite and depend linearly on the solution

ŭi with coefficients which are constant.

(b) The dependence of B on ŭi is at most quadratic: there are linear and quadratic

terms for the connection coefficients; linear terms for the components of the Schouten

tensor. The explicit dependence on (τ, x) comes from the conformal factor and the

covector da —this dependence is smooth.

(c) The connection coefficients and the components of the Schouten tensor of the back-

ground solution are smooth functions (C∞) of (τ, x).

(d) The dependence of the frame coefficients of the background solution is smooth (C∞)

on τ for τ ∈ [τ⋆,
3
2 ] with τ⋆ > 0.
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It follows from the above observations that our system satisfies the conditions of Kato’s

theorems —see Appendix A.1. This theory implies existence, uniqueness and stability —

i.e. points (i) and (ii) in the theorem. Notice, however, that strictly speaking, this theorem

only applies to settings in which the spatial sections are diffeomorphic to R3. To address

this one makes use of the following strategy: standard results on causality theory imply

that

D+(Ri) ∩ I+(S \ Ri) = ∅,

where D+(Ri) denotes the causal future of Ri —see e.g. [81], Theorem 14.1. Accordingly,

the value of ŭ on Di ≡ D+(Ri) is determined only by the data on Ri. Then the solution

on Di is independent of the particular extension Eŭi⋆ being used. Hence, one can speak

of a solution ŭi on a domain Di ⊂ [τ⋆, τi] × Ri. Since the manifold is smooth and as a

consequence of uniqueness, it follows that given two solutions ŭi and ŭj defined, respec-

tively, on intersecting domains Di and Dj they must coincide on Di
⋂Dj. Proceeding in

the same manner over the whole finite cover of S and since the compactness of S ensures

the existence of a minimum non-zero existence time for the whole of the domains Di, then

there is a unique solution ŭ on [τ⋆,
3
2 ] × S with 3

2 = mini=1,...,M{τi} which is constructed

by patching together the localised solutions ŭ1, . . . , ŭM defined, respectively on the do-

mains Di, . . . ,DM . The existence interval [τ⋆,
3
2) follows from the fact that the background

solution ů has this existence interval.

Remark 24. The existence and Cauchy stability of the solution to the initial value problem

for the original conformal evolution problem

A0(τ, x, û)∂τ û + Aα(τ, x, û)∂αû = B(τ, x, û),

û|⋆ = ů⋆ + ŭ⋆ ∈ Hm(S,RN) for m ≥ 4

follows from the fact that û satisfies the same properties as ŭ in Proposition 6 and then

it exists in the same solution manifold and with the same regularity properties, existence

and uniqueness.
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3.5.3 Propagation of the constraints

In this section, we discuss the so-called propagation of the constraints. This argument is

essential to establish the connection between solutions to the conformal evolution systems

and actual solutions to the Einstein field equations. More precisely, one has the following:

Proposition 7 (propagation of the constraints). Let û⋆ = ů⋆ + ŭ⋆ denote initial data

for the conformal evolution equations on a 3-manifold S⋆ ≈ S such that

Σ̂a
c

b|S⋆ = 0, Ξ̂c
dab|S⋆ = 0, ∆̂abc|S⋆ = 0, Λ̂abc|S⋆ = 0,

and

δa|S⋆ = 0, γab|S⋆ = 0, ςab|S⋆ = 0,

then the solution ŭ to the conformal evolution equations given by Proposition 6 implies a

Cm−2 solution û = ů + ŭ to the extended conformal field equations on
[
τ⋆, 1

)
× S.

Proof. The proof follows from the properties of the subsidiary evolution system. First, it

is observed that by assumption

Σ̂0
c

b = 0, Ξ̂c
d0b = 0, ∆̂0bc = 0,

hold —cfr. the equations in (3.11). Moreover, the associated evolution equations are

expressed in terms of a conformal Gaussian gauge system and the independent components

of the rescaled Weyl tensor satisfy either the evolution system (3.14) and (3.15). Now,

following the discussion of Section 3.3.3, the independent components of the zero-quantities

Σ̂a
c

b, Ξ̂c
dab, ∆̂abc, Λ̂abc, δa, γab, ςab,

which are not determined by either the evolution equations or gauge conditions satisfy

a symmetric hyperbolic system which is homogeneous in the zero-quantities. More pre-

cisely, defining X̂ ≡ {Σ̂a
c

b, Ξ̂c
dab, ∆̂abc, Λ̂abc, δa, γab, ςab}, these equations can be recast as

a symmetric hyperbolic system of the form

∂τ X̂ = H(X̂),
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where H is a homogeneous function of its arguments —i.e. H(0) = 0. It follows then that

a solution to the initial value problem

∂τ X̂ = H(X̂),

X̂⋆ = 0.

is given (trivially) by X̂ = 0. Moreover, following Kato’s theorem it follows this is the

unique solution. Thus, the zero-quantities must vanish on
[
τ⋆, 1

)
× S. That is, the solu-

tion ŭ to the conformal evolution equations implies a solution to the extended conformal

Einstein field equations over the latter domain.

From the above statement, making use of the relation between the extended conformal

Einstein field equations and the actual Einstein field equations —see Proposition 8.3 in

[81] it follows the corollary:

Corollary 1. The metric

g = Θ2g̃

obtained from the solution to the conformal evolution equations given in Proposition 6

implies a solution g̃ to the vacuum Einstein field equations with λ = 3.

3.6 Future geodesic completeness

In this section, we discuss the future geodesic completeness of the spacetimes obtained

in the previous section. Our analysis distinguishes two cases: null geodesics and timelike

geodesics.

3.6.1 Null geodesics

As a consequence of the compactness of the unphysical manifold

M =
{

(τ, x) ∈ R × S | τ• ≤ τ ≤ 1
}
,
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null geodesics in the unphysical manifold starting at the initial hypersurface S⋆, reach the

conformal boundary in a finite amount of affine parameter. Furthermore, null geodesics

with respect to the unphysical metric g coincide, up to a reparametrisation, with null

geodesics with respect to the physical metric g̃ on M̃. More precisely, let γ be a null

geodesic in (M, g) with affine parameter v such that v = 0 on ∂M̃. The equations for γ

are
d2xµ

dv2 + Γµ
νλ

dxν

dv
dxλ

dv = 0.

Let γ̃ denote the corresponding geodesics in M̃. Using a different parameter ṽ = ṽ(v) and

the relation between the Christoffel symbols Γµ
νλ and Γ̃µ

νλ it follows that

d2xµ

dṽ2 + Γ̃µ
νλ

dxν

dṽ
dxλ

dṽ
= − 1

ṽ′

(
ṽ′′

ṽ′ + 2Θ′

Θ

)
dxµ

dṽ .

By requiring that ṽ to be an affine parameter the right-hand side must vanish. This implies

ṽ′ = const/Θ2, and absorbing the constant into ṽ we obtain

dṽ
dv = 1

Θ2 .

Furthermore, at I +, Θ = 0 and dΘ ̸= 0, and we may choose v so that near ∂M̃ , v ∼ −Θ.

Thus ṽ ∼ −1/v becomes unbounded —i.e. the physical affine parameter for the physical

geodesic must blow up as Θ → 0. Thus, γ̃ never reaches ∂M̃ and the null geodesic must

be complete —see also the discussion in [70], Chapter 3.

3.6.2 Timelike geodesics

The argument used for null geodesics cannot readily be applied to the discussion of timelike

geodesics as these are not conformally invariant. Instead, we make use of timelike conformal

geodesics.

Every timelike metric geodesic on the physical spacetime (M̃, g̃) can be recast, after

a reparametrisation, as a conformal geodesics (x, β̃) —see Chapter 2 and [37, 81]. Under

the rescaling g = Θ2g̃, the conformal geodesic (x, β̃) transforms into a geodesic (x,β)

in the unphysical spacetime (M, g). Now, it is known that any g-conformal geodesic
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that leaves I + orthogonally into the past, is up to a reparametrisation, a timelike future

complete geodesic for the physical metric g̃ —see e.g. [35, 37]. Moreover, a conformal

geodesic through a point of I + which is not orthogonal to the conformal boundary cannot

represent a geodesic in the physical spacetime.

Now, from the g̃-future geodesic completeness of the background solution (see Ap-

pendix A.2) it follows that every conformal geodesic in the background spacetime starting

orthogonal to the initial hypersurface S⋆ must reach the conformal boundary I +. Hence,

every timelike g̃-geodesic is, up to a reparametrisation, a timelike conformal curve reaching

I + orthogonally. Moreover, let us consider a pair (x(τ), β̃(τ)) with parameter τ ∈ R. Fur-

thermore, let us suppose that this geodesic starts at τ = τ⋆, i.e. the initial hypersurface S,

and it reaches the conformal boundary I + at τ = 1. Now, consider a small perturbation

of the quantities (x, β̃) so that

x̂ = x+ x̆,

β̂ = β̃ + β̆,

where x̆ and β̆ are small perturbations. In this case, the perturbed conformal geodesic

equations read

∇̃x′(x′ + x̆′) = −2⟨(β̃ + β̆), (x′ + x̆′)⟩(x′ + x̆′) + g̃((x′ + x̆′), (x′ + x̆′))(β̃ + β̆)♯,

∇̃x′(β̃ + β̆) = ⟨(β̃ + β̆), (x′ + x̆′)⟩(β̃ + β̆) − 1
2g♯((β̃ + β̆), (β̃ + β̆))(x + x̆)′♭ + L̃((x′ + x̆′), ·),

where the metric, covariant derivative and Schouten tensor are those obtained from the

solution to the Einstein field equations given in Corollary 1. These equations can be

read as a system of ordinary differential equations for the fields x̆ and β̆. Because of the

smoothness of the perturbed spacetime it follows that one can make use of the stability

theory for ordinary differential equations —see e.g. [43], Theorem 2.1 in page 94 and

Corollary 4.1 on page 101. In particular, these conformal geodesics will have the same

existence interval as those in the background spacetime. Accordingly, it follows that (M̃, g̃)

is future g̃-geodesically complete.

Remark 25. An alternative way of concluding the future geodesic completeness of the

solutions to the Einstein field equations provided by Corollary 1 is to make use of the
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theory in [10] —see also Appendix A.2. By choosing the ε > 0 in condition (4.31) of

Proposition 6 sufficiently small, it can be shown that the physical metric g̃ satisfies the

bounds required to show geodesic completeness.

3.7 The main result

We summarise the discussion of the preceding sections with a more detailed formulation

of the main result of this chapter:

Theorem 1. Let û⋆ = ů⋆ + ŭ⋆ denote smooth initial data for the conformal evolution

equations satisfying the conformal constraint equations on a hypersurface S⋆. Then, there

exists ε > 0 such that if

||ŭ⋆||S⋆,m < ε, m ≥ 4

then there exists a unique Cm−2 solution g̃ to the vacuum Einstein field equation with

positive Cosmological constant over [τ⋆,∞) × S⋆ for τ⋆ > 0 which is future geodesically

complete and whose restriction to S⋆ implies the initial data û⋆. Moreover, the solution û

remains suitably close (in the Sobolev norm ∥ · ∥S,m) to the background solution ů.

Remark 26. It follows from Proposition 5 that there exists an open set of initial data for

the Einstein field equations satisfying the hypothesis of the above theorem.
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Chapter 4

The non-linear stability of the

Cosmological region of the

Schwarzschild-de Sitter spacetime

4.1 Introduction

One of the key problems in Mathematical Relativity is the non-linear stability of black

hole spacetimes. This problem is challenging for its mathematical and physical features.

Most efforts to establish the non-linear stability of black hole spacetimes in both the

asymptotically flat and Cosmological settings have, so far, relied on the use of vector field

methods —see e.g. [16]. The results in [23, 26, 81] show that the conformal Einstein field

equations are a powerful tool for the analysis of the stability of the vacuum asymptotically

simple spacetimes.

In view of the success of conformal methods to analyse the global properties of asymp-

totically simple spacetimes, it is natural to ask whether a similar strategy can be used to

study the non-linear stability of black hole spacetimes. The discussion in this chapter is

based on

M. Minucci and J. A. Valiente Kroon, On the non-linear stability of the Cosmological
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region of the Schwarzschild-de Sitter spacetime, ArXiv e-prints (2023), arXiv:2302.04004

[gr-qc].

which provides a first step in this direction by analysing certain aspects of the conformal

structure of the sub-extremal Schwarzschild-de Sitter spacetime which can be used, in turn,

to adapt techniques from the asymptotically simple setting to the black hole case.

4.1.1 The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime is a spherically symmetric solution to the vacuum

Einstein field equations with positive cosmological constant. This spacetime depends on

the de Sitter-like value of the cosmological constant λ and on the mass m of the black hole.

Assuming spherical symmetry almost completely singles out the Schwarzschild-de Sitter

spacetimes among the vacuum solutions to the Einstein field equations with de Sitter-

like cosmological constraint. The other admissible solution is the Nariai spacetime —see

e.g. [67]. In the Schwarzschild-de Sitter spacetime the relation between the mass and the

Cosmological constant determines the position of the Cosmological and black hole horizons

—see e.g. [42]. In this analysis, we restrict our attention to a choice of the parameters

λ and m for which the exact solution is sub-extremal —see Section 4.2 for a definition

of this notion. The sub-extremal Schwarzschild-de Sitter spacetime has three horizons.

Of particular interest for our analysis is the Cosmological horizon which bounds a region

(the Cosmological region) of the spacetime in which the roles of the coordinates t and r

reversed. This spacetime can be studied by means of the extended conformal Einstein field

equations —see [39]. In analogy to the de Sitter spacetime, the Cosmological region has

an asymptotic region admitting a smooth conformal extension towards the future (or past)

also known as future asymptotically de Sitter. Since the Cosmological constant takes a

de Sitter-like value, the conformal boundary of the spacetime is spacelike and moreover,

there exists a conformal representation in which the induced 3-metric on the conformal

boundary I is homogeneous. Thus, it is possible to integrate the extended conformal field

equations along single conformal geodesics —see [38].
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In this chapter, we analyse the sub-extremal Schwarzschild-de Sitter spacetime as a

solution to the extended conformal Einstein field equations and use the insights to prove

existence and stability results. The starting point for this discussion is the analysis of con-

formal geodesic equations leaving spacelike hypersurfaces in the Cosmological region of the

spacetime. The results of this analysis can be used to rewrite the spacetime in the confor-

mal Gaussian gauge associated to these curves. Nevertheless, even though the conformal

geodesic equations for spherically symmetric spacetimes can be written in quadratures, in

general, the integral involved cannot be solved analytically. In view of this difficulty, the

properties of the sub-extremal Schwarzschild-de Sitter spacetime are analysed by means of

an initial value problem for the extended conformal Einstein field equations. Accordingly,

initial data implied by the Schwarschild-de Sitter spacetime on a fiduciary spacelike hy-

persurface S⋆ are used to analyse the behaviour of the conformal evolution equations. A

perturbative argument then allows us to prove existence and stability results close to the

conformal boundary and away from the asymptotic points where the Cosmological horizon

intersects the conformal boundary. In particular, we show that small enough perturbations

of initial data for the sub-extremal Schwarzschild-de Sitter spacetime give rise to a solution

to the Einstein field equations which is regular at the conformal boundary. This analysis

can be regarded as a first step towards a stability argument for perturbation data on the

Cosmological horizons.

4.1.2 The main result

The analysis of the conformal properties of the Schwarzschild-de Sitter spacetime allows

us to formulate a result concerning the existence of solutions to the initial value problem

for the Einstein field equations with de Sitter-like Cosmological constant which can be

regarded as perturbations of portions of the initial hypersurface at S⋆ ≡ {r = r⋆} in the

Cosmological region of the spacetime. In this region these hypersurfaces are spacelike and

the coordinate t is spatial. In the following, let R• denote finite cylinder within S⋆ for which

|t| < t• for some suitable positive constant t•. Let D+(R•) denote the future domain of

dependence of R•. For the Schwarzschild-de Sitter spacetime such a region is unbounded
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towards the future and admits a smooth conformal extension with a spacelike conformal

boundary.

Our main result can be stated as:

Main Result 2. Given smooth initial data (h̃, K̃) for the vacuum Einstein field equations

on R• ⊂ S⋆ which is suitably close (as measured by a suitable Sobolev norm) to the data

implied by the Schwarzschild-de Sitter metric ˚̃g in the Cosmological region of the spacetime,

there exists a smooth metric g̃ defined over the whole of D+(R•) which is close to ˚̃g,

solves the vacuum Einstein field equations with positive Cosmological constant and whose

restriction to R• implies the initial data (h̃, K̃). The metric g̃ admits a smooth conformal

extension which includes a spacelike conformal boundary.

Remark 27. A detailed version of this theorem will be given in Section 4.5.

Observe that the above result is restricted to the future domain of dependence of a

suitable portion R• of the spacelike hypersurface S⋆. The reason for this restriction is

the degeneracy of the conformal structure at the asymptotic points of the Schwarzschild-

de Sitter spacetime where the conformal boundary, the Cosmological horizon and the

singularity seem to “meet” —see [39]. In particular, at these points the background solution

experiences a divergence of the Weyl curvature. This singularity is remarkably similar to

that produced by the ADM mass at spatial infinity in asymptotically flat spacetimes —see

e.g. [81], chapter 20. It is thus conceivable that an approach analogous to that used in the

analysis of the problem of spatial infinity in [28] may be of help to deal with this singular

behaviours of the conformal structure.

The ultimate aim of the programme started in this analysis is to obtain a proof of the

stability of the Schwarzschild-de Sitter spacetime for data prescribed on the Cosmological

horizon. Key to this end is the observation that the hypersurfaces of constant coordinate

r, S⋆, can be chosen to be arbitrarily close to the horizon. As such, an adaptation of the

optimal local existence results for the characteristic initial value problem developed in [53]

—see also [45]— should allow to evolve from the Cosmological horizon to a hypersurface

S⋆. These ideas will be developed in future work.
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4.1.3 Related results

The non-linear stability of the Schwarzschild-de Sitter spacetime has been studied by means

of the vector field methods that have proven successful in the analysis of asymptotically

flat black holes —see e.g. [64, 65, 66]. An alternative approach has made use of methods of

microlocal analysis in the steps of Melrose’s school of geometric scattering —see [47, 46].

This type of analysis requires to be careful when discussing the behaviour of the solution

at the horizons. In the initial value problem discussed in this chapter, the future domain of

dependence of the solution is contained in the Cosmological region of the spacetime away

from the asymptotic points. The methods developed in this work aim at providing a com-

plementary approach to the non-linear stability of this Cosmological black hole spacetime.

The interrelation between the results obtained in this chapter and those obtained by vector

field methods and microlocal analysis will be discussed elsewhere.

4.2 The sub-extremal Schwarzschild-de Sitter space-

time

The purpose of this section is to discuss the key properties of the sub-extremal Schwarzschild-

de Sitter spacetime that will be used in our argument on the stability of the Cosmological

region of this exact solution.

4.2.1 Basic properties

The Schwarzschild-de Sitter spacetime, (M̃,˚̃g), is a spherically symmetric solution to the

vacuum Einstein field equations with positive Cosmological constant

R̃ab = λg̃ab, λ > 0 (4.1)

with M̃ = R × R+ × S2 and line element given in standard coordinates (t, r, θ, φ) by

˚̃g = −
(

1 − 2m
r

− λ

3 r
2
)

dt⊗ dt+
(

1 − 2m
r

− λ

3 r
2
)−1

dr ⊗ dr + r2σ, (4.2)

112
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where

σ ≡ dθ ⊗ dθ + sin2 θdφ⊗ dφ,

denotes the standard metric on S2. The coordinates (t, r, θ, φ) take the range

t ∈ (−∞,∞), r ∈ (0,∞), θ ∈ (0, π), φ ∈ [0, 2π).

This line element can be rescaled so that

˚̃g = −D(r)dt⊗ dt+ 1
D(r)dr ⊗ dr + r2σ, (4.3)

where

M ≡ 2m
√
λ

3
and

D(r) ≡ 1 − M

r
− r2.

In our conventions M , r and λ are dimensionless quantities.

4.2.2 Horizons and global structure

The location of the horizons of the Schwarzschild-de Sitter spacetime follows from the

analysis of the zeros of the function D(r) in the line element (4.3).

Since λ > 0, then the function D(r) can be factorised as

D(r) = −1
r

(r − rb)(r − rc)(r − r−),

where rb and rc are, in general, distinct positive roots of D(r) and r− is a negative root.

Moreover, one has that

0 < rb < rc, rc + rb + r− = 0.

The root rb corresponds to a black hole-type of horizon and rc to a Cosmological de Sitter-

like type of horizon. One can verify that

D(r) > 0 for rb < r < rc,
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D(r) < 0 for 0 < r < rb and r > rc.

Accordingly, ˚̃g is static in the region rb < r < rc between the horizons. There are no other

static regions outside this range.

Using Cardano’s formula for cubic equations, we have

r− = − 2√
3

cos
(
ϕ

3

)
, (4.4a)

rb = 1√
3

(
cos

(
ϕ

3

)
−

√
3 sin

(
ϕ

3

))
, (4.4b)

rc = 1√
3

(
cos

(
ϕ

3

)
+

√
3 sin

(
ϕ

3

))
. (4.4c)

where the parameter ϕ is defined through the relation

M = 2 cosϕ
3
√

3
, ϕ ∈

(
0, π2

)
. (4.5)

In the sub-extremal case we have that 0 < M < 2/3
√

3 and ϕ ∈ (0, π/2). This describes

a black hole in a Cosmological setting. The extremal case corresponds to the value ϕ = 0

for which M = 2/3
√

3 —in this case the Cosmological and black hole horizons coincide.

Finally, the hyper-extremal case is characterised by the condition M > 2/3
√

3 —in this

case the spacetime contains no horizons.

The Penrose diagram of the Schwarzschild-de Sitter is well known —see Figure 4.1.

Details of its construction can be found in e.g. [42, 81].

4.2.3 Other coordinate systems

In our analysis, we will also make use of retarded and advanced Eddington-Finkelstein null

coordinates defined by

u ≡ t− r∗, v ≡ t+ r∗, (4.6)

where r∗ is the tortoise coordinate given by

r∗(t) ≡
∫ dr
D(r) , lim

r→∞
r∗(r) = 0. (4.7)
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6

∇̃ẋẋ = −2⟨β, ẋ⟩ẋ + g̃(ẋ, ẋ)β♯, (15a)

∇̃ẋβ = ⟨β, ẋ⟩β − 1
2

g̃♯(β, β)ẋ♭ + L̃(ẋ, ·), (15b)

where ∇̃ denotes the Levi-Civita connection of the physical metric g̃ and ∇̃ẋ denotes a deriva-
tive in the direction of ẋ. Notice that in the last expression the indices of the vectors and covec-
tors are raised or lowered using g̃—unless otherwise stated, we follow this convention in the 
rest of this article. The symbol L̃ denotes the Schouten tensor of g̃ defined by:

Figure 1. Penrose diagram for the subextremal Schwarzschild–de Sitter spacetime. 
The serrated line denotes the location of the singularity; the continuous black line 
denotes the conformal boundary; the dashed line shows the location of the black hole 
and cosmological horizons which are located at r  =  rb and r  =  rc respectively. The 
excluded points Q and Q′ where the singularity seems to meet the conformal boundary 
correspond to asymptotic regions of the spacetime that does not belong to the singularity 
nor the conformal boundary.

Figure 2. Penrose diagrams for the extremal Schwarzschild–de Sitter spacetime. 
Figure  (a) corresponds to a white hole which evolves towards a de Sitter final state 
while figure (b) is a model of a black hole with a future singularity. The Killing horizon 
is located at r = rH as described in the main text. Similar to the subextremal case, the 
excluded points denoted by P , Q represent asymptotic regions of the spacetime that do 
not belong to the singularity nor the conformal boundary.

A García-Parrado Gómez-Lobo et alClass. Quantum Grav. 35 (2018) 045002

Figure 4.1: Penrose diagram of the sub-extremal Schwarzschild-de Sitter spacetime. The

serrated line denotes the location of the singularity; the continuous black line denotes the

conformal boundary; the dashed line shows the location of the black hole and Cosmological

horizons denoted by Hb and Hc respectively. As described in the main text, these horizons

are located at r = rb and r = rc. The excluded points Q and Q′ where the singularity

seems to meet the conformal boundary correspond to asymptotic regions of the spacetime

that does not belong to the singularity nor the conformal boundary.

It follows that u, v ∈ R. In terms of these coordinates the metric ˚̃g takes, respectively, the

forms

˚̃g = −D(r)du⊗ du+ (du⊗ dr + dr ⊗ du) + r2σ,

˚̃g = −D(r)dv ⊗ dv + (dv ⊗ dr + dr ⊗ dv) + r2σ.

In order to compute the Penrose diagrams, Figures 4.2 and 4.3, we make use of Kruskal

coordinates defined via

U ≡ 1
2 exp(bu), V ≡ 1

2 exp(bv)

where u and v are the Eddington-Finkelstein coordinates as defined in (4.6) and b is a

constant which can be freely chosen. A further change of coordinates is provided by

T ≡ U + V, Ψ ≡ U − V.

These coordinates are related to r and t via

T (r, t) = cosh(bt) exp(br∗(r)), Ψ(r, t) = sinh(bt) exp(br∗(r)).
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Then by recalling that

r− < 0 < rb < rc and r− + rb + rc = 0,

the equation of r∗(r) as defined by (4.7) renders

r∗(r) = − rb ln(r − rb)
(rb − rc)(2rb + rc)

+ rc ln(r − rc)
r2

b + rbrc − 2r2
c

+ (rb + rc) ln(r + rb + rc)
(2rb + rc)(rb + 2rc)

.

Hence, in order to have coordinates which are regular down to the Cosmological horizon,

the constant b must be given by

b = r2
b + rbrc − 2r2

c

2rc

.

4.3 Construction of a conformal Gaussian gauge in

the Cosmological region

The hyperbolic reduction of the extended conformal Einstein field equations makes use of

a conformal Gaussian gauge system —i.e. coordinates and frame are propagated along a

suitable congruence of conformal geodesics. This congruence provides, in turn, a canonical

representative of the conformal class of a solution to the Einstein field equations —see

Proposition 3.

A class of non-intersecting conformal geodesics which cover the whole maximal exten-

sion of the sub-extremal Schwarzschild-de Sitter spacetime has been studied in [38]. The

main outcome of the analysis in that reference is that the resulting congruence covers the

whole maximal analytic extension of the spacetime and, accordingly, provides a global sys-

tem of coordinates —modulo the usual difficulties with the prescription of coordinates on

S2. This congruence is prescribed in terms of data prescribed on a Cauchy hypersurface

of the spacetime. In this analysis, we are interested in the evolution of perturbations of

the Schwarzschild-de Sitter spacetime from data prescribed on hypersurfaces of constant

coordinate r in the Cosmological region of the spacetime. Thus, the congruence of confor-

mal geodesics constructed in [38] is of no direct use to us. Consequently, in this section,
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Q

rb rc

I +

rc rb

Q′

rcrb

I −

rc rb

Q Q′

Figure 4.2: Hypersurfaces with constant r are plotted on the Penrose diagram of the

Cosmological region of the sub-extremal Schwarzschild-de Sitter spacetime.

we study a class of conformal geodesics of the Schwarzschild-de Sitter spacetime which

is prescribed in terms of data on hypersurfaces of constant r in the Cosmological region.

These curves turn out to be geodesics of the physical metric g̃ and intersect the conformal

boundary orthogonally.

4.3.1 Basic setup

In the following, it is assumed that

rc < r < ∞

corresponding to the Cosmological region of the Schwarzschild-de Sitter spacetime. Given

a fixed r = r⋆ we denote by Sr⋆ (or S⋆ for short) the spacelike hypersurfaces of constant

r = r⋆ in this region —see Figure 4.2. Points on S⋆ can be described in terms of the

coordinates (t, θ, φ).
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Initial data for the congruence

In order to prescribe the congruence of conformal geodesics, we follow the general strategy

outlined in Chapter 2 —see also [31, 38]. This requires prescribing the value of a conformal

factor Θ⋆ over S⋆. We will only be interested on prescribing the data on compact subsets

of S⋆ so it is natural to require that

Θ⋆ = 1, Θ̇⋆ = 0.

The second condition implies that the resulting conformal factor will have a time reflection

symmetry with respect to S⋆. Now, following [31, 38] we require that

x̃′
⋆ ⊥ S⋆, β̃⋆ = Θ−1

⋆ dΘ⋆.

The latter, in turn, implies that

t = t⋆ t′⋆ = 1√
D⋆

, r′
⋆ = 0, β̃t⋆ = 0, β̃r⋆ = 0, (4.8)

where t⋆ ∈ (−t•, t•) for some t• ∈ R+. Notice that the tangent vector x̃′ coincides with the

future unit normal to S̃.

Given a sufficiently large constant t• we define

R• = {p ∈ S⋆ | t(p) ∈ (−t•, t•)}.

The constant t• will be assumed to be large enough so that D+(R•) ∩ I + ̸= ∅.

The starting point of the curves on S⋆ is prescribed in terms of the coordinates (t, θ, φ) =

(t⋆, θ⋆, φ⋆) The conditions (4.8) gives rise to a congruence of conformal geodesics which has a

trivial behaviour in the angular coordinates —that is, it is spherically symmetric. In other

words, this corresponds to effectively analysing the curves on a 2-dimensional manifold

M̃/SO(3) with quotient metric ℓ̃ given by

ℓ̃ = −D(r)dt⊗ dt+D−1(r)dr ⊗ dr, (4.9)

obtained upon re-writing the metric ˚̃g as a warped product. Accordingly, the only non-

trivial parameter characterising each curve of the congruence is t⋆.

118



4.3. Construction of a conformal Gaussian gauge in the Cosmological region

The geodesic equations

It follows that for the initial data conditions (4.8) one has β2 = 0 so that the resulting con-

gruence of conformal geodesics is, after reparametrisation, a congruence of metric geodesics.

This last observation simplifies the subsequent discussion. The g̃-geodesic equations then

imply that

r′ =
√
γ2 −D(r), D(r)t′2 − 1

D(r)r
′2 = 1, (4.10)

where γ is a constant. Evaluating at S⋆ one readily finds that

t′⋆ = |γ|
|D⋆|

.

Observe that since we are in the Cosmological region of the spacetime we have that D⋆ < 0.

Moreover, the unit normal to S⋆ is given by

n =
(

1√
|D⋆|

)
dr

while

x̃′
⋆ = r̃′

⋆∂r + t′⋆∂t.

So, it follows that x̃′
⋆ and n♯ are parallel if and only if γ = 0.

The conformal factor

In order to obtain simpler expressions we set λ = 3 and τ⋆ = 0. It follows then from

formula (2.72) that one gets an explicit expression for the conformal factor. Namely, one

has that

Θ(τ) = 1 − 1
4τ

2. (4.11)

The roots of Θ(τ) are given by

τ+ ≡ 2, τ− ≡ −2.

In the following, we concentrate on the root τ+ corresponding to the location of the future

conformal boundary I +. The relation with the physical proper time τ̃ is obtained from
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equation (2.73), so that

τ̃ = 2arctanh
(
τ

2

)
, τ = 2tanh

(
τ̃

2

)
. (4.12)

From these expressions, we deduce that

τ → τ± = ±2, as τ̃ → ∞.

Moreover, the conformal factor Θ can be rewritten in terms of the g̃-proper time τ̃ as

Θ(τ̃) = sech2
(
τ̃

2

)
.

Remark 28. In [37] it has been shown that conformal geodesics in Einstein space will reach

the conformal boundary orthogonally if and only if they are, up to a reparametrisation

standard (metric) geodesics. In the present case, this property can be directly verified

using equations (4.10).

4.3.2 Qualitative analysis of the behaviour of the curves

Having, in the previous subsection, set up the initial data for the congruence of confor-

mal geodesics, in this subsection we analyse the qualitative behaviour of the curves. In

particular, we show that the curves reach the conformal boundary in a finite amount of

(conformal) proper time. Moreover, we also show that the curves do not intersect in the

future of the initial hypersurface S⋆.

Behaviour towards the conformal boundary

Recalling that

r′ =
√

|D(r)| (4.13)

and observing that D(r) < 0, it follows that if r′
⋆ ̸= 0 then, in fact r′ > 0. Moreover, one

can show that r′′
⋆ > 0 and that r′′

⋆ ̸= 0 for r ∈ [r⋆,∞). Thus, the curves escape to the

conformal boundary.
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Now, we show that the congruence of conformal geodesics reaches the conformal bound-

ary in an infinite amount of the physical proper time. In order to see this, we observe that

D(r) < 0, consequently from equation

r′ = ±
√

|D(r)|

it follows that r(τ̃) is a monotonic function. Moreover, using equations

D(r) = −1
r

(r − rb)(r − r−)(r − rc)

and

t′ = |γ + βr|
|D(r)| = 0

we find that

τ̃ =
∫

r

r⋆

√
r̄

(r̄ − rb)(r̄ − rc)(r̄ − r−)dr̄.

It is possible to rewrite this integral in terms of elliptic functions —see e.g. [51]. More

precisely, one has that

τ̃ = 2r⋆

α2
√
r⋆(α+ − α−)

(
κ2w + (α2 − κ2)Π[ϕ, α2, κ]

)
, (4.14)

where Π[ϕ, α2, κ] is the incomplete elliptic integral of the third kind and

sn2w =
(
rc − r−

rb − r−

)(
r − rb

r − rc

)
, α2 ≡ rb − r−

rc − r−
,

κ2 ≡ rc(rb − r−)
r⋆(rc − r−) , ϕ ≡ arcsin(snw),

with sn denotes the Jacobian elliptic function. From the previous expressions and the

general theory of elliptic functions it follows that τ̃(r, r⋆) as defined by Equation (4.14) is

an analytic function of its arguments. Moreover, it can be verified that

τ̃ → ∞ as r → ∞.

Accordingly, as expected, the curves escape to infinity in an infinite amount of physical

proper time τ̃ . Using the reparametrisation formulae (4.12) the latter corresponds to a

finite amount of unphysical proper time τ .
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The deviation equations

To analyse whether the congruence of conformal geodesics develops conjugate points, one

introduces a family of conformal geodesics, denoted by x(τ, σ) and β(τ, σ), depending

smoothly on a parameter σ and with tangent vector field ∂τx = ẋ. Then, let

z ≡ ∂σx, ω ≡ ∇̃zβ.

The fields z and ω denote, respectively, the deviation vector field and the deviation 1-

form—see [31]. The conformal Jacobi equation and the 1-form deviation equation are

given by

∇̃ẋ∇̃ẋz = R̃(ẋ, z)ẋ − S(ω; ẋ, ẋ) − 2S(β; ẋ, ∇̃ẋz), (4.15a)

∇̃ẋω = −β · R̃(ẋ, z) + 1
2

(
ω · S(β; ẋ, ·) + β · S(ω; ẋ, ·) + β · S(β; ∇̃ẋz, ·)

)
, (4.15b)

where R̃(·, ·) denotes the Riemann tensor of the metric g̃ and

S(β; ẋ,y) ≡ ⟨β, ẋ⟩y + ⟨β,y⟩ẋ − g̃(ẋ,y)β♯,

ω · S(β; ẋ, ·) ≡ ⟨ω, ẋ⟩β + ⟨β, ẋ⟩ω − g̃♯(ω,β)ẋ♭.

To compute the g̃-adapted version of the conformal geodesics one introduces a reparametri-

sation x̃ ≡ x(τ̃ , σ) of x(τ, σ) in terms of the physical proper time τ̃ . Furthermore, let

z̃ ≡ ∂σx̃, ω̃ ≡ ∇̃z̃β̃.

In terms of this new variables one has that Equations (4.15a) and (4.15b) read as

∇̃x̃′∇̃x̃′ z̃ = R̃(x̃′, z̃)x̃′ + ω̃♯, (4.17a)

∇̃x̃′ω̃ = −β̃ · R̃(x̃′, z̃) + x̃
′♭∇̃z̃β2 + β2∇̃x̃′ z̃β. (4.17b)

Moreover, it is possible to show that ∇̃z̃β2 is constant along a given conformal geodesic.

Now, by considering the 2-dimensional metric ℓ̃ as given by (4.9), one has that the

g̃-adapted deviation equations (4.17a) and (4.17b) are equivalent to each other and to

equation

D̸ x̃′ D̸ x̃′ z̃ = 1
2R[ℓ̃]ϵℓ̃(x̃′, z̃)ϵℓ̃(x̃′, ·)♯ ± (D̸ z̃βϵℓ̃(x̃′, ·)♯ + βϵℓ̃(D̸ x̃′ z̃, ·)), (4.18)
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where D̸ denotes the Levi-Civita covariant derivative of ℓ̃, ϵℓ̃ is the volume form of ℓ̃ and

R[ℓ̃] denotes the Ricci scalar of ℓ̃. For conformal curves satisfying the initial conditions

(4.8) the question of whether the deviation vector field z̃ is non-vanishing can be rephrased

in terms of a similar question for the scalar

ω̃ ≡ ϵℓ̃(x̃′, z̃). (4.19)

Then, by replacing this definition in Equation (4.18), one has

D̸ x̃′ D̸ x̃′ω̃ =
(

β2 + 1
2R[ℓ̃]

)
ω̃+ D̸ z̃β. (4.20)

Analysis of the behaviour of the conformal deviation equation

In the previous section, it has been shown that for congruences of conformal geodesics in

this spherically symmetric spacetime, the behaviour of the deviation vector of the congru-

ence can be understood by considering the evolution of the scalar ω̃ —see also [31, 38]. If

this scalar does not vanish, then the congruence is non-intersecting. Since in the present

case one has β = 0 and R[ℓ̃] = −∂r
2D(r), it follows that the evolution equation (4.20)

takes the form
d2ω̃

dτ̃ 2 =
(

1 + M

r3

)
ω̃, r ≡ r(τ̃ , r⋆).

Since in our setting r ≥ r⋆ > rc, it follows that

1 + M

r3 > 1,

from where, in turn, one obtains the inequality

d2ω̃

dτ̃ 2 > ω̃.

Accordingly, the scalars ω̃ and ω ≡ Θω̃ satisfy the inequalities

ω̃ ≥ ω̄, ω ≥ Θω̄,

where ω̄ is the solution of

d2ω̄

dτ̃ 2 = ω̄, ω̄(0, ρ⋆) = r⋆

ρ⋆

, ω̄′(0, ρ⋆) = 0.
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The solution to this last differential equation is given by

ω̄ = (r⋆/ρ⋆)coshτ̃ .

Using equations (4.11) and (4.12) we get the inequality

ω ≥
(

1 − τ 2

4

)
r⋆

ρ⋆

cosh
(

2arctanh
(
τ

2

))
= r⋆

ρ⋆

(
1 + τ 2

4

)
> 0.

Consequently, we get the limit

lim
τ→±2

ω ≥ 2r⋆

ρ⋆

> 0.

Hence, we conclude that the geodesics with r⋆ > r• which go to the conformal boundary

I + located at τ = 2 do not develop any caustics.

The discussion of the previous paragraphs can be summarised in the following:

Proposition 8. The congruence of conformal geodesics given by the initial conditions (4.8)

leaving the initial hypersurface S⋆ reach the conformal boundary I + without developing

caustics.

The content of this Proposition can be visualised in Figure 4.3.

4.3.3 Estimating the size of D+(R•)

Up to this point the size of the domain R• ⊂ S⋆ (or more precisely, the value of the constant

t• has remained unspecified). An inspection of the Penrose diagram of the Schwarzschild-

de Sitter spacetime shows that if the value of t• is too small, it could happen that the

future domain of dependence D+(R•) is bounded and, accordingly, will not reach the

spacelike conformal boundary I + —see e.g. Figure 4.4. Given our interest in constructing

perturbations of the Schwarzschild-de Sitter spacetime which contain as much as possible

of the conformal boundary it is then necessary to ensure that t• is sufficiently large. In this

subsection given a fiduciary hypersurface S⋆ in the Cosmological region of the spacetime, we

provide an estimate of how large should t• for D+(R•) to be unbounded. In order to obtain
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Q

rb rc

I +

rc rb

Q′

rcrb

I −

rc rb

Q Q′

Figure 4.3: The conformal geodesics are plotted on the Penrose diagram of the Cosmological

region of the sub-extremal Schwarzschild-de Sitter spacetime. The purple line represents

the initial hypersurface S⋆ corresponding to r = r⋆. The red lines represent conformal

geodesics with constant time leaving this initial hypersurface. The curves are computed

by setting λ = 3 and ϕ = π
4 .

this estimate we consider the future-oriented inward-pointing null geodesics emanating from

the end-points of R• and look at where these curves intersect the conformal boundary.

In order to carry out the analysis in this subsection it is convenient to consider the

coordinate z ≡ 1/r. In terms of this new coordinate, the line element (4.3) takes the form

˚̃g = 1
z2

(
− F (z)dt⊗ dt+ 1

F (z)dz ⊗ dz + σ

)
,

where

F (z) ≡ z2D(1/z).

The above expression suggest defining an unphysical metric ḡ via

ḡ = Ξ2˚̃g, Ξ ≡ z.

More precisely, one has

ḡ = −F (z)dt⊗ dt+ 1
F (z)dz ⊗ dz + σ. (4.21)
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In order to study the null geodesics we consider the Lagrangian

L = −F (z)ṫ2 + 1
F (z) ż

2,

where · ≡ d
ds

. In the case of null conformal conformal geodesics L = 0 so that

ṫ = ± 1
F (z) ż.

This, in turn, means that
dt

dz
ż = ± 1

F (z) ż.

By integrating both sides it follows that∫ t+

t•
dt = ±

∫ 0

z⋆

1
F (z)dz,

where t+ denotes the value of the (spacelike) coordinate t at which the null geodesic

reaches I +. Accordingly for the inward-pointing light rays emanating from the points on

S⋆ defined by the condition t = t• one has that

t+ = t• −
∫ z⋆

0

1
F (z)dz. (4.22)

An analogous condition holds for the inward-pointing light rays emanating from the points

with t = −t•. Since in the Cosmological region F (z) > 0 it follows that∫ z⋆

0

1
F (z)dz > 0.

The key observation in the analysis in this subsection is the following: D+(R•) is un-

bounded (so that it intersects the conformal boundary) if t+ as given by Equation (4.22)

satisfies t+ > 0. As t• > 0, having t+ < 0 would mean that the light rays emanating

from the points with t = t• and t = −t• intersect before reaching I +. Now, the condition

t+ > 0 implies, in turn, that

t• >
∫ z⋆

0

1
F (z)dz.

As the integral in the right-hand side of the above inequality is not easy to compute we

provide, instead, a lower bound. One has then that

t• >
z⋆

F⊛
,
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where F⊛ denotes the maximum of

F (z) = z2 −Mz3 + 1

over the interval [0, z⋆]. Thus, F ′(z) vanishes if z = 0 or z = z⊙ ≡ 2/3M . Also, notice that

F ′(z) > 0 for z ≈ 0. It can be readily verified that F ′′(0) > 0 while F ′′(2/3M) < 0 so that

an inflexion point occurs in the interval (0, z⊙) and there are no other inflexion points in

[0, z⋆]. Now, looking at the definition of M , equation (4.4c), and the expression for rc as

given by equation (4.5) one concludes that z⊙ > zc ≡ 1/rc. As z⊙ is independent of z⋆, it

is not possible to decide whether z⊙ lies in [0, z⋆] or not. In any case, one has that

F (z⊙) = 1 + 4
27M2 ≥ F⊛,

so that

t• >
27M2z⋆

27M2 + 4 . (4.23)

One can summarise the discussion in this subsection as follows:

Lemma 6. If condition (4.23) holds then D+(R•) is unbounded.

Remark 29. In the rest of this analysis it is assumed that condition (4.23) always holds.

4.3.4 Conformal Gaussian coordinates in the sub-extremal

Schwarzschild-de Sitter spacetime

We now combine the results of the previous subsections to show that the congruence of

conformal geodesics defined by the initial conditions (4.8) can be used to construct a

conformal Gaussian coordinate system in a domain in the chronological future of R• ⊂ S⋆,

J+(R• ⊂ S⋆), containing a portion of the conformal boundary I +.

In the following let S̃dSI denote the Cosmological region of the Schwarzschild-de Sitter

spacetime —that is

S̃dSI = {p ∈ M̃ | r(p) > rc}.
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Q

rb

−t•
rc

I +

D+(R•)

rc

t•

rb

Q′

rcrb

I −

rc rb

Q Q′

Figure 4.4: The plotted future domain of dependence of the solutionD+(R•) on the Penrose

diagram of the Cosmological region of the sub-extremal Schwarzschild-de Sitter spacetime.

The value of t• can be chosen as close as possible to the asymptotic points Q and Q′ so as

to satisfy condition (4.23).

Moreover, denote by SdSI the conformal representation of S̃dSI defined by the conformal

factor Θ defined by the non-singular congruence of conformal geodesics given by Proposi-

tion 8. For r > rc let z ≡ 1/r —cfr the line element (4.21). In terms of these coordinates,

one has that

SdSI = {p ∈ R × R × S2 | 0 ≤ z(p) ≤ z⋆} (4.24)

where z⋆ ≡ 1/r⋆ with r⋆ > rc. In particular, the conformal boundary, I +, corresponds to

the set of points for which z = 0.

The analysis of the previous subsections shows that the conformal geodesics defined by

the initial conditions (4.8) can be thought of as curves on SdSI of the form

(τ, t⋆) 7→
(
t(τ, t⋆), z(τ, t⋆), θ⋆, φ⋆

)
.

Thus, in particular, the congruence of curves defines a map

ψ : [0, 2] × [−t•, t•] → [0, z⋆] × [−t•, t•].
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This map is analytic in the parameters (τ, t⋆). Moreover, the fact that the congruence of

conformal geodesics is non-intersecting implies that the map is, in fact, invertible —the

analysis of the conformal geodesic deviation equation implies that the Jacobian of the

transformation is non-zero for the given value of the parameters. In particular, it can be

readily verified that the function Θω̃ coincides with the Jacobian of the transformation.

Accordingly, the inverse map ψ−1

ψ−1 : [0, z⋆] × [−t•, t•] → [0, 2] × [−t•, t•], (t, z) 7→
(
τ(t, z), t⋆(t, z)

)
is well-defined. Thus, ψ−1 gives the transformation from the standard Schwarzschild co-

ordinates (t, z, θ, φ) into the conformal Gaussian coordinates (τ, t⋆, θ, φ). In the following

let

M• ≡ [0, 2] × [−t•, t•].

As the conformal geodesics of our congruence are timelike, we have that

M• ⊂ J+(R•).

All throughout we assume, as discussed in Subsections 4.3.1 and 4.3.3, that t• is sufficiently

large to ensure that D+(R•) contains a portion of I + —cfr Lemma 6.

Proposition 9. The congruence of conformal geodesics on SdSI defined by the initial con-

ditions on S⋆ given by (4.8) induce a conformal Gaussian coordinate system over D+(R•)

which is related to the standard coordinates (t, r) via an analytic map.

4.4 The Schwarzschild-de Sitter spacetime in the con-

formal Gaussian system

In the previous section, we have established the existence of conformal Gaussian coordinates

in the domain M• ⊂ SdSI of the Schwarzschild-de Sitter spacetime. In this section, we

proceed to analyse the properties of this exact solution in these coordinates. This analysis

is focused on the structural properties relevant for the analysis of stability in the latter

parts of this article.
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Remark 30. The metric coefficients implied by the line element (4.21) are analytic func-

tions of the coordinates in the region M• —barring the usual degeneracy of spherical

coordinates.

4.4.1 Weyl propagated frames

The ultimate aim of this section is to cast the Schwarzschild-de Sitter spacetime in the

region M• as a solution to the extended conformal Einstein field equations introduced in

Section 2.4.3. A key step in this construction is the use of a Weyl propagated frame. In

this section, we discuss a class of these frames in M•.

Since the congruence of conformal geodesics implied by the initial data (4.8) satisfies

β̃ = 0, the Weyl propagation equation (2.79) reduces to the usual parallel propagation

equation —that is,

∇̃x̃′(Θẽa) = ∇̃x̃′ea = 0. (4.25)

The subsequent computations can be simplified by noticing that the line element (4.3)

is in warped-product form. Given the spherical symmetry of the Schwarzschild-de Sitter

spacetime, most of the discussion of a frame adapted to the symmetry of the spacetime

can be carried out by considering the 2-dimensional Lorentzian metric

ℓ = ℓABdxA ⊗ dxB

= −D(r)dt⊗ dt+ 1
D(r)dr ⊗ dr.

In the spirit of a conformal Gaussian system, we begin by setting the time leg of the

frame as e0 = ẋ. Then since

ẋ = Θ−1x̃′,

it follows that

e0 = Θ−1x̃′.

Now, recall that

x̃′ = t̃′∂t + r̃′∂r, t̃ = t(τ̃), r̃ = r(τ̃),
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and let

ω ≡ ϵℓ(x̃′, ·).

It follows then that ⟨ω, x̃′⟩ = 0 so that it is natural to consider a radial leg of the frame,

e1, which is proportional to ω♯. By using the condition ℓ(e1, e1) = 1 one readily finds that

e1 = Θω♯.

It can be readily verified by a direct computation that the vector e1 as defined above

satisfies the propagation equation (4.25).

Finally, the vectors e2 and e3 are chosen in such a way that they span the tangent

space of the 2-spheres associated to the orbits of the spherical symmetry. Accordingly, by

setting

e2 = e2
A∂A, e3 = e3

A∂A, A = 2, 3,

it follows readily from the warped-product structure of the metric that

x̃′A(∂Ae2
A) = x̃′A(∂Ae3

A) = 0.

In other words, one has that the frame coefficients e2
A and e3

A are constant along the

conformal geodesics. Thus, in order to complete the Weyl propagate frame {ea} we choose

two arbitrary orthonormal vectors ẽ2⋆ and ẽ3⋆ spanning the tangent space of S2 and define

vectors {e2, e3} on M• by extending (constantly) the value of the associated coefficients(
e2

A
)

⋆
and

(
e3

A
)

⋆
along the conformal geodesic.

The analysis of this subsection can be summarised in the following:

Proposition 10. Let x̃′ denote the vector tangent to the conformal geodesics defined by the

initial data (4.8) and let {e2⋆, e3⋆} be an arbitrary orthonormal pair of vectors spanning the

tangent bundle of S2. Then the frame {e0, e1, e2, e3} obtained by the procedure described

in the previous paragraphs is a g-orthonormal Weyl propagated frame. The frame depends

analytically on the unphysical proper time τ and the initial position t⋆ of the curve.

Remark 31. In the previous proposition we ignore the usual complications due to the

non-existence of a globally defined basis of TS2. The key observation is that any local

choice works well.
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4.4.2 The Weyl connection

The connection coefficients associated to a conformal Gaussian gauge consists of two pieces:

the 1-form defining the Weyl connection and the Levi-Civita connection of the metric ḡ.

We analyse these two pieces in turn.

The 1-form associated to the Weyl connection

We start by recalling that in Section 4.3 a congruence of conformal geodesics with data

prescribed on the hypersurface S⋆ was considered. This congruence was analysed using the

g̃-adapted conformal geodesic equations. The initial data for this congruence was chosen

so that the curves with tangent given by x̃′ satisfy the standard (affine) geodesic equation.

Consequently, the (spatial) 1-form β̃ vanishes. Thus, the 1-form β is given by

β = −Θ̇x̃′♭,

—cfr. equation (2.75). Now, recalling that x̃′ = r′∂r and observing equation (4.13) one

concludes that

x̃′♭ = 1
|
√
D(r)|

dr.

Rewritten in terms of z, the latter gives

x̃′♭ = − 1
z
√

|F (z)|
dz.

As F (0) = 1, and Θ̇|I + = −1 (cfr. equation (4.11)), it then follows that

β ≈ −1
z

dz for z ≈ 0.

That is, β is singular at the conformal boundary. However, in the subsequent analysis

the key object is not β but β̄, the 1-form associated to the conformal geodesics equations

written in terms of the connection ∇̄. Now, from the conformal transformation rule β̄ =

β + Ξ−1dΞ and by recalling that Ξ = z, it follows that

β̄ = Θ̇
z
√

|F (z)|
dz + 1

z
dz.

Thus, from the preceding discussion it follows that β̄ is smooth at I + and, moreover,

β̄|I + = 0. Notice, however, that β̄ ̸= 0 away from the conformal boundary.
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Computation of the connection coefficients

The 1-form β defines in a natural way a Weyl connection ∇̂ via the relation

∇̂ − ∇̃ = S(β)

where S corresponds to the tensor Sab
cd as defined in (2.44). As the coordinates and

connection coefficients associated to the physical connection ∇̃ are not well adapted to a

discussion near the conformal boundary we resort to the unphysical Levi-Civita connection

∇̄ to compute ∇̂. From the discussion in the previous subsections, we have that

∇̄ − ∇̃ = S(z−1dz).

It thus follows that

∇̂ − ∇̄ = S(β̄).

Now let {ea} denote the Weyl propagated frame as given by Proposition 10. The

connection coefficients Γ̂a
b

c are define through the relation

∇̂aec = Γ̂a
b

ceb.

Now, writing ea = ea
µ∂µ one has that

∇̂aec =
(
∇̂µec

ν
)
ea

µ∂ν ,

where

∇̂µec
ν = ∇̄µec

ν + Sµλ
νρβ̄ρec

λ,

= ∂µec
ν + Γ̄µ

ν
λec

λ + Sµλ
µρβ̄ρec

λ. (4.26)

Now, a direct computation shows that the only non-vanishing Christoffel symbols of

the metric (4.21), Γ̄µ
ν

λ are given by

Γ̄t
t
z = −Γ̄z

z
z =

z(3
2Mz − 1)

1 + z2(Mz − 1) ,

Γ̄t
z

t = z(3
2Mz − 1)

(
1 + z2(Mz − 1)

)
,

Γ̄φ
θ

φ = − cos θ sin θ, Γ̄θ
φ

φ = cot θ.

Observe that the coefficients Γ̄t
t
z, Γ̄z

z
z and Γ̄t

z
t are analytic at z = 0.
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Remark 32. The connection coefficients Γ̄φ
θ

φ, Γ̄θ
φ

φ correspond to the connection of the

round metric over S2. In the rest of this section, we ignore this coordinate singularity due

to the use of spherical coordinates.

It follows from the discussion in the previous paragraphs and Proposition 10 that each

of the terms in the righthand side of (4.26) is a regular function of the coordinate z and,

in particular, analytic at z = 0. Contraction with the coefficients of the frame does not

change this. Accordingly, it follows that the Weyl connection coefficients Γ̂a
b

c are smooth

functions of the coordinates used in the conformal Gaussian gauge on the future of the

fiduciary initial hypersurface S⋆ up to and beyond the conformal boundary.

4.4.3 The components of the curvature

In this section, we discuss the behaviour of the various components of the curvature of the

Schwarzschild-de Sitter spacetime in the domain M•. We are particularly interested in the

behaviour of the curvature at the conformal boundary.

The subsequent discussion is best done in terms of the conformal metric ḡ as given by

(4.21). Consider also the vector ē0 given by

ē0 =
√

|F (z)|∂z, F (z) = z2 −Mz3 − 1.

This vector is orthogonal to the conformal boundary I + which, in these coordinates is

given by the condition z = 0.

The rescaled Weyl tensor

Given a timelike vector, the components of the rescaled Weyl tensor dabcd can be conve-

niently encoded in the electric and magnetic parts relative to the given vector. For the

vector ē0 these are given by

dac = dabcdē0
bē0

d, d∗
ac = d∗

abcdē0
bē0

d,
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where d∗
abcd denotes the Hodge dual of dabcd. A computation using the package xAct for

Mathematica readily gives that the only non-zero components of the electric part are given

by

dtt = −M
(
z2(1 −Mz) − 1

)
,

dθθ = −M

2 ,

dφφ = −M

2 sin2 θ,

while the magnetic part vanishes identically. Observe, in particular, that the above expres-

sions are regular at z = 0 —again, disregarding the coordinate singularity due to the use

of spherical coordinates. The smoothness of the components of the Weyl tensor is retained

when re-expressed in terms of the Weyl propagated frame {ea} as given in Proposition 10.

The Schouten tensor

A similar computer algebra calculation shows that the non-zero components of the Schouten

tensor of the metric ḡ are given by

L̄tt = 1
2(2Mz − 1)(1 + z2(Mz − 1)),

L̄zz = −1
2

(2Mz − 1)
1 + z2(Mz − 1) ,

L̄θθ = −1
2(Mz − 1),

L̄φφ = −1
2 sin2 θ(Mz − 1).

Again, disregarding the coordinate singularity on the angular components, the above ex-

pressions are analytic on M• —in particular at z = 0. To obtain the components of the

Schouten tensor associated to the Weyl connection ∇̂ we make use of the transformation

rule

L̄ab − L̂ab = ∇̄aβ̄b − 1
2Sab

cdβ̄cβ̄d.

The smoothness of β̄a has already been established in Subsection 4.4.2. It follows then

that the components of L̂ab with respect to the Weyl propagated frame {ea} are regular

on M•.
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4.4.4 Summary

The analysis of the preceeding subsections is summarised in the following:

Proposition 11. Given t• > 0 and the Weyl propagated frame {ea} as given by Propo-

sition 10, the connection coefficients of the Weyl connection associated to the congruence

of conformal geodesics, the components of the rescaled Weyl tensor and the components of

the Schouten tensor of the Weyl connection are smooth on M• and in particular at the

conformal boundary.

Remark 33. In other words, the sub-extremal Schwarzschild-de Sitter spacetime expressed

in terms of a conformal Gaussian gauge system gives rise to a solution to the extended

conformal Einstein field equations on the region M• ⊂ D+(R•) where R• ⊂ S⋆.

4.4.5 Construction of a background solution with compact spa-

tial sections

The region R• ⊂ S⋆ has the topology of I×S2 where I ⊂ R is an open interval. Accordingly,

the spacetime arising from R• will have spatial sections with the same topology. As part of

the perturbative argument given in Section 4.5 based on the general theory of symmetric

hyperbolic systems as given in [50] it is convenient to consider solutions with compact

spatial sections. We briefly discuss how the (conformal) Schwarzschild-de Sitter spacetime

in the conformal Gaussian system over M• can be recast as a solution to the extended

conformal Einstein field equations with compact spatial sections.

The key observation on this construction is that the Killing vector ξ = ∂t in the Cosmo-

logical region of the spacetime is spacelike. Thus, given a fixed z◦ < zc, we have that the

hypersurface Sz◦ defined by the condition z = z◦ has a translational invariance —that is,

the intrinsic metric h and the extrinsic curvature K are invariant under the replacement

t 7→ t+κ for κ ∈ R. Moreover, the congruence of conformal geodesics given by Proposition

11 are such that the value of the coordinate t is constant along a given curve.
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Consider now, the timelike hypersurfaces T−2t• and T2t• in D+(S⋆) generated, respec-

tively, by the future-directed geodesics emanating from S⋆ at the points with t = −2t• and

t = 2t•. From the discussion in the previous paragraph, one can identify T−2t• and T2t• to

obtain a smooth spacetime manifold M̄• with compact spatial sections —see Figure 4.5.

A natural foliation of M̄• is given by the hypersurfaces S̄z of constant z with 0 ≤ z ≤ z⋆

having the topology of a 3-handle —that is, Hz ≈ S1 × S2.

The metric ḡ on SdSI , cfr (4.24), induces a metric on M̄• which, by an abuse of nota-

tion, we denote again by ḡ. As the initial conditions defining the congruence of conformal

geodesics of Proposition 8 have translational invariance, it follow that the resulting curves

also have this property. Accordingly, the congruence of conformal geodesics on SdSI given

by Proposition 8 induces a non-intersecting congruence of conformal geodesics on M̄•

—recall that each of the curves in the congruence has constant coordinate t.

In summary, it follows from the discussion in the preceding paragraphs that the solution

to the extended conformal Einstein field equations in a conformal Gaussian gauge as given

by Proposition 11 implies a similar solution over the manifold M̄•. In the following we

will denote this solution by ů. The initial data induced by ů on S̄⋆ will be denoted by ů⋆.

4.5 The construction of non-linear perturbations

In this section, we bring together the analysis carried out in the previous sections to

construct non-linear perturbations of the Schwarzschild-de Sitter spacetime on a suitable

portion of the Cosmological region.

4.5.1 Initial data for the evolution equations

Given a solution (S⋆, h̃, K̃) to the Einstein constraint equations, there exists an algebraic

procedure to compute initial data for the conformal evolution equations —see [81], Lemma

11.1. In the following, it will be assumed that we have at our disposal a family of initial

data sets for the vacuum Einstein field equations corresponding to perturbations of initial
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Figure 4.5: The red curves identify the timelike hypersurfaces T−2t• and T2t• . The resulting

spacetime manifold M̄• has compact spatial sections, S̄z,with the topology of S1 × S2.

data for the Schwarzschild-de Sitter spacetime on hypersurfaces of constant coordinate r

in the Cosmological region. Initial data for the conformal evolution equations can then be

constructed out of these basic initial data sets. Assumptions of this type are standard in

the analysis of non-linear stability.

Given a compact hypersurface S̄z ≈ S1 × S2 and a function u : S̄z → RN let ||u||S̄z ,m

for m ≥ 0 denote the standard L2-Sobolev norm of order m of u. Moreover, denote

by Hm(S̄z,RN) the associated Sobolev space —i.e. the completion of the functions w ∈

C∞(S̄z,RN) under the norm || ||S̄z ,m.

In the following, consider some initial data set for the conformal evolution equations u⋆

on R• ≈ [−t•, t•]×S2 which is a small perturbation of exact data ů⋆ for the Schwarzschild-

de Sitter spacetime in the sense that

u⋆ = ů⋆ + ŭ⋆, ||ŭ⋆||R•,m < ε

for m ≥ 4 and some suitably small ε > 0. Making use of a smooth cut-off function over

S̄z⋆ ≈ S1 × S2 the perturbation data ŭ⋆ over R• can be matched to vanishing data 0 on

[−2t•,−3
2t•] × S2 ∪ [3

2t•, 2t•] × S2 with a smooth transition region, say, [−3
2t•,−t•] × S2 ∪
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[t•, 3
2t•] × S2. In this way one can obtain a vector-valued function ˘̄u⋆ over S̄⋆ ≈ S1 × S2

whose size is controlled by the perturbation data ŭ⋆ on R•. In a slight abuse of notation,

in order to ease the reading, we write ŭ⋆ rather than ˘̄u.

4.5.2 Structural properties of the evolution equations

In this section, we briefly review the key structural properties of the evolution system

associated to the extended conformal Einstein equations (2.54) written in terms of a con-

formal Gaussian system. This evolution system is central in the discussion of the stability

of the background spacetime. In addition, we also discuss the subsidiary evolution system

satisfied by the zero-quantities associated to the field equations, (2.53a)-(2.53d), and the

supplementary zero-quantities (2.55a)-(2.55c). The subsidiary system is key in the anal-

ysis of the so-called propagation of the constraints which allows to establish the relation

between a solution to the extended conformal Einstein equations (2.54) and the Einstein

field equations (4.1). One of the advantages of the hyperbolic reduction of the extended

conformal Einstein field equations by means of conformal Gaussian systems is that it pro-

vides a priori knowledge of the location of the conformal boundary of the solutions to the

conformal field equations.

Conformal Gaussian gauge systems lead to a hyperbolic reduction of the extended con-

formal Einstein field equation (2.54). The particular form of the resulting evolution equa-

tions will not be required in the analysis, only general structural properties. In order to

describe these denote by υ the independent components of the coefficients of the frame

ea
µ, the connection coefficients Γ̂a

b
c and the Weyl connection Schouten tensor L̂ab and by

ϕ the independent components of the rescaled Weyl tensor dabcd, expressible in terms of

its electric and magnetic parts with respect to the timelike vector e0. Also, let e and Γ

denote, respectively, the independent components of the frame and connection. In terms

of these objects one has the following:

Lemma 7. The extended conformal Einstein field equations (2.54) expressed in terms of a

conformal Gaussian gauge imply a symmetric hyperbolic system for the components (υ,ϕ)

139



Chapter 4. The non-linear stability of the Cosmological region of the Schwarzschild-de
Sitter spacetime

of the form

∂υ = Kυ + Q(Γ)υ + L(x̄)ϕ, (4.27a)(
I + A0(e)

)
∂τ ϕ + Aα(e)∂αϕ = B(Γ)ϕ, (4.27b)

where I is the unit matrix, K is a constant matrix Q(Γ) is a smooth matrix-valued function,

L(x̄) is a smooth matrix-valued function of the coordinates, Aµ(e) are Hermitian matrices

depending smoothly on the frame coefficients and B(Γ) is a smooth matrix-valued function

of the connection coefficients.

Remark 34. In this analysis we will be concerned with situations in which the matrix-

valued function I+A0(e) is positive definite. This is the case, for example, in perturbations

of a background solution.

Remark 35. Explicit expressions of the evolution equations and further discussion on

their derivation can be found in [56] —see also [81], Section 13.4 for a spinorial version of

the equations.

For the evolution system (4.27a)-(4.27b) one has the following propagation of the con-

straints result [56]:

Lemma 8. Assume that the evolution equations (4.27a)-(4.27b) hold. Then the indepen-

dent components of the zero-quantities

Σ̂a
b

c, Ξ̂c
dab, ∆̂abc, Λ̂abc, δa, γab, ςab,

not determined by either the evolution equations or the gauge conditions satisfy a symmetric

hyperbolic system which is homogeneous in the zero-quantities. As a result, if the zero-

quantities vanish on a fiduciary spacelike hypersurface S⋆, then they also vanish on the

domain of dependence.

Remark 36. It follows from Lemmas 7, 8 and Proposition 2 that a solution to the con-

formal evolution equations (4.27a)-(4.27b) with data on S⋆ satisfying the conformal con-

straints implies a solution to the Einstein field equations away from the conformal bound-

ary.
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4.5.3 Setting up the perturbative existence argument

In the spirit of the schematic notation used in the previous section, we set u ≡ (v,ϕ).

Moreover, consistent with this notation let ů denotes a solution to the evolution equations

(4.27a) and (4.27b) arising from some data ů⋆ prescribed on a hypersurface at r = r⋆. We

refer to ů as the background solution. We will construct solutions to (4.27a) and (4.27b)

which can be regarded as a perturbation of the background solution in the sense that

u = ů + ŭ.

This means, in particular, that one can write

e = e̊ + ĕ, Γ = Γ̊ + Γ̆, ϕ = ϕ̊+ ϕ̆. (4.28)

The components of ĕ, Γ̆ and ϕ̆ are our unknowns. Making use of the decomposition (4.28)

and exploiting that ů is a solution to the conformal evolution equations one obtains the

equations

∂τ ῠ = Kῠ + Q(Γ̊ + Γ̆)ῠ + Q(Γ̆)υ̊ + L(x̄)ϕ̆ + L(x̄)ϕ̊, (4.29a)

(I + A0(e̊ + ĕ))∂τ ϕ̆ + Aα(e̊ + ĕ)∂αϕ̆ = B(Γ̊ + Γ̆)ϕ̆ + B(Γ̊ + Γ̆)ϕ̊. (4.29b)

Now, it is convenient to define

Ā0(τ, x, ŭ) ≡

I 0

0 I + A0(e̊ + ĕ)

 , Āα(τ, x, ŭ) ≡

0 0

0 Aα(e̊ + ĕ)

 ,
and

B̄(τ, x, ŭ) ≡ ŭQ̄ŭ + L̄(x̄)ŭ + K̄ŭ,

where

ŭQ̄ŭ ≡

ῠQῠ 0

0 B(Γ̆)ϕ̆ + B(Γ̆)ϕ̊

 , L̄(x̄)ŭ ≡

υ̊Qῠ + Q(Γ̆)υ̊ L(x̄)ϕ̆ + L(x̄)ϕ̊

0 0

 ,

K̄ŭ ≡

Kῠ 0

0 B(̊Γ)ϕ̆ + B(̊Γ)ϕ̊

 ,
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denote, respectively, expressions which are quadratic, linear and constant terms in the

unknowns.

In terms of the above expressions it is possible to rewrite the system (4.29a)-(4.29b) in

the more concise form

Ā0(τ, x, ŭ)∂τ ŭ + Āα(τ, x, ŭ)∂αŭ = B̄(τ, x, ŭ). (4.30)

These equations are in a form where the theory of first-order symmetric hyperbolic systems

can be applied to obtain a existence and stability result for small perturbations of the initial

data ů⋆. This requires, however, the introduction of the appropriate norms measuring the

size of the perturbed initial data ŭ⋆.

Remark 37. In the following it will be assumed that the background solution ů is given

by the Schwarzschild-de Sitter background solution written in a conformal Gaussian gauge

system as described in Proposition 11. It follows that the entries of ů are smooth functions

on M̄• ≡ [0, 2] × S̄⋆ ≈ [0, 2] × S1 × S2.

Theorem 2 (existence and uniqueness of the solutions to the conformal evo-

lution equations). Given u⋆ = ů⋆ + ŭ⋆ satisfying the conformal constraint equations on

S̄⋆ and m ≥ 4, one has that:

(i) There exists ε > 0 such that if

||ŭ⋆||S̄⋆,m < ε, (4.31)

then there exists a unique solution ŭ ∈ Cm−2([0, 2] × S̄⋆,RN) to the Cauchy problem

for the conformal evolution equations (4.30) with initial data u(0, x) = ŭ⋆ and with

N denoting the dimension of the vector u.

(ii) Given a sequence of initial data ŭ(n)
⋆ such that

||ŭ(n)
⋆ ||S̄⋆,m < ε, and ||ŭ(n)

⋆ ||S̄⋆,m
n→∞−−−→ 0,

then for the corresponding solutions ŭ(n) ∈ Cm−2([0, 2]×S̄⋆,RN), one has ||ŭ(n)||S̄⋆,m →

0 uniformly in τ ∈
[
τ⋆,

5
2

)
as n → ∞.
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Proof. The proof is a direct application of Kato’s existence, uniqueness and stability theory

for symmetric hyperbolic systems [50] to developments with compact spatial sections —see

Theorem 12.4 in [81]; see also [56].

Remark 38. In view of the localisation properties of hyperbolic equations the matching

of the perturbation data on R• does not influence the solution u on D+(R•). Accordingly,

in the subsequent discussion we discard the solution u on the region M̄• \D+(R•) as this

has no physical relevance.

Moreover, given the propagation of the constraints, Lemma 8, and the relation between

the extended conformal Einstein field equations and the vacuum Einstein field equations,

Lemma 2, one has the following:

Corollary 2. The metric

g = Θ2g̃

obtained from the solution to the conformal evolution equations given in Theorem 2 implies

a solution g̃ to the vacuum Einstein field equations with positive Cosmological constant on

M̃ ≡ D+(R•). This solution admits a smooth conformal extension with a spacelike con-

formal boundary. In particular, the timelike geodesics fully contained in M̃ are complete.

Remark 39. The resulting spacetime (M̃, g̃) is a non-linear perturbation of the sub-

extremal Schwarzschild-de Sitter spacetime on a portion of the Cosmological region of the

background solution which contains a portion of the asymptotic region.

Remark 40. As R• is not compact, its development has a Cauchy horizon H+(R•).

4.6 The main result

We summarise the discussion of the preceding sections with a more detailed formulation

of the main result of this chapter:
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Theorem 3. Let u⋆ = ů⋆ + ŭ⋆ denote smooth initial data for the conformal evolution

equations satisfying the conformal constraint equations on a hypersurface S⋆. Then, there

exists ε > 0 such that if

||ŭ⋆||S⋆,m < ε, m ≥ 4

then there exists a unique Cm−2 solution g̃ to the vacuum Einstein field equation with

positive Cosmological constant over [τ̃⋆,∞) × S⋆ for τ̃⋆ > 0 whose restriction to S⋆ implies

the initial data u⋆. Moreover, the solution u remains suitably close (in the Sobolev norm

∥ · ∥S,m) to the background solution ů.
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Chapter 5

Spinors and spacetime

5.1 Introduction

One of the most important areas of application of spinorial methods is the study of asymp-

totic properties in General Relativity. These methods are particularly powerful when com-

bined with a technique which employs conformal rescalings for the analysis of the structure

of the Einstein field equations and their solutions [59, 60]. The purpose of this chapter is

to develop the formalism of spinors in spacetime. The discussion builds up from the basic

features of the so-called spacetime spinors with the main aim to introduce the essential

features of the space-spinor formalism. This is a framework in which spinors are endowed

with a Hermitian inner product and will be used in Chapter 6 to analyse the asymptotic be-

haviour of the Maxwell-scalar field system on a fixed background. In particular, it provides

a systematic approach to the construction of evolution equations which can be regarded

as the spinorial equivalent of the 1 + 3 decomposition for tensors.

It is important to notice that throughout this chapter the signature convention for

Lorentzian spacetime metrics will change to (+,−,−,−). This will be the preferred con-

vention for the rest of this thesis.

145



Chapter 5. Spinors and spacetime

5.2 Spacetime spinors

In this section, the formalism of spacetime spinors, also known as 2-spinor formalism, is

discussed. In particular, the basic features of 2-spinors in spacetime is presented. Given a

spacetime (M, g), at any given point p ∈ M it is possible to associate a spinorial structure.

This structure is closely related to the representation theory of the group SL(2,C). This

group has two inequivalent representations in terms of two-dimensional complex vector

spaces which are complex conjugates of each other. This discussion then begins with the

definition of a symplectic vector space following [81].

5.2.1 2-Spinors algebra

Let S denote a complex vector space, a 2-dimensional symplectic vector space is defined

as follows:

Definition. A symplectic vector space is a 2-dimensional vector space S endowed with a

2-form

[·, ·] : S × S −→ C

which is

(i) Skew-symmetric: given ξ,η ∈ S

[ξ,η] = −[η, ξ].

(ii) Bilinear: given ξ,η, ζ ∈ S and z ∈ C one has

[ξ + zζ,η] = [ξ,η] + z[ζ,η], [ξ,η + zζ] = [ξ,η] + z[ξ, ζ].

(iii) Non-degenerate:

if [ξ,η] = 0 for all η ∈ S then ξ = 0.
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Let S∗ be the dual space of S. We build the tensor algebra over S and S∗ in the

usual way. Given bases of S and S∗ we may define a non-natural isomorphism between

the two spaces: two vectors are regarded as being the "same" if their components with

respect to the two bases are identical. However, the skew-scalar product defines a natural

isomorphism: to the element, ξ ∈ S we associate [ξ, ·] ∈ S∗ which is a linear map

ξ ∈ S −→ ξ♭ ≡ [ξ, ·] ∈ S∗.

5.2.2 Spin bases

The definition of the 2-dimensional symplectic vector space S implies that the space of

vectors orthogonal to a non-zero vector ξ consists of the vectors proportional to ξ. In other

words, given ξ,η ∈ S, they are linearly dependent if [ξ,η] = 0 so that η = zξ, with z ∈ C

and z ̸= 0. This is a consequence of the skew-symmetric scalar product for which every

vector is self-orthogonal. This property can be used to construct a spin basis.

Definition (Spin basis). Given two vectors o, ι ∈ S. If o is non-zero and ι is such that

[o, ι] = 1, then {o, ι} is a spin basis for S.

Remark 41. From this definition it is clear that ι is not unique, since it is possible to add

an arbitrary multiple of o to it preserving the normalisation.

Given a vector ξ ∈ S, the components of ξ with respect to the spin basis {o, ι} are

denoted as ξA, with A = 0, 1, where

ξ = ξ0o + ξ1ι,

with

oA = (1, 0), ιA = (0, 1).

It follows that

ξ0 ≡ [ξ, ι], ξ1 ≡ −[ξ,o].
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Similarly, due to the natural isomorphism between S and S∗, the components of the dual

vector ξ♭ ∈ S∗ are denoted by ξA, with A = 0, 1, where

ξ = ξ0o + ξ1ι,

with

ξ0 ≡ −[ι, ξ], ξ1 ≡ [o, ξ].

The discussion in this thesis uses a combination of index-free and abstract index notation.

A complete rigorous discussion is given in Penrose and Rindler [61].

5.2.3 The spinor ϵAB

Since the skew-symmetric 2-form [·, ·] is a function

[·, ·] : S ⊗ S −→ C,

there exists a 2-spinor ϵAB ∈ SAB such that

[ξ,η] = ϵABξ
AηB.

The spinor ϵAB is called the ϵ-spinor. Since

[ξ,η] = −[η, ξ]

it follows that ϵAB is skew-symmetric, i.e. ϵAB = −ϵBA. The condition that {o, ι} is a spin

basis for S translates into

ϵABo
AoB = ϵABι

AιB = 0, ϵABo
AιB = 1.

In components with respect to this basis, we have

ϵAB =

 0 1

−1 0

 .
This is a non-singular matrix and its inverse is defined, up to a conventional factor −1, as

ϵAB = −(ϵ−1)AB.
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The convention on kernel letter of dual elements means that ϵAB can be regarded as an

index-lowering operator. For

[ξ,η] = ϵABξ
AηB = (ϵABξ

A)ηB,

one has that [ξ, ·] is the dual of ξB and so

ξB = (ϵABξ
A).

This equation has an important concomitant. Since ϵAB is non-singular we have

(ϵ−1)BCξB = ξAϵAB(ϵ−1)BC = ξAδA
C = ξC ,

where δA
C is the spinor Kronecker’s delta and define

ϵBC = −(ϵ−1)BC

so that

ξA = −ϵCAξC .

Thus, the spinor ϵAB provides a convenient way to express the duality between the spaces

S and S∗. Now, given a linear transformation applied to a spin basis

õA = αoA + βιA, ι̃A = γoA + διA,

since the same transformation hold with indices lowered

õA = αoA + βιA, ι̃A = γoA + διA,

one has that {õ, ι̃} form a spin basis if and only if

[õ, ι̃] = αδ − βγ = 1.

Thus, the transformation matrix is in SL(2,C). Since the condition that a linear transfor-

mation preserves spin bases is the condition that it be a symplectomorphism, hence Sp(2)

is isomorphic to SL(2,C).
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5.2.4 Decompositions in irreducible components

Since S is a 2-dimensional space, for any spinor ζ one has

ζ ···[ABC]··· = 0

for at least two of the bracketed indices must be equal. In particular, we have the Jacobi

identity

ϵA[BϵCD] = 0 = ϵABϵCD + ϵACϵDB + ϵADϵBC .

This is used in the form given by the following lemma

Lemma 9. Let ζ ...AB... be a multivalent spinor. Then

ζ ...AB... = ζ ...(AB)... + 1
2ϵABζ ...C...

C .

The proof of this lemma can be found in [70, 81]. This is a special case of a more

general result:

Theorem 4. Any spinor ζ ...AB... can be decomposed as the sum of the totally symmetric

spinor ζ(A...F ) and products of ϵ-spinors with totally symmetric spinors of lower valence.

The proof of this theorem can be found in [61]. The type of spinorial decompositions

provided by this theorem will be used systematically in the rest of this thesis. In particular,

we will make use of a decomposition in irreducible components defined as

χABCD =χ(ABCD) + 1
2χ(AB)P

P ϵCD + 1
2χP

P
(CD)ϵAB + 1

4χP
P

Q
QϵABϵCD

+ 1
2ϵA(CχD)B + 1

2ϵB(CχD)A − 1
3ϵA(CϵD)Bχ,

(5.1)

where

χAB ≡ χQ(AB)
Q, χ ≡ χP Q

P Q.

From definition (5.1), it follows that

χABCD = 0

if and only if

χ(ABCD) = 0, χ(AB)P
P = 0, . . . χ = 0.
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5.2.5 Components with respect to a basis

In order to discuss spinors in terms of a specific basis it is convenient to introduce bold

indices A, B, . . . ranging over 0, 1. Thus, ξA and ηA represent the components of ξA and

ηB with respect to a specific basis.

Given a spin basis {o, ι}, one introduces the symbol ϵA
A where

ϵ0
A ≡ oA, ϵ1

A ≡ ιA

and dual cobasis ϵA
A so that one has

ϵA
AϵB

A = δA
B.

Using this notation, one has that two spinors ξA and ηB can be written as

ξA = ξAϵA
A, ηB = ηBϵ

B
B

where the components ξA and ηB are given by

ξA ≡ ξAϵA
A, ηB ≡ ηBϵB

B.

The components of the skew-symmetric spinor ϵAB with respect to the basis ϵA
A are given

by

ϵAB ≡ ϵABϵA
AϵB

B =

oAo
A oAι

A

ιAo
A ιAι

A

 =

 0 1

−1 0


From the definition of ϵAB it follows that

ϵAB ≡ ϵABϵA
Aϵ

B
B =

 0 1

−1 0

 .

5.2.6 Complex conjugation of spinors

To relate spinors with tensors, one needs to consider the operation of complex conjuga-

tion. In our conventions given a spinor ζA ∈ SA the operation of complex conjugation

corresponds to

ζA = ζ̄A′
,
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where ζ̄A′ ∈ SA′ . A spinor ζA...CS′...U ′
D...EW ′...Y ′ with m unprimed contravariant indices, n

primed contravariant indices, l unprimed covariant indices and p primed covariant indices

describes the most general type of spinor. It is obtained from the S-linear map

ζ : SA × · · · × SC × SS′ × · · · × SU ′ × SD × · · · × SE × SW ′ × · · · × SV ′ −→ C.

The algebra S• is then extended to include this more general type of spinors with primed

and unprimed indices. Since S and S̄ are not isomorphic, one can write

ζAA′ = ζA′A,

so that the relative position of primed and unprimed indices is irrelevant. Conversely,

reordering groups of primed or unprimed indices is only allowed in the case of spinors

with special symmetries. The rules for the raising and lowering of the indices of valence

1 spinors are naturally extended to higher valence spinors. Primed indices are raised and

lowered using the spinors ϵA′B′ and ϵA′B′ which are related to ϵAB and ϵAB by

ϵ̄A′B′ ≡ ϵAB, ϵ̄A′B′ ≡ ϵAB,

with the convention of setting ϵ̄A′B′ = ϵA′B′ and ϵ̄A′B′ = ϵA′B′ .

The discussion concerning the irreducible decomposition of spinors, in particular Lemma

9 and Theorem 4, can be easily extended to the case of spinors with primed indices or com-

binations of primed and unprimed indices.

5.3 The relation between spinors and world tensors

This section explores the relationship between spinors and World tensors. Spinors provide

a simple representation of several tensorial operations. Although every four-dimensional

world tensor can be represented in terms of spinors, the converse is not true. Some spinors

admit no discussion in terms of World tensors. This observation is based on the fact that

2-spinors are related to representations of SL(2,C), while world tensors are related to the

Lorentz group, O(1, 3). These groups are not isomorphic to each other. The correspondence

between 2-spinors and world tensors is established via the Hermicity property.
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5.3.1 Hermitian spinors

A spinor ξ ∈ S• is said to be Hermitian if it is equal to its complex conjugate, that is

ξ = ξ̄.

This implies that ξ needs to have the same number of primed and unprimed indices. Hence,

if ξ is a spinor with the same number of primed and unprimed indices ξAA′...DD′ EE′...HH′ ,

the Hermicity condition reads as

ξAA′...DD′
EE′...HH′ = ξ̄AA′...DD′

EE′...HH′
.

Now, given two bases {o, ι} and {ō, ῑ} of S and S̄, respectively. A spinor ξAA′ ∈ SAA′

can be written in terms of these bases as

ξAA′ = aoAōA′ + bιAῑA
′ + coAῑA

′ + dιAōA′ (5.2)

for a, b, c, d ∈ C. In the case of the spinor ξAA′ being Hermitian it follows that a, b ∈ R

and c = d̄. It follows that one can think of the Hermitian spinor ξAA′ ∈ SAA′ as describing

a four-dimensional World vector ξa.

This discussion can be extended to higher valence Hermitian spinors so that one can

regard each pair of unprimed-primed indices as associated with tensorial indices. From this

discussion, it follows that the metric tensor gab has spinorial counterpart gAA′BB′ where

gAA′BB′ ≡ ϵABϵA′B′ (5.3)

with the following properties

gAA′BB′ = ϵABϵA′B′
, (5.4a)

gAA′BB′gBB′CC′ = gAA′
CC′ = δA

CδA′
C′
, (5.4b)

gAA′BB′gAA′BB′ = 4, (5.4c)

gAA′BB′ = gBB′AA′ . (5.4d)

Moreover, given a vector vAA′ ∈ SAA′ it follows that

vBB′ = vAA′gAA′BB′
, vBB′ = vAA′

gAA′BB′ .
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5.3.2 The Infeld-van der Waerden symbols

In order to describe the correspondence between spinors and World tensors at a point

p ∈ M, one can consider a basis {ea} ⊂ T |p(M) and its dual basis {ωa} ⊂ T ∗|p(M) so

that ⟨ωb, ea⟩ = δa
b. Moreover, let

gab ≡ g(ea, eb)

denote the components of the metric g with respect to the {ωa}. This basis is g-orthogonal

—i.e. gab = ηab. Finally, let {ϵA} ⊂ S denote a spin basis, and let ϵAB denote the

components of the spinor ϵAB with respect to this basis. The scalars gab and ϵAB can be

put in correspondence with each other via an equation of the form

ϵABϵA′B′ = σa
AA′σb

BB′ηab, (5.5)

where σa
AA′ are the so-called Infeld-van der Waerden symbols. These can be regarded as

the entries of four (2 × 2) matrices, a = 0, . . . ,3. Given σa
AA′ , one defines the inverse

symbol σb
BB′ via the relations

σa
AA′

σb
AA′ = δa

b, σa
AA′

σa
BB′ = δB

AδB′
A′
. (5.6)

Using these expressions it follows that equation (5.5) can be inverted so that

ηab = σa
AA′

σb
BB′

ϵABϵA′B′ . (5.7)

This equation together with the observation that ηab = ηab leads to

σa
AA′ = σa

AA′ . (5.8)

Thus, σa
AA′ and σb

BB′ describe Hermitian matrices. These matrices satisfy the relations

(5.5), (5.6), (5.7) and (5.8) and can be explicitly written as

σ0
AA′ ≡ 1√

2

1 0

0 1

 , σ1
AA′ ≡ 1√

2

0 1

1 0

 ,

σ2
AA′ ≡ 1√

2

 0 i

−i 0

 , σ3
AA′ ≡ 1√

2

1 0

0 −1

 .
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Hence, corresponding, up to a normalisation factor, to the so-called Pauli matrices. Now,

consider an arbitrary vector v ∈ T |p(M) and a covector u ∈ T ∗|p(M). In terms of the

bases {ea} and {ωa}, these can be written as

v = vaea, va ≡ ⟨ωa,v⟩,

u = uaωa, ua ≡ ⟨u, ea⟩.

The components va and ua can be put in correspondence with the Hermitian spinors vAA′

and uAA′ using the Infeld-van der Waerden symbols via the rules

vAA′ = vaσa
AA′

,

uAA′ = uaσ
a

AA′ .

These correspondences can be extended to tensors of arbitrary rank. For example, given

the tensor T ab
c its components with respect to {ea} and {ωa}, denoted by T ab

c, are in

correspondence with the spinor TAA′BB′ CC′ via the following

TAA′BB′
CC′ ≡ T ab

cσa
AA′σb

BB′σc
CC′

.

The spinor TAA′BB′ CC′ is called the spinorial counterpart of the tensor components T ab
c.

5.3.3 Null tetrads

Given a Hermitian spinor ξAA′ ∈ SAA′ , in terms of the spin bases {o, ι} and {ō, ῑ} it

can be written according to Equation (5.2). Hence every spin basis {o, ι} gives rise to

an associated vector basis consisting of null vectors. This null tetrad has the peculiarity

of consisting of two real null vectors and two complex null vectors which are the complex

conjugate of each other. Hence, let

lAA′ ≡ oAōA′
, nAA′ ≡ ιAῑA

′
, mAA′ ≡ oAῑA

′
, m̄AA′ ≡ ιAōA′ (5.9)

and let la, na, ma and m̄a denote the tensorial counterparts of the above spinors. One has

that

lan
a = −mam̄

a = 1, (5.10)
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and all the remaining contractions vanish. This null tetrad {l,n,m, m̄} can be used to

construct an orthonormal tetrad {ea} as follows

e0 = 1√
2

(l + n) (5.11a)

e1 = 1√
2

(m + m̄) (5.11b)

e2 = i√
2

(m − m̄) (5.11c)

e3 = 1√
2

(l − n). (5.11d)

The relations (5.10) can be used to show that {ea} is an orthonormal tetrad with e0 being

timelike, while e1, e2 and e3 are spacelike. Moreover, since a right-handed phase change

in the spin basis of the form

oA 7−→ eiθoA, ιA 7−→ e−iθιA

gives right-handed rotations

e1 7−→ cos 2θe1 + sin 2θe2, (5.12a)

e2 7−→ − sin 2θe1 + cos 2θe2 (5.12b)

with e0 and e3 unchanged, the triad {e1, e2, e3} as defined by Equations (5.11b)-(5.11d)

is said to be right-handed.

5.4 The spinorial structure of the spacetime manifold

The discussion of the previous section has been restricted to spinors at a given point of

the spacetime manifold M. A spinorial structure on the whole spacetime manifold M is

called a spin bundle and is denoted by S(M). In order to relate spinors defined at different

points of the spacetime manifold, it is necessary to introduce the concept of connection and

its associated covariant derivative. Hence, the notion of connection needs to be extended

so that it applies to spinorial fields. A spinorial field is a smooth assignment of a spinor

ξA...CD′...F ′ G...LP ′...N to each point of the spacetime manifold. The sets of spinorial fields

156



5.4. The spinorial structure of the spacetime manifold

over M will be denoted similarly to the sets of spinors at a point, that is, S•(M), SA(M),

SA(M) and so on.

5.4.1 The spinorial covariant derivative

A spinorial covariant derivative is a map

∇AA′ : SB...C′
D...E′(M) −→ SB...C′

AD...A′E′(M).

satisfying the following properties:

(i) Linearity: Given ξB...C′
D...E′ , ηB...C′

D...E′ ∈ SB...C′
D...E′(M),

∇AA′(ξB...C′
D...E′ + ηB...C′

D...E′) = ∇AA′ξB...C′
D...E′ + ∇AA′ηB...C′

D...E′ .

(ii) Leibnitz rule: Given the fields ξB...C′
D...E′ ∈ SB...C′

D...E′(M) and ηF ...G′
H...I′ ∈

SF ...G′
H...I′(M)

∇AA′(ξB...C′
D...E′ηF ...G′

H...I′) = ηF ...G′
H...I′∇AA′ξB...C′

D...E′+ξB...C′
D...E′∇AA′ηF ...G′

H...I′ .

(iii) Hermiticity: Given the field ξB...C′
D...E′ ∈ SB...C′

D...E′(M) one has that

∇AA′ξB...C′
D...E′ = ∇AA′ ξ̄B...C′

D...E′ .

(iv) Action on scalars: Given a scalar ϕ, then ∇AA′ϕ is the spinorial counterpart of

∇aϕ.

(v) Representation of derivations: Given a derivation D on the spinor fields, there

exists a spinor ξAA′ such that

DηB...C′
D...E′ = ξAA′∇AA′ηB...C′

D...E′ ,

for all ηB...C′
D...E′ ∈ S•(M).

For more details about this construction see [61, 70, 81].
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5.4.2 Spin connection coefficients

The spinorial counterparts of the connection coefficients Γa
c

b are given after suitable con-

traction with the Infeld-van der Waerden symbols by the spinor components

ΓAA′
CC′

BB′ ≡ ωCC′
CC′∇AA′eBB′

CC′
,

where ∇AA′ ≡ eAA′ AA′∇AA′ is the directional covariant derivative in the direction of eAA′ .

Now, since

ωCC′
CC′ = ϵC

C ϵ̄
C′

C′ , eBB′
BB′ = ϵB

B ϵ̄B′
B′
.

It follows that

ΓAA′
CC′

BB′ = ϵC
CδB′

C′∇AA′ϵB
C + ϵ̄C′

C′δB
C∇AA′ϵB′

C′
,

so that upon defining the spin connection coefficients

ΓAA′
C

B ≡ ϵC
C∇AA′ϵB

C , (5.13)

one has

ΓAA′
CC′

BB′ = ΓAA′
C

BδB′
C′ + Γ̄AA′

C′
B′δB

C .

Furthermore, since

δB
C = ϵB

QϵC
Q

and by requiring that

∇AA′δB
C = 0,

one has that

ΓAA′
C

B = −ϵB
Q∇AA′ϵC

Q.

From this relation, it follows that the action of the spinor covariant derivative ∇AA′ on a

spinor ξB′ CC′ is given by

∇AA′ξB′
CC′ = eAA′(ξB′

CC′) − Γ̄AA′
M ′

B′ξM ′
CC′ + ΓAA′

C
NξB′

NC′ + Γ̄AA′
C′

N ′ξB′
CN ′

.

This relation can be generalised to spinors of arbitrary valence and several primed and

unprimed indices.
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5.4.3 Metric and Levi-Civita spin connection coefficients

The spinorial counterpart of the metric compatibility condition

∇agbc = 0

is given by

∇AA′gBB′CC′ = ∇AA′(ϵBCϵB′C′) = ϵB′C′∇AA′ϵBC + ϵBC∇AA′ϵB′C′ = 0,

from which one has

∇AA′ϵBC = 0, ∇AA′ϵB′C′ = 0.

These relations can be written in an explicit form so that

∇AA′ϵBC = eAA′(ϵBC) − ΓAA′
P

BϵP C − ΓAA′
Q

CϵBQ = 0,

∇AA′ϵB′C′ = eAA′(ϵB′C′) − Γ̄AA′
P ′

B′ϵP ′C′ − Γ̄AA′
Q′

C′ϵB′Q′ = 0.

Since eAA′(ϵBC) = 0, eAA′(ϵB′C′) = 0 and ϵBC , ϵB′C′ are constants, it follows that

ΓAA′BC = ΓAA′(BC), Γ̄AA′B′C′ = Γ̄AA′(B′C′).

5.4.4 The spinorial curvature

The spinorial counterpart of the curvature tensors can be introduced naturally by looking

at the commutator of spinorial covariant derivatives. One can write

[∇AA′ ,∇BB′ ]ξCC′ = RCC′
P P ′AA′BB′ξP P ′

where RCC′
DD′AA′BB′ is the spinorial counterpart of the Riemann curvature tensor Rc

dab

and

[∇AA′ ,∇BB′ ] = ∇AA′∇BB′ − ∇BB′∇AA′ − ΣAA′
P P ′

BB′∇P P ′

with ΣAA′ CC′
BB′ being the spinorial counterpart of the torsion tensor Σa

c
b of ∇.

In order to express the Riemann curvature spinor RCC′
DD′AA′BB′ in terms of spin con-

nection coefficients one makes use of the expression of the geometric curvature

Rc
dab ≡ ∂a(Γb

c
d) − ∂b(Γa

c
d) + Γf

c
d(Γb

f
a − Γa

f
b) + Γb

f
dΓa

c
f − Γa

f
dΓb

c
f − Σa

f
bΓf

c
d
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contracted with the Infeld-van der Waerden symbols, so that one has

RCC′
DD′AA′BB′ ≡eAA′(ΓBB′

CC′
DD′) − eBB′(ΓAA′

CC′
DD′) + ΓF F ′

CC′
DD′(ΓBB′

F F ′
AA′ − ΓAA′

F F ′
BB′)

+ ΓBB′
F F ′

DD′ΓAA′
CC′

F F ′ − ΓAA′
F F ′

DD′ΓBB′
CC′

F F ′ − ΣAA′
F F ′

BB′ΓF F ′
CC′

DD′ .

Now, using the definition of spin connection coefficients (5.13), one can define

RC
DAA′BB′ ≡eAA′(ΓBB′

C
D) − eBB′(ΓAA′

C
D) − ΓF B′

C
DΓAA′

F
B

− ΓBF ′
C

DΓ̄AA′
F ′

B′ + ΓF A′
C

DΓBB′
F

A + ΓAF ′
C

DΓ̄BB′
F ′

A′

+ ΓBB′
F

DΓAA′
C

F − ΓAA′
F

DΓBB′
C

F − ΣAA′
F F ′

BB′ΓF F ′
C

D

so that

RCC′
DD′AA′BB′ = RC

DAA′BB′δD′
C′ + R̄C′

D′AA′BB′δD
C (5.15)

which can be regarded as the first Cartan structure equation.

5.4.5 The spinorial Ricci tensor and Ricci scalar

To introduce the spinorial counterpart of the Ricci tensor and Ricci scalar, we consider

Equation (5.15) contracted with the spinors ϵF C and ϵF ′C′ so that

RCC′DD′AA′BB′ = −RCDAA′BB′ϵC′D′ − R̄C′D′AA′BB′ϵCD. (5.16)

One then uses the following skew-symmetry

RCDAA′BB′ = −RCDBB′AA′

along with the split

RCDAA′BB′ = RCDABϵA′B′ + R̄CDA′B′ϵAB

so that one has

RCDAA′BB′ = 1
2RCDAQ′B

Q′
ϵA′B′ + 1

2RCDA′QB′
QϵAB (5.17)

The spinorial counterparts of the Ricci tensor and scalar, RAA′BB′ and R, are obtained

from Equations (5.16) and (5.17) as

RAA′BB′ = −1
2RP A

P
BQ′

Q′
ϵA′B′ − 1

2R̄P ′A′
P ′

B′Q
QϵAB +RABA′B′Q

Q,
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R = −2RP QE′
P QE′

.

The spinorial counterpart of the symmetric trace-free part of the Ricci tensor Φab is defined

as

ΦABA′B′ ≡ 1
2RAA′BB′ − 1

8RϵABϵA′B′

and satisfies the following symmetries

ΦABA′B′ = ΦBAA′B′ = ΦABB′A′ = ΦBAB′A′ . (5.19)

5.5 Space-spinor formalism

In the remaining part of this chapter, it is discussed the space-spinor formalism. This con-

stitutes a framework for spinors in which a further structure is introduced — the so-called

Hermitian inner product and it can be used to describe foliations of spacetimes. In partic-

ular, it provides a suitable description of the geometry of three-dimensional Riemannian

manifolds. The notion of space spinors provides a systematic approach to the construc-

tion of evolution equations which can be regarded as the spinorial equivalent of the 1 + 3

decomposition for tensors.

5.5.1 The Hermitian inner product

Let (M, g) denote a four-dimensional Lorentzian manifold. At each point p ∈ M is

associated a two-dimensional symplectic vector space S|p(M).

A Hermitian inner product on a symplectic two-dimensional vector space S is a function

⟨·, ·⟩ : S × S −→ C

which is

(i) Hermitian: given ξ,η ∈ S

⟨ξ,η⟩ = ⟨η, ξ⟩.
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(ii) Linear in the second entry: given ξ,η, ζ ∈ S and z ∈ C one has

⟨ξ,η + zζ⟩ = ⟨ξ,η⟩ + z⟨ξ, ζ⟩.

(iii) Positive definite: given ξ ∈ S one has

⟨ξ, ξ⟩ ≥ 0

and

⟨ξ, ξ⟩ = 0 if and only if ξ = 0.

As a consequence of (i) and (ii) it follows that given ξ,η, ζ ∈ S and z ∈ C one has

⟨ξ + zζ,η⟩ = ⟨ξ,η⟩ + z̄⟨ζ,η⟩

i.e. the Hermitian inner product is antilinear in the first entry.

5.5.2 Hermitian conjugation

The Hermitian inner product can be expressed using a Hermitian spinor ϖAA′ ∈ SAA′(M)

such that

⟨ξ,η⟩ = ϖAA′ ξ̄A′
ηA. (5.20)

Given a spinor basis {ϵA
A}, the components of ϖAA′ with respect to the basis are given by

ϖAA′ ≡ ϖAA′ϵA
AϵA′

A′
.

These components ϖAA′ are the entries of a diagonalisable (2×2) matrix whose eigenvalues

are positive, in accordance with the positivity condition. Furthermore, the scaling of the

basis {ϵA
A} can be fixed so that the matrix (ϖAA′) reduces

(ϖAA′) =

1 0

0 1


—i.e. the identity matrix. As a consequence of this normalisation condition, one has

ϖAA′ = oAōA′ + ιAῑA′ = ϵ1
Aϵ̄

1′
A′ + ϵ0

Aϵ̄
0′

A′ , (5.21a)
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ϖA
A′ = oAō

A′ + ιAῑ
A′ = ϵ1

Aϵ̄0′
A′ − ϵ0

Aϵ̄1′
A′
, (5.21b)

ϖAA′ = oAōA′ + ιAῑA
′ = ϵ0

Aϵ̄0′
A′ + ϵ1

Aϵ̄1′
A′
. (5.21c)

From this, it follows that

ϖAA′ϖA′B = δA
B. (5.22)

In particular, ϖAA′ϖAA′ = 2.

The operation of Hermitian conjugation † is a map

† : S•(M) −→ S•(M)

such that given µA ∈ S(M), its Hermitian conjugate µ†
A is defined as

µ†
A ≡ ϖA

A′
µ̄A′ . (5.23)

From this definition, it follows that one can write

⟨ξ,η⟩ = ϖAA′ ξ̄A′
ηA = −ξ̄†

Aη
A = ηAξ̄

†A. (5.24)

This operation can be extended to higher valence spinors by requiring that given µ,λ ∈

S•(M) one has

(µλ)† = µ†λ†.

Since ϖAA′ is the identity matrix, it follows that

µ††
A1...Ak

= (−1)kµA1...Ak
.

Furthermore, due to the positive definite condition, one has

µ†AµA = 0 if and only if µA = 0.

The Hermitian conjugate of the ϵ-spinor is provided by

ϵ†
AB = ϖA

A′
ϖB

B′
ϵA′B′ = ϵAB.
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5.5.3 Timelike congruences

Let S be a spacelike hypersurface of the spacetime (M, g). It is possible to postulate the

existence of a spinorial structure on this hypersurface. A sufficient condition is that the

vacuum Einstein field equations can be solved on S. Hence, since this spacetime is globally

hyperbolic, it admits a spinorial structure. Furthermore, the g-normal to S induces the

operation of Hermitian conjugation. The resulting spinorial structure on S is denoted by

S(S) endowed with the operation of Hermitian conjugation †. Let τ be a future-directed

timelike vector of the spacetime (M, g). Let Sτ be the hyperplanes generated by τ . Since

this vector is not necessarily hypersurface orthogonal, these hyperplanes do not necessarily

coincide with the tangent bundles to the leaves of the foliation of M. Let τAA′ be the

spinorial counterpart of τ , normalised so that

g(τ , τ ) = 2.

It is possible to identify this spinor with τAA′ = ϖAA′ expressing the Hermitian inner

product. More precisely, the spinor τAA′ induces a Hermitian product on S, so that given

ξA, ηA ∈ S(S) one has

⟨ξ,η⟩ = τAA′ ξ̄A′
ηA. (5.25)

This is due to τAA′ being the spinorial counterpart of a spacetime vector, so that

τAA′ ξ̄A′ηA = τAA′ η̄A′
ξA (5.26)

—i.e. τAA′ is a Hermitian spinor. Moreover, since τAA′ is timelike future-directed and the

vector ξAξ̄A′ describes a future-directed null vector, it follows that

τAA′ξAξ̄A′ ≥ 0,

justifying the choice τAA′ = ϖAA′ . Hence, there exists a spin basis {ϵA
A} such that

τAA′ = ϵ0
Aϵ0′

A′ + ϵ1
Aϵ1′

A′

and

τAA′τBA′ = ϵA
B. (5.27)
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5.5. Space-spinor formalism

The tensorial counterpart of a spinor µA1A′1...AkA′
k

can be expanded in terms of the spatial

frame {ϵAB} if and only if the following conditions hold

τA1A′1µA1A′1...AkA′
k

= 0, . . . τAkA′
kµA1A′1...AkA′

k
= 0

—i.e. the spinor µA1A′1...AkA′
k

is spatial with respect to τ . Hence, the space spinor coun-

terpart is given by

µA1B1...AkBk
= τB1

A′1 . . . τBk

A′
kµA1A′1...AkA′

k
= µ(A1B1)...(AkBk).

To obtain the space spinor counterpart of tensors that are not spatial, one introduces the

projector

hBB′
AA′ ≡ ϵA

BϵA′
B′ − 1

2τAA′τBB′
,

so that given a non-spatial spinor ξA1A′1...AkA′
k

its projection is the spatial spinor

ξA1A′1...AkA′
k
hA1A′1

B1B′1 . . . h
AkA′

k
BkB′

k
.

Then, the space spinor version of the above spatial spinor is obtained by contracting the

primed indices with τC
B′

ξ(A1C1)...(AkCk) = τC1
B′1 . . . τCk

B′
khA1A′1

B1B′1 . . . h
AkA′

k
BkB′

k
ξA1A′1...AkA′

k
.

The pure time components of ξA1A′1...AkA′
k

can be obtained by contraction of each primed-

unprimed pair of indices with τAA′ as

ξA1
A1 . . . AK

AK = τA1A′1 . . . τAkA′
kξA1A′1...AkA′

k
.

Eventually, the mixed time-spatial components of ξA1A′1...AkA′
k

are obtained by suitable

contractions with τAA′ and τB
B′ .

A useful example for this discussion is provided by a Hermitian spinor vAA′ ∈ S•(M)

for which one has the following space-spinor decomposition

vAA′ = 1
2τAA′vP P ′τP P ′ − τB

A′v(BA) = 1
2τAA′v − τQ

A′v(QA)

where v ≡ vP P ′τP P ′ . Upon defining vAB ≡ τB
A′
vAA′ and observing that v = vQ

Q one can

rewrite the previous equation as

vAB = 1
2ϵABv + v(AB).
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Chapter 5. Spinors and spacetime

5.5.4 The Sen connection and the acceleration vector

The space spinor counterpart of the spacetime spinorial covariant derivative ∇AA′ is ob-

tained by contraction with the timelike spinor τAA′ as

∇AB ≡ τB
A′∇AA′

which in turn can be written as

∇AB = 1
2ϵABD + DAB, (5.28)

where the operator D is the directional derivative of the connection ∇ in the direction of

τ defined by

D ≡ τAA′∇AA′ ,

whereas the operator DAB is the Sen connection of ∇ associated to τ , defined as

DAB ≡ τ (B
A′∇A)A′ .

According to these definitions, one has

∇AA′ = 1
2τAA′D − τA′

QDAQ. (5.29)

Remark 42. The timelike vector τ is not necessarily hypersurface orthogonal, so the

Sen connection has non-vanishing torsion which can be expressed in terms of the covari-

ant derivative of τAA′ . Furthermore, even in case of τ being hypersurface orthogonal,

DAB doesn’t coincide with the Levi-Civita connection D of the intrinsic 3-metric of the

hypersurfaces Sτ orthogonal to τ .

Given the spinor χ defined as

χABCD ≡ 1√
2
τD

C′∇ABτCC′ . (5.30)

Using the decomposition of ∇AB given by Equation (5.28), one has

χABCD = 1
2ϵABχCD + χ(AB)CD
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5.5. Space-spinor formalism

where

χAB ≡ 1√
2
τB

A′DτAA′ , χ(AB)CD ≡ 1√
2
τD

C′DABτCC′ .

The spinor χAB corresponds to the acceleration vector of τ , whereas χ(AB)CD is related to

the Weingarten tensor of the distribution defined by τ .

In the hypersurface orthogonal case the spinor χ(AB)CD corresponds to the extrinsic

curvature of the orthogonal hypersurfaces Sτ , the covariant derivative DAB acts on a given

spinor ξC as

DABξC ≡ DABξC + 1√
2
χ(AB)C

QξQ (5.31)

and it is torsion-free. Since

DABϵCD = 0 (5.32)

and using the symmetry χABCD = χAB(CD), one has

DABϵCD = 0. (5.33)

Hence, DAB coincides with the spinorial counterpart of the Levi-Civita connection of the

leaves of the foliation defined by τ . Furthermore, where DAB is not a real differential

operator, DAB satisfies

(DABξC)† = −DABξ
†
C .

Hence, DAB is a real differential operator.

The space-spinor formalism is used in Chapter 6 to exploit the symmetry properties of

the Maxwell-scalar field system to contruct a suitable system of evolution equations.
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Chapter 6

The Maxwell-scalar field system near

spatial infinity

6.1 Introduction

Among the main open questions in Mathematical Relativity, there is the so-called problem

of spatial infinity —see e.g. [36]. This problem concerns the understanding of the conse-

quences of the degeneracy of the conformal structure of the spacetime at spatial infinity.

A systematical method to tackle this problem goes back to the seminal work of Friedrich

[28]. The key idea of this work is the development of a representation of spatial infinity, the

so-called F-gauge, which allows the formulation of a regular Cauchy problem in a neigh-

bourhood of spatial infinity for the conformal Einstein field equations. In this setting, it is

possible to show that, unless the initial data is fine-tuned, the solutions to the conformal

Einstein field equations develop two types of logarithmic singularities at the critical sets I±

where null infinity meets spatial infinity. There are logarithmic singularities associated to

the linear part of the equations and the ones associated to the non-linear equations which

appear at higher order in the expansion. In the particular case of time-symmetric initial

data sets for the Einstein field equations which admit a point compactification at infinity

for which the resulting conformal metric is analytic, it is shown in [25] that a certain sub-
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set of the logarithmic singularities can be avoided if the conformal metric h satisfies the

conformally invariant condition

D{ip...i1bjk} = 0, p = 0, 1, 2, . . . ,

where bjk denotes the Cotton-Bach tensor of the metric h and {. . . } denotes the operation

of computing the symmetric trace-free part, in particular, if h is conformally flat then

bjk = 0. Although this condition is necessary to avoid logarithmic singularities at the

critical sets it is not sufficient. It has been shown that static solutions to the Einstein field

equations are logarithmic-free at the critical points of Friedrich’s representation of spatial

infinity. Moreover, the analysis in [79, 80] strongly suggests the conjecture that, among the

class of time-symmetric initial data sets, only those which are static in a neighbourhood

of infinity will give rise to developments which are free of logarithmic singularities at the

critical sets. The gluing techniques developed in e.g. [14, 12] allow the construction of

large classes of initial data sets with this property.

In general, linearised fields propagating on the Minkowski spacetime also develop loga-

rithmic singularities at the critical sets —see e.g. [77, 78]. In particular, the Maxwell field

system provides useful insights to study the linearised gravitational field and as a model

for the Bianchi equations satisfied by the components of the Weyl tensor. Looking beyond

linear model problems for the Einstein field equations, it is natural to look for systems

which can be used to understand the effects of the non-linear interactions on the regularity

of solutions at the conformal boundary.

In this chapter, we consider the possibility of using the Maxwell-scalar field system

on the Minkowski spacetime for this purpose. More precisely, we study the asymptotic

properties of the Maxwell-scalar field system near spatial infinity. The content of this

chapter is based on:

M. Minucci, R. Panosso Macedo, & J. A. Valiente Kroon, The Maxwell-scalar field

system near spatial infinity, J. Math. Phys. 63, 082501 (2022).
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Chapter 6. The Maxwell-scalar field system near spatial infinity

6.1.1 The Maxwell-scalar field system

The Maxwell-scalar field system is described by the Maxwell equations with sources coupled

with a conformally invariant wave equation. The coupling is realised by means of the

covariant derivative. The main considerations in this chapter allow us to formulate a

regular finite initial value problem for this system near spatial infinity. More precisely, we

develop a theory for the solutions to these equations in a neighbourhood of spatial infinity

—in particular, the solution jets at the cylinder at spatial infinity. This can be done by

studying their asymptotic expansions near spatial infinity with a technique that goes under

the name of F-expansions. This construction exploits the fact that the cylinder at spatial

infinity, I, is a total characteristic of the evolution equations associated with the Maxwell-

scalar field system. Accordingly, the evolution equations reduce to an interior system

(transport equations) upon evaluation on the cylinder I. These transport equations allows

us to relate the properties of the initial data, as defined on a fiduciary initial hypersurface

S⋆, with radiative properties of the solution which are defined at null infinity I± and fully

determine the solution jets on the cylinder at spatial infinity.

6.1.2 The main result

The main outcome of this analysis is contained in the following theorem:

Main Result 3. For generic analytic data for the Maxwell-scalar field system with finite

energy, the solution jets on the cylinder at spatial infinity I develop logarithmic singularities

at the critical sets I±.

In other words, generic solutions to the Maxwell-scalar field system are singular at the

critical sets I±. Under the further assumption that these singularities propagate along

null infinity, it is possible to analyse the consequences of these singularities on the peeling

properties of the Maxwell and scalar fields. One has the following corollary:

Corollary 3. If the solution jets give rise to a solution to the Maxwell-scalar field system

near I, then the Maxwell-scalar field system generically has logarithmic singularities which
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6.2. The cylinder at spatial infinity and the F-gauge

spread along the conformal boundary destroying the smoothness of the Faraday tensor and

scalar field tensor along the conformal boundary. In particular, there is no classical peeling

behaviour at null infinity.

Although the content of the Main Result is analogous to what it is obtained in the

case of the Einstein field equations, the detailed analysis leading to the result shows that,

in fact, the Maxwell-scalar system is not a good model problem as the elements of the

solution jets are more singular at the critical sets than what a direct extrapolation from the

vacuum conformal Einstein field equations would suggest. This new singular behaviour can

be traced back to the cubic coupling between the Maxwell and scalar fields. The latter is

the most important insight obtained from our analysis.

6.2 The cylinder at spatial infinity and the F-gauge

The purpose of this section is to provide a succinct discussion of Friedrich’s representation

of the neighbourhood of spatial infinity for the Minkowski spacetime. This conformal rep-

resentation, known as the cylinder at spatial infinity, is well suited to analyse the behaviour

of fields near spatial infinity. In this representation, spatial infinity i0 which corresponds

to a point in the standard representation of the Minkowski spacetime is blown up to a

2-sphere. Further details on this construction can be found in [28, 74, 40].

6.2.1 Conformal extensions of the Minkowski spacetime

We start with the Minkowski metric η̃ in spatial spherical coordinates (t̃, ρ̃, θ, ϕ) as given

by Equation (1.4) with ηµν = diag(1,−1,−1,−1), t̃ ∈ (−∞,∞), ρ̃ ∈ [0,∞) and where σ

denotes the standard metric on S2. A strategy to construct a conformal representation of

the Minkowski spacetime close to i0 is to make use of inversion coordinates (xα) = (t, xi)

defined by —see [70]—

xµ = −x̃µ/X̃2, X̃2 ≡ η̃µν x̃
µx̃ν ,
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t̃

D̃ r̃
D

i0

Figure 6.1: Left: The region D̃, the complement of the light cone through the origin, in

the physical Minkowski spacetime. Intuitively, this region contains spatial infinity. Right:

the corresponding region D in the Penrose diagram of the Minkowski spacetime.

which is valid in the domain

D̃ ≡ {p ∈ R4 | ηµν x̃
µ(p)x̃ν(p) < 0},

representing the complement of the light cone through the origin.

The inverse transformation is given by

x̃µ = −xµ/X2, X2 = ηµνx
µxν .

Observe, in particular, that X2 = 1/X̃2. Using these coordinates one identifies a conformal

representation of the Minkowski spacetime with unphysical metric given by

η̄ = Ξ2η̃, Ξ ≡ X2,

where

η̄ = ηµνdxµ ⊗ dxν .
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Thus, one has a conformal representation of Minkowski spacetime which is also flat.

The introduction of an unphysical radial coordinate via the relation ρ2 ≡ δαβx
αxβ,

allows us to write the metric η̄ as

η̄ = dt⊗ dt− dρ⊗ dρ− ρ2σ, Ξ = t2 − ρ2,

with t ∈ (−∞,∞) and ρ ∈ (0,∞). In this conformal representation, spatial infinity i0

corresponds to the origin of the domain

D ≡ {p ∈ R4 | ηµνx
µ(p)xν(p) < 0}.

This region contains the asymptotic region of the Minkowski spacetime around spatial

infinity. The relation between the two representations of spatial infinity is illustrated in

Figure 6.1. Observe that (t̃, ρ̃) are related to (t, ρ) via

t̃ = − t

t2 − ρ2 , ρ̃ = − ρ

t2 − ρ2 .

Finally, introducing a time coordinate τ through the relation t = ρτ one finds that the

metric η̄ can be written as

η̄ = ρ2dτ ⊗ dτ − (1 − τ 2)dρ⊗ dρ+ ρτdρ⊗ dτ + ρτdτ ⊗ dρ− ρ2σ.

6.2.2 The cylinder at spatial infinity

The conformal representation containing the cylinder at spatial infinity is obtained by

considering the rescaled metric

η ≡ 1
ρ2 η̄. (6.1)

Introducing the coordinate ϱ ≡ − ln ρ the metric η can be reexpressed as

η = dτ ⊗ dτ − (1 − τ 2)dϱ⊗ dϱ− τ(dτ ⊗ dϱ+ dϱ⊗ dτ) − σ.

Observe that spatial infinity i0, which is at infinity with respect to the metric η, corresponds

to a set which has the topology of R × S2 —see [28, 1]. Following the previous discussion,

one considers the conformal extension (M,η) where

η = Θ2η̃, Θ ≡ ρ(1 − τ 2),
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and

M ≡
{
p ∈ R4 | − 1 ≤ τ ≤ 1, ρ(p) ≥ 0

}
.

In this representation future and past null infinity are described by the sets

I + ≡
{
p ∈ M | τ(p) = 1

}
, I − ≡

{
p ∈ M | τ(p) = −1

}
,

while the physical Minkowski spacetime can be identified with the set

M̃ ≡
{
p ∈ M | − 1 < τ(p) < 1, ρ(p) > 0

}
.

In addition, the following sets play a role in our discussion:

I ≡
{
p ∈ M | |τ(p)| < 1, ρ(p) = 0

}
,

corresponding to the cylinder at spatial infinity, and

I+ ≡
{
p ∈ M | τ(p) = 1, ρ(p) = 0

}
, I− ≡

{
p ∈ M | τ(p) = −1, ρ(p) = 0

}
,

which describe the critical sets where null infinity touches spatial infinity. Additionally, let

S̃⋆ = {p ∈ R4 | t̃(p) = 0}, S⋆ = {p ∈ M | τ(p) = 0},

describing the time-symmetric hypersurface of the Minkowski spacetime. The region where

S⋆ intersect I is denoted with I0. A schematic representation of these sets is shown in

Figure 6.2.

6.3 The Maxwell-scalar field system

In this section, we provide a brief account of the Maxwell-scalar field system with particular

attention to its conformal properties and formulation in terms of spinors.

6.3.1 Equations in the physical spacetime

In the following let F̃ab denote an antisymmetric tensor (the Faraday tensor) over a space-

time (M̃, g̃) and let ∇̃ be the Levi-Civita connection of the metric g̃. The Maxwell equa-

tions with source are given by

∇̃aF̃ab = J̃b, (6.2a)
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I +

I

I −

Figure 6.2: Left: schematic representation of the cylinder at spatial infinity of the

Minkowski spacetime in the so-called F-gauge where null infinity corresponds to the lo-

cus of points with τ = ±1. The cylinder I is a total characteristic of Maxwell-scalar field

equations. Right: longitudinal section in which the angular dependence has been sup-

pressed. Here U denotes an open set in a neighbourhood of i and M(U) its development;

I± are the critical sets where the cylinder meets spatial infinity and I0 is the intersection

of the cylinder with the initial hypersurface. These figures are coordinated rather than

conformal diagrams —in particular, conformal geodesics correspond to vertical lines. This

picture is inspired by [81].

∇̃[aF̃bc] = 0. (6.2b)

The homogeneous equation (6.2b) is automatically satisfied if one sets

F̃ab = ∇̃aÃb − ∇̃bÃa,

where Ãa denotes the 4-vector gauge potential. Coupled to the above, we consider the

conformally invariant wave equation

D̃aD̃
aϕ̃− 1

6R̃ϕ̃ = 0, (6.3)

where ϕ̃ denotes a complex scalar field. The coupling between the Maxwell field and the

scalar field is encoded in the covariant derivative

D̃a = ∇̃a − iqÃa,
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where q is a coupling constant (the charge). The current J̃a in the inhomogeneous equation

(6.2a) is given by

J̃a = iq
(
ϕ̃D̃aϕ̃− ϕ̃(D̃aϕ̃)

)

Gauge invariance

The Maxwell-scalar field system (6.2a)-(6.2b) and (6.3) is invariant under the gauge trans-

formation

ϕ̃ → ϕ̃′ = eiχϕ̃, Ãa → Ã′
a = Ãa + ∇aχ, (6.4)

in the sense that F̃ab and J̃a are not affected by the transformation. Moreover, the Lorenz

gauge condition

∇̃aÃa = 0, (6.5)

is preserved by the transformation (6.4) for any χ such that

□χ = 0.

Even with the Lorenz gauge condition imposed, there is some residual gauge freedom left.

This residual gauge freedom can be fixed at the level of the initial conditions —in particular,

there is a natural choice which allows to control the initial value of the components of Aa

and its derivatives by the energy of the system —see Section 6.5.

Conformal transformation properties

Consider a conformal rescaling of the form

gab = Ξ2g̃ab.

Associated with the latter we define the unphysical Faraday tensor, unphysical vector po-

tential and the unphysical scalar field via

Fab ≡ F̃ab, Aa ≡ Ãa, ϕ ≡ Ξ−1ϕ̃,
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so that a computation using the standard conformal transformation formulae (see e.g. [81])

shows that

∇aFab = Jb, (6.6a)

∇[aFbc] = 0, (6.6b)

Fab = ∇aAb − ∇bAa, (6.6c)

DaD
aϕ− 1

6Rϕ = 0, (6.6d)

where

Da ≡ ∇a − iqAa

and

Ja = iq
(
ϕDaϕ− ϕ(Daϕ)

)
. (6.7)

In particular, it follows that

J̃a = Ξ2Ja.

Moreover, one can verify that

∇aJa = 0.

Introducing the Hodge dual F ∗
ab of the Faraday tensor in the usual way via

F ∗
ab ≡ 1

2ϵab
cdFcd,

the Maxwell equation (6.6b) can be rewritten as

∇aF ∗
ab = 0. (6.8)

6.3.2 Spinorial expressions

In this subsection, we provide the spinorial version of the equations in the unphysical

spacetime.

Let FAA′BB′ denote the spinorial counterpart of the Faraday tensor Fab. It satisfies the

well-known decomposition

FAA′BB′ = ϕABϵA′B′ + ϕ̄A′B′ϵAB,
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where ϕAB = ϕ(AB) is the so-called Maxwell spinor —see e.g. [70, 81]. A calculation with

this expression shows that equations (6.6a) and (6.8) are equivalent to

∇B
A′ϕAB = JAA′ , (6.9)

where

JAA′ ≡ iq
(
ϕ̄∇AA′ϕ− ϕ∇AA′ϕ̄

)
+ 2q2|ϕ|2AAA′ ,

is the spinorial counterpart of the current Ja and AAA′ is the spinorial counterpart of the

vector potential Aa. Observe that both AAA′ and JAA′ are Hermitian spinors. In view of

its symmetries, equation (6.6c) can be rewritten as

ϕAB = ∇A′(AAB)
A′
. (6.10)

The wave equation for the vector potential and the generalised Lorenz gauge

It is well known that in the Lorenz gauge, the vector potential satisfies a wave equation.

In light of the Lorenz gauge condition in spinorial form

∇AA′
AAA′ = 0, (6.11)

it is possible to remove the symmetrisation in the equation (6.10) so as to obtain

∇AA′AB
A′ = ϕAB. (6.12)

Applying ∇A
B′ , using the spinorial Maxwell equation (6.9) and making use of the commu-

tator of the covariant derivative ∇AA′ one obtains

□ABB′ + 2ΦAA′BB′AAA′ = JBB′ .

Now, since

JBB′ = 2q2|ϕ|2ABB′ + iqϕ̄∇BB′ϕ− iqϕ∇BB′ϕ̄

the wave equation for the vector potential reads as

□ABB′ + 2ΦAA′BB′AAA′ = 2q2|ϕ|2ABB′ + iqϕ̄∇BB′ϕ− iqϕ∇BB′ϕ̄.
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The wave equation for the Maxwell spinor

The unphysical charged wave equation is given by

gabDaDbϕ− Rϕ

6 = 0.

This equation can be recast in spinor formalism by replacing

Da = ∇a − iqAa

and then by separating the soldering forms so that we have

□ϕ = q2ϕAAA′AAA′ + 2iqAAA′∇AA′ϕ+ iqϕ∇AA′AAA′
.

Hence, by using the Lorenz gauge condition (6.11) we have

□ϕ = q2ϕAAA′AAA′ + 2iqAAA′∇AA′ϕ.

Summary

In summary, the study of the Maxwell-scalar field system can be reduced, making use of

the generalised Lorenz gauge condition (6.11), to the system of wave equations

□ϕ = q2ϕAAA′AAA′ + 2iqAAA′∇AA′ϕ, (6.13a)

□AAA′ + 2ΦABA′B′ABB′ = 2q|ϕ|2AAA′ + iqϕ̄∇AA′ϕ− iqϕ∇AA′ϕ̄. (6.13b)

These equations are supplemented by initial conditions for the values of ϕ and AAA′ and

of their normal derivatives. This will be discussed in more detail in Section 6.5.

6.3.3 Decomposition of the equations in the space-spinor formal-

ism

Before providing a detailed decomposition of the equations (6.13a)-(6.13b), it is convenient

to provide a rougher decomposition which brings to the foreground the structural prop-

erties of the evolution system and its relation to the Maxwell constraint equations. This

decomposition is done using the space-spinor formalism as described in e.g. [81] —see also

[5, 69].
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Basic relations

Let τAA′ denote the spinorial counterpart of a timelike vector field τa tangent to a congru-

ence of curves. The Hermitian spinor τAA′ is chosen to have the normalisation

τAA′τAA′ = 2.

Consistent with the latter, we consider a spin dyad {oA, ιA} chosen so that

τAA′ = oAōA′ + ιAῑA
′
.

It follows then that

τAA′τBA′ = δA
B.

The above relations induce a Hermitian conjugation operation via the relation

µ†
A ≡ τA

A′
µ̄A′ ,

with the obvious extension to higher valence spinors. In particular, one has that ιA = o†
A.

The space-spinor formalism allows working only with spinors with unprimed indices. In

this spirit, one has the following decompositions for the spinorial counterpart of the current

vector and the vector potential:

JAA′ = 1
2jτAA′ − jABτ

B
A′ , (6.14a)

AAA′ = 1
2ατAA′ − αABτ

B
A′ , (6.14b)

with jAB and αAB symmetric spinors.

Decomposition of the covariant derivative. The spinor τAA′ also induces a decom-

position of the spinorial covariant derivatives ∇AA′ . For this, one introduces

D ≡ τAA′∇AA′ , DAB ≡ τ(A
A′∇B)A′ ,

the Fermi and Sen connections associated to the congruence defined by τa—see Chapter

5.
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The Maxwell equations in space-spinor form. Some manipulations show that the

spinorial Maxwell equation (6.9) can be decomposed as

DABϕAB = 1
2j,

DϕAB − 2DQ
(AϕB)Q = −jAB.

The former equation is to be interpreted as a constraint while the latter as evolution

equations —in fact, it can be shown to be (up to some numerical factors) a symmetric

hyperbolic system for the independent components of ϕAB, see [81]. Similarly, from the

equation (6.12) one obtains the system

Dα + 2DACαAC +
√

2αχAC
AC − 2

√
2αACχA

B
CB − χACαAC = 2A(x),

DαCD − DCDα−
√

2αχ(C
A

D)A − 2D(C
AαD)A − χ(C

AαD)A

+2
√

2αABχ(C|A|D)B + 1
2αχCD = 2ϕ̂CD,

where χAB and χABCD are, respectively, the acceleration and Weingarten spinors defined

by the relation

∇AA′τCC′ = −1
2χCDτAA′τD

C′ +
√

2χABCDτ
B

A′τD
C′ .

and where

ϕ̂AB ≡ τA
C′
τB

D′
ϕ̄C′D′

is the Hermitian conjugate of ϕAB.

The scalar field. It is also illustrative to express equation (6.13a) in terms of the Fermi

and the Sen connections D and DAB. Making use of the decomposition (5.29), a calculation

gives that

D2ϕ+ 2DABDABϕ = −
√

2χAB
ABDϕ+ χABDABϕ+ 2

√
2χA

Q
BCDABϕ.

Remark 43. The equations presented in this section are completely general and make no

assumption on the background spacetime. When evaluated on the conformal representation

of the Minkowski spacetime discussed in Section 6.2.2 they acquire a much simpler form.
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Detailed decomposition in conformal Minkowski

In this section, we consider the decomposition of the various fields in the case of the

conformal representation of Minkowski spacetime discussed in Section 6.2.2.

Frame choice. Following [30] we consider a Newman-Penrose (NP) frame satisfying

g(eAA′ , eBB′) = ϵABϵA′B′ ,

of the form

e00′ = 1√
2

(
(1 − τ)∂τ + ρ∂ρ

)
,

e11′ = 1√
2

(
(1 + τ)∂τ − ρ∂ρ

)
,

e01′ = − 1√
2

X+,

e10′ = − 1√
2

X−,

where X+ and X− are complex vectors spanning the tangent space of S2 with dual covectors

α+ and α− such that metric of the 2-sphere is given by

σ = 2(α+ ⊗ α− + α− ⊗ α+).

The vector τa giving rise to the space-spinor decomposition of the Maxwell-scalar field

introduced in Section 6.3.3 is chosen as

τa = e00′
a + e11′

a =
√

2(∂τ )a.

A peculiarity of the conformal representation introduced in the equation (6.1) is that

the Ricci scalar vanishes —that is,

R[g] = 0.

The reduced wave equations. As the expression of the wave operator in the F-gauge

acting on a spin-weighted scalar will be used repeatedly, it is convenient to define the

F-reduced wave operator ■ acting on a scalar ζ as

■ζ ≡ (1 − τ 2)ζ̈ + 2τρζ̇ ′ − ρ2ζ ′′ − 2τ ζ̇ − 1
2ðð̄ζ − 1

2 ð̄ðζ, (6.15)
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6.3. The Maxwell-scalar field system

where for simplicity of the presentation we have used the notation

˙ ≡ ∂τ ,
′ ≡ ∂ρ,

and ð and ð̄ denote the NP eth and eth bar operators —see e.g. [61, 70]. In particular,

the operator 1
2(ðð̄ + ð̄ð) corresponds to the Laplacian on S2.

After some lengthy computations, best carried out using the suite xAct for tensorial and

spinorial manipulations in the Wolfram programming language [54], the wave equations

(6.13a)-(6.13b) can be seen to be equivalent to the scalar system:

■ϕ = q2ϕ

(
1
2α

2 − 2α2
1 + 2α0α2

)
+ i

√
2q
(
2α1ρϕ

′ + αϕ̇− 2τα1ϕ̇+ α0ðϕ− α2ð̄ϕ
)
,

■α− 4α̇1 = 2q2α|ϕ|2 + i
√

2q
(
ϕ̇ϕ̄− ˙̄ϕϕ

)
,

■α0 + α0 = 2q2α0|ϕ|2 + iq√
2

(ϕð̄ϕ̄− ϕ̄ð̄ϕ),

■α1 − α̇ = 2q2α1|ϕ|2 + iqρ√
2

(ϕϕ̄′ − ϕ̄ϕ′) + iqτ√
2

(ϕ̄ϕ̇− ϕ ˙̄ϕ),

■α2 + α2 = 2q2α2|ϕ|2 + iq√
2

(ϕ̄ðϕ− ϕðϕ̄).

The scalars α, α0, α1 and α2 have spin weight 0, 1, 0, −1, respectively. In particular,

α denotes the time component of the Hermitian spinor AAA′ while α0, α1, α2 are the

independent components of its spatial part —cfr. the decomposition in equation (6.14b).

It is observed that the righthand sides of the above wave equations can be decoupled

if one defines

α± ≡ α± α1, j± ≡ j ± j1,

all of them of spin-weight 0. In terms of these new variables, the system of wave equations

can be rewritten as

■ϕ = s,

■α+ − 2α̇+ = j+,

■α− + 2α̇− = j−,

■α0 + α0 = j0,
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Chapter 6. The Maxwell-scalar field system near spatial infinity

■α2 + α2 = j2,

with the obvious definitions. For future use, it is observed that the source terms

s = s(x̄, ϕ, α0, α2, α±),

j0 = j0(x̄, ϕ, α0, α2, α±), j2 = j2(x̄, ϕ, α0, α2, α±), j± = j±(x̄, ϕ, α0, α2, α±),

are at most cubic polynomial expressions in the unknowns ϕ, α0, α2, α±.

6.4 General structural properties and expansions near

spatial infinity

In this section, we discuss general structural properties of the evolution system, equations

(6.24a)-(6.24e), associated to the Maxwell-scalar field system. In particular, we study

a type of asymptotic expansions near spatial infinity which was first introduced, for the

conformal Einstein field equations, by H. Friedrich in [28]. In the following, we refer to these

expansions as F-expansions. This construction exploits the fact that the cylinder at spatial

infinity, I, introduced in Section 6.2.2 is a total characteristic of the evolution equations

associated to the Maxwell-scalar system. Accordingly, the evolution equations reduce to an

interior system (transport equations) upon evaluation on the cylinder I. This can clearly

be seen from the form of the reduced wave operator ■ as given by equation (6.15) —all the

∂ρ derivatives disappear from the equation if one sets ρ = 0. These transport equations

allow to relate properties of the initial data, as defined on a fiduciary initial hypersurface

S⋆, with radiative properties of the solution which are defined at null infinity I ±.

For the convenience of the subsequent discussion we define

α ≡



α+

α−

α0

α2


, j ≡



j+

j−

j0

j2


, A ≡



−2 0 0 0

0 2 0 0

0 0 0 0

0 0 0 0


, B ≡



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


.
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In terms of the above vectors and matrices the system (6.24a)-(6.24e) can be rewritten as

■ϕ = s, (6.16a)

■α + Aα̇ + Bα = j. (6.16b)

The source terms can, in turn, be written as

s = ϕα†Qα + α†K(x)∂ϕ,

j = 2q|ϕ|2α + ϕL∂ϕ̄+ ϕ̄L∂ϕ,

where † denotes the Hermitian transpose of a vector (i.e. transposition plus complex conju-

gation), Q is a constant matrix, while K(x) and L(x) are coordinate-dependent matrices.

Observe that if q = 0 then K(x) = L(x) = 0.

6.4.1 Transport equations on the cylinder at spatial infinity

The key observation in our analysis is that the F-reduced wave operator ■, as defined by

(6.15), reduces to an operator intrinsic to I. Defining the F-reduced wave operator on I,

▲ ≡ ■|I , acting on a scalar ζ as

▲ζ ≡ (1 − τ 2)ζ̈ − 2τ ζ̇ − 1
2(ðð̄ + ð̄ð)ζ.

one readily observes that this operator is intrinsic to I. An alternative way of express-

ing this observation is that the cylinder at spatial infinity is a total characteristic of the

evolution system (6.16a)-(6.16b).

Remark 44. The intrinsic operator ▲ is clearly hyperbolic for |τ | < 1. However, at

τ = ±1 it degenerates. To investigate the effect of this degeneracy at the critical sets I±

it is convenient to study the transport equations implied by evolution equations.

The leading order transport equations

Evaluating equations (6.16a)-(6.16b) on I (i.e. at ρ = 0) one obtains the interior system

of wave equations:

▲ϕ(0) = ϕ(0)α(0)†Qα(0) + α(0)†K∂ϕ(0), (6.17a)
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▲α(0) + Aα̇(0) + Bα(0) = 2q|ϕ(0)|2α(0) + ϕ(0)L∂ϕ̄(0) + ϕ̄(0)L∂ϕ(0), (6.17b)

with

ϕ(0) ≡ ϕ|I , α(0) ≡ α|I .

Initial data for the system (6.17a)-(6.17b) is provided by the restriction of the initial data

for the fields ϕ, ϕ̇, α and α̇ on S⋆ to I.

Remark 45. The interior system (6.17a)-(6.17b) is, in principle, coupled and non-linear.

However, certain classes of initial data allow for a decoupling of the system. This feature

is discussed in Section 6.6.

Higher order transport equations

Making use of the structural properties of the evolution system (6.16a)-(6.16b) it is possible

to consider higher-order generalisations of the transport equations introduced the previous

subsection. To this end, one considers the commutator

∂p
ρ■ζ − ■∂p

ρζ = 2τp∂p
ρ ζ̇ − 2pρ∂p

ρζ
′ − p(p− 1)∂p

ρζ,

with ∂p
ρ denoting p applications of the derivative ∂ρ. Now, applying the operator ∂ρ to

equations (6.16a)-(6.16b) a total number of p times and restricting to I one finds that

▲ϕ(p) + 2τpϕ̇(p) − p(p− 1)ϕ(p) = s(p),

▲α(p) + Aα̇(p) + 2τpα̇(p) + Bα(p) − p(p− 1)α(p) = R(p),

where s(p) and R(p) denote source terms which depend on the solutions of the lower-order

transport equations —i.e. (ϕ(p′), α(p′)) for p′ such that 0 ≤ p′ ≤ p − 1. This observation

allows implementing a recursive scheme to compute the solutions to the transport equations

to any arbitrary order —modulo computational complexities.
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6.5 Initial conditions

In this section, we discuss the construction of initial data for the Maxwell-scalar field

system in the Lorenz gauge. Accordingly, throughout it is assumed that

∇aAa = 0.

6.5.1 General remarks

The wave equations (6.13a)-(6.13b) suggest that a natural prescription of initial data for

the Maxwell-scalar field system is

ϕ⋆, Dϕ⋆, AAA′⋆, DAAA′⋆.

Notice that the components of AAA′ and DAAA′⋆ cannot be prescribed freely. Moreover,

there is some gauge freedom that can be used to set certain components to zero —see

below.

Remark 46. The above is not necessarily the most physical way of prescribing initial

conditions. A more physical choice is to prescribe

ϕ⋆, Dϕ⋆, ηAB⋆, µAB⋆,

where ηAB and µAB denote, respectively, the spinorial counterparts of the electric and

magnetic parts of the Faraday tensor with respect to the normal to the initial hypersurface

S⋆. In order to fix the asymptotic behaviour one requires finiteness of the energy

E⋆ ≡ 1
2

∫
R3

(
|Dϕ⋆|2 + |η⋆|2 + |µ⋆|2

)
dµ. (6.18)

In addition, the electric and magnetic parts are subject to the Gauss constraints implied

by the equation

DABϕAB = 1
2j.
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6.5.2 Data on time symmetric hypersurfaces

In the following, we assume, for simplicity, that the initial hypersurface S⋆ is the time-

symmetric hypersurface with t = constant in the Minkowski spacetime. Accordingly the

extrinsic curvature vanishes in this hypersurface —thus, we have that in the initial hyper-

surface DAB = DAB —that is, the Sen connection coincides with the Levi-Civita connection

of the intrinsic metric to S⋆. Notice, however, that it is not assumed that the acceleration

vanishes on the initial hypersurface —this is for consistency with the conformal Gaussian

gauge used to write the evolution equations.

Following the discussion in [68] we make use of the residual gauge freedom in the Lorenz

gauge to set the initial value of the time components of Aa and DAa to zero initially. In

terms of the space-spinor split of Aa, this is equivalent to requiring

α⋆ = 0, Dα⋆ = 0.

It follows then from the Lorenz gauge condition that

DABαAB = 1
2χ

ABαAB. (6.19)

This equation has to be treated as a constraint on the spatial part αAB. Observe how this

last equation involves the acceleration.

The definition of the Maxwell spinor in terms of AAA′ yields the condition

ϕAB = −1
2 α̇AB −D(A

QαB)Q, on S⋆,

where for brevity we have written α̇AB ≡ DαAB. Substituting this relation into the Gauss

constraint

DABϕAB = 1
2j

one concludes that

DABα̇AB = −j. (6.20)
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Solving the constraints for αAB and α̇AB

In order to solve the constraint equations (6.19) and (6.20) one can make use of the Ansatz

αAB = DABσ +D(A
QσB)Q, (6.21a)

α̇AB = DABπ +D(A
QπB)Q, (6.21b)

with σ, π scalars and σAB, πAB symmetric, real valence 2 spinors —the latter is essentially

a spinorial version of the Helmholtz decomposition. The substitution of the Ansatz (6.21a)-

(6.21b) in the constraints (6.19) and (6.20) leads to elliptic equations for the scalars σ, π.

The spinors σAB and πAB are free data.

Time symmetric initial conditions

Time-symmetric initial data conditions for the Maxwell-scalar system, i.e. initial conditions

giving rise to solutions which are time reflection symmetric with respect to the hypersurface

S⋆, are set by requiring

ϕ̇ = 0, α̇AB = 0, on S⋆.

It follows from the above that j = 0. Thus, the only constraint equation left to solve is

equation (6.19) which can then be solved using the Ansatz (6.21a). A further consequence

of α̇AB = 0 is that

ϕAB = −D(A
QαB)Q, ϕ̂AB = −D(A

QαB)Q.

Now, defining the electric and magnetic parts of ϕ⋆ with respect to the Hermitian spinor

τAA′ by

ηAB ≡ 1
2 i(ϕAB + ϕ̂AB), µAB ≡ 1

2(ϕAB − ϕ̂AB),

one readily finds that

µAB = 0, on S⋆.

Remark 47. This is the spinorial version of the well-known result stating that the magnetic

part of time-symmetric data for the Maxwell field is vanishing.
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Asymptotic conditions

The asymptotic behaviour of the initial data can be fixed in a natural way from the

requirement of the finiteness of the energy on the (physical) initial hypersurface.

Scalar field. The finiteness of the energy as defined by equation (6.18) requires

D̃aϕ̃⋆ = o(r̃−2), (η̃AB)⋆ = o(r̃−2), (µ̃AB)⋆ = o(r̃−2).

These conditions are satisfied if

ϕ̃⋆ = o(r̃−1), (α̃AB)⋆ = o(r̃−1).

In particular, one can consider an initial scalar field with leading behaviour given by

ϕ̃⋆ = φ̊r̃−1 + · · · , with φ̊ a constant.

In order to obtain the conformal version of the above condition recall that Θ = ρ(1 − τ 2)

and, moreover, r̃ = 1/ρ and ϖ = Θ⋆ = r̃−1 = ρ. Thus,

ϕ⋆ = ϖ−1ϕ̃⋆ = ρ−1ϕ̃⋆ = φ̊+ · · · .

For simplicity, one can assume that ϕ⋆ is analytic in a neighbourhood of spatial infinity.

Results analogous to the ones derived here can, at the expense of complicated and lengthy

recursion arguments, be obtained also for weaker differentiability assumptions.

Electric field. To analyse the asymptotic behaviour of the electric part of the Maxwell

field from the conformal point of view, it is observed that

τa = ϖ−1τ̃a,

where τ̃a and τa are, respectively, the physical and unphysical normals to the initial hy-

persurface S⋆. Accordingly, for a Coulomb-type field Ẽi = O(1/r̃2) it follows that

Ei = ϖ−1Ẽi = O(ρ).

In terms of the components with respect to the frame one has

Ei = O(1), ηAB = O(1).
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Gauge potential. For the gauge potential one has that Ãa = Aa. Moreover, for a

Coulomb-type field one has Ãa = O(1/r̃) so that in terms of the spatial components with

respect to the frame:

Ai = O(1), αAB = O(1).

An Ansatz for the initial data

In order to give a more concrete Ansatz for the construction of the initial data for the

Maxwell-scalar field system, in the following it will be assumed that the freely specifiable

data ϕ⋆ and σAB are analytic in a neighbourhood of spatial infinity. It follows then from the

ellipticity of the equation for the σ that this scalar will also be analytic in a neighbourhood

of i0. Consistent with the above let

ϕ⋆ =
∞∑

n=0

n∑
l=0

l∑
m=−1

1
n!φn;l,m(Ylm)ρn, (6.22a)

σi =
∞∑

n=|1−i|

n∑
l=|1−i|

l∑
m=−l

1
n!σi,n;l,m(1−sYlm)ρn, (6.22b)

where σi for i = 0, 1, 2 denote the three (complex) independent components of σAB and

sYlm denote the spin-weighted spherical harmonics —see e.g. [61, 70]. Moreover, φn;l,m

and σi,n;l,m are constants. Finally, in accordance to the above, we look for a scalar of the

form

σ =
∞∑

n=0

n∑
l=0

l∑
m=−1

1
n!σn;l,m(Ylm)ρn, (6.23)

with σn;l,m constants.

6.6 Solution jets

In this section, we start our systematic study of the solutions to the Maxwell-scalar field

in a neighbourhood of spatial infinity. In order to gain some insight into the nature of the

solution we first analyse the decoupled case in which the charge constant q is set to zero. In

this case the Maxwell field and the scalar field decouple from each other and the resulting
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evolution equations are linear. We then contrast the behaviour of this decoupled case with

that of the case where q ̸= 0.

We recall that the system to be solved can be written as

■ϕ = s, (6.24a)

■α+ − 2α̇+ = j+, (6.24b)

■α− + 2α̇− = j−, (6.24c)

■α0 + α0 = j0, (6.24d)

■α2 + α2 = j2, (6.24e)

where the source terms s, j±, j0 and j2 are polynomial expressions (at most of third order)

in the unknowns.

Remark 48. A key property of the unknowns in the system (6.24a)-(6.24e) is that they

all possess a well defined spin-weight —see e.g. [61, 70, 81]. More precisely, one has that:

ϕ, α± have spin-weight 0,

α0 has spin-weight 1,

α2 has spin-weight −1.

The above spin-weights determine the type of expansions of the coefficients in terms of

spin-weighted spherical harmonics.

In order to ease the discussion we make the following simplifying assumptions:

Assumption 1. The discussion will be restricted, in first instance, to the time symmetric

case. Accordingly, it is assumed that

ϕ̇⋆ = 0, α̇⋆ = 0, α̇AB⋆ = 0.

In addition, assume initial conditions for which

α±⋆|I = 0, α0⋆|I = 0, α2⋆|I = 0

and, in general,

ϕ⋆|I ̸= 0.
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Observe that the class of initial data to be considered has a vector potential which, on

the initial hypersurface, vanishes to leading order at spatial infinity. Crucially, the scalar

field does not vanish at the leading order. The main conclusions of our analysis can be

extended, at the expense of lengthier computations, to a more general non-time symmetric

setting.

In the following, for conciseness, we write the conditions in Assumption 1 as:

α
(0)
±⋆ = α

(0)
0⋆ = α

(0)
2⋆ = 0, (6.25a)

α̇
(0)
±⋆ = α̇

(0)
0⋆ = α̇

(0)
2⋆ = 0, (6.25b)

ϕ
(0)
⋆ = φ⋆, ϕ̇

(0)
⋆ = 0, (6.25c)

with φ⋆ ∈ C a constant.

As we have seen before, see Section 6.4, the cylinder at spatial infinity is a total char-

acteristic of our evolution equations. We can use this property to construct, in a recursive

manner, the jets of order p at I, Jp[ϕ,α], p ≥ 0 of the solutions to the evolution equations.

Recall that the jet is defined as

Jp[ϕ,α] ≡ {∂p
ρϕ|ρ=0, ∂

p
ρα|ρ=0}.

Knowledge of the jet Jp[ϕ,α] provides very precise information about the regularity of the

solutions to the evolution equations in a neighbourhood of spatial infinity and its relation

to the structure and properties of the initial data.

6.6.1 The decoupled case

Setting the charge parameter q = 0, equations (6.24a)-(6.24e) readily reduce to the linear

system of equations

■ϕ = 0

■α+ = 0,

■α− = 0,
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■α0 + 2α̇0 = 0,

■α2 − 2α̇2 = 0.

Defining

ϕ(p) ≡ ∂p
ρϕ|ρ=0, α

(p)
± ≡ ∂p

ρα±|ρ=0, α
(p)
0 ≡ ∂p

ρα0|ρ=0, α
(p)
2 ≡ ∂p

ρα2|ρ=0, p ≥ 0,

a calculation that shows that the solutions corresponding to the p-order elements of Jp[ϕ,α]

satisfy the intrinsic equations

▲ϕ(p) + 2pτϕ̇(p) = 0,

▲α(p)
+ + 2pτα̇(p)

+ = 0,

▲α(p)
− + 2pτα̇(p)

− = 0,

▲α(p)
0 + 2(pτ + 1)α̇(p)

0 = 0,

▲α(p)
2 + 2(pτ − 1)α̇(p)

2 = 0.

Accordingly, in the following, we study the following three model equations:

▲ζ + 2pτ ζ̇ = 0, (6.26a)

▲ζ + 2(pτ + 1)ζ̇ = 0, (6.26b)

▲ζ + 2(pτ − 1)ζ̇ = 0. (6.26c)

Remark 49. In the subsequent analysis it is assumed that:

(a) the scalar ζ in equation (6.26a) has spin-weight 0 and admits an expansion of form

ζ =
∞∑

p=0

p∑
l=0

l∑
m=−1

1
p!ζp;l,m(Ylm)ρp;

(b) in equation (6.26b) the scalar ζ has spin-weight 1 and admits an expansion of the

form

ζ =
∞∑

p=1

p∑
l=1

l∑
m=−l

1
p!ζ0,p;l,m(1Ylm)ρp;
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(c) in equation (6.26c) the scalar ζ has spin-weight −1 and admits an expansion of the

form

ζ =
∞∑

p=1

p∑
l=1

l∑
m=−l

1
p!ζ2,p;l,m(−1Ylm)ρp.

The above expansions are consistent with the discussion regarding the freely specifiable

initial data in Section 6.5.2 and equations (6.22a)-(6.22b) and (6.23), in particular. Observe

that at order ρp the highest allowed spherical harmonic corresponds to ℓ = p.

Substituting the Ansätze in Remark 49 into the model equations (6.26a)-(6.26c) one

obtains, respectively, the ordinary differential equations

(1 − τ 2)ζ̈p;ℓ,m + 2τ(p− 1)ζ̇p;ℓ,m + (p+ ℓ)(ℓ− p+ 1)ζp;ℓ,m = 0, (6.27a)

(1 − τ 2)ζ̈0,p;ℓ,m + 2
(
(p− 1)τ + 1

)
ζ̇0,p;ℓ,m + (p+ ℓ)(ℓ− p+ 1)ζ0,p;ℓ,m = 0, (6.27b)

(1 − τ 2)ζ̈2,p;ℓ,m + 2
(
(p− 1)τ − 1

)
ζ̇2,p;ℓ,m + (p+ ℓ)(ℓ− p+ 1)ζ2,p;ℓ,m = 0. (6.27c)

Equations (6.27a)-(6.27c) are examples of Jacobi ordinary differential equations. A discus-

sion of the theory of these equations can be found in the monograph [71]. The subsequent

analysis is strongly influenced by this reference. More details can be found in Appendix

B.2.

Remark 50. It can be readily verified that if ζ0,p;p,m(τ) is a solution to equation (6.27b)

then ζ0,p;p,m(−τ) solves (6.27c). Thus, it is only necessary to study two model equations.

In the decoupled case, the key insight is that the behaviour of the solutions to equations

(6.27a)-(6.27c) depends on the value of the parameter ℓ. For 0 ≤ ℓ ≤ p − 1, p ≥ 1 the

nature of the solutions is summarised in the following:

Lemma 10. The solutions to the system (6.27a), (6.27b) and (6.27c) can be written as

ζp;ℓ,m(τ) = Ap;ℓ,m

(1 − τ

2

)p

P
(p,−p)
ℓ (τ) +Bp;ℓ,m

(1 + τ

2

)p

P
(−p,p)
ℓ (τ),

ζ0,p;ℓ,m(τ) = Cp;ℓ,m

(1 − τ

2

)(p+1)
P

(1+p,1−p)
ℓ (τ) +Dp;ℓ,m

(1 + τ

2

)(p−1)
P

(−1−p,p−1)
ℓ (τ),

ζ2,p;ℓ,m(τ) = Ep;ℓ,m

(1 − τ

2

)(p+1)
P

(1+p,1−p)
ℓ (−τ) + Fp;ℓ,m

(1 + τ

2

)(p−1)
P

(−1−p,p−1)
ℓ (−τ),
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with P (α,β)
n (τ) Jacobi polynomials of order n and where

Ap;ℓ,m, Bp;ℓ,m, Cp;ℓ,m, Dp;ℓ,m, Ep;ℓ,m, Fp;ℓ,m ∈ C

denote some constants which can be expressed in terms of the initial conditions.

However, for equation (6.27a) in the case ℓ = p we have the following proposition:

Lemma 11. For l = p the solution to the equation (6.27a) can be written as

ζp;p,m(τ) =
(1 − τ

2

)p (1 + τ

2

)p
(
C1,p;ℓ,m + C2,p;ℓ,m

∫ τ

0

ds
(1 − s2)p+1

)
,

where C1,p;ℓ,m, C2,p;ℓ,m are integration constants.

Remark 51. Observe that the general solution given in Lemma 11 has logarithmic sin-

gularities unless the constant C2,p;ℓ,m vanishes. Letting ζ⋆p;p,m ≡ ζp;p,m(0) and ζ̇⋆p;p,m ≡

ζ̇p;p,m(0) one readily finds that

C1,p;ℓ,m = 22pζ⋆p;p,m.

Similarly, one has that

C2,p;ℓ,m = 22pζ̇⋆p;p,m.

Thus, there is no logarithmic divergence if and only if ζ̇⋆p;p,m = 0 —that is, when the initial

data for ζ is time symmetric. In particular

ζ0;0,0 = C1 + C2
(

log(1 − τ) − log(1 + τ)
)
.

In this case, one has that the logarithmic divergences are avoided if ζ̇0;0,0(0) = 0.

Similarly, one obtains an analogous result for equations (6.27b) and (6.27c):

Lemma 12. For ℓ = p the solution to equations (6.27b) and (6.27c) can be written as

ζ0,p;p,m(τ) =
(1 − τ

2

)(p+1) (1 + τ

2

)(p−1) (
C3,p;ℓ,m + C4,p;ℓ,m

∫ τ

0

ds
(1 − s)p+2(1 + s)p

)
,

ζ2,p;p,m(τ) =
(1 − τ

2

)(p−1) (1 + τ

2

)(p+1) (
C5,p;ℓ,m + C6,p;ℓ,m

∫ τ

0

ds
(1 + s)p+2(1 − s)p

)
,

where C3,p;ℓ,m, C4,p;ℓ,m, C5,p;ℓ,m, C6,p;ℓ,m are integration constants.
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It follows from the above that the solutions for ζ0,p;p,m(τ) and ζ2,p;p,m(τ) have logarithmic

singularities unless the constants C4,p;ℓ,m and C6,p;ℓ,m vanish. Now, if we let ζ0,⋆p;p,m ≡

ζ0,p;p,m(0) and ζ̇0,⋆p;p,m ≡ ζ̇0,p;p,m(0), it follows that

ζ0,⋆p;p,m =
(

1
2

)(p+1)(1
2

)(p−1)

a⋆ =
(

1
2

)2p

a⋆.

On the other hand, we have that

ζ̇0,p;p,m(τ) = −1
2(p+ 1)

(
1 − τ

2

)p(1 + τ

2

)(p−1)(
a⋆ + ȧ⋆

∫ τ

0

ds
(1 − s)p+2(1 + s)p

)

+ 1
2(p− 1)

(
1 − τ

2

)(p+1)(1 + τ

2

)p(
a⋆ + ȧ⋆

∫ τ

0

ds
(1 − s)p+2(1 + s)p

)

+
(

1 − τ

2

)(p+1)(1 + τ

2

)(p−1)
ȧ⋆

(1 − τ)p+2(1 + τ)p
.

Thus, it follows that

ζ̇0⋆,p;p,m = − 1
2(2p−1)a⋆ + 1

22p
ȧ⋆.

Hence in this case the condition ζ̇0⋆,p;p,m = 0 does not eliminate the logarithms in the

solution. However, recalling that ζ0⋆,p;p,m =
(

1
2

)2p
a⋆, it follows from the previous equation

that

ȧ⋆ = 22pζ̇0⋆,p;p,m + 2(2p+1)ζ0⋆,p;p,m.

Consequently, in order to have solutions without logarithmic divergences one needs ȧ⋆ = 0

or, equivalently,

ζ̇0⋆,p;p,m = −2ζ0⋆,p;p,m.

Remark 52. The polynomial solutions to equation (6.27b)in the case ℓ = p are, thus, of

the form

ζ0,p;p,m = ζ0⋆,p;p,m(1 − τ)(p+1)(1 + τ)(p−1).

Now, since as(τ) ≡ a(−τ) is a solution for the equation for ζ2,p;p,m we have that to avoid

logarithms in the solutions to equation (6.27c) one needs the condition

ζ̇2⋆,p;p,m = 2ζ2⋆,p;p,m.

In this case, the polynomial solution is given by

ζ2,p;p,m(τ) = ζ2⋆,p;p,m(1 + τ)(p+1)(1 − τ)(p−1).
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Making use of the above results, the properties of the solutions to the transport equa-

tions implied by the decoupled (i.e. linear) Maxwell-scalar system at the cylinder at spatial

infinity I can be succinctly summarised in the following proposition:

Proposition 12. Given the jet Jp[ϕ,α] for q = 0 one has that:

(i) the elements of the jet have polynomial dependence in τ for the harmonic sectors with

0 ≤ ℓ ≤ p− 1 and, thus, they extend analytically through τ = ±1;

(ii) generically, for ℓ = p, the solutions have logarithmic singularities at τ = ±1. These

logarithmic divergences can be precluded by fine-tuning of the initial data.

Remark 53. The key insight from the analysis of the decoupled system is that for a given

order p, the elements in Jp[ϕ,α] only exhibit singular behaviour at the critical sets I±

where spatial infinity touches null infinity for the harmonics with the highest admissible ℓ.

All other sectors with ℓ < p are completely regular for generic initial conditions.

6.6.2 The coupled case

In this section, we provide an analysis of the behaviour of the elements of the jet Jp[ϕ,α]

in the case q ̸= 0 with particular emphasis on their regularity at the critical sets I±. In

order to keep the presentation concise we focus on the differences with the decoupled case

—see Remark 53.

The p = 0 order transport equations

We start our analysis of the full non-linear system by looking at the solutions corresponding

to the jet J0[ϕ,α] —that is, the order p = 0. By evaluating the system (6.24a)-(6.24e) one

finds that

▲ϕ(0) = s(0), (6.28a)

▲α(0)
+ − 2α̇(0)

+ = j
(0)
+ , (6.28b)
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▲α(0)
− + 2α̇(0)

− = j
(0)
− , (6.28c)

▲α(0)
0 + α

(0)
0 = j

(0)
0 , (6.28d)

▲α(0)
2 + α

(0)
2 = j

(0)
2 . (6.28e)

This order is non-generic as under Assumption 1, it can be readily verified that the above

transport equations decouple and it is possible to write down the solution explicitly. More

precisely, one has that:

Lemma 13. The unique solution to the 0-th order system (6.28a)-(6.28e) with initial

conditions (6.25a)-(6.25c) is given by

ϕ(0) = φ⋆, α
(0)
± = 0, α

(0)
0 = 0, α

(0)
2 = 0.

Remark 54. As it will be seen, the 0-th order jet J0[ϕ,α] given by the above lemma

allows to start a recursive scheme to compute the higher order jets Jp[ϕ,α] with p ≥ 1.

The p ≥ 1 transport equations

In order to analyse the properties of the jet of order p, Jp[ϕ,α] for given p = n, we assume

that we have knowledge of the jets

J0[ϕ,α], J1[ϕ,α], . . . , Jn−1[ϕ,α].

Under this assumption and taking into account Lemma 13 one finds that the elements of

Jp[ϕ,α] satisfy the equations —cfr. the general discussion in Subsection 6.4.1:

▲ϕ(n) + 2nτϕ̇(n) = s(n), (6.29a)

▲α(n)
+ + 2(nτ − 1)α̇(n)

+ = 2q2|φ⋆|2α(n)
+ + j̃

(n)
+ , (6.29b)

▲α(n)
− + 2(nτ + 1)α̇(n)

− = 2q2|φ⋆|2α(n)
− + j̃

(n)
− , (6.29c)

▲α(n)
0 + 2nτα̇(n)

0 + α
(n)
0 = 2q2|φ⋆|2α(n)

0 + j̃
(n)
0 , (6.29d)

▲α(n)
2 + 2nτα̇(n)

2 + α
(n)
2 = 2q2|φ⋆|2α(n)

2 + j̃
(n)
2 , (6.29e)

where s(n), j̃(n)
± , j̃(n)

0 and j̃
(n)
2 depend, solely, on the elements of Jp[ϕ,α], 0 ≤ p ≤ n− 1.
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Remark 55. The key new feature in the above equations is the presence in (6.29b)-(6.29e)

of the terms involving the constant 2q2|φ⋆|2 in the right-hand side of the equations. These

terms arise from the cubic nature of the coupling in the source terms in the Maxwell-

scalar field system. This feature does not arise in systems with quadratic coupling like

the conformal Einstein-field equations or the Maxwell-Dirac system. In particular, observe

that one is led to consider model homogeneous equations of the form

▲ζ + 2(nτ − 1)ζ̇ − κζ = 0, (6.30a)

▲ζ + 2nτ ζ̇ + (1 − κ)ζ = 0 (6.30b)

with κ ≡ 2q2|φ⋆|2. As will be seen in the sequel, the solutions of these equations for generic

choice of κ is radically different to that of the case κ = 0 —i.e. q = 0.

Now, assuming that the various fields have an asymptotic expansion as in Remark 49

one is led to consider a hierarchy of ordinary differential equations of the form

(1 − τ 2)ϕ̈n;ℓ,m + 2(n− 1)τ ϕ̇n;ℓ,m + ((ℓ− n+ 1)(n+ ℓ))ϕn;ℓ,m = sn;ℓ,m, (6.31a)

(1 − τ 2)α̈+,n;ℓ,m + 2(−1 + (n− 1)τ)α̇+,n;ℓ,m + (ℓ(ℓ+ 1) − n(n− 1) − κ)α+,n;ℓ,m = j̃+,n;ℓ,m,

(6.31b)

(1 − τ 2)α̈−,n;ℓ,m + 2(1 + (n− 1)τ)α̇−,n;ℓ,m + (ℓ(ℓ+ 1) − n(n− 1) − κ)α−,n;l,m = j̃−,n;ℓ,m, (6.31c)

(1 − τ 2)α̈0,n;ℓ,m + 2(n− 1)τ α̇0,n;ℓ,m + ((ℓ− n+ 1)(n+ ℓ) − κ)α0,n;ℓ,m = j̃0,n;ℓ,m, (6.31d)

(1 − τ 2)α̈2,n;ℓ,m + 2(n− 1)τ α̇2,n;ℓ,m + ((ℓ− n+ 1)(n+ ℓ) − κ)α2,n;ℓ,m = j̃2,n;ℓ,m, (6.31e)

for 0 ≤ ℓ ≤ n, −ℓ ≤ m ≤ ℓ and with the source terms

sn;ℓ,m, j̃+,n;ℓ,m, j̃−,n;ℓ,m, j̃0,n;ℓ,m, j̃2,n;ℓ,m,

known as a result of the spherical harmonics decomposition of the lower order jets Jp[ϕ,α]

for 0 ≤ p ≤ n − 1. The homogeneous version of equations (6.31b)-(6.31e) does not fit the

general scheme of solutions discussed in Subsection 6.6.1 for the decoupled system. In fact,

one has the following general result from [71] which we quote for completeness.
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Lemma 14. The Jacobi ordinary differential equation

(1 − τ 2)ä+
(
β − α− (α + β + 2)τ

)
ȧ+ γa = 0

has polynomial solutions if and only if γ is rational.

So, the question is whether it is possible to characterise the solutions in an easy manner?

For this, we resort to Frobenius’s method to study the properties of the equations in terms

of asymptotic expansions at the values τ = ±1 —see [72], Chapter 4. The homogeneous

version of the equations (6.31b)-(6.31e) can be described in terms of the model equation

(1 − τ 2)ζ̈ + 2(ς + (n− 1)τ)ζ̇ + (ℓ(ℓ+ 1) − n(n− 1) − κ)ζ = 0 (6.32)

where

ς =


−1 for α+

1 for α−

0 for ϕ, α0, α2

—recall also that κ = 2q2φ2
⋆. Following Frobenius’s method, we look for power series

solutions of the form

ζ = (1 − τ)r
∞∑

k=0
Dk(1 − τ)k, D0 ̸= 0. (6.33)

Substitution of the Ansatz (6.33) into the model equation (6.32) leads to the indicial

equation

2r(r − 1) − 2ςr − 2(n− 1)r = 0.

The solutions to the indicial equation for the various values of ς are given in Table 1.

Once the solutions to the indicial equation are known, Ansatz (6.33) leads to a recur-

rence relation for the coefficients Dk in the series. The details of this computation are

given in Appendix B.3. The key observation for the subsequent discussion is that for a

given value of ς, the root r1 = 0 of the indicial polynomial does not lead to a valid series

solution as the recursion relation breaks down at some order. In order to obtain a second,
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ς r1 r2

−1 0 n− 1

0 0 n

1 0 n+ 1

Table 1: Roots of the indicial equation.

linearly independent solution to equation (6.32) one needs to consider a more general type

of Ansatz. Again, following the discussion in [72] we look for a second solution of the form

ζ =
∞∑

k=0
Gk(1 − τ)k + (1 − τ)r2 log(1 − τ)

∞∑
k=0

Mk(1 − τ)k, G0 ̸= 0, M0 ̸= 0. (6.34)

A detailed inspection of the recurrence relations implied by the Ansatz (6.34) shows that

all the coefficients Mk for k = 1, 2, . . . and Gk for k = 0, 1, 2, . . . can be expressed in terms

of the coefficient M0 —again, see Appendix B.3 for further details.

Remark 56. The previous analysis has been restricted, for concreteness, to the behaviour

of the solutions to the homogeneous model equation (6.32) near τ = 1. A similar analysis

can be carried out mutatis mutandi to obtain the behaviour of the solutions near τ = −1.

Remark 57. Observe that the logarithmic singularity of the solutions given by (6.34) is

modulated by a term of the form (1 − τ)r2 . Accordingly, within the radius of convergence

of the series, the whole solution is of class Cr2−1 at τ = ±1.

Remark 58. It is of some interest that the solutions to the model equation (6.32) can be

written in closed form in terms of hypergeometric functions. This representation, however,

makes it harder to examine the regularity properties of the solutions at the critical values

τ = ±1.

The discussion in the previous paragraphs can be summarised in the following:

Proposition 13. The general solution to the model equation (6.32)

(1 − τ 2)ζ̈ + 2(ς + (n− 1)τ)ζ̇ + (ℓ(ℓ+ 1) − n(n− 1) − κ)ζ = 0, κ ̸= 0

with ς = −1, 0, 1, 0 ≤ ℓ ≤ n, n = 1, 2, . . ., consists of:
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(i) one solution which is analytic for τ ∈ [−1, 1];

(ii) one solution which is analytic for τ ∈ (−1, 1) and has logarithmic singularities at

τ = ±1. At these singular points the solution is of class Cr2−1.

Remark 59. The key observation from the previous analysis is the fact that the solutions

to the homogeneous equations in the coupled case have one solution with logarithmic

singularities for every 0 ≤ ℓ ≤ n and −ℓ ≤ m ≤ ℓ. This is in contrast to the decoupled

case where only the solutions corresponding to the spherical harmonics with ℓ = n had

logarithmic divergences.

The solution to the inhomogeneous equations

Having analysed the behaviour of the solutions to the homogeneous part of the trans-

port equations we proceed now to briefly discuss the behaviour to the full inhomogeneous

equations (6.31a)-(6.31e). For this we rely on the method of variation of parameters as

discussed in Appendix B.4.

In the following let ζ denote any of the unknowns (ϕn;ℓ,m, α+,n;ℓ,m, α−,n;ℓ,m, α0,n;ℓ,m, α2,n;ℓ,m)

in the transport equations (6.31a)-(6.31e). These equations are described through the

model equation

(1 − τ 2)ζ̈ + 2(ς + (n− 1)τ)ζ̇ + (n(1 − n) + ℓ(ℓ+ 1) −κ)ζ = f(τ), ς = −1, 0, 1, (6.35)

where f denotes the corresponding source terms (sn;ℓ,m, j̃+,n;ℓ,m, j̃−,n;ℓ,m, j̃0,n;ℓ,m, j̃2,n;ℓ,m).

Moreover, let ζ1 and ζ2 denote two linearly independent solutions to the homogeneous

problem. The method of variation of parameters gives the general solution to (6.35) in the

form

ζ(τ) = A1(τ)ζ1(τ) + A2(τ)ζ2(τ), (6.36)

where

A1(τ) = A1⋆ −
∫ τ

0

ζ2(s)f(s)
W⋆(1 − s2)n

(
1 + s

1 − s

)2ς

ds, (6.37a)
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A2(τ) = A2⋆ +
∫ τ

0

ζ1(s)f(s)
W⋆(1 − s2)n

(
1 + s

1 − s

)2ς

ds, (6.37b)

with A1⋆ and A2⋆ constants fixed by the initial data. The details of the derivation of these

expressions can be found in Appendix B.4. For ease of presentation, the discussion in this

subsection is focused on the the behaviour of the solutions at τ = 1. A similar discussion

can be made, mutatis mutandi, for the behaviour at τ = −1.

Consistent with Proposition (13), we distinguish two cases for the solutions of (6.36)

as follows:

(i) the two solutions to the homogeneous equation are smooth at τ = 1;

(ii) one of the solutions to the homogeneous problem is smooth at τ = 1 while the other

has a logarithmic singularity.

In the following for simplicity of the presentation it is assumed that the source term

f is regular at τ = 1 —i.e. it does not contain singularities of either logarithmic type or

poles.

Case (i). We observe that the integrands in equations (6.37a) and (6.37b) contain a pole

of order n + 2ς at τ = 1. The decomposition in partial fractions will, for generic source

f(s), contain a term of the form
1

1 − s

which, when integrated gives rise to a logarithmic term ln(1 − τ). This type of logarithmic

singularity can be precluded if the zeros of the expressions

ζ1(s)f(s)(1 + τ)2ς , ζ2(s)f(s)(1 + τ)2ς

have a very fine-tuned structure. The latter can be, in principle, reexpressed in terms of

conditions on the initial —this task, however, goes beyond the scope of this analysis. Thus,

the generic conclusion is that even if the solutions ζ1 and ζ2 to the homogeneous problem

do not contain logarithmic singularities at τ = 1, the actual solutions to the transport

equations at a given order will have this type of singularities unless the initial conditions
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are fine-tuned. The regularity (or more precisely, lack thereof) of these singularities is

controlled by the factors of (1 − τ) appearing in the functions ζ1 and ζ2. It can also

be readily verified that the structure of these factors in ζ1 and ζ2 is such that the final

solution as given by formula (6.36) has no poles at τ = 1 —that is to say, the only possible

singularities are of logarithmic type.

Case (ii). In the following we assume that ζ2 is the solution to the model homogeneous

equation containing the logarithmic term. A quick inspection of equation (6.37b) the shows

that this term will give rise, generically, to logarithmic singularities similar to those in Case

(i). The situation is, however, different for expression (6.37a) for which the denominator

already contains a ln(1 − τ) term. The decomposition in terms of partial fractions gives

rise to a term of the form
ln(1 − τ)
(1 − τ) ,

which, after being integrated, gives rise to a singular term of the form

ln2(1 − τ).

This is the most singular term arising from the integration of the partial fractions decom-

position of the integrand in (6.37a). As in Case (i), the coefficients in the partial fractions

decomposition can, in principle, be expressed in terms of initial data —thus, this singular

term could be removed by fine-tuning. The remaining terms in the expansion give rise, at

worst, to singular terms containing ln(1 − τ) and some power of 1 − τ . As in Case (i), it

can be verified that the solution arising from formula (6.36) does not contain poles at 1−τ

—that is, again, all singular behaviour is of logarithmic type.

Remark 60. More generally, in view of the recursive nature of the of the transport equa-

tion in which the source terms at order n are given explicitly in terms of lower-order jets,

the source terms will contain logarithmic terms involving powers of ln(1 − τ). Because

of the structural properties of the variation of parameters formula will then give rise to

higher-order logarithmic terms. The discussion in the previous paragraphs thus shows

that even in the optimal case where the source is completely regular, logarithmic terms

will arise.

205



Chapter 6. The Maxwell-scalar field system near spatial infinity

6.6.3 Summary

The discussion in this section can be summarised in the following:

Theorem 5. For generic initial data for the Maxwell-scalar field the jet Jp[ϕ,α], p ≥

1 contains logarithmic divergences at the τ = ±1 —i.e. at the critical sets I± where

null infinity meets spatial infinity— for all spherical harmonic sectors. The logarithmic

divergences are of the form

(1 ± τ)µ1 lnµ2(1 ± τ)

for some non-negative integers µ1, µ2.

Remark 61. The situation described in Theorem 5 is to be contrasted with the situation

in the decoupled case in which for the solution jet at order p, for generic initial data,

there always exist spherical sectors without logarithmic singularities —see Proposition 12.

Moreover, due to the absence of source terms the logarithmic singularities are of the form

(1 ± τ)µ3 ln(1 ± τ)

for some non-negative integer µ3. It is in this sense that the non-linear coupling of the

Maxwell and scalar fields gives rise to a more singular behaviour at the conformal boundary

and, consequently, a more complicated type of asymptotics.

6.7 Peeling properties of the Maxwell-scalar system

In this section, we translate the results on the regularity of the solutions of the Einstein-

Maxwell at the conformal boundary obtained in Section 6.6 into statements about the

asymptotic decay of the fields in the physical spacetime. The most important consequence

of regularity (smoothness) at the conformal boundary of a field is the so-called peeling

—i.e a hierarchical decay of the various components of, say, the Maxwell field along the

generators of outgoing light cones. As the asymptotic expansions of Section 6.6 generically

imply a non-smooth behaviour at the conformal boundary, one expects a modified peeling

behaviour.
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6.7.1 The Newman-Penrose gauge

The discussion of peeling properties fields is usually done in terms of a gauge which is

adapted to null infinity —the so-called Newman-Penrose (NP) gauge. The relation between

the NP-gauge and the F-gauge used to compute the expansions in Section 6.6 has been

studied in detail, for the Minkowski spacetime, in [40]. In this subsection we briefly discuss

the associated transformation formulae.

In the following, the discussion will be restricted to the case of I +. Analogous con-

ditions can be formulated, mutatis mutandi, for I −. The NP gauge is adapted to the

geometry of null infinity. Let {e′
AA′} denote a frame satisfying η(e′

AA′ , e′
BB′) = ϵABϵA′B′

in a neighbourhood U of I +. The frame is said to be in the NP-gauge if it satisfies the

conditions:

(i) the vector e′
11′ is tangent to I + and is such that

∇11′e′
11 = 0.

(ii) There exits a smooth function u (retarded time) on U that satisfies e′
11′(u) = 1 at

I +.

(iii) The vector e′
00′ is required to satisfy

e′
00′ = η(du, ·).

(iv) Let

Nu• ≡ {p ∈ U | u(p) = u•},

where u• is constant. Then the frame e′
AA′ , tangent to Nu• ∪ I +, satisfies

∇00′e′
AA′ = 0 on Nu• .

In [40], the relation between the NP-gauge frame {e′
AA′} and the F-gauge frame {eAA′}

for the Minkowski spacetime, as defined in Section 6.3.3, was explicitly computed. This

computation assumes the conformal factor

Θ = ρ(1 − τ 2),
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Chapter 6. The Maxwell-scalar field system near spatial infinity

and its key outcomes are summarised in the following:

Proposition 14. The NP-gauge frame at I + and F-gauge frame in the Minkowski space-

time are related via

e′
AA′ = ΛB

AΛ̄B′
A′eBB′ , (6.38)

with

Λ0
1 = 2eiω

√
ρ(1 + τ) , Λ1

0 =
e−iω√

ρ(1 + τ)
2 , Λ1

1 = Λ0
0 = 0, (6.39)

where ω is an arbitrary real number that encodes the spin rotation of the frames on S2. For

the NP-gauge frame at I −, the roles of the vectors e′
00′ and e′

11′ are interchanged, and

NP-gauge frame is related to the F-gauge by equation (6.38) with ΛA
B given by

Λ0
1 =

e−iω√
ρ(1 − τ)
2 , Λ1

0 = 2eiω

√
ρ(1 − τ) , Λ1

1 = Λ0
0 = 0. (6.40)

6.7.2 The scalar field

We start our discussion of the peeling properties by looking at the scalar field. In order to

carry out this computation we make the following assumption:

Assumption 2. On M, the scalar field ϕ satisfies the asymptotic expansion

ϕ =
N∑

p=0

1
p!ϕ

(p)ρp + o1(ρN)

for some sufficiently large N and where ϕ(p) are contained in the solution jet J (p)[ϕ,α] as

discussed in Section 6.6. The remainder o1(ρN) is assumed to be, at least, of class C1.

Remark 62. Making use of a generalisation of the estimates near I introduced in [30]

for the massless spin-2 filed it is, in principle, possible to relate, in a rigorous manner,

Taylor-like expansions like the one in Assumption 2 arising from the jets computed in

Section 6.6 and actual solutions to the Maxwell-scalar field. The main challenge in the

present case compared to the analysis in [30] is the non-linearity of the system of equations.

The discussion of this problem, which would allow to reduce Assumption 2 to more basic

hypothesis falls, however, outside the scope of the present thesis.
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6.7. Peeling properties of the Maxwell-scalar system

Consistent with Assumption 2 and following the discussion of Section 6.6, generically,

the scalar field has, near I the form

ϕ = φ⋆ + O(ρ(1 − τ)ln(1 − τ)).

Now, recall that the physical scalar field ϕ̃ is related to the unphysical one via ϕ̃ = Θϕ

with Θ = ρ(1 − τ 2) ≈ ρ(1 − τ) near τ = 1 —i.e I +. Accordingly, one has that

ϕ̃ = ρ(1 − τ)φ⋆ + O(ρ2(1 − τ)2ln(1 − τ)).

Finally, expressing the latter in terms of the physical radial Bondi coordinate r̃ ≈ 1 − τ

one concludes that

ϕ̃ = φ⋆

r̃
+O

(
ln r̃
r̃2

)
.

Thus, to leading order, the physical scalar field satisfies the classic peeling behaviour.

Polyhomogeneous (i.e. logarithmic contributions) are subleading.

6.7.3 The Maxwell field

In analogy to the discussion of the scalar field, we make the following assumption on the

components of the Maxwell spinor —cfr. Assumption 2:

Assumption 3. On M, the components of the Maxwell spinor ϕAB satisfy the asymptotic

expansion

ϕi =
N∑

p=0

1
p!ϕ

(p)
i ρp + o1(ρN), i = 0, 1, 2,

for some sufficiently large N and where ϕ(p)
i the coefficients contained in the jet Jp[ϕ] of

the Maxwell field which can be computed from the solution jet J (p)[ϕ,α] as discussed in

Section 6.6. The reminder o1(ρN) is assumed to be, at least, of class C1.

A careful inspection of the solutions to the Maxwell-scalar field equations at order p = 1

following the discussion in Section 6.6 shows that, for generic data, close to null infinity,

I +, one has that

ϕ0 = O
(
(1 − τ)2 ln(1 − τ)

)
,

209



Chapter 6. The Maxwell-scalar field system near spatial infinity

ϕ1 = O
(
(1 − τ) ln(1 − τ)

)
,

ϕ2 = O
(

ln(1 − τ)
)
.

The above expressions are given in the F-gauge. To analyse the peeling properties of

solutions with this behaviour we transform into the NP gauge making use of Proposition

14. More precisely, the physical components of the Maxwell spinor in the NP gauge ϕ̃0,

ϕ̃1, ϕ̃2, are given by:

ϕ̃0 = ΘΛP
0ΛQ

0ϕP Q,

ϕ̃1 = ΘΛP
1ΛQ

0ϕP Q,

ϕ̃2 = ΘΛP
1ΛQ

1ϕP Q.

Observing that, to leading order, the physical Bondi radial coordinate satisfies r̃ ≈ 1 − τ ,

one concludes that

ϕ̃0 = O

(
ln r̃
r̃3

)
, ϕ̃1 = O

(
ln r̃
r̃2

)
, ϕ̃2 = O

(
ln r̃
r̃

)
.

The key point to notice in the above expressions is the presence of a logarithm in the

leading term of the radiation field —ϕ2 in the conventions used in this article. This is a

specific property of the Maxwell-scalar field system — for a decoupled Maxwell field on

flat spacetime, the behaviour of this particular component is always

ϕ2 = O
(1
r̃

)

—see e.g. [73].
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Chapter 7

Conclusions and future perspectives

In this thesis, the conformal Einstein field equations have been discussed along with several

applications. These equations, their origin and motivation have been presented in Chapter

2. The main strength of using the conformal Einstein field equations as a tool for analysing

the global properties of solutions to the Einstein field equations consists of their behaviour

under conformal transformations. This property allows one to study the physical spacetime

(M̃, g̃) through the analysis of its conformal extension (M, g). Furthermore, in the context

of the initial value problem, it allows to reduce, in certain cases, global problems into local

ones, e.g. the proof of the semiglobal non-linear stability of the Minkowski spacetime and

the global non-linear stability of the de Sitter spacetime — see [23, 24].

As discussed in Chapter 2, there are two versions of the conformal Einstein field equa-

tions: the standard conformal Einstein field equations and a more general version rep-

resented by the extended conformal Einstein field equations. The former requires gauge

fixing by means of gauge source functions, whereas for the latter this is done by exploiting

the notion of conformal Gaussian systems of coordinates. In both cases, one obtains a

first-order system of symmetric hyperbolic evolution equations. Conversely, in the clas-

sical discussion of the Cauchy problem in General Relativity due to Fourès-Bruhat [18],

the hyperbolic reduction of the Einstein field equations using the gauge source functions

associated with the choice of harmonic coordinates, reduces the Einstein field equations to
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a second-order hyperbolic system for the metric components.

In Chapter 3, the first application of the conformal Einstein field equations is discussed.

This chapter contains a discussion on the non-linear stability of de Sitter-like spacetimes.

More precisely, it is discussed how the extended conformal Einstein field equations and a

gauge based on the properties of the conformal geodesics can be used to study the non-

linear stability of this class of spacetime. This analysis identifies a class of spacetimes for

which it is possible to prove non-linear stability and the existence of a regular conformal

representation. These special properties are not shared by generic Cosmological solutions.

Thus, it is important to identify the situations in which this is the case.

The use of conformal methods in General Relativity poses an important question: can

the conformal Einstein field equations be used to analyse the stability of black hole space-

times as well as asymptotically simple spacetimes? Observations have shown that the

Cosmological constant in our Universe is positive, thus spacetimes that describe isolated

systems within a de Sitter universe are physically relevant for this type of analysis. In this

regard, the strategy described in Chapter 3 is used in Chapter 4 to discuss the non-linear

stability of the Cosmological region of the Schwarzschild-de Sitter spacetime. This analy-

sis is the first step in a programme to study the non-linear stability of this region of the

Schwarzschild-de Sitter spacetime. Here we show that it is possible to construct solutions

to the vacuum Einstein field equations in this region, containing a portion of the asymptotic

region, which are, in a precise sense, non-linear perturbations of the exact Schwarzschild-de

Sitter spacetime. Crucially, although the spacetimes constructed have an infinite extent

to the future, they exclude the asymptotic points Q and Q′. These points correspond to

the regions of the spacetime where the Cosmological horizon and the conformal boundary

seem to meet. From the analysis of the asymptotic initial value problem in [39] it is known

that the asymptotic points in the conformal boundary, from which the horizons emanate,

contain singularities of the conformal structure. Thus, they cannot be dealt with by the

approach used in the present work which relies on the Cauchy stability of the initial value

problem for symmetric hyperbolic systems. The next step in our programme is to reformu-

late the existence and stability results discussed in Chapter 4 in terms of a characteristic
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initial value problem with data prescribed on the Cosmological horizon. However, it is

necessary to prescribe the characteristic data away from the asymptotic points to avoid

the singularities of the conformal structure. Alternatively, one could consider data sets

which become exactly Schwarzschild-de Sitter near the asymptotic points. Given the com-

parative simplicity of the characteristic constraint equations, proving the existence of such

data sets is not as challenging as in the case of the standard (i.e. spacelike) constraints. In

what respects the evolution problem, it is expected that a generalisation of the methods

used in [45] should allow us to evolve characteristics to reach a suitable hypersurface of

constant coordinate r.

On the other hand, it is conjectured that the singular behaviour at the asymptotic

points can be studied by methods similar to those used in the analysis of spatial infinity —

see [28]. The latter consists of the introduction of a new representation of spatial infinity

known as the cylinder at spatial infinity. In this representation, spatial infinity is not

represented as a point but as a set with the topology of a cylinder. This construction

allows us to formulate a regular finite initial value problem for the conformal Einstein field

equations. This framework is used in Chapter 6 to analyse the effects of the interaction

of a Maxwell field and a scalar field at the critical sets I+ and I− where null infinity I

meets spatial infinity i0.

The Maxwell-scalar field system offers useful insights to study the linearised gravita-

tional field and as a model for the Bianchi equations satisfied by the components of the

Weyl tensor. More precisely, this provides a possible model problem for the Einstein field

equations, as it can be used to understand the effects of the non-linear interactions on the

regularity of solutions at the conformal boundary. The study of the non-linear interaction

between the Maxwell and scalar fields shows a more singular behaviour than what can be

expected by studying the behaviour of the fields when non-interacting. The cubic coupling

in the Maxwell-scalar field equations generically makes the solutions more singular than

what would be expected from the mere analysis of the linear analogue. This situation

stands in stark contrast to that of systems with quadratic coupling like that of the Ein-

stein field equations for which the solutions to the homogeneous transport equations in
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both the linear and full non-linear case share the same type of logarithmic divergences. In

this sense, the Maxwell-scalar field is not a good toy model to analyse the effects of non-

linear interactions in a neighbourhood of spatial infinity. Other models which potentially

overcome this shortcoming are the Dirac-Maxwell system and the Yang-Mills system for

which the coupling is quadratic.

Finally, we observe that for generic initial data which have finite energy and are analytic

around I the solution to the transport equations on I have logarithmic singularities at the

critical sets I+ and I−. The propagation of the singularities at I± along the conformal

boundary destroys the smoothness of the Faraday tensor and the scalar field tensor at I±

so that, in contrast to a decoupled context, there is no peeling behaviour.
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Appendix A

Details of Kato’s theorem for

symmetric hyperbolic systems and a

note on future geodesic completeness

A.1 On Kato’s existence and stability result for sym-

metric hyperbolic systems

In this appendix, we make some remarks concerning the hypothesis in Kato’s existence,

uniqueness and stability result for symmetric hyperbolic equations in [49]. The results in

this reference and, in particular the main Theorem II, are very general and presented in an

abstract manner. This abstract presentation hinders the direct applicability of the theory.

The purpose of this Appendix is to provide a guide to the use of this theorem and to verify

that the main evolution system satisfies the hypothesis of the result.

Kato’s theory is concerned with symmetric hyperbolic systems in which the unknown u

is regarded as a P-valued function over Rm where P is a Hilbert space. The Hilbert space

can be real or complex and, in fact, infinite-dimensional. In the present analysis, we are

interested in the case where P is finite-dimensional —say, of dimension N . In this case,
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future geodesic completeness

the symmetric hyperbolic system becomes a standard partial differential equation. For

concreteness we set here P = RN and m = 3. The following discussion of Kato’s theorem

will be made with this particular choice in mind.

Kato’s theorem is concerned with (N -dimensional) symmetric hyperbolic quasi-linear

systems of the form

A0(t, x,u)∂tu + Aα(t, x,u)∂αu = F(t, x,u). (A.1)

for 0 ≤ t ≤ T , x ∈ R3, α = 1, 2, 3, and initial conditions

u(0, x) = u⋆(x). (A.2)

In Kato’s theory, it is convenient to regard the coefficients A0(t, x,u) and Aα(t, x,u) as

non-linear operators depending on t sending RN -valued functions (i.e. the vector u) over

R3 into (N × N)-matrix valued functions on R3 —in Kato’s terminology these are the

elements of B(P), the space of bounded linear operators over P . Similarly, F(t, x,u) is

regarded as a non-linear operator depending on t sending RN -valued functions on R3 into

RN -valued functions on R3.

Consider now Hs(R3,RN), the space of (RN)-vector valued functions over R3 such that

their entries have finite Sobolev norm of order s. Let D be a bounded open subset of

Hs(R3,RN). Writing

Aµ(t, x,u) =
(
aµ

ij(t, x,u)
)
, F(t, x,u) =

(
fi(t, x,u)

)
, i, j = 1, . . . N, µ = 0, . . . , 3,

one has that for fixed t and u ∈ D

aµ
ij(t, x,u) : Rm → R,

fi(t, x,u) : Rm → R.

Key in Kato’s analysis are the uniformly local Sobolev spaces Hs
ul. Let C∞

0 (R3,R)

denote the sets of smooth functions of compact support from R3 to R. Given any non-zero

ϕ ∈ C∞
0 (R3,R) not identically zero, then u ∈ Hs

ul if and only if

sup
x∈R3

∥ ϕxu ∥s< ∞, ϕx(y) ≡ ϕ(y − x).

216



A.1. On Kato’s existence and stability result for symmetric hyperbolic systems

Remark 63. In other words, the vector-valued function u is in Hs
ul if its Sobolev norm

of order s over any compact set over R3 is finite and remains finite as one considers larger

and larger compact sets on R3.

Remark 64. The spaces Hs
ul satisfy nice embedding properties analogous to those of Hs

—see Lemma 2.7 in [49].

In the following, it will be assumed that for fixed t and u ∈ D, the coefficients

aµ
ij(t, x,u(x)) are functions from D to Hs

ul(R3,R). For fi(t, x,u(x)) one has the more

relaxed condition of being a function from D to Hs(R3,R). In Kato’s more abstract termi-

nology this is equivalent to requiring that Aµ is a function from D to Hs
ul(R3,B(P)) and

F from D to Hs(R3,P).

One has the following reformulation of Theorem II in [49]:

Theorem 6. Let s be a positive integer such that s > 3/2 + 1 = 5/2. Let Aµ(t, x,v(x)),

F(t, x,v(x)) and v ∈ D as above with 0 ≤ t ≤ T . Assume that the following conditions

hold:

(i) The components aµ
ij(t, x,v(x)) (respectively, fi(t, x,v(x))) are bounded in the Hs

ul-

norm (respectively Hs-norm) for v ∈ D, uniformly in t.

(ii) For each t, the map v(x) 7→ Aα(t, x,v(x)) is uniformly Lipschitz continuous on D

from the H0-norm to the H0
ul-norm, uniformly in t. Similarly, the map v(x) 7→

F(t, x,v(x)) is Lipschitz continuous from the H0-norm to the H0-norm, again uni-

formly in t.

(iii) The map v(x) 7→ A0(t, x,v(x)) is Lipschitz continuous on D from the Hs−1-norm to

the Hs−1
ul -norm, uniformly in t.

(iv) The maps t 7→ Aα(t, x,v(x)) are continuous in the H0
ul-norm for each v ∈ D. Simi-

larly, the map t 7→ F(t, x,v(x)) is continuous in the H0-norm for each v ∈ D.

(v) The map t 7→ A0(t, x,v(x)) is Lipschitz-continuous on [0, T ] in the Hs−1
ul -norm,

uniformly for v ∈ D.
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(vi) For each v ∈ D the matrix-valued functions Aµ(t, x,v(x)) are symmetric for each

(t, x) ∈ [0, T ] × Rm.

(vii) The matrix A0(t, x,v(x)) is positive definite with eigenvalues larger than, say, 1 for

each (t, x) and each v ∈ D.

(viii) u⋆ ∈ D.

Then there is a unique solution u to (A.1)-(A.2) defined on [0, T ′] where 0 < T ′ ≤ T such

that

u ∈ C[0, T ′; D] ∪ C1[0, T ′;Hs−1(R3,RN)],

where T ′ can be chosen common to all initial conditions u⋆ in a suitably small condition

of a given point in D.

In practice, the conditions of the above theorem are hard to verify. Kato provides

sufficient conditions ensuring that conditions in the above theorem are satisfied (Theorem

IV in [49]:

Theorem 7. Suppose that s > 3/2 + 1 = 5/2. Let Ω be the subset of R3 × RN consisting

of pairs (x, v) such that

|v − v⋆(x)| < ω, x ∈ R3

where ω > 0 and v⋆ ∈ Hs(R3,RN) ⊂ C1(R3,RN) are fixed. Let, as before,

Aµ : [0, T ] × Ω −→ B(RN),

F : [0, T ] × Ω −→ RN ,

where B(RN) denotes the set of (N×N)-matrix valued functions over R3 with the properties

(a) Aα ∈ C[0, T ;Cs
b (Ω,B(RN))],

(b) A0 ∈ Lip[0, T ;Cs−1
b (Ω,B(RN))],

(c) F ∈ C[0, T ;Cs+1
b (Ω,RN)],
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(d) F⋆ ∈ L∞[0, T ;Hs(R3,RN)] ∩ C[0, T ;H0(R3,RN)],

where F⋆(t, x) ≡ F(t, x, v⋆(x)). Then conditions (i)-(v) in Theorem 6 are satisfied by Aµ,

F provided that D is chosen as a ball in Hs(R3,RN) with v⋆ as centre and a sufficiently

small radius R⋆. In addition, (ix) is satisfied if (a) is assumed to hold with s replaced by

s+ 1.

Remark 65. The sets Cr
b (Ω,B(RN)) and Cr

b (Ω,RN) denote the spaces of functions having

derivatives up to the r-th order which are continuous and bounded in the supremum norm.

Remark 66. If the Aµ are polynomials in p it actually suffices that the coefficients only

be in C[0, T ;Hs
ul] and also in C1[0, T ;Hs−1

ul ] for A0.

A.2 Future geodesic completeness of the background

solution

The geodesic completeness of the metric (3.2) can be shown using the theory developed in

[10] —in particular, Corollary 3.3 in this reference applies to the present situation.

More precisely, the theory in [10] applies to spacetimes (M, g) such that M = [t•,∞)×

S where t• > 0 and S is a smooth 3-dimensional manifold. The metric g has the 3+1 split

g = −α2ω0 ⊗ ω0 + hijωi ⊗ ωj ,

with

ω0 = dt, ωi = dxi + βidt.

There exist numbers 0 < α−, α+ such that

0 < α− ≤ α ≤ α+.

The metric h ≡ hijdxi ⊗dxj is a geodesically complete Riemannian metric on St ≡ {t}×S

such that there exists a constant C1 > 0 such that

C1hij(t•)vivj ≤ hij(t)vivj
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for all vectors on TS and t ∈ [t•,∞). Furthermore, there exists another constant C2 such

that

βiβ
i ≤ C2, t ∈ [t•,∞).

In the following let Kij denote the extrinsic curvature of the hypersurfaces St, K{ij} is

tracefree part and K its trace.

With the above conditions, the metric g is future geodesically complete if the following

two conditions hold:

(i) DiαD
iα is bounded by a function of t which is integrable on [t•,∞);

(ii) K < 0 and KijK
ij is integrable on [t•,∞).

The metric (3.2) can be readily seen to satisfy the above conditions. In particular,

as α = 1, the norm of the spatial gradient of the lapse vanishes and, accordingly, it is

integrable —this verifies condition (i) above. Moreover, the extrinsic curvature of the

hypersurfaces of constant t is given by

Kij = − sinh t cosh t̊γij,

so that it is pure trace. Moreover, one has that

K = −3 coth t < 0, t ∈ [t•,∞).

As K{ij} = 0 in this case one has that (ii) is also satisfied. It follows then that the

background metric ˚̃g is future geodesically complete.
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Details of the analysis of the

Maxwell-scalar field system

B.1 The trace-free Ricci spinor

The use of commutators to obtain the wave equations satisfied by the components of the

gauge potential leads to terms involving the spinorial counterpart of the tracefree Ricci

spinor —see Equation (6.13b). The symmetries of the tracefree Ricci spinor (5.19) imply

the decomposition

ΦAB′CD′ = 1
6ΦACϵB′D′ + 1

3ΦCBτAD′τB
B′ + 1

6ΦCBτAB′τB
D′

+1
6ΦABτ

B
D′τCB′ + 1

3ΦABτ
B

B′τCD′ + ΦABCDτ
B

B′τD
D′

+1
3ΦhACBDτ

B
B′τD

D′ ,

where

ΦAB = Φ(AB), ΦABCD = Φ(ABCD).

A direct computation of the components of the Schouten tensor of the Weyl connection

associated to the covector fAA′ in the conformal representation of the Minkowski spacetime

given in the F-gauge shows that all its components vanish. Observing that

L̂ba = Lab + fafb − 1
2fcf

cgab − ∇bfa,
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it follows then that

ΦABA′B′ = fAA′fBB′ − 1
2fCC′fCC′

ϵABϵA′B′ − ∇BB′fAA′ .

In the present case, one has that

fAA′ = −xABτ
B

A′ ,

consistent with the fact that fAA′τAA′ = 0. Combining the above observations, one can

conclude that

Φ = −1, ΦAB = 0, ΦABCD = x(ABxCD).

B.2 Properties of the solutions to the Jacobi ordinary

differential equation

In the following, it will be convenient to define

D(n,α,β)a ≡ (1 − τ 2)ä+
(
β − α− (α + β + 2)τ

)
ȧ+ n(n+ α + β + 1)a, (B.1)

so that the general Jacobi equation can be written as

D(n,α,β)a = 0. (B.2)

A class of solutions to (B.2) is given by the Jacobi polynomial of degree n with integer

parameters (α, β) given by

P (α,β)
n (τ) ≡

n∑
s=0

(
n+ α

s

)(
n+ β

n− s

)(
τ − 1

2

)n−s (τ + 1
2

)s

.

It follows from the above that

P
(α,β)
0 (τ) = 1,

and that

P (α,β)
n (−τ) = (−1)nP (β,α)

n (τ).
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Solutions to (B.2) satisfy the identities

D(n,α,β)

((1 − τ

2

)−α

a(τ)
)

=
(1 − τ

2

)−α

D(n+α,−α,β)a(τ), (B.3a)

D(n,α,β)

((1 + τ

2

)−β

a(τ)
)

=
(1 + τ

2

)−β

D(n+β,α,−β)a(τ), (B.3b)

D(n,α,β)

((1 − τ

2

)−α (1 + τ

2

)−β

a(τ)
)

=
(1 − τ

2

)−α (1 + τ

2

)−β

D(n+α+β,−α,−β)a(τ),(B.3c)

which hold for |τ | < 1, arbitrary C2-functions a(τ) and arbitrary values of the parameters

α, β, n.

An alternative definition of the Jacobi polynomials, convenient for verifying when the

functions vanish identically, is given by

P (α,β)
n (τ) = 1

n!

n∑
k=0

ck

(
τ − 1

2

)k

with

c0 ≡ (α + 1)(α + 2) · · · (α + n),
...

ck ≡ n!
k!(n− k)!(α + k + 1)(α + k + 2) · · · (α + n) × (n+ 1 + α + β)(n+ 2 + α + β) · · ·

· · · (n+ k + α + β),
...

cn ≡ (n+ 1 + α + β)(n+ 2 + α + β) · · · (2n+ α + β).

Thus, for example, for α = β = −p and n = p + ℓ one finds that the string of products

in the above coefficients start at a negative integer value and end up at a positive one

indicating that one of the factors vanishes. Accordingly, the whole coefficient must vanish.

B.3 Details of the computation of the series solutions

The purpose of this appendix is to discuss some of the details in the computation of the

series of solutions presented in Proposition 13. The approach followed here is a variation

of the classical Frobenius method —see e.g. [72], Chapter 4.
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B.3.1 The first solution

Following the main text, we consider the model equation

(1 − τ 2)ζ̈ + 2(ς + (n− 1)τ)ζ̇ + (ℓ(ℓ+ 1) − n(n− 1) − κ)ζ = 0, (B.4)

and we look for solutions satisfying the Ansatz

ζ = (1 − τ)r
∞∑

k=0
Dk(1 − τ)k, D0 ̸= 0. (B.5)

Differentiation of this power series gives

ζ̇ = (−1)
∞∑

k=0
(k + r)Dk(1 − τ)k+r−1,

ζ̈ =
∞∑

k=0
(k + r)(k + r − 1)Dk(1 − τ)k+r−2.

Hence, observing that

2(n− 1)τ = 2(n− 1)(1 − (1 − τ))

and by replacing the derivatives into the model equation (B.4) one obtains the indicial

polynomial

(2r(r − 1) − 2ςr − 2(n− 1)r) = 0. (B.6)

Accordingly, one has that for ς = −1 one has the roots r1 = 0 and r2 = n − 1; for ς = 1

the roots are r1 = 0 and r2 = n + 1; whereas for ς = 0 one has the roots r1 = 0 and

r2 = n. Some further lengthy manipulations lead to the following recurrence relations for

the coefficients in the Ansatz (B.5):

(i) for ς = 1 and r1 = 0

Dk+1 = −k(k − 3) + 2n+ (n(1 − n) + ℓ(ℓ+ 1) − κ)
2k(k − n− 1) Dk,

while if r2 = n+ 1 one has

Dk+1 = −(k + n+ 1)(k + n) + (n(1 − n) + ℓ(ℓ+ 1) − κ) − 2(k + 1)
2(k + n+ 1)(k + n− 1) Dk;
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(ii) for ς = −1 and r1 = 0 one has

Dk+1 = −k(k − 3) + 2n+ (n(1 − n) + ℓ(ℓ+ 1) − κ)
2k(k − n+ 1) Dk,

while if r2 = n− 1 one has

Dk+1 = −(k + n− 1)(k + n− 4) + 2n+ (n(1 − n) + l(l + 1) − x)
2k(k + n− 1) Dk;

(iii) finally, if κ = 0 and r1 = 0 one has that

Dk+1 = −k(k − 3) + 2n+ (n(1 − n) + ℓ(ℓ+ 1) − κ)
2k(k − n+ 1) Dk,

while if r2 = n one has

Dk+1 = −(k + n)(k + n− 3) + 2n+ (n(1 − n) + ℓ(ℓ+ 1) − κ)
2k(k + n) Dk.

Two key observations can be drawn from the previous expressions:

(i) all the recurrence relations associated to non-zero roots of the indicial polynomial

are well defined for k ≥ 0. Accordingly, these lead to an infinite Taylor series for the

solutions. These series can be resumed as hypergeometric functions. These solutions

are regular and, in fact, analytic at τ = 1. Analogous series solutions can be obtained

for τ = −1.

(ii) All the recurrence relations associated to zero roots of the indicial polynomial become

singular for a certain non-zero value of k. Accordingly, these recurrence relations do

not lead to well-defined series solutions.

In summary, the procedure described in this section only provides one independent

solution to the second-order model ordinary differential equation (B.4).

B.3.2 The second solution

Motivated by the method of reduction of order we look for a second solution to the model

equation (B.4) of the form

ζ =
∞∑

k=0
Gk(1 − τ)k + ln(1 − τ)

∞∑
k=0

Mk(1 − τ)k+r, G0 ̸= 0, M0 ̸= 0. (B.7)
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The substitution of the Ansatz (B.7) into equation (B.4) leads again to the indicial polyno-

mial (B.6). Moreover, the coefficients Mk can be shown to satisfy, for the various choices of

the parameter ς, the same recurrence relations as in the previous section. Accordingly, in

the following we only consider the non-zero roots of the indicial polynomial and the series
∞∑

k=0
Mk(1 − τ)k+r2

is a formal solution to the model equation (B.4). The rest of the analysis is split in cases

corresponding to the possible values of ς.

The case ς = 0. In this case, the root of the indicial polynomial is r = n. For k ≤ n− 2

one has the recurrence relation

Gk+1 = k(k − 1) − 2(n− 1)k − (n(1 − n) + ℓ(ℓ+ 1))
2k(k + 1) − 2(n− 1)(k + 1) Gk.

For k = n− 1 one has

Gn−1 = −2n
−(n− 1)(n− 2) + 2n(n− 1) − 2(n− 1) + (n(1 − n) + ℓ(ℓ+ 1))M0.

For 0 ≥ k ≥ n one has

Gk+1 =k(k − 1) − 2nk + 2k − (n(1 − n) + ℓ(ℓ+ 1))
2k(k + 1) − 2(n− 1)(k + 1) Gk + −2k − 2(k + 1) + 2(n− 1)

2k(k + 1) − 2(n− 1)(k + 1)Mk−n+1

+ (k − 1) + k − 2n+ 2
2k(k + 1) − 2(n− 1)(k + 1)Mk−n.

In conclusion, in the case ς = 0 one obtains a second linearly independent solution which

contains a logarithmic singularity at τ = 1. This solution has only one undetermined

constant —namely M0.

The case ς = 1. In this case, the non-zero root of the indicial polynomial is given by

r2 = n+ 1. For k ≤ n− 1 we have the recurrence relation

Gk+1 = k(k − 1) − 2(n− 1)k − (n(1 − n) + ℓ(ℓ+ 1) − κ)
2k(k + 1) − 2(k + 1) − 2(n− 1)(k + 1) Gk.

For k = n we have the recurrence relation

Gn = − (n+ 2)
−n(n− 1) + 2n(n− 1) + (n(1 − n) + ℓ(ℓ+ 1) − κ)M0.
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For k ≥ n+ 1 we have the recurrence relation

Gk+1 =k(k − 1) − 2(n− 1)k − (n(1 − n) + ℓ(ℓ+ 1) − κ)
2k(k + 1) − 2(k + 1) − 2(n− 1)(k + 1) Gk

+ −2k − 2(k + 1) + k + 2 + 2(n− 1)
2k(k + 1) − 2(k + 1) − 2(n− 1)(k + 1)Mk−n

+ k − 2n+ 2
2k(k + 1) − 2(k + 1) − 2(n− 1)(k + 1)Mk−n−1.

Again, this solution has a logarithmic singularity at τ = 1 and the free constant is M0.

The case ς = −1. In this case, the non-zero root of the indicial polynomial is given by

r2 = n− 1. If k ≤ n− 3, we have the recurrence relation

Gk+1 = k(k − 1) − 2(n− 1)k − (n(1 − n) + ℓ(ℓ+ 1) − κ)
2(k + 1)(k − n+ 2) Gk.

If k = n− 2 we have

Gn−2 = − 2(n− 1)
(n− 2)(n+ 1) + (n(1 − n) + ℓ(ℓ+ 1) − x)M0.

If k ≥ n− 1 the recurrence relation is the following

Gk+1 =k(k − 1) − 2(n− 1)k − (n(1 − n) + ℓ(ℓ+ 1) − κ)
2(k + 1)(k − n+ 2) Gk − 4(k + 1) − 2(n− 1)

2(k + 1)(k − n+ 2)Mk−n+2

+ 2k − 2n+ 1
2(k + 1)(k − n+ 2)Mk−n+1.

All the above expressions lead to well-defined formal series solutions to the model

equation (B.4) containing a logarithmic singularity at τ = 1. The regularity of the solutions

is regulated by the value of the corresponding root to the indicial polynomial. For example,

for ς = 0, the logarithmic part of the solution contains the factor

ln(1 − τ)(1 − τ)n.

Accordingly, the first n derivatives of the solution are finite at τ = 1.

The analysis sketched in this appendix is summarised in Proposition 13 in the main

text.
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B.4 Solving the inhomogeneous transport equations

In this section, we discuss a general procedure to compute the solutions to the inhomoge-

neous equation

(1 − τ 2)ζ̈ + 2(ς + (n− 1)τ)ζ̇ + (n(1 − n) + ℓ(ℓ+ 1) − κ)ζ = f(τ), ς = −1, 0, 1.

In the following, for convenience, we write the latter in the form

ζ̈ + 2(ς + (n− 1)τ)
(1 − τ 2) ζ̇ + (n(1 − n) + ℓ(ℓ+ 1) − κ)

(1 − τ 2) ζ = f̃(τ), f̃(τ) ≡ f(τ)
1 − τ 2 . (B.8)

Let, in the following ζ1 and ζ2 denote solutions to the homogeneous problem

ζ̈ + 2(ς + (n− 1)τ)
(1 − τ 2) ζ̇ + (n(1 − n) + ℓ(ℓ+ 1) − κ)

(1 − τ 2) ζ = 0.

We follow the method of variation of the parameters and look for solutions of the form

ζ(τ) = A1(τ)ζ1(τ) + A2(τ)ζ2(τ)

subject to the restriction

Ȧ1ζ1 + Ȧ2ζ2 = 0.

A calculation readily yields

ζ̇ = A1ζ̇1 + A2ζ̇2,

ζ̈ = A1ζ̈1 + A2ζ̈2 + Ȧ1ζ̇1 + Ȧ2ζ̇2,

so that by replacing these relations into (B.8) one has that

Ȧ1ζ̇1 + Ȧ2ζ̇2 = f̃ .

Accordingly, one obtains the algebraic system

ζ1Ȧ1 + ζ2Ȧ2 = 0,

ζ̇1Ȧ1 + ζ̇2Ȧ2 = f̃ .
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For convenience, we rewrite this in matricial form as ζ1 ζ2

ζ̇1 ζ̇2


 Ȧ1

Ȧ2

 =

 0

f̃

 . (B.9)

The latter can be recast as Ȧ1

Ȧ2

 = 1
(1 − τ 2)W (τ)

 ζ̇2 −ζ2

−ζ̇1 ζ1


 0

f

 ,
where

W (τ) ≡

∣∣∣∣∣∣∣
ζ1 ζ2

ζ̇1 ζ̇2

∣∣∣∣∣∣∣ = ζ1ζ̇2 − ζ2ζ̇1, (B.10)

denotes the Wronskian of the system (B.9). It readily follows then that

Ȧ1(τ) = − ζ2(τ)f(τ)
(1 − τ 2)W (τ) ,

Ȧ2(τ) = ζ1(τ)f(τ)
(1 − τ 2)W (τ) .

Integrating, we conclude that

A1(τ) = A1⋆ −
∫ τ

0

ζ2(s)f(s)
(1 − s2)W (s)ds, (B.11a)

A2(τ) = A2⋆ +
∫ τ

0

ζ1(s)f(s)
(1 − s2)W (s)ds, (B.11b)

with A1⋆ and A2⋆ constants.

The Wronskian

Differentiating the definition of the Wronskian W (τ), Equation (B.10), and using Equation

(B.8) one readily finds that

Ẇ (τ) = α(τ)W (τ), α(τ) ≡ −2(ς + (n− 1)τ)
(1 − τ 2) .

The solution to this ordinary differential equation is given by

W (τ) = eA(τ), Ȧ(τ) = α(τ).
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It follows then that

W (τ) = W⋆

(
1 − τ

1 + τ

)2ς

(1 − τ 2)n−1, W⋆ a constant.

Substituting the latter expression in (B.11a)-(B.11b) one obtains the explicit expressions:

A1(τ) = A1⋆ −
∫ τ

0

a2(s)f(s)
W⋆(1 − s2)n

(
1 + s

1 − s

)2ς

ds,

A2(τ) = A2⋆ +
∫ τ

0

a1(s)f(s)
W⋆(1 − s2)n

(
1 + s

1 − s

)2ς

ds.
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