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Abstract

The study of the initial value problem in General Relativity by means of conformal methods
was initiated by H. Friedrich in 1986. In this seminal work, the standard conformal Einstein
field equations are used to prove the non-linear stability of the de Sitter spacetime. These
equations constitute the main technical tool of this thesis. In the first part of this thesis, a
technique based on a more general formulation of these equations, the extended conformal
Einstein field equations, and a conformal Gaussian gauge is used to establish the non-linear
stability of de Sitter-like spacetimes. The gauge freedom associated to the field equations is
fixed using the properties of the conformal geodesics. The conformal Gaussian gauge system
allows recasting the evolution equations as a symmetric hyperbolic system, which enables
the use of standard Cauchy stability results. The same strategy is used to study the non-
linear stability of the Cosmological region of the Schwarzschild-de Sitter spacetime. The key
observation is that this region can be covered by a non-intersecting congruence of conformal
geodesics. Thus, the future domain of dependence of suitable spacelike hypersurfaces can
be expressed in terms of a conformal Gaussian gauge. A perturbative argument allows
then to prove existence and stability results close to the conformal boundary, excluding
the asymptotic points where the Cosmological horizon intersects the conformal boundary.
In the second part of this thesis, the asymptotic properties of the Maxwell-scalar field
system on a flat spacetime are studied by means of the framework of the cylinder at
spatial infinity. The analysis is aimed to understand the effects of the non-linearities of
this system on the regularity of solutions and polyhomogeneous expansions at the critical
sets. The main result is that the non-linear interaction causes both fields to be more

singular at the conformal boundary than when the fields are non-interacting.
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Chapter 1

Introduction

The views of space and time which I wish to lay before you have sprung
from the soil of experimental physics, and therein lies their strength.
They are radical. Henceforth, space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind of union of the

two will preserve an independent reality.

Hermann Minkowski, 1908

In 1911, Einstein formulated the equivalence principle, thus drawing attention to grav-
itation for the first time since Newton. This principle postulates that the mechanical
phenomena, but also the optical and electromagnetic ones, in a gravitational field and a
field produced by an accelerated observer are equivalent. Einstein deduced the redshift of
the spectral lines of the Sun and the deflection of the light rays around a star during a total
eclipse. However in the latter case, he predicted only the partial deviation since his work
still relies on Newton’s law of gravitation. The equivalence principle laid the foundation
for a general theory of gravity not only restricted to uniform motions, as it indicated a

way to counter the objections raised in the past against such an extension since Newton’s
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Chapter 1. Introduction

time. At first, this approach seemed to suggest that it was impossible to dispute the criti-
cism until one removes the possibility of complications associated with gravitation. Even
though Einstein had overcome the major hurdles in developing his theory in 1913, this was

published in its complete form in 1916.

FEinstein’s Theory of General Relativity is the most successful theory of gravity. Since
its formulation, its predictions have been confirmed via several observational tests. The
most recent one represented by the first image of the supermassive black hole at the centre
of our galaxy — known as Sagittarius A* — has been published by the Event Horizon
Telescope (EHT) Collaboration in May 2022. This image shows a dark central region —
the black hole shadow — surrounded by a bright ring-like structure generated by glowing
gas. Thus, it describes the light bent by the powerful gravity of the black hole, which is

four million times more massive than the Sun.

One of the main differences with Newton’s theory of gravity, is that in Einstein’s gravity
the gravitational field acquires its own dynamical properties. Its evolution is complicated
even in the absence of matter. In stark contrast with Newton’s theory, in which the field
equation —i.e. the Poisson equation — combines with the boundary condition that the
field vanishes at infinity so that the gravitational field vanishes when there is no matter.
In Einstein’s theory of General Relativity, the equations governing the gravitational field,
known as FEintein field equations, allow an idealised situation representing gravitational
waves in an otherwise empty universe without any matter source. This reflects the different
mathematical nature of the equations involved in these two cases. The Poisson equation
is elliptic, whereas the KEinstein equations are ‘essentially’ hyperbolic. More precisely,
the latter are gauge hyperbolic, meaning they are hyperbolic by imposing suitable gauge
conditions. Solutions of hyperbolic equations can be determined uniquely by their values

on a suitable initial hypersurface.

The Cauchy problem is the task of establishing a one-to-one correspondence between
solutions and initial data and studying the properties of this correspondence. The solution
determined by particular initial data may be global —i.e. defined on the whole space

where the equations are defined, or local —i.e. only defined on a neighbourhood of the

20



1.1. The Cauchy problem in General Relativity

initial hypersurface. For linear hyperbolic equations it is, in general, possible to solve the
Cauchy problem globally. For non-linear hyperbolic equations this is much more difficult

and whether it can be done or not must be decided on a case-by-case basis.

The previous discussion shows that studying the Einstein field equations corresponds
to analysing a system of non-linear hyperbolic equations. For these equations, one must
expect to encounter the problem that generically solutions of the Cauchy problem for non-
linear hyperbolic equations do not exist globally. This issue is complicated by the fact that
the distinction between local and global solutions made above does not apply: to define the
notions of local and global we used the concept of background space —i.e. the space where
the equations are defined. As will be seen in the following, in the case of the Einstein field
equations there is no background space; the spacetime manifold is part of the solution.
Thus, one talks about the local and global properties of the solutions and not about local
and global solutions. On the other hand, the lack of background space is also responsible
for the existence of solutions of the Einstein field equations with global features such as

the formation of black holes.

1.1 The Cauchy problem in General Relativity

The study of the Cauchy problem in General Relativity started in the decade 1950 with
the work of Foures-Bruhat [18]. In this work, it was shown that if the gauge is fixed
appropriately, the equations governing General Relativity split into constraint equations
and evolution equations. In more detail, the equations representing the core of Einstein’s
theory of gravitation —i.e. the Finstein field equations— in the vacuum case with vanishing

cosmological constant are

Ray = 0. (1.1)

In terms of the local coordinates x* satisfying the condition

V, Vi = 0,

21



Chapter 1. Introduction

known as the harmonicity condition, these equations can be recasted as a system of equa-

tions for the metric coefficients g of the form

g)\pa)\apguu = Quu(ga f); (12)

where the right-hand side depends on these coefficients and the Christoffel symbols T,

which are given by

v 1 ~V, ~ ~ ~
L\ = 59 P(0uGpx + OrGup — OpGpun)-

Now, by defining

where

SMV = f‘a"ﬁauflaﬁ + gaﬁauf‘auﬁ _l' falj,@augaﬂ + gaﬁan‘Oéyﬁv

one is led to consider a Cauchy problem for the reduced Einstein field equations

H,, =0, (1.3)

which constitute a system of wave equations for the metric components g, .

The spacetime is foliated by a family of 3-dimensional spacelike Cauchy hypersurfaces
S. Since the spacetime metric g is constrained by the Einstein equations, one expects
that the induced metric b and extrinsic curvature K are also constrained. In fact, let S
denote a 3-dimensional spacelike hypersurface with normal n*. By projecting the Einstein
field equations along the normal direction to S, we obtain the so-called Hamiltonian and
momentum constraints. Moreover, by projecting the Einstein field equations on S, one
obtains a set of evolution equations for the data h and K. Thus, one can formulate an

initial value problem for the equations (1.3) supplemented with data
g;w|5 = BHV’ ﬁaaaglwlé = QKW”

satisfying
gaﬂf‘a“ﬂg =0, ﬁyal/@]aﬁf‘auﬁ)b =0,

where h,, is a 3-dimensional Riemannian metric and K, is a symmetric tensor on S. In

this formulation of General Relativity, the initial data corresponds to a triple (5’ h, K ).

22



1.2. Penrose’s proposal

Conversely, one can ask whether an initial data set satisfying the constraint equations
gives rise to a unique spacetime upon evolution. A fundamental result in this regard
was proven by Choquet-Bruhat and Geroch in [11] where it was shown that associated to
each triple (5’ , h,K ) satisfying the constraint equations in vacuum, there exists a unique
maximal globally hyperbolic development (M, g). The adjective hyperbolic refers to the
fact that the evolution equations obtained in this formulation of the Einstein field equations
are hyperbolic. This property is fundamental as it allows us to formulate and establish

relativistic causality within General Relativity.

1.2 Penrose’s proposal

In order to have a better understanding of Einstein’s theory of General Relativity, it is
necessary to understand the causal structure in the context of the Einstein field equations.
In any investigation of the problem, the consequences of these equations must be taken
into account. However, gaining control of the evolution process defined by these equations
remains a significant challenge. Along with the question of how to combine the analysis of
the Einstein field equations with that of the causal structure, which are closely related in
Einstein’s theory. The causal structure is determined by the null cones of the metric due
to the local causality requirement. On the other hand, it can be used to reconstruct the
null cone structure. Moreover, the null hypersurfaces defined by the solutions determine
the physical characteristics of the field equations that govern the evolution process. These
relationships between causal structure, null cone structure, and physical characteristics
offer opportunities for the desired analysis but also contribute to the quasi-linearity of the

equations—see [29)].

The work of Bondi, van der Burg and Metzner [7], Sachs [62, 63], Newman and Penrose
[58] paved the way towards the formulation of the geometric concept of asymptotic simplic-
ity based on the aforementioned relationships. In 1963, Penrose introduced this concept
which suggests analysing the asymptotic behaviour of gravitational fields in terms of the

smooth extensibility of the conformal structure through null infinity [59, 60].
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Chapter 1. Introduction

The basic model is provided by Minkowski spacetime (M, n), with M = R* and line

element 7 written in Cartesian coordinates (*) = (t,2%) as
’f’ = ,r]#l/di»ﬂ ® di'V,

where 7, = diag(—1,1,1,1). By introducing spatial spherical coordinates (p, 0, ¢) defined
by /2 = 8a57%7? where 6,5 = diag(1,1,1), and an arbitrary choice of (6,¢) on S?, the

metric 17 can be written as
f=—-di®dt +dp®dp+ p°o, (1.4)

with £ € (—o0,00), p € [0,00) and where o denotes the standard metric on S?. By

introducing the coordinate transformation

sinT sin y

t(r, x) = p(r, x) =

cosT +cosy’ cosT +cosy’

and introducing a conformal rescaling
n =0 (1.5)
with conformal factor © = cos 7 + cos x, one obtains the conformal metric i in the form
n=—dr @dr+dy ®dy +sin? yo. (1.6)

This metric is locally identical to the metric ge of a spherically symmetric spacetime
(Mg, ge) with Mg = R x S? known as Einstein static universe—see Chapter 5 of [44].
Consequently, the rescaling procedure compactifies Minkowski spacetime into a region of

the Einstein cylinder corresponding to the domain
M={peMe||rxx| <= x>0

One can analytically extend (1.6) to the whole of the Einstein static universe, where —oo <
7 < oo and Y, 0, ¢ are regarded as coordinates on S®. Even though these coordinates
are singular at x = 0, x = m and § = 0, § = 7, these singularities can be removed by

transforming to other local coordinates in the neighbourhood where (1.6) is singular. Thus,
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1.2. Penrose’s proposal

the conformal metric, the conformal factor and the underlying manifold can be smoothly

extended to yield the conformally compactified Minkowski spacetime with manifold
M={peM|lrtx|<m x>0 =MUuULULUITUI".

The boundary of M may be thought of as representing the conformal structure of infinity
of Minkowski spacetime. The set .# represents the conformal boundary which is the set of

points where © = 0 and d© # 0. The two components
I =I"u I ={peMs||lttx|=m x>0}

represent future and past null infinity. They are generated by the future and past endpoints,
respectively, acquired by the null geodesics. Moreover, since n(d©,dO)| ,+ = 0 these are

null hypersurfaces with respect to the conformal metric 7.

The two points
it={peMc|T=m x=0}, i ={peMg|T=—7m x=0}

where © = 0, dO© = 0 and Hess,,© = —n correspond to the future and past endpoints of

the timelike geodesics and thus represent future and past timelike infinity.

Finally, the point
P={peM|T=0, x =7},

where © = 0, d© = 0 and Hess,© = n corresponds to the point where spacelike geodesics
run in both directions and thus represents spacelike infinity. By including this point,
the Cauchy hypersurface corresponding to ¢t = 0 of the Minkowski spacetime with metric

induced by m conformally extends to the sphere S* endowed with its standard metric.

The conformal structure of Minkowski spacetime just described is regarded as the ‘nor-
mal’ behaviour of a spacetime at infinity. One can obtain spacetimes locally identical
to (M,ﬁ) but with different topological properties. Moreover, it is possible to obtain

alternative conformal representations of Minkowski spacetime —see Chapter 6.

The process of extending the differential structure and the conformal structure of a

Minkowski spacetime (M, 7]) to obtain a smooth conformal extension (M, n) was largely
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Chapter 1. Introduction

generalised by Penrose in [59]. In this work, it is suggested that this construction applies to
many solutions to the Einstein field equations, allowing us to relate the null cone structure
to the structure of the field equations and the large-scale behaviour of their solutions. In
the case of the solution to the vacuum Einstein field equations near .#, the latter is a
null hypersurface for the conformal metric g representing future (past) null infinity. This
structure allows us to obtain the precise fall-off behaviour required in asymptotic analysis.
In case .# is sufficiently smooth, local differential geometry can be used to simplify the

analysis.

1.3 The conformal Einstein field equations

Although the study of the initial value problem in General Relativity started in the decade
1950 with the work of Foures-Bruhat, the global non-linear stability of generic solutions to
the Einstein field equations is still an open problem. The first global non-linear stability
results in General Relativity appeared in the decade of 1980 and are due to the work of
Friedrich [23, 24]. One of the main features in these works is the use of the so-called
conformal Finstein field equations to pose an initial value problem. The central concept of

the conformal Einstein field equations is that of a conformal transformation.

The relevance of the construction introduced by Penrose in 1963 goes beyond the study
of asymptotics and isolated gravitational systems. In his proposal, one considers a physical
spacetime (M, g), where M is a 4-dimensional manifold and ¢ is a Lorentzian metric,

which is a solution to the Einstein field equations

. 1.
Rab - §Rgab + /\gab = '%Taba (17)
where R,, and R are the Ricci tensor and the Ricci scalar of § respectively, A is the
Cosmological constant and Ty, is the energy momentum tensor. Then, one conformally
embeds the physical spacetime (M, g) into the unphysical spacetime (M, g) via a conformal
rescaling with conformal factor =. Since the unphysical metric g contains the same causal

information as the physical metric g, a natural question is how the Finstein field equations
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1.3. The conformal Einstein field equations

behave under a conformal transformation of the metric. The theory proposed by Einstein
gives no reason to expect that the field equations would be particularly well-behaved un-
der conformal rescalings. These equations being chosen to determine isometry classes of
solutions are not conformally covariant. This can be seen from the transformation law of

the Ricci tensor

3

=2
=

Rab - Rab = -

[11] o

1
vavi — gabQCd (EchdE — VCEVdE>, (18)

where the righthand side V denotes the connection associated to g. If the Einstein field
equations (1.7) are assumed in this relation and the conformal factor = is considered as a
given function on the solution manifold, one obtains an equation for the conformal metric
g. The resulting equation has two deficiencies. One is the occurrence of factors == which
makes the equation singular when = = 0. The second one is due to the function = and the
manifold underlying the solution not being given a priori. They are related to the global

geometry of the solution and must be determined jointly with the metric.

Nevertheless, the Einstein equations allow us to resolve these problems. The resulting
equations are known as conformal Finstein field equations. These equations are confor-
mally reqular in the sense that there exists a conformal representation of these equations
which do not contain factors =—!. This is in stark contrast with the conformally singular
equations like the massive Klein-Gordon equations and conformally invariant equations
like the Maxwell or Yang-Mills equations. Furthermore, the conformal Einstein field equa-
tions constitute a system of differential conditions on the curvature tensors with respect
to the Levi-Civita connection of g and the conformal factor Z. The original formulation of
these equations requires the introduction of so-called gauge source functions to construct
evolution equations —see e.g. [22]. An alternative approach to gauge fixing is to adapt the
analysis to a congruence of curves. A natural candidate for congruence is given by confor-
mal geodesics —a conformally invariant generalisation of the standard notion of geodesics.
Using these curves to fix the gauge allows us to define a conformal Gaussian gauge system.
To combine this gauge choice with the conformal Einstein field equations it is necessary to
make use of a more general version of the latter —the extended conformal Einstein field

equations.
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In this thesis, we discuss the origin, the properties and some applications of the con-

formal Einstein field equations.

1.4 Main results in this thesis

One of the problems one encounters whilst analysing the conformal Einstein field equations
is the issue of gauge freedom. In the classical treatment of the Cauchy problem in General
Relativity, a suitable choice of coordinates allows us to reduce the equations to a system
of wave equations for the metric components. In the original treatment of the conformal
Einstein field equations, the hyperbolic reduction strategy used led to a first-order system
of equations. In the case of the extended conformal Einstein field equations, the gauge
fixing is performed by exploiting a congruence of curves with special conformal properties:
conformal geodesics. This hyperbolic reduction strategy leads to a first-order system of
symmetric hyperbolic equations. The latter approach is used to discuss the non-linear
stability of the de Sitter-like spacetime in Chapter 3. This spacetime is a solution to the
vacuum Einstein field equations with positive Cosmological constant with spatial sections
of constant negative scalar curvature. In this chapter, perturbations of exact initial data
corresponding to the de Sitter-like spacetime are considered. Then the theory of symmetric
hyperbolic systems with compact spatial sections is used to obtain a non-linear stability

result for small perturbation of the exact solution.

A common feature that is exploited in the analysis of constant curvature spacetimes
using conformal methods is that they can be conformally embedded in a cylinder. The
latter is convenient as an explicit solution to the conformal Einstein field equations can be
identified. In other words, most of the existence and stability results using the conformal
Einstein field equations have been restricted to the analysis of perturbations of conformally
flat spacetimes. Therefore, an interesting question is whether the conformal Einstein field
equations can be exploited in the analysis of global properties of non-conformally flat
spacetimes and, in particular, in the analysis of the stability of black hole spacetimes.

On the other hand, from a physical point of view, observations have established that the
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1.4. Main results in this thesis

Universe is expanding. Therefore, spacetimes describing isolated systems embedded in a
de Sitter universe constitute a class of physically relevant spacetimes to be analysed. Given
these remarks, in Chapter 4 the Schwarzschild-de Sitter spacetime is analysed using the
extended conformal Einstein field equations. The presence of a Cosmological constant with
a de Sitter-like value is of importance as it implies that the conformal boundary is spacelike.
The insight gained from the analysis of the evolution of the exact initial data corresponding
to the Schwarzschild-de Sitter spacetime is used to discuss non-linear perturbations of this
exact data by exploiting the theory of symmetric hyperbolic systems. The spacetimes
constructed in this way can be regarded as perturbations of the Schwarzschild-de Sitter
spacetime. In view of the domain of dependence properties of the solutions to the Einstein
field equations, the stability of the asymptotic region can be analysed independently of the
black hole exterior region. Hence, in the discussion in Chapter 4, the domain of dependence
of the initial data is contained in the region corresponding to the Cosmological region of

the Schwarzschild-de Sitter spacetime.

One of the main difficulties in establishing a global result for the stability of the
Minkowski spacetime using conformal methods lies in the fact that the initial data for
the conformal Einstein field equations are not smooth at spatial infinity i°. In the case of
the problem of spatial infinity, a milestone in the resolution of this problem is the construc-
tion of a new representation of spatial infinity known as the cylinder at spatial infinity.
With this motivation in mind, in Chapter 6, this framework is used to study the behaviour
of the Maxwell-scalar field system near spatial infinity. In particular, it is shown that un-
less the initial data is fine-tuned, this system exhibits a singular behaviour at the critical

sets where null infinity meets spatial infinity.

Collectively, these results show how the conformal Einstein field equations and, more
generally, conformal methods can be employed to analyse perturbations of spacetimes of

interest and extract information about their conformal structure.
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1.5 Outline of the thesis

This thesis consists of two parts. In Chapter 2, the various formulations of the conformal
Einstein field equations are introduced along with a discussion concerning hyperbolic re-
duction strategies. This chapter includes the mathematical preliminaries of the two parts.
The first part of this thesis is concerned with the question of the non-linear stability of
Cosmological spacetimes. In Chapter 3, we discuss the non-linear stability of de Sitter-like
spacetimes with spatial sections of negative scalar curvature, which is the first result of
this thesis. In Chapter 4, the same approach is used to discuss the non-linear stability
of the Cosmological region of the Schwarzschild-de Sitter spacetime. The second part of
this thesis is devoted to the problem of spatial infinity. In Chapter 5, the space-spinor
formalism is introduced to obtain a hyperbolic reduction. In Chapter 6, this procedure is
paired with Friedrich’s representation of spatial infinity to study the asymptotic properties
of the Maxwell-scalar field system propagating on Minkowski spacetime. Altogether, these
results show how conformal methods can be used to study the non-linear perturbations of
spacetimes to obtain information about the global regularity of these solutions and their

asymptotic properties.

1.6 Notations and Conventions

The signature convention for Lorentzian spacetime metrics will be (—,+,4,+). In the
rest of this thesis {,,5,c,...} denote spacetime abstract tensor indices and {4, ¢, ...} Will
be used as spacetime frame indices taking the values 0, ...,3. In this way, given a basis
{eq} a generic tensor is denoted by T, while its components in the given basis are denoted
by Tap = Tapeqer’. The Greek indices u> v, - - - denote spacetime coordinate indices while
the indices 4, g,... denote spatial coordinate indices. In addition to the index notation
described above, when convenient, it is also used an index-free notation. Given a 1-form
w and a vector v, the action of w on v is denoted by (w,v). The musical isomorphisms *

and ” are used to denote the contravariant version w! of w and the covariant version v’ of
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v with respect to a given Lorentzian metric g. This notation can be extended to tensors

of higher rank.

Part of the analysis will require the use of spinors. In this respect, the notation and
conventions of Penrose & Rindler [61] will be followed. In particular, capital Latin in-
dices {a,5,0,...} will denote abstract spinor indices while boldface capital Latin indices

{4,B,C, ...} will denote frame spinorial indices with respect to a specified spin dyad {e4“}.
The conventions for the curvature tensors are fixed by the relation

(VaVb — VbVa)vC = Rcdabvd.

31



Chapter 2

Methods of conformal geometry

2.1 Introduction

Given Penrose’s characterisation of the asymptotic behaviour of gravitational fields in terms
of the extensibility of the conformal structure across null infinity [59, 60], it is possible
to deduce the global structure of spacetimes from an analysis of the behaviour under
conformal rescalings of the Einstein field equations. This requires a suitable conformal
representation consisting of a system of equations for all the conformal fields which is
regular at the conformal boundary and whose solutions imply solutions to the Einstein
field equations. The resulting equations are the so-called conformal Finstein field equations

and were originally introduced by Friedrich in 1981 [19].

This chapter will discuss two different versions of the conformal Einstein field equa-
tions: the standard conformal Einstein field equations and a more general version of these
equations, the extended conformal Finstein field equations. Particular emphasis is given to
the relation between the frame formulations of these two versions. Since all the applica-
tions of the conformal Einstein field equations discussed in this thesis are concerned with
the vacuum case, we only consider the conformal formulations equivalent to the vacuum
Einstein field equations. The rest of the chapter provides a brief overview of the tools of

conformal geometry inspired by [81], which serve as mathematical preliminaries for the
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analysis in the following chapters.

2.2 Conformal transformation relations

This section presents the formalism necessary to introduce the conformal FEinstein field
equations. These equations provide a conformal equivalent of the vacuum Einstein field

equations—see [27, 81].

2.2.1 Conformal rescalings

Let (M, g) denote a physical spacetime. In order to construct an unphysical spacetime
(M, g) whose manifold M has a boundary .# and a metric g, one introduces a conformal

rescaling

(1]

g==°g, (2.1)

where Z is the so-called conformal factor. This relation is such that M is conformal to
the interior of M and maps points belonging to the infinity of M to a finite position in %
—see Figure 2.1. The function = on M is a boundary defining function. In particular, the
conformal boundary % is defined as the set of all points characterised by a vanishing =.
Accordingly, the unphysical spacetime can be defined as the union of the physical spacetime

with the conformal boundary

M=MUZ,

where ¢ = T U #~ is the union of future null infinity and past null infinity. These
spacetimes have the same causal structure — i.e. a trajectory which is timelike, spacelike

or lightlike with respect to g is so also with respect to g.

The conformal rescaling gives rise to an equivalence class of metrics conformally related

to § on M, known as the conformal structure [g).
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Figure 2.1: The infinite physical spacetime manifold M is mapped into the unphysical
conformally equivalent manifold M with boundary .#. This picture is adapted from [81].

2.2.2 The change of connection

Let V and V denote the Levi-Civita connections of the metrics g and g related to each

other by Equation (2.1). The action of (V — V) on a function f is defined by
(Vo —Va)f=0.

Moreover, since

(Vo = Va)(f0") = f(Va = Vo',
one can define the transition tensor ), so that

(Vo — Vv’ = Q0" (2.2)

From these relations, by setting f = wyv?®, one finds that the action of (V — V) on a
covector w is given by

(va - Va)(f‘-]b = _Qacbwc- (23)

Hence, given the connection V one can obtain the connection V by finding the specific
form of the transition tensor (),%. Since these connections are torsion-free, one can show

that Q,% = Q(acb) —i.e. the transition tensor is a symmetric tensor.
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2.2. Conformal transformation relations

2.2.3 Transformation formulae
Transformation formula for the connection

In order to find the explicit form of the transition tensor ), one considers the action of

(V — V) on the metric g obtained from Equation (2.3) as follows

(Va = Va)ge = =Qa"s9dc — Qa’cgva- (2.4)
Now, since Vagoe = 0, Vadpe = 0 and gpe = =23, one has that
2(EVE)Ghe = Qu“v9ac + Qu’cgva, (2.5)
from which
2(27'VaE) goe = Qu"v9dc + Qa’cra- (2.6)
This equation can be paired with two equations obtained from Equation (2.6) by means of

cyclic permutations of the indices 4.

Z(E_lvi)gca - decgda + chbgada (273)

2(27'V.2)gap = Qcagan + Qb aged- (2.7b)

By adding Equations (2.7a)-(2.7b), subtracting Equation (2.6) and by using the symmetry
properties of g,, and @Q,%, it follows that

(E7'ViE)gea + (E7'VE) G — (E7VaE)ghe = Qb cGua-
Thus, by solving for Q% and upon defining
Sy = 6,26,4 + 0,0, — g™ g, T, =Z"'V,E, T = SptYy,, (2.8)
one has that
Qp’e = Sp"(Ya). (2.9)
In conclusion, one has that V and V are related to each other via
Va— Vo= 5a“(Ta). (2.10)
It is worth noticing that the tensor S;.% is conformally invariant since
00" + 870" — "' gne = 8°0c" + 6,70 — G Gye.
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Transformation formulae for the curvature

The relation between the Levi-Civita connections V and V provided by Equation (2.10)
can be used to obtain the transformation formulae relating the curvature tensors of these
connections. More precisely, from the definition the Riemann tensor R of the connection
V., by recalling that this connection is torsion-free and by using Equation (2.9), one has

that the relation between the Riemann tensor of the connections V and V is given by
Rap — Raap = 2V 1Ty %a + 201 ¢ Ty “a (2.11)

This transformation formula can be used to obtain the relation between the Ricci tensor
of the connections V and V as given by Equation (1.8), as well as the following relation
between the Ricci scalar of these connections

R-=2R--2

—_
—
—

12
V.VE + 5 V.EVE. (2.12)

The presence of terms containing negative powers of = on the right-hand side of Equations

(1.8) and (2.12) makes these quantities singular at the conformal boundary.

Transformation formulae for the concomitants

The Riemann tensor B¢y, admits an irreducible decomposition in terms of the Schouten

tensor Ly, and the Weyl tensor Cq; as
Rcdab = Cwdab + 2Sd[acef/b]@ (213)
The Schouten tensor Ly, of the connection V is defined as

- 1/ ~ 1.
Ly = - <Rab — 6R§ab>. (2.14)

The transformation formula for the Schouten tensor of the connections V and V

- 1 - 1 —_—o =
Lab - Lab = 5 <Rab - Rab) - E (R - = 2R>gab

is given by means of the transformation formulae provided by Equations (1.8)-(2.12) as

_ 1 1
Loy = Ly = == VaViZ + 525 VEV Ega. (2.15)

—
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The transformation formula for the Weyl tensor C¢; is obtained from the irreducible
decomposition of the Riemann tensor (2.13) and the transformation formulae for the Rie-
mann R, and Schouten L, tensors, (2.11) and (2.15). From this, one finds that the
Weyl tensor is an invariant of the conformal class [g] —i.e. C¢p = C®4ap. This invariance

along with Equation (2.10) gives the following identity for this tensor

vzz(E_lCabcd) - E'_lﬁacvabcd-

2.3 The standard conformal Einstein field equations

The first conformal formulation of the Einstein field equations goes back to the seminal
work of Friedrich [20] and is known as the conformal Einstein field equations, also known
as standard conformal FEinstein field equations. This formulation consists of a system
of equations for the conformal fields appearing in the Einstein field equations which are
written in terms of the Levi-Civita connection of the conformally rescaled spacetime and
are regular up to the conformal boundary. A solution to these equations implies, under

suitable conditions, a solution to the Einstein field equations.

2.3.1 The vacuum Einstein field equations

The discussion of the following chapters assumes no matter content. As a result, this
analysis can be restricted to the vacuum case for the Einstein field equations (1.7). The

vacuum FEinstein field equations are given by
~ 1~ 5
Rap — iRgab + )‘gab = 07 (216)
with
R =4), (2.17)
where R, and R represent, respectively the Ricci tensor and Ricci scalar of the metric op.

The definition of the physical Schouten tensor (2.14) can be used to rewrite the Einstein

field equations in terms of Loy as

1.
Lab = éAgab‘ (218)
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2.3.2 Derivation of the conformal Einstein field equations
Equation for the conformal factor

Since the transformation law (1.8) provides a Ricci tensor which is singular at the conformal
boundary, this suggests starting from the transformation law for the Schouten tensor,
Equation (2.15). This equation contains two singular terms on the right-hand side that
need to be regularised. This can be done by using Equation (2.12) to replace =2V .ZEV°E
along with Equation (2.14) for Ly, and by introducing the Friedrich scalar

1
JV°E + —RE, 2.19
VoViE+ o (2.19)

1
=1

where R is the Ricci scalar of the metric g. Nonetheless, one obtains an expression for
Ly, still containing formally singular terms. This problem can be solved by looking at the

resulting equation as an equation for
vavi = —ELab + Sqdab- (2.20)

This change of perspective is such that in Equation (2.20) the Friedrich scalar s and the
Schouten tensor L, are to be considered as unknowns. Hence, suitable equations for these

fields need to be constructed.

Equation for the Friedrich scalar

To obtain a suitable equation for the Friedrich scalar s, one applies V. to Equation (2.20),

commutes the covariant derivatives and then contracts the indices , and . so that
Vo(VVE) + R VE = =Ly VE—EV L, + Ves. (2.21)

Then by using the definition of the Schouten tensor (2.14) and the Friedrich scalar (2.19)

in Equation (2.21) one has

1
3Vas = (EVLR = —3LoV'E ~ EV L. (2.22)
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Now, upon introducing the Einstein tensor of the metric g
1
Gab = Rab - §Rgaba

one recalls that VG, = 0 which can be written in terms of the Schouten tensor L, and

replaced in Equation (2.22) so that one has
Vs = — Lo V°E, (2.23)

providing an equation for s.

Equation for the Schouten tensor

Since Equation (2.20) contains the physical Schouten tensor Ly one needs to provide a
differential condition on Eab. In order to achieve this one introduces the second Bianchi

identity for the Riemann tensor of the metric g
ViR ey = 0. (2.24)

Then by replacing the irreducible decomposition of the Riemann Tensor (2.13) in (2.24)
one has

VeLay — VaLeg = VaC%ea- (2.25)

Since the Riemann tensor of the metric g satisfies equations analogous to (2.13) and (2.24)

it follows that by the computation just described one obtains
VeLay — Valeg = VoC%eq. (2.26)

Now, to find an expression for this equation in terms of undifferentiated fields one intro-

duces the physical Cotton tensor Y . defined as
Ve = VeLay — ViLea, (2.27)
and makes use of the identity
Va(E'C%a) = Z7'VoC%q
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so that Equation (2.25) reads as
EY iy = Vo (E71C%). (2.28)

This equation is singular at .# due to the presence of 27! terms. To regularise this equation

it is convenient to define the rescaled Weyl tensor d°y,, via the relation
A a0 = 27 CC g, (2.29)
and the rescaled Cotton tensor via
Tty = Z7'Y gy (2.30)
to be replaced in (2.28) so that one has
Teay = Vadped, (2.31)

which is formally regular. Since the rescaled Cotton tensor T'.4, provides the coupling with
the matter fields, in vacuum one has that T'.q, = 0—see Chapter 10 of [81]. Thus, it follows
that in a vacuum one has

Vad®eq = 0. (2.32)

Eventually, by using the definition of the rescaled Weyl Tensor (2.29) and Equation (2.31)

in Equation (2.26) one obtains the so-called Cotton equation
VeLay = ViLea = d*peaVaZ, (2.33)

which is regular for = =

Equation of propagation for the Cosmological constant

To relate the solution of the conformal Einstein field equations to solutions of the Einstein
field equations, one needs to regularise the transformation relation for the Ricci scalar (1.8).

2

To achieve this, one multiplies Equation (1.8) by Z*, uses the equation for the physical

Ricci scalar (2.17) and the definition of the Friedrich scalar (2.19) so that one has
A = 6Zs — 3V,EV°E. (2.34)
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This equation plays the role of a constraint which is preserved during the evolution by
virtue of the other conformal field equations—see Chapter 8 of [81]. In particular, one has

the following lemma:

Lemma 1 (Propagation of the Cosmological constant). If Equations (2.20) and
(2.23) are satisfied on M and Equation (2.34) holds at a point p € M, then this equation
is also satisfied on M.

2.3.3 The metric formulation of the conformal Einstein field equa-

tions

The discussion of the previous sections leads to the definition of the conformal Einstein

field equations as

VaVpZ = —ELgy + Sgab,
Vas = —L4.VE,

VeLiy — VaLey = d*peaVaZ,
Vad®pea = 0,

6=s — 3V.2Vz = ), (2.35e

complemented by the irreducible decomposition of the Riemann tensor (2.13).

In order to formulate these equations in a compact form it is useful to introduce the

so-called zero-quantities

Zay = VoVZE + ZLap — SGab,
Zo=Vys+ Lo VE,

Apea = VeLap — VaLey — d*peaVaZ,
Apea = Vad®pea,

Z =6Zs — 3V .2VE — A,
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so that the conformal Einstein field equations can be written as
Zap =0, Z, =0, Apeqg = 0, Npea = 0, Z =0. (2.37)

A solution to the conformal Einstein field equations is a collection of fields {guy, =, S, Lap, d%bea }
satisfying (2.37). This solution is in turn a solution to the vacuum Einstein field equations

as shown in Chapter 8 of [81] and summarised by the following proposition

Proposition 1 (Solutions to the conformal Einstein field equations as solutions

to the Einstein field equations). Let
{gab7 E? S, Lab; dabcd}

denote a solution to the Equations (2.35a)-(2.35d) such that = # 0 on an open set U C M.
If, in addition, Equation (2.35¢) is satisfied at a point p € U, then the metric

- —_——9
Gab == Gab

is a solution to the Finstein field equations on U.

2.3.4 The frame formulation of the conformal Einstein field equa-

tions

This derivation of the frame version of Equations (2.35a)-(2.35¢) requires the introduction
of a frame. Let {e,} be a frame on M with {w®} associated coframe so that (w?®, ep) = §p°.
Accordingly, one defines the frame metric as the frame

Gab = eaaebbgab = g(e(b eb)-
Upon choosing the frame {e,} to be orthonormal with respect to the metric g so that

g(ea7 eb) = dlag(_la L1, 1)

Thus, the metric gqp is expressed in terms of the coframe {w®} as

gab — gabwaawbb — gﬁ(wa7wb)‘
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In terms of the frame {e,} the connection coefficients I',%, of Levi-Civita connection V
are defined via

c
vaeb - 1_‘a b€Ec,

with V, = e,*V, denotes the covariant directional derivative in the direction of e,. The
torsion X of V can be expressed in terms of the frame {e,} and the connection coefficients
I',% via

Yavec = [ea,7 eb] - (Facb - Fbca)ec-
The components of the Riemann tensor R%,., of the Levi-Civita connection V are written

in terms of the connection coefficients I',¢, as
Rcdab = 8a(rbcd) - ab(Facd) + chd(rbfa - Fafb) + bedracf - 1—‘(J,debcf

and will be referred as the geometric curvature R¢gqp, of V. The expression of the irreducible

decomposition of the Riemann tensor is
P dab = Zddap + 25410 Lyje
and will be referred as the algebraic curvature p€gaqp. In the latter expression, Lgp is the

Schouten tensor of the metric g and d%,.4 is the rescaled Weyl tensor.

Using these definitions, the frame formulation of the conformal Einstein field Equations

is provided by the following set of equations

VoVeE = —ELap + $Nab,
Vas = —La.V°Z,

VeLay — VaLey, = d"peaVaZ,
Vad®ea = 0,

6=s — 3V.ZVZ= = A\

and is complemented by the structure equations
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which expresses the fact that for the Levi-Civita connection V| its torsion must vanish

and its geometric and algebraic curvature must coincide.

To formulate these equations in a compact form it is useful to introduce the following

set of zero-quantities:

Yab = Yo e, (2.40a)
Z%ab = Rdab — P dab, (2.40b)
Zab = VaVeZ + ZLap — SNab, (2.40c)
Zoy =Vas+ Lo VEE, (2.40d)
Acab = VeLap — VaLer — d%beaVaZ, (2.40e)
Abed = Vadbed, (2.40f)
7 =635 — 3V, EVE — A (2.40g)

In terms of these zero quantities, the frame version of the conformal Einstein field equations

can be written as

Eab == O, Ecdab = 0, Zab == 07 Za == O, (241&)

Aeas =0,  Apea=0, Z=0. (2.41b)

Accordingly, a solution to the frame conformal Einstein field equations is a collection
{€a,Ta, =, S, Lab, d*pea} satisfying the previous set of equations. The equations associated
to the zero quantities Y4, and =44, provide differential conditions for the components of
the frame vectors {e,} and for the coefficients I',%.. The role of the equations associated
to the zero quantities Z,p, Zg, Acap, Nvea, Z and M, is similar to that of their metric

counterparts.

Considering a frame version of the conformal field equations introduces further gauge
freedom in the system. This gauge freedom corresponds to the Lorentz transformations
preserving the g-orthonormality of the frame vectors {e,}. In this case, one speaks of a

frame gauge freedom.

The relation between the solution to the frame conformal Einstein field equations and

the solution to the Einstein field equations is provided by the following lemma —see [81]
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2.4. The extended conformal Einstein field equations

Lemma 2 (Solutions to the frame conformal Einstein field equations as solutions

to the Einstein field equations). Let
{ea7 Facba E) S, Laba dabcd} (242)

denote a solution to the Equations (2.41) with T'.%. satisfying the metric compatibility

condition

Fadc77dc + I‘adcnbd =0

and such that
=40,  det(n™e, ®ey) #0,

in an open set U C M. Then the metric

is a solution to the Finstein field Equations on U.

The proof of this Lemma exploits the geometrical significance that the conformal Ein-
stein field equations encode. In particular, if ¥.¢ = 0 then I'y%. correspond to the con-
nection coefficients with respect of {e,} of the Levi-Civita connection of g = ngpw® @ w®.
Equations =445 = 0, Acgy = 0 and Apeq = 0 ensure that Lg, and C%.q are the components
of the Schouten and Weyl tensors of V with respect to the frame {e,}. Finally, equations
Zap =0 and Z, = 0 imply that g,, = Z7%g,, satisfy the Einstein field equations expressed
as Equation (2.18).

2.4 The extended conformal Einstein field equations

This section presents the formalism necessary to introduce the extended conformal Ein-
stein field equations. These equations provide a more general formulation of the conformal
Einstein field equations—see [27, 28, 81]. More precisely, whereas the latter are conformal
field equations formulated in terms of the Levi-Civita connection of the unphysical metric

g, the extended conformal Einstein field equations is a system of equations providing a
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conformal representation of the Einstein field equations written in terms of Weyl connec-
tions. The use of Weyl connections introduces further freedom in the equations that can

be exploited to incorporate conformal gauges.

2.4.1 Weyl connections

A Weyl connection is a torsion-free connection V such that

A

vagbc = _2fagb07 (243)

where f, is a fixed smooth covector. It follows from the above that the connections V,

and V, are related to each other by
V! = Vo = S fav, Suct = 6,268 + 6,400 — gacg™, (2.44)
where v® is an arbitrary vector. Given that
Vb — Vb = Sacbd(E’IVaE)vc,

one has that

V! — Voot = S,.8,0° By = fa+ = 'V,4E.
In the following, it will be convenient to define

da

Efa+ VaE, (2.45)

so that d, = Z0.

2.4.2 The core equations

Let ﬁcdab and ﬁab denote, respectively, the Riemann and Schouten tensors of the Weyl
connection @a. Since the Weyl connection V is torsion-free, the Riemann tensor ficdab can
be decomposed in terms of the Schouten tensor Loy and the conformally invariant Weyl
tensor C€4q,. Furthermore, for a generic Weyl connection, one has that IA/ab =+ f}ba. Thus,

one has the decomposition

écdab = 2Sd[aceﬁb]e + Ccdab'
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The (vanishing) torsion of V, is denoted by 3,¢,. The Schouten tensors of the connections

@, V and V are related to each other via

1

f/ab - Lab = vafb - §Sab6dfcfd7 (2463)

. - A 1

Lab - Lab = Vaﬁb - §Sab6dﬂcﬁd7 (246b)
~ 1

Lay — Loy = Vo (E7'V,E) + 55—25abcdvczvd5. (2.46¢)

Using the relations above, the relation between the covariant derivatives V and V
@aﬁbc = va[A/bc - Sabeffef/fc - Saceffef/bf
and @aSbcde = 0, one has

@aibc - @bf/ac = vaLbc - vaac + (vbva - Vavb)fc

+ Sbceffe(vaff - Laf) - SQCEffe(vbff - Lbf)

(2.47)

Using Equation (2.46a) and the properties of S, one has that

Sbceffe(vaff - Laf) - Saceffe(vbff - Lbf) = Saceffe(f/bf) - Sbceffe(f/af)
= 2SC[a6ff/b]ffe

Eventually, by recalling the splitting of the Riemann tensor
R?cdab = Ccdab + QSd[aceib}ea

one has that

A

VCL-ZA-/bc - @bf/ac = vaLbc - vaac - Cecabfe-

Hence, by recalling Equation (2.26) and the definition (2.45), it follows that the Weyl

connection version of the Cotton equation (2.35¢) is given by
Valye = ViLoe = ded®cap. (2.48)
To obtain the Weyl connection equivalent of the Bianchi equation
Vaod pea = 0, (2.49)
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one considers

@adabcd = Vod"pea — Saefaffdebcd + Sabfeffdaecd
+ Sac? frded + Saa’ frdbee
= Vald"bed — 4 fad®bea + 665 Fad®cca + 045 fsd%cca — Gapg”  Frdcea
+ 0.5 fad®ped + 04° fed®peq — gacgfeffdabed + 04" fad“pee (2.50)
+ 04" fad"pee — gadgfeffdabce
= Vad®ed = fad®act + fad® cap

= vaLdabcd - fadabcda

where we used the Bianchi identity
d"eq + d®cap + dqpe = 0.

Eventually, the Bianchi Equation (2.49) expressed in terms of the Weyl connection V reads
as

@adabcd = fadabcd-

In conclusion, one has a system of core equations

A

VaZA-ch - @biac = dedecaba (251&)
@adabcd = fadabcda (251b)

providing differential conditions on the Schouten tensor of the Weyl connection Ly, and the
rescaled Weyl tensor d%,.q. These equations need to be supplemented by a set of equations
providing information about the metric g,, and which allows determining the covector f,
defining the Weyl connection V. The most convenient way of doing this is by providing a

frame formulation of the extended conformal Einstein field equations.
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2.4. The extended conformal Einstein field equations

2.4.3 The frame formulation of the extended conformal Einstein

field equations

Let {eq}, a =0,...,3 denote a g-orthogonal frame with associated coframe {w®}. Thus,
one has that

g(ea7 Eb) == na,b, <wa, eb> = 5ba'
Given a vector v, its components with respect to the frame {e,} are denoted by v®.

Let T',¢ and facb denote, respectively, the connection coefficients of V, and @a with

respect to the frame {e,}. It follows then from equation (2.44) that
Do =T + Sa™ fu.

In particular, one has that

1A
fa = Zrabb-

In order to formulate the frame version of the extended conformal Einstein field equations
it is convenient to introduce the geometric curvature ficdab and the algebraic curvature
P dapb given, respectively, by

RCqab = 04(I'v%a) — On(Laa) + chd(rbfa - Fafb) + bedracf - Fafdrbcf, (2.52a)

P dab = Ed°aap + 28 41a“ Lyje (2.52b)

and define the following zero-quantities:

SuChee = [€a, ep] — (f‘acb — fbca)ec, (2.53a)
écdab = Ecdab — [° dab (2.53Db)
Acay = VeLay — VaLey — dad®sed, (2.53¢)
Aved = Vad®ed — fad®bea; (2.53d)

where f]acb, f}ab and d€gqp denote the components of the torsion, of the Schouten tensor

of V, and the rescaled Weyl tensor with respect to the frame {es}. In terms of these
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quantities, one can write the the frame version of the extended conformal FEinstein field

equations as given by the conditions

A

Sopee =0, 245 = 0, Acap = 0, Apeqg = 0. (2.54)

In the above equations the fields = and d, —cfr. (2.45)— are regarded as conformal gauge
fields which are determined by supplementary conditions. In order to account for this it is

convenient to define

A

0 = dg — Zfa — VaZ, (2.55a)
Yab = Lap — Va(E7dp) — 27250 dody + é)\E‘Qnab, (2.55b)
Sab = Lias) — Viafo)- (2.55¢)
The conditions
6.=0,  Ya=0,  Gap=0, (2.56)

will be called the supplementary conditions. Equation (2.55a) provides the relation be-
tween the covectors d, f and the conformal factor =Z. Equation (2.55b) provides the
relation between the Schouten tensor f}ab of the Weyl connection and the Schouten tensor
Lay determined by the Einstein field equations —i.e. an analogue to the standard con-
formal equation Z,, = 0. Eventually, Equation (2.55¢) encodes the relation between the
antisymmetry of the Schouten tensor Ly, and the derivatives of the covector f,. Altogether
these equations play a role in relating the extended conformal Einstein field equations to

the Einstein field equations and also in the propagation of the constraints.

The correspondence between the extended conformal Einstein field equations and the

Einstein field equations is given by the following —see Proposition 8.3 in [81] and [31]:

Proposition 2 (Solutions to the frame extended conformal Einstein field equa-

tions as solutions to the Einstein field equations). Let

{eaa f‘a,bca ZA—Jabv dabcd}
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2.5. Conformal geodesics and conformal Gaussian gauge systems

denote a solution to the extended conformal Finstein field equations (2.54) for some choice
of the conformal gauge fields {Z, do} satisfying the supplementary conditions (2.56). Fur-

thermore, suppose that
=#0 and det(ne, @ ep) # 0

on an open subset U. Then the metric

~ 2

—_—— a b
g =2 "Nepw" Qw

is a solution to the Einstein field equations (4.1) on U.

2.5 Conformal geodesics and conformal (Gaussian gauge

systems

In this section, the notion of conformal geodesic is introduced along with the definition
of a conformal Gaussian gauge system. Moreover, since the extended conformal Einstein
field equations are naturally suited to the use of a gauge based on conformal geodesics, it
will be discussed how to use the conformal geodesic equations to fix this gauge. Then, it is
also discussed how to obtain a system of evolution equations from the extended conformal
Einstein field equations. The last part of this section is devoted to the discussion of the

propagation of the constraints.

2.5.1 Conformal Geodesics

A conformal geodesic on a spacetime (M, §) is a pair (z(7), B(7)) consisting of a curve
z(7) on M, with parameter 7 € I C R, tangent @(7) and a covector B(r) along z(7)

satisfying the equations

Vit = —2(B, %)z + §(a, )5, (2.57a)

VB = (6.8)8 — 33'(8.0)% + L(#,") (257)
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where L denotes the Schouten tensor of the Levi-Civita connection V. Associated to a
conformal geodesic, it is natural to consider a frame {e,} which is Weyl propagated along

x (7).

A frame {e,} on M is said to be Weyl propagated along the conformal geodesic
(x(7), B(7)) if it satisfies

Va':ea = _<ﬂa €a>$' - </3a :b>ea + g(eav m')ﬁﬁv (258)
the so-called Weyl propagation equation.

The motivation for considering these curves is understood when one observes their
behaviour under conformal transformations and transition to Weyl connections. Given the

1-form f defining the Weyl connection as in Equation (2.43). If one defines
B=B-1,
the pair (x(7), fé; (7)) will satisfy the equations
Ve = —2(B, )& + g(a, @) B, (2.59a)
ViB = (B.9)8 — 1B + L), (2.590)
where L denotes the Schouten tensor of the Weyl connection V. Notice that if one chooses

this connection so that f = B, then the conformal geodesic equations reduce to
Ve =0, L(z,-)=0 (2.60)

and the Weyl propagation equation reduces to the usual propagation equation

A

Vieq = 0. (2.61)

2.5.2 Reparametrisations of conformal geodesics

Given two solutions to the conformal geodesic Equations (2.57a)-(2.57b), (z(7), B(7)) and
(z(7), B(7)), it is natural to ask under which conditions z(7) and Z(7) coincide locally as
sets of points so that 7 = 7(7) and z(7(7)) = z(7). Let

_dx _, dx
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2.5. Conformal geodesics and conformal Gaussian gauge systems

denote the corresponding tangent vectors and assume that these curves do not describe
null geodesics —i.e. g(&, &) # 0 and g(&’,x’) # 0. By definition, the tangent vector &’
satisfies

Vad = —2(8,2\% + g(&', z")p", (2.63a)

' (B, B)x"” + L(x,-). (2.63D)

— dr

Now, by letting 7" = <% one has that

,_de _dx(r(7)) drdz
T = 0E a7 drdr

which, in turn, implies
Vel = Vog(r'd) = '@ + 77V,
Then by using the Equation (2.57a) for V4 one has
V@ =1"d+7%(—2(8, &)a + §(z, ) 8%).
By replacing the latter into Equation (2.63a) and using &’ = 7'&, one has
i+ 728, %) + §(&, %) 8°) = —2(B,T'®)T'E + §(r'E, T'E) B,
so that
a+ 208 — B i) — 77g (@, &) (B ~ BF) = 0. (2.64)
Thus, the difference B — A% has components only along @ and one can write

B—pB=ax (2.65)

with @ € R. By replacing this into Equation (2.64) one obtains the following differential
equation

'@+ ar’§(&, &)& = 0. (2.66)

Now, by considering
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by replacing ' = 7’@& and using Equation (2.57b), one has

TG4 (B, B)&’ + 7L, ).

By subtracting the Equation (2.57b) for 8

. _ _ 1 _
ValB - B) = (B B.2)(B — B) — 5 (§(8.5) — F(8.8),
and using the Equation (2.65) for o one obtains
ad’ + aVa’ = —;cfg(a':, &)a’.

Eventually, by using Equation (2.57a) for V& one has

: . [N

a=2(B,z)a+ ig(m, T)a”. (2.67)
This Equation, along with Equations (2.65) and (2.66), encodes the requirement that the

curves z(7) and z(T) coincide as sets.

Now, let us consider the following

Vilag(e, @) = aVeg(E, &) + g, &)d.

By means of Equation (2.67) one has that

Vilag(®, &) = aVeg (&, &) + §(&, ) (2(8, #)a + ;g(:t, )a?). (2.68)

A direct computation using Equations (2.57a) and (2.57b) shows that

which can be replaced into Equation (2.68) so that

Va(ag(#,#)) = L (3l )a)”
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This equation can be solved to obtain

QQ*Q(d,‘*, :it*)
1 —a,g(,, ) (T — 7y)

ag(x, ) =
where o, = a(7,), &, = &(7) and 7, denotes a fiduciary value of the parameter 7. This

value can be replaced into Equations (2.65) and (2.66) so that one has
4x

e s O R Ca (2.692)
- 200, g(x,, &) i

p=us (1 — gy, o) (T — 7)) g (2, w)m ’ (2.69b)
T SRy (2.69¢)

T 2Xag(@, @) —7)

where X is a non-zero real constant. This discussion is summarised in the following lemma:

Lemma 3. The admissible reparametrisations of non-null conformal geodesics to non-null
conformal geodesics are given by transformations of the form

at +b
ct +d

(2.70)

T —
with a, b, ¢, d € R.

For further discussion on this topic see [31, 81].

2.5.3 Geodesics as conformal geodesics

It is natural to ask what is the relation between conformal geodesics and metric geodesics.
For null conformal geodesics, this relation can be readily established. If (x(7), 8(7)) denotes

a null conformal geodesic, it follows from Equation (2.57a) that

Vx’:c, = _2<IB7 CB,>$/ + g(wl’ ml)ﬁﬁ = _2<IB7 :B,>$/.
Using the same argument as the previous section one finds that null conformal geodesics
are, up to a reparametrisation, null geodesics.

The situation for non-null conformal geodesics is more complicated and requires re-
strictions of the Schouten tensor of the spacetime. In particular, one has the following

result
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Lemma 4. Any non-null g-geodesic in an Einstein spacetime (M, g) is, up to a reparametri-

sation, a non-null conformal geodesic.

The proof of this lemma can be found in [37, 81].

2.5.4 Conformal Gaussian gauge systems

The main reason to introduce conformal geodesics in the analysis of spacetimes by means
of the extended conformal Einstein field equations is that they provide a way for fixing the
gauge fields (Z,d). Let (M, §) be a solution to the vacuum Einstein field equations and
U being an open set on M. By assuming that this set is covered by a non-intersecting
congruence of conformal geodesics and by identifying the timelike leg of the frame {e,}
with ey = &, one can single out a metric g € [g] by means of a canonical conformal factor

O such that

From the above conditions, it follows that
O = (B, z)0.

Taking further derivatives with respect to 7 and using the conformal geodesic equations
(2.57a)-(2.57b) together with the Einstein field equations written in terms of the Schouten
tensor (2.18) leads to the relation

0 =0.
From the latter one has the following result:

Proposition 3. Let (M,g) denote a vacuum spacetime with positive Cosmological con-
stant. Suppose that (x(T), B(7)) is a solution to the conformal geodesic equations (2.57a)-
(2.57b) and that {e,} is a g-orthonormal frame which is Weyl propagated along the curve
(7). If © satisfies (2.71) and 7, € R is an arbitrary constant defining the value of T at a

fiduciary point of the conformal geodesic, then one has that
: 1.
O(T) =0, + O,(1 —7,) + 5@*(7 - 7)% (2.72)
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where the coefficients
O, = O(1y), 0, = (;)(7'*) o, = é*(T*)
are constant along the conformal geodesic and are subject to the constraints
. . . 1 < 1
@* = </3*7 $*>@*, @*@* = 59 (,6*7 B*) - 6)\
Moreover, along each conformal geodesic, one has that
O =0,  Of;=06.0,

where Bg = (B, €q)-

A proof of the above result can be found in [81], Proposition 5.1 in Section 5.5.5.

Thus, if a spacetime can be covered by a non-intersecting congruence of conformal
geodesics, then the location of the conformal boundary is known a priori in terms of data

at a fiduciary initial hypersurface S,.

These curves can be used to specify the gauge field d via d = ©8. The constraints for

the initial data for © can then be written in terms of d as

i . 1 1

O, = (d.,x,), 6,0,= 5gﬁ(d*, d.) = )
Remark 1. The conformal factor is canonical in the sense that if g = ©2¢ with g as
a solution to the vacuum FEinstein field equations. Thus, requiring the normalisation
g(x(7),x(r)) = —1 fixes the form of the conformal factor to be a quadratic function

of 7.

Conformal Gaussian gauges

Now, assume as before that i/ is a region of the spacetime (M, g) which is covered by a
non-intersecting congruence of conformal geodesics (x(7), 8(7)). Moreover, suppose that
& = @(7,) is orthogonal to a fiduciary spacelike hypersurface S, C U determined by the

condition 7 = 7, so that g(@&, &) = —1. From Proposition 3, it follows that this requirement
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singles out a canonical representative g of the conformal class [g]. In particular, the
conformal factor is explicitly known as given by formula (2.72) once the initial data ©,, ©,
and ©, are specified on S,. The construction of a conformal Gaussian system requires the
introduction of a g-orthonormal frame {e,} which is Weyl propagated along the conformal
geodesics and whose time leg is given by eq = @. Since one can choose a Weyl connection
V so that the 1-form f, coincides with the 1-form 3, of the conformal geodesics. It follows

that for this connection one has
[o% =0, fo=0, Loa=0.

This gauge choice can be supplemented by choosing the parameter 7 of the conformal

geodesics as the time coordinate so that
€p — 87.

Furthermore, one can construct a spacetime system of coordinates by choosing some local
spatial coordinates z = () on S,. Since the congruence of conformal geodesics is non-
intersecting, one can extend the coordinates x off S, by requiring them to remain constant
along the conformal geodesic which intersects S, at the point p on S, with coordinates z.
The spacetime coordinates T = (7, z%) obtained in this way are known as conformal Gaus-
sian coordinates. More generally, the collection of conformal factor @, Weyl propagated
frame {e,} and coordinates (7,2%) obtained by the procedure outlined in the previous
paragraph is known as a conformal Gaussian gauge system. This choice of gauge leads to
a natural 1+ 3 decomposition of the field equations. More details on this construction can

be found in [81], Section 13.4.1.

2.5.5 The g-adapted conformal geodesic equations

In the last section, it has been shown that as a consequence of the normalisation condition
(2.71), the parameter 7 is the g-proper time of the curve z(7). In some computations it is

more convenient to consider a parametrisation in terms of a g-proper time 7 as it allows to
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(r, 2%)

(7%, )

Figure 2.2: Schematic depiction of the construction of conformal Gaussian coordinates.
The hypersurface in purple represents the initial hypersurface S,. The black line represents
a conformal geodesic leaving the initial hypersurface at 7 = 7,. The coordinates x =
of a point p € S, are propagated off the hypersurface along the conformal geodesic. This

picture is adapted from [81].

work directly with the physical metric. To this end, consider the parameter transformation

7 = 7(7) given by

j; =0, sothat  7=7,+ T*T @d(s) (2.73)

with inverse 7 = 7(7). In what follows, let Z(7) = x(7(7)). It can then be verified that

jol
=N
Q.
\]
o,
S

P =-——"=——"=0, (2.74)

o
Il
o
N
o
\]

so that

Hence, 7 is, indeed, the g-proper time of the curve Z(7). In order to write the equation for

the curve Z(7) in a convenient way, one considers the split

B=B+wi’ with w= (ﬂ 2) (2.75)

{
g(z, )
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and where the covector 3 satisfies
(B.2) =0,  ¢'B,B)=(B.%)" +g"(B.B). (2.76)
It can be readily verified that

g(z,)=-07"%  (B,2)=07'0, w=00. (2.77)

Using the split (2.75) in equations (2.57a)-(2.57b) and taking into account the relations
in (2.74), (2.76) and (2.77) one obtains the following g-adapted equations for the

conformal geodesics:

65;/53/ = Bﬁ, (278&)
VaB =p%&" + L(&',.) — L&, &)&", (2.78b)

where L is given by Equation (2.18) and 32 = §'(B, B). The latter is a consequence of

(2.76) as the covector B is spacelike and, thus, the definition of 52 makes sense.

The Weyl propagation equation (2.58) can also be cast in a g-adapted form. A calcu-
lation shows that

Va(0v) = —(B,0v)&’ + §(0v, &) 5" (2.79)

2.6 Hyperbolic reduction procedure

The tensorial nature of the conformal Einstein field equations requires the derivation of a
suitable symmetric hyperbolic evolution system from them to discuss the existence and the
asymptotic properties of their solutions. This procedure is known as hyperbolic reduction.
The starting point of this procedure consists of the specification of the gauge. The extended
conformal Einstein field equations, being expressed in terms of Weyl connections, contain
a bigger gauge freedom than the standard conformal Einstein field equations. In this
case, the hyperbolic reduction procedure consists of adapting the gauge to a congruence of
conformal geodesics to construct conformal Gaussian gauge systems. As discussed before,

one of the advantages of this procedure is that, in a vacuum, the properties of conformal

60



2.6. Hyperbolic reduction procedure

geodesics single out a conformal factor from the conformal class [g] — see Proposition 3.
This means that one gains an a priori knowledge of the location of the conformal boundary.
Moreover, the connection coefficients and components of the Schouten tensor concerning a
Weyl propagated g-orthonormal frame satisfy certain relations which lead to a particularly
simple system of evolution equations. The evolution of all the geometric unknowns, with
an exception made for the components of the rescaled Weyl tensor, are either fixed by
the gauge or given by transport equations along the congruence. A direct study of the
conformal Einstein field equations shows that these are overdetermined. There are more
equations than unknown, even by taking into account all the possible symmetries of the
tensorial fields. Thus, the process of hyperbolic reduction for the conformal field equations
necessarily requires discarding some of the equations. The discarded equations are treated
as constraints. These constraints will satisfy in turn a system of evolution equations, the
so-called subsidiary evolution system. From this system, it will follow that the constraint
equations will be satisfied if they hold at some initial hypersurface and the evolution
equations are imposed. This construction is called the propagation of the constraints. The
solution of the evolution system together with the propagation of the constraints yields

the required solution of the conformal Einstein field equations.

2.6.1 The main evolution system

One of the main advantages of writing the extended conformal field equations in terms of

zero-quantities and using a frame formalism

A

c “c _ A _ A _
Ya‘vee =0, =%ab = 0, Acap =0, Apea =0

is that the various evolution equations can be readily identified as certain components of

the zero-quantities.

The required evolution equations for the frame components, the connection coefficients,
the components of the Schouten tensor and the electric and magnetic part of the rescaled

Weyl tensor are obtained from the conditions
Yopec = 0, Eop = 0, Agpe = 0, Aoy = 0, (alofp) = 0;
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where [\ch = %ecdef /A\bef. In particular, the evolution equation for components of the

covector f, defining the Weyl connection is given by

Using the definitions of the zero-quantities given in Equations (2.53a)-(2.53d) and making
€y = 67’7

use of the gauge conditions
1Ajoab =0, f/0a =0, Jo=0 and
one obtains the evolution equations
(2.80a)
(2.80b)
(2.80c)

doer” = —Th%0ec”,
dolpCq = _ffcdfbfo + 20407 Lve — 204° Lo — 200 Lva — Od®aon,

doLve = To%Lac + 'o%cLpa + dad® cop-
These equations constitute a system of transport equations along the conformal geodesics.

The evolution equations for the components of the rescaled Weyl tensor are obtained by
(2.81)

using the following expressions
dabcd = 2(hb[cdtﬂa - ha[cdd]b) - 2(7_[cd*d]eeeab + 7—[ad*b]ee cd)
(2.82)

d* abed = 2(hofed” qja — hped” ap) + 2(Tedae€®ab + Tjalble€ cd);

and
for the decomposition of the Weyl candidate in its electric and magnetic parts in the

and V“d*abcd = O,

Equations
Ve dabcd =0

from which one obtains
Avod = eod pa + D dgpq — af dgpg — a°dpeq — 2X7¢ (hpjedays — Pogredap)

+ 27 (T1ed” e € o + Tipd be€C )
N poa = €odpa — Dfd*fbd + afd*fbd + ad*peq + 2Xfc(hb[cd*d}f — hged ap)

— 2X7(Tied e €® s + Tipdpje€Ced)
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where
hab = GJab — TaTb, Xab = hacchba X = habXaba Qg = 7-bvbTa'

These equations are completely general. In the particular case of a conformal Gaussian

gauge system, one has eg = 0.

2.6.2 The subsidiary evolution system

This section addresses the construction of a system of subsidiary equations for the evolution
equations discussed in the previous section. The particular problem consists of constructing

evolution equations for the zero-quantities
A e Lo . .
2a"b, =% dabs Acap, Apea

encoding the extended conformal Einstein field equations. In addition, in the present
hyperbolic reduction procedure, one also needs to construct evolution equations for the
additional zero-quantities

(5a ; Yab, Sabs

which play the role of constraints of the conformal equations. The necessity of the extra
zero quantities can be traced back to Proposition 2. These subsidiary equations need to be
homogeneous in zero-quantities so that the vanishing of the latter on an initial hypersurface
readily implies a unique vanishing solution. The basic assumption in the construction of the
subsidiary system is that the evolution equations associated with the extended conformal

field equations are satisfied. That is, one assumes that

Sapec =0, = b = 0, Acap =0
hold, together with the standard system for the components of the Weyl spinor
Abea = 0, Npea = 0.
These evolution equations have been constructed using the gauge conditions

f‘Oab = 07 fO = 07 LOG = 07
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which, therefore can also be used in the construction of the subsidiary system. Moreover,
in the present gauge

do = OB = VO

so that one has

do = 0.

Similarly, by virtue of the gauge conditions and the evolution equation for £,

Vo + ol — 5ioalBe° — 22077 =0,

one has
R A 1 _
Yob = Lob — Vol — 550bef5e5f + A0 gy = 0.

Finally, as a result of the evolution equation for the covector f one has
sob = —Lob — Vofy + T4 fe = 0.

The construction of subsidiary equations is similar to the one discussed for the main evo-
lution system. There are however certain differences. The most conspicuous one is the
fact that one is now working with a non-metric connection. A detailed derivation of the
subsidiary system and a comprehensive discussion can be found in Chapter 3 — see also

27, 28, 81].

2.7 The conformal constraint equations

The conformal constraint Finstein equations are a set of intrinsic equations implied by the
standard conformal Einstein field equations on spacelike hypersurfaces S of the unphysical
spacetime (M, g). A derivation of these equations in their frame form can be found in

[81], Section 11.4.

Let S denote a spacelike hypersurface in the unphysical spacetime (M, g). The metric

g induces a 3-dimensional metric
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via the embedding ¢ : & — M. Since one considers the setting where the 1-form f
vanishes on S, the initial data for the extended conformal evolution equations and those
implied by the hyperbolic reduction of the standard conformal Einstein field equations are
the same. Now, let {e,} denote a g-orthonormal frame adapted to S. That is, the vector
€g is chosen to coincide with the unit normal vector to the hypersurface and while the
spatial vectors {e;}, ¢ = 1, 2, 3 are intrinsic to S. In our signature conventions, we have
that g(eg,e9) = —1. The extrinsic curvature is described by the components y;; of the

Weingarten tensor xqs. One has that x;; = ;i and, moreover
Xij = =%,

We denote by €2 the restriction of the spacetime conformal factor = to § and by X the
normal component of the gradient of 2. The field /;; denote the components of the Schouten
tensor of the induced metric h;; on §. With the above conventions, the conformal constraint

equations in the vacuum case are given by —see [81]:

D;D;Q = Y x,;; — QL;; + shij, (2.84a)
DY = xi*DpQ) — QL;, (2.84b)
Dis = ;Y — Ly, D*Q, (2.84c)
D;Ljx — DjLi, = Sdyij + D'Qdiij — (xie L — xjrLa), (2.84d)
D;Lj — DjL; = dyi; D'Q + x* Ljr, — x;% Li, (2.84e)
D¥dyij; = —(x*djr, — X*;dirc), (2.84f)
Didi; = x*dyjr, (2.84g)
A\ = 6Qs + 3%% — 3D, QD*Q, (2.84h)
DiXri — Drxji = Qdijr, + hij Ly — ha L, (2.84i)
lij = Qdij + Lij — x(Xij — iXhij) + XkiXs© — iXleklhij; (2.84j)
with the understanding that
hij = gij = 045

and where we have defined
L; = Lo;, dij = doioj, diji = diojk-
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The fields d;; and d;ji correspond, respectively, to the electric and magnetic parts of the
rescaled Weyl tensor and the scalar s denotes the Friedrich scalar defined as in Equation

(2.19). Finally, L;; denote the spatial components of the Schouten tensor of g.

In the derivation of the equations (2.84a)-(2.84j) it has been assumed that the connec-
tion D is the Levi-Civita connection of the intrinsic metric h. Thus, by analogy to the full

conformal field equations, one also has the relations
oiF; =0, My =", (2.85)
where aikj, Hklij and Wklij are given by
i jer = [eiy e5] — (7" — vi"i)ex, (2.86a)

%5 = e (™) — e;(vif0) + v (7™ — 1™5) + 7™ m — 1™ s (2.86b)
Trtij = Niklyy — haler + Rl — hjrli (2.86¢)

and denote, respectively, the components of the torsion, the geometric curvature and the

algebraic curvature of the connection D.

Proposition 4. A solution to the conformal constraint equations on S is a collection
Uy = {Qv E, S, €4, /yzk]a Xijs Llja Li7 dzya dl]k}

satisfying (2.84a)-(2.84j) together with the supplementary conditions (2.85).

2.7.1 The Hamiltonian and momentum constraints

An alternative way of discussing the conformal constraint equations is to start with the

usual Hamiltonian and momentum constraints in the physical space (S, iL)
P4+ X2 — XX = 2, (2.87a)
DSy — Do =0, (2.87D)

where 7 is the Ricci scalar of h, X is the Cosmological constant. Given the conformal

transformation

h = Q%h,
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and the frame {e;} introduced in the previous section, a direct computations of (2.87a)-

(2.87b) gives the so-called Hamiltonian and momentum constraints:

. . 1 1 .
20D, D'Q — 3D;QD'Q) + 59% +3%% — 592@(2 — XijX7) =208y = A, (2.88a)

LD Q%) — UDypx — 207 DY) =0, (2.88b)

where r is the Ricci scalar of h. Those equations containing terms involving Q=1 and Q=2

are not formally regular at Q2 = 0.

The relation between the conformal Hamiltonian and momentum constraint equations
(2.88a)-(2.88b) and the conformal constraint equations (2.84a)-(2.84j) is the content of the

following lemma

Lemma 5. A solution {S,u,} to the conformal constraint equations (2.84a)-(2.84j) im-
plies a solution to the conformal Hamiltonian and momentum constraint (2.88a)-(2.88b).
Conversely, a solution {S, h,x, 2, X} of (2.88a)-(2.88b) give rise to a solution to (2.84a)-
(2.84j) on the points of S for which Q2 # 0.

The proof can be found in Chapter 11 of [81] — see also [21]. It follows from this lemma
that the formulation of a Cauchy problem for the conformal field equations, by prescribing
initial data on a 3-dimensional manifold S in which € = 0 requires using equations (2.84a)-

(2.84j) to determine initial data for the conformal evolution equations.
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Chapter 3

The non-linear stability of de
Sitter-like spacetimes with spatial

sections of negative scalar curvature

3.1 Introduction

In the Mathematical Relativity literature, a Cosmological spacetime is usually understood
as a spacetime with compact spatial sections. Understanding the long-time evolution of
generic examples of these spacetimes in, say the vacuum case, is one of the open challenges
in the area. Although generic initial data is expected to form singularities towards the
future, it is nevertheless essential to address the stability of those solutions which are
known to be geodesically complete. The fundamental example of a geodesically complete
Cosmological spacetime is given by the de Sitter spacetime. Its non-linear stability was
analysed in the seminal work by Friedrich [23, 24]. A central aspect of this result is the use
of conformal methods to transform the question of the global existence of solutions to a
finite existence problem. An alternative approach to the study of the non-linear stability of
vacuum Cosmological solutions to the Einstein field equations by means of so-called CMC

foliations has been used by Andersson & Moncrief [3, 4] to prove the non-linear stability
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of 4-dimensional Friedmann-Lemaitre-Robinson-Walker (FLRW) vacuum solutions. Using
similar methods, in [17] Fajman & Kroncke studied the non-linear stability of large classes of
Cosmological solutions to the vacuum Einstein field equations with a positive Cosmological
constant in arbitrary dimensions. These solutions are characterised by having spatial

sections with constant scalar curvature which can be either positive or negative.

The purpose of this chapter is to show that, in four dimensions, the stability results
for spacetimes with spatial sections of constant negative scalar curvature given in [17]
can be addressed via a generalisation of the conformal methods developed by Friedrich
23, 26, 27, 34] —see also [81]. This discussion exploits the hyperbolic reduction procedure

discussed in Chapter 2 and is based on:

M. Minucci and J. A. Valiente Kroon, A conformal approach to the stability of Finstein
spaces with spatial sections of negative scalar curvature, Class. Quantum Grav. 38, 145026

(2021) https://doi.org/10.1088/1361-6382/ac0356.

3.1.1 De Sitter-like spacetimes

In what follows, for a de Sitter-like spacetime is understood a vacuum spacetime with a
positive value of the Cosmological constant and compact spatial sections of negative scalar
curvature. General results on conformal geometry show that if these spacetimes admit
a conformal compactification d¢ la Penrose then the conformal boundary of the spacetime
must be spacelike —see e.g. [81], Theorem 10.1. Following the standard usage, we refer
to the conformal extension of a de Sitter-like spacetime as the unphysical spacetime. The
usefulness of this conformal extension lies in the fact that points representing the infinity
of the physical spacetime (e.g. the endpoints of timelike geodesics) are mapped to a finite

location in the unphysical spacetime.

In this particular case, we consider de Sitter-like spacetimes which can be conformally
embedded into a portion of a cylinder whose sections have negative scalar curvature. The
conformal embedding is realised by means of a conformal factor © which depends quadrat-

ically on the affine parameter 7 of conformal geodesics, and the affine parameter is used as
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a time coordinate for the physical metric.

Key in the conformal approach is that the unphysical metric provides a solution to the
conformal Einstein field equations [22, 81]. In this chapter we make use of a more general
version of these equations, the extended conformal Einstein field equations, allowing the
use of conformal Gaussian coordinate systems in which coordinates are propagated along

conformal geodesics.

As already mentioned, the appeal of conformal methods in the study of solutions to the
Einstein field equations lies in the observation that local results for the unphysical space-
time can, in principle, be translated into global results for the physical spacetime. In the
original formulation of the conformal Einstein field equations the conformal factor realising
the conformal embedding of the physical spacetime in a compact manifold is an unknown
of the problem. However, remarkably, the use of conformal Gaussian coordinates systems
provide a natural conformal factor which singles out a representative of the conformal class
of the spacetime. Accordingly, the location of the conformal boundary is known a priori,
thus simplifying further the analysis of the evolution equations. The extended conformal
Einstein field equations expressed in terms of a conformal Gaussian system can be shown
to imply a conformal evolution system which takes the form of a symmetric hyperbolic
system —i.e. a class of evolution systems for which there exists a well-developed existence,

uniqueness and stability theory [49].

3.1.2 The main result

The analysis of the conformal properties of de Sitter-like spacetimes with compact spatial
sections allows us to formulate a result concerning the existence of solutions to the initial

value problem for the Einstein field equations.

Our main result can be stated as:

Main Result 1. Given smooth initial data (h, K) for the Einstein field equations on S
which is suitably close (as measured by a suitable Sobolev norm) to the data implied by the

metric g of de Sitter-like spacetime, there exists a smooth metric g defined over [0,00) xS
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3.2. The background solution

which is close to g (again, in the sense of Sobolev norms) and solves the vacuum FEinstein
field equations with Cosmological constant X = 3. The spacetime ([0,00) x S, g) is future

geodesically complete.

Remark 2. A precise formulation of this result is given in Theorem 1 in Section 3.7. The

construction of the initial data required in the above result has been analysed in [82].

This analysis is part of the general programme in Mathematical Relativity to under-
stand the endpoint of the evolution of “Cosmological spacetimes” (i.e. spacetimes with
compact sections) under the Einstein field equations, the so-called Finstein flow. In par-
ticular, it identifies a class of spacetimes for which it is possible to show non-linear stability
and the existence of a regular conformal representation. These special properties are not
shared by generic Cosmological solutions. Thus, it is important to identify the situations

in which this is the case.

3.2 The background solution

In the following let (M, g) denote the solution to the vacuum Einstein field equations with

positive Cosmological constant

Rab = 3§ab7 (31)

given by M =R x S and
g = —dt ® dt + sinh®t 4, (3.2)

where 4 is a positive definite Riemannian metric of constant negative curvature over a

compact manifold & such that

The spacetime (M, g) is future geodesically complete —see Appendix A.2.

Remark 3. The value A = 3 for the Cosmological constant is conventional and set for

convenience. This analysis can be carried out for any other positive value. Indeed, given
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A > 0 define the metric g, via the relation

3

gab = Xgab-

As this is a constant conformal rescaling, the Ricci tensor is invariant —i.e. Ry = Rap;

see e.g. equation (5.6a) on page 116 in [81]. It follows then that equation (4.1) implies

Rap = AJap-
Remark 4. The existence of compact 3-manifolds with constant negative scalar curvature
has been analysed in the mathematical literature —see [48]. These 3-manifolds are locally
isometric to quotients of the hyperbolic space H?. The admissible topologies are discussed
in [6]. This class of manifolds is sometimes called conformally rigid hyperbolic manifolds
as, despite being conformally flat, they do not admit globally defined conformal Killing
vectors nor non-trivial trace-free Codazzi tensors. These properties play a crucial role in
the perturbative construction of initial data for the conformal evolution system as discussed

in Section 3.4.
The Riemann curvature tensor r;,[4] of the metric ¥ is given by
Tijkl [7] = %ﬁjk - '?z’ks/jl-

From the above expressions it follows that

R =12,
so that
~ 1.
Lab = igab. (33)

A spacetime of the form given by (M, g) is known as a background solution. In the
rest of this section, we analyse this class of solutions to the Einstein field equations from
the point of view of conformal geometry. In particular, we use the conformal geodesics to

provide a canonical conformal extension —see Proposition 3.
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3.2.1 A class of conformal geodesics

Let z(s) be metric geodesics on (M, g) whose tangent vector is proportional to 8, —i.e.
& = a0, for some proportionality function o and where the overdot denotes differentiation

with respect to the affine parameter s € R. The geodesic equation
Vi =0
implies that
Va,(ad,) = V,a + V5,8,
= @toz +1'#.0,.
A direct calculation for the metric (3.2) shows that I't*; = 0 so that one concludes that

Oy = 0 —that is, « is constant along the integral curves of @;. Without loss of generality,

we then set o = 1 so that g(&, &) = —1. In summary, we have that the curves
:C(t) = (t7 i‘)()7 g* E S?

are non-intersecting timelike g-geodesics over M. In a slight abuse of notation, the coor-

dinate t has been used as a parameter of the curve.

Reparametrisation as conformal geodesic

In the following, we use the methods in the proof of Lemma 4 to recast the family of
geodesics discussed in Subsection 3.2.1 as conformal geodesics —see also [81]. Accordingly,

we consider a reparametrisation of the form
T = t(7),

while we look for a 1-form B given by the Ansatz

B =a(r)x” = a(t)dt,

where " denotes derivatives with respect to ¢. From the chain rule, it follows that

az—ﬁd—m—iw’ t
Cdrdt

dt
dr’
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In particular, one readily has that
Vit = i2Vyx + iz

Substituting the previous expressions into equations (2.57a) and (2.57b), taking into ac-
count expression (3.3) for the components of the Schouten tensor one obtains the system

of ordinary differential equations

t+at? =0, (3.4a)
1,
Q= it(cf —1). (3.4Db)

The general solution to the above system can be found to be

a(T) = a7 + e,

t(1) = —2arctanh(c;7 + ¢2) + cs,

with ¢q, g, c3 € R constants. For simplicity, one can, e.g. set ¢y = —1, ¢ = ¢3 = 0 to get

the simpler expressions

a(t) = -,

t(r) = 2arctanh 7.

Thus, observing that

sinh (2arctanh 7') = 13;, ;T (Qarctanh T) =

2

1—72’

it follows that the pair (z(7), 8(7)), T € (—1,1) with

z(7T) = (2arctanh 7, x,), B(1)=— dr,

1—72
give rise to a congruence of non-intersecting conformal geodesics on the background space-

time (M, g). Using the parameter 7 as a new coordinate in the metric (3.2) one concludes

that
2 4 .

Notice that the metric is singular at 7 = £1.
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The canonical factor associated to the congruence of conformal geodesics

The line element (3.5) readily suggest the conformal factor

1
(—) = 5(1 — 7_2).

Remark 5. Alternatively, we can make use of the equation

. ~ ~ ) 2T
0= ()0, (Bd)=ai=—1",
implied by the condition ©2g (&, ) = —1. Integrating one readily finds that

s _1--
O, 1-72
where O, is the value of the conformal factor at a fiduciary time 7,. Observe, also, that

~ 2T

=d(Ine(r)). (3.6)

Following expression (3.5) we introduce a new unphysical metric g via the relation
1
2

C.Qo
I
©)
[\
Qe
@
11l

(1—7%),
so as to ensure that © > 0 for |7| < 1. It follows then that
§g=—-dredr+7% (3.7)
is well defined for 7 € [r,, 1] with 7, > 0. For future use, we define the spatial metric h
h = 4,
with associated Levi-Civita connection to be denoted by D. Also, denote by D the Levi-

Civita connection of the metric 4. A Penrose diagram of the conformal representation of

the background solution described by the metric (3.7) is given in Figure 3.1.

Remark 6. Observe that as the metrics 4 and h are conformally related via a conformal
factor independent of the spatial coordinates, it follows then that expressed in terms of

local (spatial) coordinates one has that
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j+

Figure 3.1: Penrose diagram of the background solution. The conformal representation
discussed in the main text has compact sections of negative scalar curvature. The vertical
lines I'1 and I'y correspond to axes of symmetry. The solution has a singularity in the past
and a spacelike future conformal boundary. Hence, in our discussion, we only consider the

future evolution of the initial hypersurface S,.

Remark 7. A computation readily shows that the integral curves of the vector field 8-

are geodesics of the metric g given by equation (3.7) —that is, one has that
Vo.0, =0.

Remark 8. Taking into account the expression (3.6), the conformal transformation law

for conformal geodesics gives that
B=p8- d(ln@(T)) = 0.

To any (non-singular) congruence of conformal geodesics one can associate a Weyl connec-

tion V via the rule

V-V =504

In the present case, B is a closed 1-form and, thus, the Weyl connection is, in fact, a

Levi-Civita connection which coincides with V.
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3.2.2 The background spacetime as a solution to the conformal

Einstein field equations

In this subsection, we show how to recast the unphysical spacetime (M,g) with M =

[T,,00) x S as a solution to the conformal Einstein field equations. This construction is
conveniently done using an adapted frame formalism.

The frame

Let {é&;}, 2 =1, 2, 3, denote a Y-orthonormal frame over S with associated cobasis {&'}.
Accordingly, one has that

so that

Y= 6,60 ® 6.

The above frame is used to introduce a g-orthonormal frame {é,} with associated cobasis
{wb} so that (Wb é,) = 6,°. We do this by setting

. . _ 1
€y = 67’7 €;, = —Cy,
T
W=dr, &'=78

so that

o °a o b
g = NapwW~ @ w".

Remark 9. It follows that all the coefficients of the frame are smooth (C*°) over [, 00) XS,
7. > 0.

The connection coefficients

The connection coefficients 4;*; of the Levi-Civita connection D with respect to the frame
{¢;} are defined through the relations

o

0 o k o k
Dic; = %" jCr, i j
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Similarly, for the connection coefficients sz] of the Levi-Civita connection V with respect

to the frame {€,} one has that
2 o ° C o ° C - o C 2 o
va,eb - Fa b€ec; a b— <w ,Va€b>.
We now proceed to compute the various connection coefficients.

The coefficients f‘ikj. Recalling the definition of the connection coefficients and the basis

fields {&;} and {&’} one has that

Fikj = (wk, Vzé3> = <wk, éiavaéj>

o 1 O 1 ©
(dk,éi"‘vaéj) = —(dk,éiaDaéj> = —(o"zk7Diéj>
T T
’OYz'kJ’-
The coefficients foao. Recall that éqg = 0, is tangent to geodesics —see Remark 7.
Thus,
Voéo = T'o“éE,,
from where it follows that
foao - O
The coefficients Fﬂ o and f‘ioj. In this case, we have that
Do = (W, Viéo) = Xi?,

where x;7 denote the components of the Weingarten tensor. Defining X;; = n;1X:*, one has
that Xi; = X(ij) as the congruence defined by 8, can readily be verified to be hypersurface
orthogonal. Thus, in this case ;; coincides with the components of the extrinsic curvature

of the hypersurfaces of constant 7. To compute y;; recall that
1
Xab = _iﬁafhaba
where Ly denotes the Lie derivative along the direction of 8;. As
3 20 o 2
Lo h =Ly (7’ 'y) =279 = —h,
T
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one concludes that

. 1
Xij = —;51'3'-

Exploiting the metricity of the connection V one finds that, moreover,

o

1
0 5
I = —Xij = ;5@‘-

The coefficients f‘oj i- In this case one readily finds that

. e L. 1
I'e?i = (W, Voé;) = (@, Vo <0z>>
T

The coefficients 10“00,-. In this case, one readily finds that

. o - (1 1
[o% = (@° Voéi) = (0° Vo (éi>> =——(dr. &) =0.
T T

The coefficients 1';%. Observing that [é;,€9] = 0 and recalling that in the absence of

torsion one has that
[éi7 éo] = (fico - IDjo%) €c,
it follows from the previous results that

% = 0.

Remark 10. It follows that all the coefficients of the connection are smooth (C*°) over

[Ty, 00) X S.

Remark 11. For later use it is observed that the extrinsic curvature (Weingarten tensor)

can be written in abstract index notation as

Xij = ——hij. (3.8)
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Conformal fields

The next step is the computation of the components of the conformal fields appearing in
the extended conformal Einstein field equations. To this end, we make use of the conformal

Einstein constraints discussed in Section 2.7.

We make use of an adapted frame with eq = 8, and make the identification 2 — © in

equations (2.84a)-(2.84j). Observe that one has that

The scalars ¥ and s. By definition one has that

o

Y=n(0)=-0,0=r.

The minus sign arises from the fact that in our conventions (d7)* = —8,. Using the latter

in the conformal equation (2.84h) with A = 3 one readily concludes
§=1.
Components of the Schouten tensor. The constraint (2.84b) readily yields for © > 0

that

The spatial components, lolij, are computed using the constraint (2.84a). Observing that

in our case lo)l-lo)jG = 0 one readily concludes that
Li; =0.

Thus, all the components of the Schouten tensor, except for its trace, vanish. This trace

is proportional to the Ricci scalar of the metric (3.7).

Components of the rescaled Weyl tensor. The constraint (2.84i) offers an easy way
of computing the magnetic part of the rescaled Weyl tensor. As D]Xm = 0 and we already

know that ; = 0, it follows then that dwk = 0 so that, in fact,
CZ*Z‘J’ = 0
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To compute the electric part of the rescaled Weyl tensor we make use of the constraint
equation (2.84j). This equation requires knowing the value of the Schouten tensor lw of
the metric h. From the definition of the 3-dimensional Schouten tensor one readily finds
that if r[¥] = —6, then

1
Schouten[y] = —5'3/.

Now, we have that h = 724 so that h and 4 are conformally related. However, the
conformal factor does not depend on the spatial coordinates. It follows then, from the

conformal transformation rule of the Schouten tensor that
Schouten|] = Schoutenlh).

Hence, one has that

. 1. 1 .

lij = —5%'3' = _ﬁhij

Now, a calculation using equation (3.8) reveals that

: YO o . Lo s
lij = _X(Xij - ZXhij) + XkiXs" — ZXleklhij
so that
dol'j - O

Remark 12. In summary, one has that the metric (3.7) is conformally flat.

Ricci scalar. Finally, although it does not appear as an unknown in the extended con-
formal Einstein equations, it is of interest to compute the Ricci scalar of the metric. To

do this we observe that from the definition of the Friedrich scalar one has that
o 1. o .
RO = 24(3 — VeV @).

A computation readily yields V.V¢O = —2 so that one concludes that

o 72
h=-—"=_
1— 72

That is, the Ricci scalar is singular at 7 = 1.

Remark 13. Although the Ricci scalar of the background solution is singular, this will
not pose any difficulty in our subsequent analysis as the Ricci scalar does not appear as

an unknown in the extended conformal Einstein field equations.
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3.3 Evolution equations

In this section, we discuss the evolution system associated to the extended conformal
Einstein equations (2.54) written in terms of a conformal Gaussian system. This evolution
system is central in the discussion of the stability of the background spacetime. In addition,
we also discuss the subsidiary evolution system satisfied by the zero-quantities associated to
the field equations (2.53a)-(2.53d) and the supplementary zero-quantities (2.55a)-(2.55¢).
The subsidiary system is key in the analysis of the so-called propagation of the constraints
which allows to establish the relation between a solution to the extended conformal Einstein

equations (2.54) and the Einstein field equations (4.1).

3.3.1 The conformal Gaussian gauge

In order to obtain suitable evolution equations for the conformal fields, we make use of
a conformal Gaussian gauge. More precisely, we assume that we are working on a region
U C M which can be covered by a congruence of non-intersecting conformal geodesics.
Then Proposition 3 gives the conformal factor associated to the curves of the congruence

1

o(r) = 5(1 — (- T*)Q), (3.9)

by choosing
1 . ) 1
@*:*, @*:O, @*:_7a
2
for 7 = 7,, 7, € (0,1). This choice of initial data for the the conformal factor is associated
to a congruence that leaves orthogonally a fiduciary initial hypersurface S, with 7 =7, —
notice, however, that the congruence of conformal geodesics is, in general, not hypersurface

orthogonal.

Remark 14. Since the conformal factor © given by equation (3.9) does not depend on the
initial data for the evolution equations it can be regarded as universal —i.e. valid not only
for the background solution but also for perturbations thereof. Similarly, a consequence
of Proposition 3, it follows that the components d, of the the covector d are, in the same

sense, universal.
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Along the congruence of conformal geodesics, one considers a g-orthogonal frame {eq}
which is Weyl-propagated and such that 7 = eg. The Weyl connection V., associated to

the congruence then satisfies

which is equivalent to

FObc = 07 fO = 07 ZA—10(1 = 07 (310)
—see e.g. [81], Section 13.4, page 366. By choosing the parameter, 7, of the conformal
geodesics as time coordinate one gets the additional gauge condition

€g — 8T, 60“ = (50”.

On S, we choose some local coordinates z = (z%). Assuming that each curve of the con-
gruence intersects S, only once, one can extend the coordinates off the initial hypersurface
by requiring them to be constant along the conformal geodesic which intersects S, at the
point with coordinates z. The coordinates T = (7, z) thus obtained are known as conformal

Gaussian coordinates.

3.3.2 The main evolution system

The required evolution equations for the frame components, connection coefficients and

components of the Schouten tensor are obtained from the conditions
So%ee =0,  Z%op=0,  Age =0. (3.11)

In particular, the evolution equation for components of the covector f, defining the Weyl
connection is given by

L
=% = 0.

In the following, we analyse each of these equations in more detail.
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Evolution equations for the components of the frame

Now, starting from equation (2.53a)
iacbec = [eq; €p] — (facb - fbca)ec
and writing e, = €,"8,, it follows that the condition f]acbec = 0 implies
(Oatp” — Oped”) = (f‘acb — f‘bca)ec”, Oa = €4"0,,.

Setting a = 0 it follows that the evolution equation for the components of the frame takes
the form

does” = —Lv%0ec” . (3.12)

Evolution equations for the components of the connection

In order to obtain the evolution equation for the components of the frame not determined

by the gauge conditions one considers the condition =00 = 0.
Now, since
RCdOb = ao(fbcd) - ab(f‘ocd) + (fbfdfocf - fofdfbcf) + ffcd(fbfo — 1Aﬂofb),
then using the gauge condition [0 = 0 one has that
]%201, = eo(fbcd) + ffcdfbfo-
In addition, observing that
Sa0®Luje = 0a°Lvo + 60°Loa — 9a09°Lve — da°Lob — 9 Lo + 9abg® Lo,
together with the gauge condition Loq = 0, it follows that
P a0 = Od°aop + 204 Lo + 200 Lg — 21a07° Ly,

where it has been used that gg09°¢ = nqon®. It follows that the evolution equation for the

coefficients of the connection not determined by the gauge is given by
9o(T'%a) + ffcdfbfo = 21401° Lbe — 204 Lo — 200 La — Od aop.
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The above expression can be written in terms of the Levi-Civita connection coefficients

I'x%. and the 1-form f, through the relation
f‘abc = 1—‘abc + Sadefd-

In particular, since

it follows from the gauge condition fy = 0 and éccob = 0 that

Oofi = —fjfijo + zio- (3.13)

Evolution equations for the components of the Schouten tensor

The evolution equations for the components of the Schouten tensor not determined by the

gauge are obtained from the condition AOdb = 0. It follows then that
VolLay — VaLos — dad®0a = 0.

However, in the conformal Gaussian gauge one has that Lo» = 0 so that the evolution

equation for the components of the Schouten tensor can be simplified to
BoLay = To®aLles + Loy Lac + dad®voa = 0,

as ['g¢q = 0.

Evolution equations for the components of the rescaled Weyl tensor

The evolution equations for the components of the Weyl tensor are extracted from the de-
composition of the zero-quantity Apeq. As this zero-quantity contains a contracted deriva-
tive, the decomposition is more involved than for the other zero-quantities. As in the case
of the conformal constraint equations, this analysis is best done using the decomposition
of the rescaled Weyl tensor in its electric and magnetic parts with respect to the tangent

to the congruence of conformal geodesics on which our gauge is based.
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In the following, let h,” denote the projector to the hyperplanes orthogonal to the

tangent vector field 7* to the congruence of conformal geodesics. One has that
hab = 5ab - TaTbu

so that
Abea = V6ol dpea) = 647V fpea
= TfTavad_fbcd + hafV“dfbcd

= 77Dd tpeq + D¥ dfpea,

where D, = h,*V;, and D = 7*V, denote, respectively, the Sen and Fermi covariant deriva-
tives associated to the congruence. Now, observing that the acceleration and Weingarten

tensor of the congruence is given, respectively by

Ay = TbeTa = D1,
Xab = 1oV = Do,
it follows that
/A\bchC = AbOd = TCD(defbcd) + Tchdfbcd — achdfbcd
= D(777°dfpea) + DY dgooa — a’ dgpoa — a°dovea — X' sbea

so that

-/A\bOd = Ddopoa + D’ dfpod — al d¢pod — a°doped — Xfcdfbcd-
To further simplify we make use of the decomposition
dabcd = 2<lb[cdd}a - la[cdd}b) - 2(7_[cd*d}e€eab + T[ad*b]eeecd)a

of the rescaled Weyl tensor in terms of its electric part d,; and magnetic part d,;, with

respect to the vector field 7 where l,, = ho, — 7,7, to obtain

]\bOd =Ddpq + Dfdfbd - afdfbd — a°dpeq — 2Xfc(lb[cdd]f - lf[cdd]b)

+ 2X7(Ted” qe€® 1o + T A" bje € ca)-
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A

To finally extract the required evolution equation we consider Ajojq). Observing that all

the involved tensors are spatial one obtains, after some simplification, that

/A\(i|0‘j) = 80d,~j + €kl(iD|l|d*j)k — 2al€kl(id*j)k + Xdij - 2Xk(idj)k = 0. (3.14)

To complete the system of evolution equations for the components of the Weyl tensor

one carries out a completely analogous calculation with the zero-quantity
Npoa = VL abea
and the decomposition
abed = 2(lpped” ga — Lyed” ap) + 2(Teddae®ab + Talble€  cd)

where the Hodge dual of the rescaled Weyl tensor is defined as

y 1
d abed = ieabejcdcdef-

More precisely, the decomposition
A'yeq = T°Dd" apea + Dd" apea.
leads, after a lengthy computation, to the evolution equation
A* o) = Ood"ij — 1Dy — 2d i *djy + xd*i5 — 2xF ;" jyi = 0, (3.15)
in which all the fields are spatial.

Remark 15. The zero-quantities Abcd and A*bcd are not independent. In fact, Abcd =0 if

and only if A*bcd =0.

Remark 16. Equations (3.14) and (3.15) imply a symmetric hyperbolic evolution system
for the (ten) independent components of the fields Eqp and Bg, —see e.g. [2] for explicit

expressions of the associated matrices.
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3.3.3 The subsidiary evolution system

The analysis of the relation between the solutions to the evolution equations and actual
solutions to the full conformal Einstein field equations, the so-called propagation of the
constraints, requires the construction of a system of subsidiary evolution equations for the
zero-quantities associated to the conformal equations (2.53a)-(2.53d) and the gauge condi-
tions (2.55a)-(2.55¢). For the standard argument of the propagation of the constraints to
follow through, the subsidiary system is required to be homogeneous in the zero-quantities.
If this is the case, then it follows from the uniqueness of solutions to symmetric hyperbolic
systems that if the zero-quantities vanish initially, then they will vanish for all later times

as the vanishing (zero) solution is always a solution of a homogeneous evolution equation.

General remarks

The basic assumption in the construction of the subsidiary evolution system is that the evo-
lution equations associated to the extended conformal field equations are satisfied. Hence,

we assume that

. .
dob = 0, Agpe =0,

[1]>

ZA:OCb = Oa

together with
Agjoj) =0, Ao = 0.

These evolution equations have been constructed using the gauge conditions
fO = 07 I-‘Obc = 0, f/Ob = 0.

These gauge conditions will also be used in the construction of the subsidiary evolution
system. Accordingly, the construction requires the evolution equations for the additional
zero-quantities d,, Y4 and ¢4, which are associated to the gauge. In our gauge dy = 0 so
that

do = 0.
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Since Loy = 0, by virtue of the definition (2.8) and the evolution equation for the covector
Ba, namely,

@Oﬁa + 606(1 - ;UOa(ﬂeﬁe - 2/\6_2) = 07

it follows that
N A 1
Yob = Lob — Vo — §Sobefﬂeﬂf + A0 ngp = 0.

As a result of the ©~2 in the last term of this equation, it can only be used away from the
conformal boundary —this is, however, not a problem in our analysis as the propagation
of the constraints only need to be considered in the regions where © # 0. Moreover, by

virtue of the gauge conditions (3.10) and the evolution equation (3.13), we have

oo = — Lo — @Ofb + fbeofe =0.

The subsidiary equation for the torsion

To obtain the subsidiary equation for the no-torsion condition we consider the totally

antisymmetric covariant derivative @[aibdc] and observe that
3@[021;'10] = VoXp?e — Th%02cte — T %e. (3.16)
On the other hand, from the first Bianchi identity
Rean) + ViaZly + Saig% = 0,

and the definition of =€, one obtains

A

@[azbdc} = _éd[cab] - 2[a,ebic]de? (317)

where it has been used that, by construction, ﬁd[cab] = 0. The desired evolution equation

is obtained combining equations (3.16) and (3.17) to yield

A 1o - 1o - A
VoXple = —=T%02.% — grceozedb — 2% e (3.18)

This evolution equation is homogeneous in the various zero-quantities.
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The subsidiary equation for the Ricci identity

To obtain a subsidiary equation for the Ricci identity, we consider the totally symmetrised

covariant derivative @[aé‘ﬂewc} and observe that
3V 0= ebd) = Vo= epe — ToF 05 %er — T'ef 0= % . (3.19)
Using the second Bianchi identity
ViaR?ejpe) + Eia” 5% eler = 0
and the definition (2.53c) it follows that

@[aéd\e\bc] = _i[afbf%d|e|c]f - @[aﬁd\e\bc]- (3.20)

The first term on the right-hand side is already of the required form. The second one needs

to be analysed in more detail. For this, one makes use of the definition (2.52b) so that
@[aﬁd\e\bc] = ?[aCﬁa‘bd + QSe[bdfﬁaic]f.

To further expand this expression we consider the combination ef"bcﬁa,ﬁdebc. A direct

computation shows that
ViaC%elbd = ViaClepad + 00 f17C7 cibe) + Netaf T C4 s 1pe)-

Moreover, one has

b d dgh
Efa CVaC ebe — —€e 9 VaCafgh.

Thus, by using that C°gep = Od 4ep and the definition (2.53d) it follows that
€1V 0% e = O WM A g, + 2VIOd 5y + 20 fId* o % + 20 f9d*% 5.
A similar computation using the definition (2.53c) yields
269G b A oy = 208,d™9 o5 — 208,d"9% ..
Thus, using the symmetries of d*.4qp and the definition (2.55a) one concludes that
€17V ap%epe = O A pop — 20090 15 + €S b A ey
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Alternatively, using the properties of the generalised Hodge duals we can write
& Ad 1 f dgh A 1 f g jxd dg A
v[ap lelbe] — 666 abc€e Afgh - 566 abc(s d efg — Se[b Aac]g'
Combining the expressions, we obtain the following evolution equation
CHES S A S A SF D 1 n
vO:'debc :beO:‘decf + 1—‘cf0~:defb - becRdeOf - §@€f0bceedghAfgh

(3.21)
+ 6fObc(sgd*defg + 3SeOdgAcbga

which is homogeneous in the zero-quantities.

Subsidiary equation for the Cotton equation

Now, to compute the subsidiary equation for the Cotton equation we consider @[aﬁbc]d.

On the one hand, a direct computation yields
3V0Abed = Volsed — [6%0Acea — LoD epa.
On the other hand, using the definition of éemb and the symmetries of p¢.q one obtains
Vialodd = —Z%cat Lea — = djab Leje — P diab Leje + 210V je| Leja — Viadjed® ape — de Vo appe
Using the definition of d, and 7, one finds that
@[ad|eded|bc = —001aB1ed dipe) — OValed dipe] — © flaBled® djpe) + @f/[a\eded\bc]-
Finally, a calculation shows that € fabcvadedbc = €4°9"V ,d° fgh, SO that using
ViaCele = ViaCllelvel + 0?17 C7 eppe) + Metaf T O pipc

and the properties of the generalised duals we find that

1

V1ad® | djbe) = 66abc a“" A pon + 01 iz d appe + Naa f A fipa-

Combining the above expressions and using the properties of the decomposition of p¢g4p

we obtain the expression

[I]>

) N 1
VieAbaa = —Z°cat Lea—Z djab Lae+ 2105 Ve Leja+O0(a BledC djpe +OValed ajpq — éeabc a9 A fgnBe
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VoAsed =I6%0Acea + Te®0Aeva — Z¢obeLea + Opded® o + deded® aop

1 ~
+ OVbed dco + OVced®aon — 560bcf€degh/\fgh5e7
which is homogeneous in zero quantities as required.

Subsidiary equations for the Bianchi identity

equations is more involved.

Finally, we are left to show the propagation of the physical Bianchi identity. In view of the
contracted derivative appearing in this equation, the construction of suitable subsidiary

Since h,? = 6,° + 7,70, it follows then that

Aabc == 5ad]\dbc == (hfa - TaTd)Adbc = hadAdbc - TaTdA/A\dbc-
Now, let

(3.22)
Qape = hadAdbca e =7 dAdbc-
By construction, the tensor 2. is antisymmetric, hence it admits a decomposition in
electric and magnetic parts. That is, one can write
Qe = Q[bc} = QZ€6bc - 2Q[b7-c]7
where

Q= Qarhe’, U= Q5 h,"
Furthermore, one also has that

Qape = Qappe) = Hyoqe — 2H g7,
where

_ b
Hda = Qdch haca

H o = QZCbTbhac.
that

Substituting the above expressions for Q. and g, into equation (3.22) it follows then

Agpe = ho(H € de — 2H gpng) — na (2 €epe — 2Qpny).

(3.23)
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Crucially, one can verify that if the evolution equations (3.14) and (3.15) for the electric

and magnetic part of the rescaled Weyl tensor are satisfied then
Hy, =0, H*3, = 0.
If the above holds, then equation (3.23) reduces to
Aape = N0 (221 — 2 e€%e) = 10 e

Remark 17. The tensors €2, and 2} encode, respectively, the Gauss constraints for the

electric and magnetic parts of the Weyl tensor —that is, the equations

Ddy =0,  Dd, =0.

To conclude the computation, it remains to compute V“Aabc. A direct calculation gives
VAue = VT + 7o Ve = VT Qe + 0. (3.24)

An alternative computation of V“Aabc using the commutator of the covariant derivative V
gives

QVbAbcd = 2V[bva}dabcd = 2Re[cbadd]eab - 2Reabadebcd + Zbeavedabcd-
Observing that S, =2, %as V-V =49 (f), it follows that the equation
R%ea — R%ea = 200%V afo + Vief“ap — 0%V e fa) — 0% far fo + Goiefa f* + 0% cdapfefO)

together with the definitions of the zero quantities écdab and ¢g, and the symmetries of

dapea SO that after projecting the equations with respect to the frame one obtains

L. - 1.
vbAbcd = :e[cbadd]eab - :eabadebcd + §Ebeavedabcd + gabdabcda (325)

which is homogeneous in zero quantities. Hence, combining equations (3.24) and (3.25),

we obtain the following equation for the components of 2,:

~e a “~e a 1a e a a
aOch = fdc}efa — o fdeabc + iza fvedf be T gf dfabc - Xch'
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Subsidiary equations for the gauge conditions

To conclude our discussion of the subsidiary equations, we are left with the task of providing
evolution equations for the zero-quantities associated to the gauge. In order to do so we

expand @[051,], @[O’yb]c and @[O§bc] to get

2V 00y = Vady + [ede,
2@[07b]c = @O'ch + f‘I)EO"Yeca

2v[0§bc} = VoSbe — Fb60§ce - 1—‘ceogeb'

We then compute @[aéb}, @[aﬁ)/b]c and @[agbc] explicitly making use of the definitions of the

zero-quantities and re-expressing the result in terms of zero-quantities so as to obtain

A 1 ~
2v[a5b] = ~Y[ab] + Cab — §@_lzaebve@7
2@[a7b]c = Aabc + Beéecab - i)aeb@eﬁc + 2667[ab} - 26[a7b}c
+nc[aﬁe'7b]e + 2)\@725[1177%0 + ﬁ[anb]cﬂeﬂe - 2>\@72nc[aﬁb]a
A 1 1

1. . .
V[agbc} = §A[abc] + ize[cab]fe - §Z[aebv|e|fc]-

From the above expressions, it follows that the evolution equations for d,, 7. and ¢, are

given by
Vodi = 7io — [0, (3.26a)
Voyic = —’Vjcfij — BoYie — Bevio + Moe(BYie — 200726;), (3.26b)
. - 1, 1, e o ¢
vogjk = Fjeogke + ero§ej + iAjkO + 55 Ojk:fe + 52]' krefoff, (3.260)

where, in particular, the evolution equation for the covector f,,

ﬁoﬁa + /BO/BCL - ;7]011(6666 - 2)‘@72) = 07

has been used in the derivation of equation (3.26b). Again, as required, the equations

(3.26a)-(3.26¢) are homogeneous in various zero-quantities.

Remark 18. Observe that equation (3.26b) contains the potentially singular term A©~2;.

As such, this equation can only be used away from the conformal boundary where © = 0.
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This is a consequence of the use of a conformal Gaussian gauge hinged on a standard
Cauchy hypersurface. This singular behaviour is of no consequence in our analysis as
one is only interested on solutions to the subsidiary equations away from the conformal

boundary.

3.3.4 Summary: structural properties of the evolution and sub-

sidiary equations

As a conclusion of the long computations in this section, we now provide a summary of
the conformal evolution equations, the associated subsidiary system and the structural

properties of these systems which will be required in the reminder of our analysis.

The computations discussed in the previous subsections show that, in a conformal
Gaussian gauge, the various fields associated to the extended vacuum conformal Einstein

field equations satisfy the evolution equations

Orey” = T e, (3.27a
OrLay = To%aLey + T0% Lae + dad®pod, (3.27b
O, fi = — ;T 0 + Lio, (3.27c

)
)
)
9, (TpCa) = —ffcdfbfo — Ed°a06 — 204° Lo — 200 Lpa + 29409 L,  (3.27d)
)
)

aTdbd + Ge‘f(dedZ)e = 2afef5dz)e - ded + 2Xf(bdd)f, (3276
afd;;d — Ge_f(dD‘fdb)e = 2afef(dedb)e - XdZd + QX{bdZ)f (327f

Letting e, I, L and ¢ denote, respectively, the independent components of the coefficients
of the frame, the connection coefficients, the Schouten tensor of the Weyl connection and
the rescaled Weyl tensor and setting, for convenience, . = (0, ¢A)), v = (e, f‘, i}), one has

that equations (3.27a)-(3.27f) can be written, schematically, in the form

0,0 = Ko + Q(0,0) + L(z), (3.282)

(I+A%e))d,¢ + A%(e)d ¢ = B(I) o, (3.28D)
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where K and Q denote, respectively, a matrix and a quadratic form, both with constant
coefficients while L is a matrix with coefficients depending smoothly on the coordinates.
Moreover, A*(e) denote, for u = 0,...,3 Hermitian matrix-valued functions depending
smoothly on e. In particular T + A%(e) is positive definite for e suitably close to the
background solution —with closeness understood in the sense of Sobolev norms. Finally,

B(I") denotes a smooth matrix-value function of the component of the connection.

Remark 19. Altogether, the conformal evolution system described by equations (3.28a)-
(3.28b) constitutes a quasilinear symmetric hyperbolic system for which a well-posedness
theory is available —see [49], also [81] for an abridged version. This theory will be used
in the remaining sections of this article to establish the stability of the solution to the

Einstein field equations given by the metric (3.2).

Remark 20. A remarkable structural property of the conformal evolution system (3.28a)-
(3.28b) is that the equations in (3.28a) are, in fact, mere transport equations along con-
formal geodesics. The true hyperbolic content of the system is contained in the Bianchi
subsystem (3.28b). This property does not play any particular role in our analysis, but it

may prove key in, for example, the analysis of the formation of singularities.

Regarding the subsidiary evolution system, the key conclusion from the system

VoSl = 3 FefoSity — 2P0 — Sl (3.292)
VoZ%epe = fbfoédecf + fcfoédefb - ijbfcptdeo,f — ;@EfobceedghAfgh (3.29b)

e 06e09d e pg + 3S 0™ A g, (3.29¢)
VoRved = [o%0Aced + Te®0Acba — Z¢0beLed + 0pded® geo + deded® aop (3.29d)

+OVped dco + OV eed  aob — ;GObchdeghAfghﬁe, (3.29¢)
VoQpe = ée[bafdc]efa — éefafdeabc + ;iaefvedfabc + 7 ape — XQpe, (3.29f)
Vodi = 7o — Li%0e; (3.29g)
Voic = —%’cfijo — BoYic — Beio + Moe(BVie — 2207%5;), (3.29h)
@Ogjk = fjeogke + I'k%Sej + ;Ajko + ;%eojkfe + ;ijekfefoffa (3.29i)
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is that the zero-quantities f]acb, é“bcd, Aabc, /AXabc, Oab, Vap and Ggp satisfy, if the conformal
evolution equations (3.27a)-(3.27e) hold, a symmetric hyperbolic system which is homo-
geneous in the zero-quantities —accordingly, the particular situation in which all the zero
quantities vanish identically giving rise to the subsidiary evolution system. The subsidiary
system is regular away from the conformal boundary —i.e. the sets for which the conformal

factor vanishes.

3.4 Initial data for the evolution equations

Given a solution (S, h, K) to the Einstein constraint equations (i.e the Hamiltonian and
the momentum constraints), there exists an algebraic procedure to compute initial data for
the conformal evolution equations —see e.g. [81], Lemma 11.1, page 265. Now, a suitable
perturbative existence theorem which covers perturbations of the initial data implied by
the metric (3.2) on the hypersurfaces of constant ¢ has been provided in [82] —see Theorem

1. From this result one can deduce the following assertion:

Proposition 5. Let (S, foL, K) with 8 compact, l~7, a smooth Riemannian metric of constant
negative curvature and K = »xh with » a constant, denote an initial data set for the
vacuum Einstein field equations with positive Cosmological constant. Then for each pair
of sufficiently small (in the sense of suitable Sobolev norms) tensors T;; and Tl-j over S,
transverse-tracefree with respect to fOL, and each sufficiently small scalar field ® over S, there
exists a solution of the Finstein constraint equations (S, h, K) with positive Cosmological
constant which is suitably close to (S,h, K) and such that tri(K — K) = ® and for
which the electric and magnetic parts of the Weyl tensor (restricted to S) of the resulting

spacetime development take the form

o 1 0

* 7 1 °
di; = L(X)i; + Ty — §trh(L(X) + T)hyj,

(7R

for some covectors X, X over S and where L denotes the conformal Killing operator with

respect to h.
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Remark 21. Thus, choosing the free data T;;, Tij and ® suitably small one can ensure
that the perturbed data (S, h, K) is close to (S, h, K ). Accordingly, the associated initial
data for the conformal evolution equations will be close to initial data for the background

solution.

Remark 22. Theorem 1 in [82] applies to the broader class of conformally rigid hyperbolic
compact manifolds —that is, Einstein manifolds with negative Ricci scalar which do not
admit a non-trivial Codazzi tensor; see the discussion in Section 3.4.3 of this reference.
The precise statement of the result also excludes values of s which are related in a specific
manner to the eigenvalues of the Laplacian of h —however, we do not require this level of

detail in the subsequent discussion.

3.5 Analysis of the existence and stability of solutions

In this section, we develop the theory of the existence, uniqueness and stability of solutions
to the Einstein field equations which can be regarded as perturbations of the background
solution. The argument proceeds in several steps: first, the Cauchy stability of solutions
to symmetric hyperbolic systems is used to conclude the existence of solutions to the
conformal evolution system (3.27a)-(3.27f); in a second step the uniqueness of solutions to
the subsidiary system (3.29a)-(3.29i) to argue the propagation of constraints; finally general
theory of the conformal Einstein field equations is invoked to establish the connection
between solutions to the conformal equations and actual solutions to the Einstein field

equations.

3.5.1 A symmetric hyperbolic evolution system

In the following, we look for solutions to the system (3.28a)-(3.28b) of the form
=i+,
where 1 is the solution to the conformal evolution equations (3.27a)-(3.27f) implied by a

background solution, while & denotes a small perturbation. Accordingly, making use of
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the schematic notation of equations (3.28a)-(3.28b) one can set

O =10+, b=, (3.30a)
é=é+eé, I=I+T. (3.30D)

Now, we have found that on the initial surface S, described by the condition 7 = 7, one can
write @, = (O, ) = (0,,0). As the conformal factor © and the covector d are universal,
it follows that

0.0 = Ko + Q(v, ).

Substituting (3.30a) and (3.30b) into equations (3.28a) and (3.28b) yields evolution equa-

tions for u = (v, g{v)) which, schematically, take the form

8,0 = Ko+ QI + o+ Q)0 + L(z), (3.31a)
I+ A%é+¢é))0.¢+ A%(é+ &), = B(I' + ). (3.31b)

Now, in the following, it is convenient to define

. 5 I 0 _ . 0 0
A'(1,z,0) = A%(r,z,0) =
0 I+A%e+e) 0 A“(é+e)
and
B(r,z,1) = uQi + L(z)u + Ki1,
where
. vQv 0 _ Qv + QI L(z)¢
aque [P0 0 ) Lo = [P0 QDY L@
0 B¢ 0 0
_ Kv 0
Ku = Lo
0 B¢

denote, respectively, quadratic, linear and constant terms in the unknowns. In terms of

the latter it is possible to rewrite the system (3.31a) and (3.31b) in the form

Al(7, 2, 1)0.1 + A%(7,2,1)0,1 = B(7, 2, 10). (3.32)
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From the discussion in the previous sections, it follows that the system described by (4.30)
is a symmetric hyperbolic system for which the theory of [49] can be applied. The natural

domain of the solutions to this system is of the form

M= [T*’T') xS, T € (07 1)7 Te > 1.

3.5.2 The existence, uniqueness and Cauchy stability of the so-

lution

The existence of de Sitter-like solutions to the conformal evolution system (4.30) is given

by the following proposition:

Proposition 6 (existence and uniqueness of the solutions to the perturbed de

Sitter-like evolution equations). Given u, = 0, + U, and m > 4, one has that:

(i) There exists € > 0 such that if
[Ullsm < e, (3.33)

then there exists a unique solution 1 € Cm_2<[7'*, %) x S, RY) to the Cauchy problem
for the conformal evolution equations (4.30) with initial data u(7y,x) = Wy, T > 0

and with N denoting the dimension of the vector u.

(ii) Given a sequence of initial data 6\ such that

0", || s.m < €, and 0™, | s.m =250,

then for the corresponding solutions u™ € C'm_?([r*, %) xS, RN>, one has |[0™||s,, —

0 uniformly in T € {7'*, %) as n — oo.

Remark 23. In the above proposition ||t,||s, denotes the standard L?-Sobolev norm

over S of order m > 4 of the independent components of the vector u,.

Proof. The proof is an application of the existence and stability results for symmetric hy-

perbolic systems with compact spatial sections —see e.g. [81], Section 12.3 which, in turn,
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follows from Kato’s theory for symmetric hyperbolic systems over R™ [49]. More precisely,
since the 3-dimensional manifold S is compact, there exists a finite cover consisting of open
sets Ri,..., Ry C S such that U,_1MR; = S. On each of the open sets R; it is possible to
introduce coordinates z; = (x%;) which allow one to identify R; with open subsets B; C R3.
As § is assumed to be a smooth manifold, the coordinate patches can be chosen so that
the change of coordinates on intersecting sets is smooth. The initial data 11, : & — R is a
smooth function on § and can be restricted to a particular open set R;. The restriction a,,,
in local coordinates x; can be regarded as a function 1;, : B; — RY. Now, assuming that
R C R? is bounded with smooth boundary R, it is possible to extend 1, to a function
Eu;, 1 R? — RY —see e.g. Proposition 12.2 in [81]. Using these extensions it is possible

to define the Sobolev norm

M
1 ls.m = D [t s -
i=1

Now, for each of the £1;, one can formulate an initial value problem of the form

A()(T, z,u)0.u+ AQ(T, z,u)0,u = B(r,z,1),

ﬁ(ﬁu@) = 5ﬁz*(§) € Hm<S,RN) for m > 4.

For this initial value problem, it is observed that:

(a) The matrices A¥(7,z, £1;,) are positive definite and depend linearly on the solution

1; with coefficients which are constant.

(b) The dependence of B on u; is at most quadratic: there are linear and quadratic
terms for the connection coefficients; linear terms for the components of the Schouten
tensor. The explicit dependence on (7,z) comes from the conformal factor and the

covector d, —this dependence is smooth.

(c¢) The connection coefficients and the components of the Schouten tensor of the back-

ground solution are smooth functions (C*) of (7, z).

(d) The dependence of the frame coefficients of the background solution is smooth (C*°)

on 7 for 7 € [, %] with 7, > 0.
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It follows from the above observations that our system satisfies the conditions of Kato’s
theorems —see Appendix A.1. This theory implies existence, uniqueness and stability —
i.e. points (i) and (ii) in the theorem. Notice, however, that strictly speaking, this theorem
only applies to settings in which the spatial sections are diffecomorphic to R3. To address
this one makes use of the following strategy: standard results on causality theory imply
that

DYHR)NIT(S\R;) =0,

where DT (R;) denotes the causal future of R; —see e.g. [81], Theorem 14.1. Accordingly,
the value of 1 on D; = D' (R;) is determined only by the data on R;. Then the solution
on D; is independent of the particular extension £u;, being used. Hence, one can speak
of a solution w; on a domain D; C [7i,7;] X R;. Since the manifold is smooth and as a
consequence of uniqueness, it follows that given two solutions ; and 10; defined, respec-
tively, on intersecting domains D; and D; they must coincide on D; (N D;. Proceeding in
the same manner over the whole finite cover of S and since the compactness of S ensures
the existence of a minimum non-zero existence time for the whole of the domains D;, then
there is a unique solution u on [7,, %] x S with % = min;—; _p{7} which is constructed
by patching together the localised solutions 1y, ..., ), defined, respectively on the do-
mains D;, ..., Dy. The existence interval [7,, %) follows from the fact that the background

solution u has this existence interval.

]

Remark 24. The existence and Cauchy stability of the solution to the initial value problem

for the original conformal evolution problem

AO(T, z,0)0, 0+ A%(1,2,0)0,0 = B(T, z,0),

i, =, +1, € H™(S,RY) for m >4

follows from the fact that G satisfies the same properties as u in Proposition 6 and then
it exists in the same solution manifold and with the same regularity properties, existence

and uniqueness.
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3.5.3 Propagation of the constraints

In this section, we discuss the so-called propagation of the constraints. This argument is
essential to establish the connection between solutions to the conformal evolution systems

and actual solutions to the Einstein field equations. More precisely, one has the following;:

Proposition 7 (propagation of the constraints). Let 0, = 0, +u, denote initial data

for the conformal evolution equations on a 3-manifold S, ~ S such that
Yabls, =0, Zabls, =0, Aabels, =0, Aabels, =0,

and
dals, =0, Yabls, =0, <abls, =0,

then the solution 0 to the conformal evolution equations given by Proposition 6 implies a

C™=2 solution 0t = 0 + 1 to the extended conformal field equations on [7'*, 1) xS.

Proof. The proof follows from the properties of the subsidiary evolution system. First, it

is observed that by assumption
Yo% = 0, E¢%ob = 0, Agpe = 0,

hold —cfr. the equations in (3.11). Moreover, the associated evolution equations are
expressed in terms of a conformal Gaussian gauge system and the independent components
of the rescaled Weyl tensor satisfy either the evolution system (3.14) and (3.15). Now,

following the discussion of Section 3.3.3, the independent components of the zero-quantities

A ~

S e “c
2abs Z%dabs Aabw Aabw 5&7 Yab;  Sab

which are not determined by either the evolution equations or gauge conditions satisfy
a symmetric hyperbolic system which is homogeneous in the zero-quantities. More pre-
cisely, defining X = {iacb, écdab, Aabc, Aabc, da, Yab, Sab}, these equations can be recast as

a symmetric hyperbolic system of the form
9.X = H(X),
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where H is a homogeneous function of its arguments —i.e. H(0) = 0. It follows then that

a solution to the initial value problem

is given (trivially) by X = 0. Moreover, following Kato’s theorem it follows this is the
unique solution. Thus, the zero-quantities must vanish on [7'*, 1) x §. That is, the solu-
tion u to the conformal evolution equations implies a solution to the extended conformal

Einstein field equations over the latter domain. [

From the above statement, making use of the relation between the extended conformal
Einstein field equations and the actual Einstein field equations —see Proposition 8.3 in

[81] it follows the corollary:

Corollary 1. The metric
g=0%
obtained from the solution to the conformal evolution equations given in Proposition 6

implies a solution g to the vacuum Finstein field equations with A = 3.

3.6 Future geodesic completeness

In this section, we discuss the future geodesic completeness of the spacetimes obtained
in the previous section. Our analysis distinguishes two cases: null geodesics and timelike

geodesics.

3.6.1 Null geodesics
As a consequence of the compactness of the unphysical manifold
MZ{(T,x)GRXS\T.STgl},
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null geodesics in the unphysical manifold starting at the initial hypersurface S;, reach the
conformal boundary in a finite amount of affine parameter. Furthermore, null geodesics
with respect to the unphysical metric g coincide, up to a reparametrisation, with null
geodesics with respect to the physical metric § on M. More precisely, let v be a null
geodesic in (M, g) with affine parameter v such that v = 0 on OM. The equations for ~
are

et dz¥da?

VA 4 =

dv? dv dv

Let 4 denote the corresponding geodesics in M. Using a different parameter o = ?(v) and

the relation between the Christoffel symbols I'*,, and fﬂy,\ it follows that

I -
@@ TN dn o

716

Pzt -, dzvdar 1 (0" 2@’ dz#
do
By requiring that ¢ to be an affine parameter the right-hand side must vanish. This implies

¥' = const/©? and absorbing the constant into ¥ we obtain

a1
dv 6%
Furthermore, at .#*, © = 0 and d© # 0, and we may choose v so that near OM, v ~ —O.
Thus © ~ —1/v becomes unbounded —i.e. the physical affine parameter for the physical

geodesic must blow up as © — 0. Thus, 7 never reaches M and the null geodesic must

be complete —see also the discussion in [70], Chapter 3.

3.6.2 Timelike geodesics

The argument used for null geodesics cannot readily be applied to the discussion of timelike
geodesics as these are not conformally invariant. Instead, we make use of timelike conformal

geodesics.

Every timelike metric geodesic on the physical spacetime (M, g) can be recast, after
a reparametrisation, as a conformal geodesics (z, 8) —see Chapter 2 and [37, 81]. Under
the rescaling g = ©2§, the conformal geodesic (z,8) transforms into a geodesic (x, 3)

in the unphysical spacetime (M,g). Now, it is known that any g-conformal geodesic
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that leaves .#+ orthogonally into the past, is up to a reparametrisation, a timelike future
complete geodesic for the physical metric g —see e.g. [35, 37]. Moreover, a conformal
geodesic through a point of .#* which is not orthogonal to the conformal boundary cannot

represent a geodesic in the physical spacetime.

Now, from the g-future geodesic completeness of the background solution (see Ap-
pendix A.2) it follows that every conformal geodesic in the background spacetime starting
orthogonal to the initial hypersurface S, must reach the conformal boundary .#*. Hence,
every timelike g-geodesic is, up to a reparametrisation, a timelike conformal curve reaching
#+ orthogonally. Moreover, let us consider a pair (x(7), (7)) with parameter 7 € R. Fur-
thermore, let us suppose that this geodesic starts at 7 = 7, i.e. the initial hypersurface S,
and it reaches the conformal boundary .# at 7 = 1. Now, consider a small perturbation

of the quantities (z, 8) so that
T=x+1,
B=pB+8,
where T and B are small perturbations. In this case, the perturbed conformal geodesic

equations read
(@' + &) = =2((B+B), (&' + &) (@ + &)+ g((«' + &), («' + &) (B + B)",

Ve
Va(B+B)=((B+B), (@ +2))(B+5) - ;gﬁ((ﬁ +P),(B+8))(x+ @)+ L((' +&),-),
where the metric, covariant derivative and Schouten tensor are those obtained from the
solution to the Einstein field equations given in Corollary 1. These equations can be
read as a system of ordinary differential equations for the fields & and ,é Because of the
smoothness of the perturbed spacetime it follows that one can make use of the stability
theory for ordinary differential equations —see e.g. [43], Theorem 2.1 in page 94 and
Corollary 4.1 on page 101. In particular, these conformal geodesics will have the same

existence interval as those in the background spacetime. Accordingly, it follows that (M, J)

is future g-geodesically complete.

Remark 25. An alternative way of concluding the future geodesic completeness of the

solutions to the Einstein field equations provided by Corollary 1 is to make use of the
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theory in [10] —see also Appendix A.2. By choosing the ¢ > 0 in condition (4.31) of
Proposition 6 sufficiently small, it can be shown that the physical metric g satisfies the

bounds required to show geodesic completeness.

3.7 The main result

We summarise the discussion of the preceding sections with a more detailed formulation

of the main result of this chapter:

Theorem 1. Let 4, = 0, + 0, denote smooth initial data for the conformal evolution
equations satisfying the conformal constraint equations on a hypersurface S,. Then, there
exists € > 0 such that if

||ﬁ*HS*,m <e¢g, m >4

then there exists a unique C™ 2 solution g to the vacuum Einstein field equation with
positive Cosmological constant over [1,,00) x S, for 1, > 0 which is future geodesically
complete and whose restriction to S, implies the initial data G,. Moreover, the solution G

remains suitably close (in the Sobolev norm || - ||s.m) to the background solution 1.

Remark 26. It follows from Proposition 5 that there exists an open set of initial data for

the Einstein field equations satisfying the hypothesis of the above theorem.

107



Chapter 4

The non-linear stability of the
Cosmological region of the

Schwarzschild-de Sitter spacetime

4.1 Introduction

One of the key problems in Mathematical Relativity is the non-linear stability of black
hole spacetimes. This problem is challenging for its mathematical and physical features.
Most efforts to establish the non-linear stability of black hole spacetimes in both the
asymptotically flat and Cosmological settings have, so far, relied on the use of vector field
methods —see e.g. [16]. The results in [23, 26, 81] show that the conformal Einstein field
equations are a powerful tool for the analysis of the stability of the vacuum asymptotically

simple spacetimes.

In view of the success of conformal methods to analyse the global properties of asymp-
totically simple spacetimes, it is natural to ask whether a similar strategy can be used to
study the non-linear stability of black hole spacetimes. The discussion in this chapter is

based on

M. Minucci and J. A. Valiente Kroon, On the non-linear stability of the Cosmological
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region of the Schwarzschild-de Sitter spacetime, ArXiv e-prints (2023), arXiv:2302.04004
[gr-qc].
which provides a first step in this direction by analysing certain aspects of the conformal

structure of the sub-extremal Schwarzschild-de Sitter spacetime which can be used, in turn,

to adapt techniques from the asymptotically simple setting to the black hole case.

4.1.1 The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime is a spherically symmetric solution to the vacuum
Einstein field equations with positive cosmological constant. This spacetime depends on
the de Sitter-like value of the cosmological constant A and on the mass m of the black hole.
Assuming spherical symmetry almost completely singles out the Schwarzschild-de Sitter
spacetimes among the vacuum solutions to the Einstein field equations with de Sitter-
like cosmological constraint. The other admissible solution is the Nariai spacetime —see
e.g. [67]. In the Schwarzschild-de Sitter spacetime the relation between the mass and the
Cosmological constant determines the position of the Cosmological and black hole horizons
—see e.g. [42]. In this analysis, we restrict our attention to a choice of the parameters
A and m for which the exact solution is sub-extremal —see Section 4.2 for a definition
of this notion. The sub-extremal Schwarzschild-de Sitter spacetime has three horizons.
Of particular interest for our analysis is the Cosmological horizon which bounds a region
(the Cosmological region) of the spacetime in which the roles of the coordinates ¢ and r
reversed. This spacetime can be studied by means of the extended conformal Einstein field
equations —see [39]. In analogy to the de Sitter spacetime, the Cosmological region has
an asymptotic region admitting a smooth conformal extension towards the future (or past)
also known as future asymptotically de Sitter. Since the Cosmological constant takes a
de Sitter-like value, the conformal boundary of the spacetime is spacelike and moreover,
there exists a conformal representation in which the induced 3-metric on the conformal
boundary .# is homogeneous. Thus, it is possible to integrate the extended conformal field

equations along single conformal geodesics —see [38].
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In this chapter, we analyse the sub-extremal Schwarzschild-de Sitter spacetime as a
solution to the extended conformal Einstein field equations and use the insights to prove
existence and stability results. The starting point for this discussion is the analysis of con-
formal geodesic equations leaving spacelike hypersurfaces in the Cosmological region of the
spacetime. The results of this analysis can be used to rewrite the spacetime in the confor-
mal Gaussian gauge associated to these curves. Nevertheless, even though the conformal
geodesic equations for spherically symmetric spacetimes can be written in quadratures, in
general, the integral involved cannot be solved analytically. In view of this difficulty, the
properties of the sub-extremal Schwarzschild-de Sitter spacetime are analysed by means of
an initial value problem for the extended conformal Einstein field equations. Accordingly,
initial data implied by the Schwarschild-de Sitter spacetime on a fiduciary spacelike hy-
persurface S, are used to analyse the behaviour of the conformal evolution equations. A
perturbative argument then allows us to prove existence and stability results close to the
conformal boundary and away from the asymptotic points where the Cosmological horizon
intersects the conformal boundary. In particular, we show that small enough perturbations
of initial data for the sub-extremal Schwarzschild-de Sitter spacetime give rise to a solution
to the Einstein field equations which is regular at the conformal boundary. This analysis
can be regarded as a first step towards a stability argument for perturbation data on the

Cosmological horizons.

4.1.2 The main result

The analysis of the conformal properties of the Schwarzschild-de Sitter spacetime allows
us to formulate a result concerning the existence of solutions to the initial value problem
for the Einstein field equations with de Sitter-like Cosmological constant which can be
regarded as perturbations of portions of the initial hypersurface at S, = {r = r,} in the
Cosmological region of the spacetime. In this region these hypersurfaces are spacelike and
the coordinate t is spatial. In the following, let R, denote finite cylinder within S, for which
|t| < to for some suitable positive constant t,. Let DT (R,) denote the future domain of

dependence of R,. For the Schwarzschild-de Sitter spacetime such a region is unbounded
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towards the future and admits a smooth conformal extension with a spacelike conformal

boundary.

Our main result can be stated as:

Main Result 2. Given smooth initial data (iz, K) for the vacuum Einstein field equations
on Re C S, which is suitably close (as measured by a suitable Sobolev norm) to the data
implied by the Schwarzschild-de Sitter metric g in the Cosmological region of the spacetime,
there exists a smooth metric g defined over the whole of DY(R,) which is close to g,
solves the vacuum FEinstein field equations with positive Cosmological constant and whose
restriction to Re implies the initial data (h, K). The metric § admits a smooth conformal

extension which includes a spacelike conformal boundary.

Remark 27. A detailed version of this theorem will be given in Section 4.5.

Observe that the above result is restricted to the future domain of dependence of a
suitable portion R, of the spacelike hypersurface S,. The reason for this restriction is
the degeneracy of the conformal structure at the asymptotic points of the Schwarzschild-
de Sitter spacetime where the conformal boundary, the Cosmological horizon and the
singularity seem to “meet” —see [39]. In particular, at these points the background solution
experiences a divergence of the Weyl curvature. This singularity is remarkably similar to
that produced by the ADM mass at spatial infinity in asymptotically flat spacetimes —see
e.g. [81], chapter 20. It is thus conceivable that an approach analogous to that used in the
analysis of the problem of spatial infinity in [28] may be of help to deal with this singular

behaviours of the conformal structure.

The ultimate aim of the programme started in this analysis is to obtain a proof of the
stability of the Schwarzschild-de Sitter spacetime for data prescribed on the Cosmological
horizon. Key to this end is the observation that the hypersurfaces of constant coordinate
r, S, can be chosen to be arbitrarily close to the horizon. As such, an adaptation of the
optimal local existence results for the characteristic initial value problem developed in [53]
—see also [45]— should allow to evolve from the Cosmological horizon to a hypersurface

S,. These ideas will be developed in future work.
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4.1.3 Related results

The non-linear stability of the Schwarzschild-de Sitter spacetime has been studied by means
of the wvector field methods that have proven successful in the analysis of asymptotically
flat black holes —see e.g. [64, 65, 66]. An alternative approach has made use of methods of
microlocal analysis in the steps of Melrose’s school of geometric scattering —see [47, 46].
This type of analysis requires to be careful when discussing the behaviour of the solution
at the horizons. In the initial value problem discussed in this chapter, the future domain of
dependence of the solution is contained in the Cosmological region of the spacetime away
from the asymptotic points. The methods developed in this work aim at providing a com-
plementary approach to the non-linear stability of this Cosmological black hole spacetime.
The interrelation between the results obtained in this chapter and those obtained by vector

field methods and microlocal analysis will be discussed elsewhere.

4.2 The sub-extremal Schwarzschild-de Sitter space-

time

The purpose of this section is to discuss the key properties of the sub-extremal Schwarzschild-
de Sitter spacetime that will be used in our argument on the stability of the Cosmological

region of this exact solution.

4.2.1 Basic properties

The Schwarzschild-de Sitter spacetime, (M, g), is a spherically symmetric solution to the

vacuum FEinstein field equations with positive Cosmological constant

R(zb = /\gab, A>0 (41)
with M = R x Rt x S? and line element given in standard coordinates (t,r,6, ) by

o om A om AL\
Q:—<1—m—3r2>dt®dt+<1—m—3r2> dreodr+re,  (4.2)
r r
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where

o =df ® df + sin® dy @ do,

denotes the standard metric on S?. The coordinates (t,7,0, ) take the range
t € (—00,00), r € (0,00), 0 € (0,m), ¢ € [0,2m).

This line element can be rescaled so that

g=—D(r)dt ® dt + dr @ dr + %o, (4.3)

D(r)

A
M=2 —
3

M
D(ry=1-"——7r%
r

where
and
In our conventions M, r and A are dimensionless quantities.

4.2.2 Horizons and global structure

The location of the horizons of the Schwarzschild-de Sitter spacetime follows from the

analysis of the zeros of the function D(r) in the line element (4.3).

Since A > 0, then the function D(r) can be factorised as

Dr) = —(r = m)(r —ro)(r ),

where 7, and r. are, in general, distinct positive roots of D(r) and r_ is a negative root.
Moreover, one has that

0<r, <re, re+ry+7r_=0.

The root r, corresponds to a black hole-type of horizon and r. to a Cosmological de Sitter-

like type of horizon. One can verify that

D(r)>0 for Ty < T < T,
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D(r)<0 for 0<r<m and > T

Accordingly, g is static in the region 7, < r < r, between the horizons. There are no other

static regions outside this range.

Using Cardano’s formula for cubic equations, we have

- —\% cos @) (4.42)

ry = \}§<cos (?) — V/3sin <§>> (4.4b)
re = ¢1§ <cos <(§> +/3sin (?)) (4.4¢)

where the parameter ¢ is defined through the relation

_ 2cos¢ T
M = 373 ¢e<0,2>. (4.5)

In the sub-extremal case we have that 0 < M < 2/3+/3 and ¢ € (0,7/2). This describes

a black hole in a Cosmological setting. The extremal case corresponds to the value ¢ =0
for which M = 2/3v/3 —in this case the Cosmological and black hole horizons coincide.
Finally, the hyper-extremal case is characterised by the condition M > 2/3y/3 —in this

case the spacetime contains no horizons.

The Penrose diagram of the Schwarzschild-de Sitter is well known —see Figure 4.1.

Details of its construction can be found in e.g. [42, 81].

4.2.3 Other coordinate systems

In our analysis, we will also make use of retarded and advanced Eddington-Finkelstein null
coordinates defined by
u=t—r-, v=t+1r", (4.6)

where r* is the tortoise coordinate given by

r*(t) = Dd(t")’ Lim 7*(r) = 0. (4.7)
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Figure 4.1: Penrose diagram of the sub-extremal Schwarzschild-de Sitter spacetime. The
serrated line denotes the location of the singularity; the continuous black line denotes the
conformal boundary; the dashed line shows the location of the black hole and Cosmological
horizons denoted by H;, and H, respectively. As described in the main text, these horizons
are located at r = r, and r = r.. The excluded points @ and Q' where the singularity
seems to meet the conformal boundary correspond to asymptotic regions of the spacetime

that does not belong to the singularity nor the conformal boundary.

It follows that u, v € R. In terms of these coordinates the metric g takes, respectively, the

forms

= —D(r)du ® du + (du ® dr + dr ® du) + r’a,

Qureo

—D(r)dv ® dv + (dv ® dr + dr ® dv) + 0.

g

In order to compute the Penrose diagrams, Figures 4.2 and 4.3, we make use of Kruskal
coordinates defined via

1
U = —exp(bu), V= 5 exp(bv)

N |

where u and v are the Eddington-Finkelstein coordinates as defined in (4.6) and b is a

constant which can be freely chosen. A further change of coordinates is provided by
Tr=U+YV, v=U-V.
These coordinates are related to r and ¢ via
T(r,t) = cosh(bt) exp(br*(r)), U(r,t) = sinh(bt) exp(br*(r)).
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Then by recalling that
ro<0<r<r, and r_4+r,+7r.=0,

the equation of r*(r) as defined by (4.7) renders

ryIn(r — 1) reIn(r —r.) (rp+re)In(r + 1, +10)
(ry —re)(2rpy +10) 12+ rpre — 212 (21 + 1e) (ry + 27¢)

r(r) = —

Hence, in order to have coordinates which are regular down to the Cosmological horizon,

the constant b must be given by

T rere —2r2

b <.
27,

4.3 Construction of a conformal Gaussian gauge in

the Cosmological region

The hyperbolic reduction of the extended conformal Einstein field equations makes use of
a conformal Gaussian gauge system —i.e. coordinates and frame are propagated along a
suitable congruence of conformal geodesics. This congruence provides, in turn, a canonical
representative of the conformal class of a solution to the Einstein field equations —see

Proposition 3.

A class of non-intersecting conformal geodesics which cover the whole maximal exten-
sion of the sub-extremal Schwarzschild-de Sitter spacetime has been studied in [38]. The
main outcome of the analysis in that reference is that the resulting congruence covers the
whole maximal analytic extension of the spacetime and, accordingly, provides a global sys-
tem of coordinates —modulo the usual difficulties with the prescription of coordinates on
S?. This congruence is prescribed in terms of data prescribed on a Cauchy hypersurface
of the spacetime. In this analysis, we are interested in the evolution of perturbations of
the Schwarzschild-de Sitter spacetime from data prescribed on hypersurfaces of constant
coordinate r in the Cosmological region of the spacetime. Thus, the congruence of confor-

mal geodesics constructed in [38] is of no direct use to us. Consequently, in this section,
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Figure 4.2: Hypersurfaces with constant r are plotted on the Penrose diagram of the

Cosmological region of the sub-extremal Schwarzschild-de Sitter spacetime.

we study a class of conformal geodesics of the Schwarzschild-de Sitter spacetime which
is prescribed in terms of data on hypersurfaces of constant r in the Cosmological region.
These curves turn out to be geodesics of the physical metric g and intersect the conformal

boundary orthogonally.

4.3.1 Basic setup

In the following, it is assumed that
re < T <00

corresponding to the Cosmological region of the Schwarzschild-de Sitter spacetime. Given
a fixed r = r, we denote by S,, (or S, for short) the spacelike hypersurfaces of constant
r = r, in this region —see Figure 4.2. Points on S, can be described in terms of the

coordinates (t, 0, ¢).
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Initial data for the congruence

In order to prescribe the congruence of conformal geodesics, we follow the general strategy
outlined in Chapter 2 —see also [31, 38]. This requires prescribing the value of a conformal
factor ©, over S,. We will only be interested on prescribing the data on compact subsets

of S, so it is natural to require that

The second condition implies that the resulting conformal factor will have a time reflection

symmetry with respect to S,. Now, following [31, 38] we require that
& LS, 5, =07lde,.

The latter, in turn, implies that

1 ~ -
ﬁ7 7”/* - 07 /Bt* - Oa BT* - 07 (48)

where t, € (—t,,t,) for some t, € RT. Notice that the tangent vector Z’ coincides with the

t=t, t, =

future unit normal to S.

Given a sufficiently large constant t, we define

Re ={p €S [ip) € (—ta;ts)}-

The constant ¢, will be assumed to be large enough so that DT(R,) N .+ # .

The starting point of the curves on S, is prescribed in terms of the coordinates (t, 6, p) =
(t4, 04, ps) The conditions (4.8) gives rise to a congruence of conformal geodesics which has a
trivial behaviour in the angular coordinates —that is, it is spherically symmetric. In other
words, this corresponds to effectively analysing the curves on a 2-dimensional manifold

M /SO(3) with quotient metric £ given by
£=—D(r)dt ® dt + D~} (r)dr ® dr, (4.9)

obtained upon re-writing the metric g as a warped product. Accordingly, the only non-

trivial parameter characterising each curve of the congruence is t,.
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The geodesic equations

It follows that for the initial data conditions (4.8) one has 3? = 0 so that the resulting con-
gruence of conformal geodesics is, after reparametrisation, a congruence of metric geodesics.

This last observation simplifies the subsequent discussion. The g-geodesic equations then

¢ =PDO). DO - =1, (4.10)

where v is a constant. Evaluating at S, one readily finds that

imply that

R ol
"D

Observe that since we are in the Cosmological region of the spacetime we have that D, < 0.

Moreover, the unit normal to S, is given by
1
n = <> dr
| D]

&, =70, +1,.0,.

while

So, it follows that &/ and n* are parallel if and only if v = 0.

The conformal factor

In order to obtain simpler expressions we set A = 3 and 7, = 0. It follows then from
formula (2.72) that one gets an explicit expression for the conformal factor. Namely, one
has that

(4.11)

The roots of ©(7) are given by

In the following, we concentrate on the root 7, corresponding to the location of the future

conformal boundary .#*. The relation with the physical proper time 7 is obtained from
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equation (2.73), so that

T = 2arctanh<72—>, T = 2tanh<;>. (4.12)
From these expressions, we deduce that
T—= Ty =12, as T — 00.

Moreover, the conformal factor © can be rewritten in terms of the g-proper time 7 as
,i’_
O(7) = sech? <2>

Remark 28. In [37] it has been shown that conformal geodesics in Einstein space will reach
the conformal boundary orthogonally if and only if they are, up to a reparametrisation
standard (metric) geodesics. In the present case, this property can be directly verified

using equations (4.10).

4.3.2 Qualitative analysis of the behaviour of the curves

Having, in the previous subsection, set up the initial data for the congruence of confor-
mal geodesics, in this subsection we analyse the qualitative behaviour of the curves. In
particular, we show that the curves reach the conformal boundary in a finite amount of
(conformal) proper time. Moreover, we also show that the curves do not intersect in the

future of the initial hypersurface ;.

Behaviour towards the conformal boundary

Recalling that
r"=/|D(r)| (4.13)

and observing that D(r) < 0, it follows that if 7/, # 0 then, in fact v > 0. Moreover, one
can show that r”, > 0 and that ", # 0 for r € [r,,00). Thus, the curves escape to the

conformal boundary.
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Now, we show that the congruence of conformal geodesics reaches the conformal bound-
ary in an infinite amount of the physical proper time. In order to see this, we observe that

D(r) < 0, consequently from equation
' =£/|D(r)]

it follows that r(7) is a monotonic function. Moreover, using equations

D(r) =~ (r = m)(r —r)(r —7.)

and

, v+ B
=T
|D(r)|

we find that

7= / \/(r— ) —Trc)oa —

It is possible to rewrite this integral in terms of elliptic functions —see e.g. [51]. More

precisely, one has that

s 27y (sz + (a2 — K))[¢, a2, n]), (4.14)

a?y/r(ay —a)

where II[¢, o?, k] is the incomplete elliptic integral of the third kind and

5 Te—T_\ [T —T1 5  Tp—T_
SI™W — s o = ,
ry—1_ ) \r—r, Te—T_

o _ Telry—r-)
b)

To(re — 1)

K

¢ = arcsin(snw),

with sn denotes the Jacobian elliptic function. From the previous expressions and the
general theory of elliptic functions it follows that 7(r,7,) as defined by Equation (4.14) is

an analytic function of its arguments. Moreover, it can be verified that
T — 00 as 1 — 00.

Accordingly, as expected, the curves escape to infinity in an infinite amount of physical
proper time 7. Using the reparametrisation formulae (4.12) the latter corresponds to a

finite amount of unphysical proper time 7.
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The deviation equations

To analyse whether the congruence of conformal geodesics develops conjugate points, one
introduces a family of conformal geodesics, denoted by z(7,0) and B(7,0), depending

smoothly on a parameter ¢ and with tangent vector field 0,z = &. Then, let
z = 0,x, w=V,B.

The fields z and w denote, respectively, the deviation vector field and the deviation 1-
form—see [31]. The conformal Jacobi equation and the I-form deviation equation are

given by

ViViz = R(z, 2) — S(w;x,a) — 28(8; &, Viz), (4.15a)

Vuso =~ Rle,2) + (w85 + 8- Slwisr )+ - S(8:Vaz. ), (1150)

where R(-,-) denotes the Riemann tensor of the metric § and
S(Bx,y) = (B, )y + (B, y)x — g(&,y) B,
w-S(Bi, ) = (w, &) B + (B d)w — §(w, )i,

To compute the g-adapted version of the conformal geodesics one introduces a reparametri-

sation & = x(7,0) of (7, 0) in terms of the physical proper time 7. Furthermore, let

2=0,%, @=Vsp.

In terms of this new variables one has that Equations (4.15a) and (4.15b) read as

VaVaz = R(&, 2)& + &, (4.17a)
Vaw =—B R(&, 2)+&"V:p*+ B°Vzz°. (4.17b)
Moreover, it is possible to show that V;8? is constant along a given conformal geodesic.

Now, by considering the 2-dimensional metric £ as given by (4.9), one has that the
g-adapted deviation equations (4.17a) and (4.17b) are equivalent to each other and to

equation
P P i = R D)@, £ (D B, Y+ BaD 5,)), (418)
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where 0 denotes the Levi-Civita covariant derivative of £, €7 is the volume form of ¢ and
R[#] denotes the Ricci scalar of £. For conformal curves satisfying the initial conditions
(4.8) the question of whether the deviation vector field 2 is non-vanishing can be rephrased

in terms of a similar question for the scalar
O =&, 2). (4.19)

Then, by replacing this definition in Equation (4.18), one has

Dy D= <ﬂ2 + ;R[£]>5J+ D :B. (4.20)

Analysis of the behaviour of the conformal deviation equation

In the previous section, it has been shown that for congruences of conformal geodesics in
this spherically symmetric spacetime, the behaviour of the deviation vector of the congru-
ence can be understood by considering the evolution of the scalar @ —see also [31, 38]. If
this scalar does not vanish, then the congruence is non-intersecting. Since in the present

case one has B = 0 and R[f] = —0,2D(r), it follows that the evolution equation (4.20)

takes the form
d%o MY . -
a2 ~ 1 r3 “ r=r(7, 1)

Since in our setting r > r, > r., it follows that

M
1+73>1,
T

from where, in turn, one obtains the inequality

420
d7?

> Ww.

Accordingly, the scalars @ and w = O satisfy the inequalities

O>0, w> 0o,
where @ is the solution of
d’o - Ty -
d7-2 =W, W(O,p*) = Ea (.U/(O,p*) = 0
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The solution to this last differential equation is given by
W = (ry/px)cosht.

Using equations (4.11) and (4.12) we get the inequality

2 2
w> 11— r E(:osh 2arctanh T = 1+ r > 0.
4 ] ps 2 D 4

Consequently, we get the limit

2r
lim w> == >0.
T—+2 Px

Hence, we conclude that the geodesics with r, > r, which go to the conformal boundary

J* located at 7 = 2 do not develop any caustics.

The discussion of the previous paragraphs can be summarised in the following:

Proposition 8. The congruence of conformal geodesics given by the initial conditions (4.8)
leaving the initial hypersurface S, reach the conformal boundary #+ without developing

caustics.

The content of this Proposition can be visualised in Figure 4.3.

4.3.3 Estimating the size of D*(R,)

Up to this point the size of the domain R, C S, (or more precisely, the value of the constant
t, has remained unspecified). An inspection of the Penrose diagram of the Schwarzschild-
de Sitter spacetime shows that if the value of ¢, is too small, it could happen that the
future domain of dependence DT (R,) is bounded and, accordingly, will not reach the
spacelike conformal boundary . —see e.g. Figure 4.4. Given our interest in constructing
perturbations of the Schwarzschild-de Sitter spacetime which contain as much as possible
of the conformal boundary it is then necessary to ensure that ¢, is sufficiently large. In this
subsection given a fiduciary hypersurface S, in the Cosmological region of the spacetime, we

provide an estimate of how large should ¢, for D™ (R,) to be unbounded. In order to obtain
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Figure 4.3: The conformal geodesics are plotted on the Penrose diagram of the Cosmological
region of the sub-extremal Schwarzschild-de Sitter spacetime. The purple line represents
the initial hypersurface S, corresponding to r = r,. The red lines represent conformal
geodesics with constant time leaving this initial hypersurface. The curves are computed

by setting A = 3 and ¢ = 7.

this estimate we consider the future-oriented inward-pointing null geodesics emanating from

the end-points of R, and look at where these curves intersect the conformal boundary.

In order to carry out the analysis in this subsection it is convenient to consider the

coordinate z = 1/r. In terms of this new coordinate, the line element (4.3) takes the form

fj:(—F(z)dt@dt—i— dz®dz+0'>,

F(z)
where

F(2) = 2*D(1/2).

The above expression suggest defining an unphysical metric g via

g:

[1]
[1]
Il
N

22
g,
More precisely, one has

g=—F(2)dt @ dt +

. 4.21
F) dz®dz+o (4.21)
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In order to study the null geodesics we consider the Lagrangian

, 1
L=—F(2)f*+ 22,

F(z)
where - = %. In the case of null conformal conformal geodesics £ = 0 so that
t==+ .
()
This, in turn, means that
dt 1
—z2=4 .
dz” F(z) :

By integrating both sides it follows that

P
¢ — -
te Z*F(Z) Z’

where t, denotes the value of the (spacelike) coordinate ¢ at which the null geodesic
reaches .# . Accordingly for the inward-pointing light rays emanating from the points on

S, defined by the condition t = ¢, one has that

to=te— /0 Féz)dz. (4.22)

An analogous condition holds for the inward-pointing light rays emanating from the points

with t = —t,. Since in the Cosmological region F'(z) > 0 it follows that

Zx 1
/0 F(z)dz > 0.

The key observation in the analysis in this subsection is the following: DT (R.) is un-

bounded (so that it intersects the conformal boundary) if ¢, as given by Equation (4.22)
satisfies £, > 0. As t, > 0, having t, < 0 would mean that the light rays emanating
from the points with ¢t = ¢, and t = —t, intersect before reaching .#*. Now, the condition

t, > 0 implies, in turn, that

Zx 1
te dz.
>/0 F(z) :

As the integral in the right-hand side of the above inequality is not easy to compute we

provide, instead, a lower bound. One has then that
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where Fy denotes the maximum of
F(z)=2>-Mz*+1

over the interval [0, z,]. Thus, F”(z) vanishes if z = 0 or z = 25 = 2/3M. Also, notice that
F'(z) > 0 for z = 0. It can be readily verified that F”(0) > 0 while F"(2/3M) < 0 so that
an inflexion point occurs in the interval (0, z5) and there are no other inflexion points in
0, z,]. Now, looking at the definition of M, equation (4.4c), and the expression for r. as
given by equation (4.5) one concludes that zo > z. = 1/r.. As 2y is independent of z,, it

is not possible to decide whether zg lies in [0, z,| or not. In any case, one has that

4
F =14+——->F;
so that
2TM?z,
te > —————. 4.2
~ 97TM? + 4 (423)

One can summarise the discussion in this subsection as follows:
Lemma 6. If condition (4.23) holds then D" (R,) is unbounded.

Remark 29. In the rest of this analysis it is assumed that condition (4.23) always holds.

4.3.4 Conformal Gaussian coordinates in the sub-extremal

Schwarzschild-de Sitter spacetime

We now combine the results of the previous subsections to show that the congruence of
conformal geodesics defined by the initial conditions (4.8) can be used to construct a
conformal Gaussian coordinate system in a domain in the chronological future of R, C S,,

JT (R, C S,), containing a portion of the conformal boundary ..

In the following let SdS; denote the Cosmological region of the Schwarzschild-de Sitter
spacetime —that is

SdS; = {pe M |r(p) > r}.
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Figure 4.4: The plotted future domain of dependence of the solution DT (R,) on the Penrose
diagram of the Cosmological region of the sub-extremal Schwarzschild-de Sitter spacetime.
The value of ¢, can be chosen as close as possible to the asymptotic points Q and @’ so as

to satisfy condition (4.23).

Moreover, denote by SdS; the conformal representation of SdS; defined by the conformal
factor © defined by the non-singular congruence of conformal geodesics given by Proposi-
tion 8. For r > r. let z = 1/r —cfr the line element (4.21). In terms of these coordinates,

one has that

SdS;={p e RxRxS*|0<z2(p) <z} (4.24)

where z, = 1/r, with r, > r.. In particular, the conformal boundary, .#*, corresponds to

the set of points for which z = 0.

The analysis of the previous subsections shows that the conformal geodesics defined by

the initial conditions (4.8) can be thought of as curves on SdS; of the form
(r.t) = (H7, 1), 2(7,10), 0, 04
Thus, in particular, the congruence of curves defines a map
¥ 1 ]0,2] X [—te, te] = [0, 2] X [—te, te].
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This map is analytic in the parameters (7,t,). Moreover, the fact that the congruence of
conformal geodesics is non-intersecting implies that the map is, in fact, invertible —the
analysis of the conformal geodesic deviation equation implies that the Jacobian of the
transformation is non-zero for the given value of the parameters. In particular, it can be
readily verified that the function ©& coincides with the Jacobian of the transformation.

Accordingly, the inverse map 1!
V[0, 2] X [~te t] = [0,2] x [t t],  (8,2) > (7(E2), (8, 2))

is well-defined. Thus, ¢! gives the transformation from the standard Schwarzschild co-
ordinates (t, z,0, ) into the conformal Gaussian coordinates (1,t4,0,¢). In the following
let

M, =[0,2] X [, ts].

As the conformal geodesics of our congruence are timelike, we have that
M, C JH(R.).

All throughout we assume, as discussed in Subsections 4.3.1 and 4.3.3, that t, is sufficiently

large to ensure that D' (R,) contains a portion of .+ —cfr Lemma 6.

Proposition 9. The congruence of conformal geodesics on SdSt defined by the initial con-
ditions on S, given by (4.8) induce a conformal Gaussian coordinate system over D' (R.,)

which is related to the standard coordinates (t,r) via an analytic map.

4.4 The Schwarzschild-de Sitter spacetime in the con-

formal Gaussian system

In the previous section, we have established the existence of conformal Gaussian coordinates
in the domain M, C SdS; of the Schwarzschild-de Sitter spacetime. In this section, we
proceed to analyse the properties of this exact solution in these coordinates. This analysis
is focused on the structural properties relevant for the analysis of stability in the latter

parts of this article.
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Remark 30. The metric coefficients implied by the line element (4.21) are analytic func-
tions of the coordinates in the region M, —barring the usual degeneracy of spherical

coordinates.

4.4.1 Weyl propagated frames

The ultimate aim of this section is to cast the Schwarzschild-de Sitter spacetime in the
region M, as a solution to the extended conformal Einstein field equations introduced in
Section 2.4.3. A key step in this construction is the use of a Weyl propagated frame. In

this section, we discuss a class of these frames in M,.

Since the congruence of conformal geodesics implied by the initial data (4.8) satisfies

B = 0, the Weyl propagation equation (2.79) reduces to the usual parallel propagation
equation —that is,

Va#(08é,) = Vae, = 0. (4.25)

The subsequent computations can be simplified by noticing that the line element (4.3)
is in warped-product form. Given the spherical symmetry of the Schwarzschild-de Sitter
spacetime, most of the discussion of a frame adapted to the symmetry of the spacetime

can be carried out by considering the 2-dimensional Lorentzian metric

£ =l pdz’ @ dz®
1

=—D(r)dt ® dt + Dy

dr @ dr.

In the spirit of a conformal Gaussian system, we begin by setting the time leg of the

frame as eg = . Then since

it follows that

Now, recall that
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and let
w = e(E, ).
It follows then that (w,&’) = 0 so that it is natural to consider a radial leg of the frame,

e1, which is proportional to w®. By using the condition £(e;y, e;) = 1 one readily finds that

e, = Ow'.

It can be readily verified by a direct computation that the vector e; as defined above

satisfies the propagation equation (4.25).

Finally, the vectors es and es are chosen in such a way that they span the tangent
space of the 2-spheres associated to the orbits of the spherical symmetry. Accordingly, by
setting

€2 = 284, es = 34, A=2, 3,
it follows readily from the warped-product structure of the metric that

Zi’/A<aA€2A) = jIA(aA€3A> =0.

In other words, one has that the frame coefficients e, and eg are constant along the
conformal geodesics. Thus, in order to complete the Weyl propagate frame {e,} we choose
two arbitrary orthonormal vectors €, and €, spanning the tangent space of S? and define
vectors {eq, es} on M, by extending (constantly) the value of the associated coefficients

(ez““)* and <63A)* along the conformal geodesic.

The analysis of this subsection can be summarised in the following:

Proposition 10. Let &' denote the vector tangent to the conformal geodesics defined by the
initial data (4.8) and let {ea,, es,} be an arbitrary orthonormal pair of vectors spanning the
tangent bundle of S?>. Then the frame {eq, €1, es, €3} obtained by the procedure described
in the previous paragraphs is a g-orthonormal Weyl propagated frame. The frame depends

analytically on the unphysical proper time T and the initial position t, of the curve.

Remark 31. In the previous proposition we ignore the usual complications due to the
non-existence of a globally defined basis of T'S?. The key observation is that any local

choice works well.
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4.4.2 The Weyl connection

The connection coefficients associated to a conformal Gaussian gauge consists of two pieces:
the 1-form defining the Weyl connection and the Levi-Civita connection of the metric g.

We analyse these two pieces in turn.

The 1-form associated to the Weyl connection

We start by recalling that in Section 4.3 a congruence of conformal geodesics with data
prescribed on the hypersurface S, was considered. This congruence was analysed using the
g-adapted conformal geodesic equations. The initial data for this congruence was chosen
so that the curves with tangent given by &’ satisfy the standard (affine) geodesic equation.

Consequently, the (spatial) 1-form B vanishes. Thus, the 1-form A is given by
B =—-0z",

—cfr. equation (2.75). Now, recalling that &' = 7’9, and observing equation (4.13) one

concludes that
j/b

= #dr
\/D(r)|

Rewritten in terms of z, the latter gives

As F(0) =1, and O]+ = —1 (cfr. equation (4.11)), it then follows that
1
B~ —-dz for z=0.
z

That is, B is singular at the conformal boundary. However, in the subsequent analysis
the key object is not 8 but B, the 1-form associated to the conformal geodesics equations
written in terms of the connection V. Now, from the conformal transformation rule 8 =

B + Z7!'dE and by recalling that = = 2, it follows that

] !
G- 9% 4.4la.
zy\/|F(2)] z

Thus, from the preceding discussion it follows that B is smooth at .#* and, moreover,

B+ = 0. Notice, however, that 8 # 0 away from the conformal boundary.

132



4.4. The Schwarzschild-de Sitter spacetime in the conformal Gaussian system

Computation of the connection coefficients

The 1-form B defines in a natural way a Weyl connection V via the relation
V-V =5

where S corresponds to the tensor S, as defined in (2.44). As the coordinates and
connection coefficients associated to the physical connection V are not well adapted to a
discussion near the conformal boundary we resort to the unphysical Levi-Civita connection

V to compute V. From the discussion in the previous subsections, we have that
V -V =S(z"'d2).

It thus follows that

Now let {e,} denote the Weyl propagated frame as given by Proposition 10. The

A

connection coefficients ', are define through the relation
Vaee = [abeep.
Now, writing e, = €,"8,, one has that
Vaee = (Gpec)ead,.

where

A

v v v vpQ A
Ve = Ve + S Byec’”,

== 8”6,3” + f#”)\ec’\ —+ S#AupoGCA. (426)

Now, a direct computation shows that the only non-vanishing Christoffel symbols of

the metric (4.21), I',”) are given by
fttz = _]-:‘zzz = Z(%MZ — 1) )
1+ 22(Mz—1)
I =2(3Mz— 1)(1 + 22(Mz — 1)),

ﬁpew = —cosfsind, f‘g(p@ = cot 6.
Observe that the coefficients T;t., I',%, and T}%, are analytic at z = 0.
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Remark 32. The connection coefficients T,

0 o f‘g% correspond to the connection of the

round metric over S?. In the rest of this section, we ignore this coordinate singularity due

to the use of spherical coordinates.

It follows from the discussion in the previous paragraphs and Proposition 10 that each
of the terms in the righthand side of (4.26) is a regular function of the coordinate z and,
in particular, analytic at z = 0. Contraction with the coefficients of the frame does not
change this. Accordingly, it follows that the Weyl connection coefficients .t are smooth
functions of the coordinates used in the conformal Gaussian gauge on the future of the

fiduciary initial hypersurface S, up to and beyond the conformal boundary.

4.4.3 The components of the curvature

In this section, we discuss the behaviour of the various components of the curvature of the
Schwarzschild-de Sitter spacetime in the domain M,. We are particularly interested in the

behaviour of the curvature at the conformal boundary.

The subsequent discussion is best done in terms of the conformal metric g as given by

(4.21). Consider also the vector €y given by
eo = \/|F(2)|0., F(z)=2>—-Mz*—1.

This vector is orthogonal to the conformal boundary .#* which, in these coordinates is

given by the condition z = 0.

The rescaled Weyl tensor

Given a timelike vector, the components of the rescaled Weyl tensor dg,.q can be conve-
niently encoded in the electric and magnetic parts relative to the given vector. For the

vector eqg these are given by
— b= d % £ — b= d
dac = dabcdeo €o , d ac — d abed€0 €0
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4.4. The Schwarzschild-de Sitter spacetime in the conformal Gaussian system

where d*,p.q denotes the Hodge dual of dg.q. A computation using the package xAct for
Mathematica readily gives that the only non-zero components of the electric part are given

by

M
d09 = _77
M
dpy = 5 sin? 6,

while the magnetic part vanishes identically. Observe, in particular, that the above expres-
sions are regular at z = 0 —again, disregarding the coordinate singularity due to the use
of spherical coordinates. The smoothness of the components of the Weyl tensor is retained

when re-expressed in terms of the Weyl propagated frame {e,} as given in Proposition 10.

The Schouten tensor

A similar computer algebra calculation shows that the non-zero components of the Schouten

tensor of the metric g are given by

Ly = ;(2]\/[2 —1)(1+2*(Mz — 1)),

-1 (2Mz-1)
F21 4 22(Mz - 1)’
. 1
ng = —§<MZ - 1),
1

Lo, = . sin?@(Mz — 1).

Again, disregarding the coordinate singularity on the angular components, the above ex-
pressions are analytic on M, —in particular at z = 0. To obtain the components of the
Schouten tensor associated to the Weyl connection V we make use of the transformation
rule

Loy — Loy = VB — ;Sab(:dﬂcﬁd-
The smoothness of 3, has already been established in Subsection 4.4.2. It follows then
that the components of Loy, with respect to the Weyl propagated frame {e,} are regular

on M,.
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4.4.4 Summary

The analysis of the preceeding subsections is summarised in the following:

Proposition 11. Given t, > 0 and the Weyl propagated frame {e,} as given by Propo-
sition 10, the connection coefficients of the Weyl connection associated to the congruence
of conformal geodesics, the components of the rescaled Weyl tensor and the components of
the Schouten tensor of the Weyl connection are smooth on M, and in particular at the

conformal boundary.

Remark 33. In other words, the sub-extremal Schwarzschild-de Sitter spacetime expressed
in terms of a conformal Gaussian gauge system gives rise to a solution to the extended

conformal Einstein field equations on the region M, C D*(R,) where R, C S,.

4.4.5 Construction of a background solution with compact spa-

tial sections

The region R, C S, has the topology of I xS? where I C R is an open interval. Accordingly,
the spacetime arising from R, will have spatial sections with the same topology. As part of
the perturbative argument given in Section 4.5 based on the general theory of symmetric
hyperbolic systems as given in [50] it is convenient to consider solutions with compact
spatial sections. We briefly discuss how the (conformal) Schwarzschild-de Sitter spacetime
in the conformal Gaussian system over M, can be recast as a solution to the extended

conformal Einstein field equations with compact spatial sections.

The key observation on this construction is that the Killing vector £ = 8, in the Cosmo-
logical region of the spacetime is spacelike. Thus, given a fixed z, < z., we have that the
hypersurface S, defined by the condition z = 2, has a translational invariance —that is,
the intrinsic metric h and the extrinsic curvature K are invariant under the replacement
t — t+ s« for 2 € R. Moreover, the congruence of conformal geodesics given by Proposition

11 are such that the value of the coordinate t is constant along a given curve.

136



4.5. The construction of non-linear perturbations

Consider now, the timelike hypersurfaces 7 o, and Ty, in DT (S,) generated, respec-
tively, by the future-directed geodesics emanating from S, at the points with ¢ = —2¢, and
t = 2t,. From the discussion in the previous paragraph, one can identify 7 o, and Ty, to
obtain a smooth spacetime manifold M, with compact spatial sections —see Figure 4.5.
A natural foliation of M, is given by the hypersurfaces S, of constant z with 0 < z < z,
having the topology of a 3-handle —that is, H. ~ S! x S2.

The metric g on SdS;, cfr (4.24), induces a metric on M, which, by an abuse of nota-
tion, we denote again by g. As the initial conditions defining the congruence of conformal
geodesics of Proposition 8 have translational invariance, it follow that the resulting curves
also have this property. Accordingly, the congruence of conformal geodesics on SdS; given
by Proposition 8 induces a non-intersecting congruence of conformal geodesics on M,

—recall that each of the curves in the congruence has constant coordinate t.

In summary, it follows from the discussion in the preceding paragraphs that the solution
to the extended conformal Einstein field equations in a conformal Gaussian gauge as given
by Proposition 11 implies a similar solution over the manifold M,. In the following we

will denote this solution by @. The initial data induced by @ on S, will be denoted by 1.

4.5 The construction of non-linear perturbations

In this section, we bring together the analysis carried out in the previous sections to
construct non-linear perturbations of the Schwarzschild-de Sitter spacetime on a suitable

portion of the Cosmological region.

4.5.1 Initial data for the evolution equations

Civen a solution (S,, h, K) to the Einstein constraint equations, there exists an algebraic
procedure to compute initial data for the conformal evolution equations —see [81], Lemma
11.1. In the following, it will be assumed that we have at our disposal a family of initial

data sets for the vacuum Einstein field equations corresponding to perturbations of initial
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Q I+ Qo

Figure 4.5: The red curves identify the timelike hypersurfaces 7_o;, and Ty,. The resulting

spacetime manifold M, has compact spatial sections, S.,with the topology of S' x S2.

data for the Schwarzschild-de Sitter spacetime on hypersurfaces of constant coordinate r
in the Cosmological region. Initial data for the conformal evolution equations can then be
constructed out of these basic initial data sets. Assumptions of this type are standard in

the analysis of non-linear stability.

Given a compact hypersurface S, &~ S! x §? and a function u : S, — RY let |[ul|s, ,,
for m > 0 denote the standard L2?-Sobolev norm of order m of u. Moreover, denote
by H™(S,,RY) the associated Sobolev space —i.e. the completion of the functions w €

C>(S.,R") under the norm || ||s. -

In the following, consider some initial data set for the conformal evolution equations u,
on R, ~ [—t,,ts] X S? which is a small perturbation of exact data 1, for the Schwarzschild-

de Sitter spacetime in the sense that

u*:ﬁ*+ﬁ*7 Hﬁ*’R.,m <e

for m > 4 and some suitably small ¢ > 0. Making use of a smooth cut-off function over
S.. ~ S' x $? the perturbation data i, over R, can be matched to vanishing data 0 on

[—2ts, —3t] x S? U [3t,,2t,] x S? with a smooth transition region, say, [—2t,, —t.] X S* U
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4.5. The construction of non-linear perturbations

[, 3t x S%. In this way one can obtain a vector-valued function u, over S, ~ S x §?
whose size is controlled by the perturbation data u, on R,. In a slight abuse of notation,

in order to ease the reading, we write 0, rather than u.

4.5.2 Structural properties of the evolution equations

In this section, we briefly review the key structural properties of the evolution system
associated to the extended conformal Einstein equations (2.54) written in terms of a con-
formal Gaussian system. This evolution system is central in the discussion of the stability
of the background spacetime. In addition, we also discuss the subsidiary evolution system
satisfied by the zero-quantities associated to the field equations, (2.53a)-(2.53d), and the
supplementary zero-quantities (2.55a)-(2.55¢). The subsidiary system is key in the anal-
ysis of the so-called propagation of the constraints which allows to establish the relation
between a solution to the extended conformal Einstein equations (2.54) and the Einstein
field equations (4.1). One of the advantages of the hyperbolic reduction of the extended
conformal Einstein field equations by means of conformal Gaussian systems is that it pro-
vides a priori knowledge of the location of the conformal boundary of the solutions to the

conformal field equations.

Conformal Gaussian gauge systems lead to a hyperbolic reduction of the extended con-
formal Einstein field equation (2.54). The particular form of the resulting evolution equa-
tions will not be required in the analysis, only general structural properties. In order to
describe these denote by v the independent components of the coefficients of the frame
eo", the connection coefficients fabc and the Weyl connection Schouten tensor Eab and by
¢ the independent components of the rescaled Weyl tensor dgpeq, €xpressible in terms of
its electric and magnetic parts with respect to the timelike vector eq. Also, let e and T°
denote, respectively, the independent components of the frame and connection. In terms

of these objects one has the following:

Lemma 7. The extended conformal Einstein field equations (2.54) expressed in terms of a

conformal Gaussian gauge imply a symmetric hyperbolic system for the components (v, @)
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of the form

ov=Kv+Q(')v + L(2)¢, (4.27a)
(T+ A%e))0,¢ + A%(e)dap = B(T) ¢, (4.27D)

where I is the unit matriz, K is a constant matriz Q(T") is a smooth matriz-valued function,
L(z) is a smooth matriz-valued function of the coordinates, A*(e) are Hermitian matrices
depending smoothly on the frame coefficients and B(T') is a smooth matriz-valued function

of the connection coefficients.

Remark 34. In this analysis we will be concerned with situations in which the matrix-
valued function I+ AY(e) is positive definite. This is the case, for example, in perturbations

of a background solution.

Remark 35. Explicit expressions of the evolution equations and further discussion on
their derivation can be found in [56] —see also [81], Section 13.4 for a spinorial version of

the equations.

For the evolution system (4.27a)-(4.27b) one has the following propagation of the con-

straints result [56]:

Lemma 8. Assume that the evolution equations (4.27a)-(4.27b) hold. Then the indepen-
dent components of the zero-quantities

A

c -
dab; AabCa AabCa 50,7 Yab, Sab

[1]>

S
Ya e

not determined by either the evolution equations or the gauge conditions satisfy a symmetric
hyperbolic system which is homogeneous in the zero-quantities. As a result, if the zero-
quantities vanish on a fiduciary spacelike hypersurface S,, then they also vanish on the

domain of dependence.

Remark 36. It follows from Lemmas 7, 8 and Proposition 2 that a solution to the con-
formal evolution equations (4.27a)-(4.27b) with data on S, satisfying the conformal con-
straints implies a solution to the Einstein field equations away from the conformal bound-

ary.
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4.5. The construction of non-linear perturbations

4.5.3 Setting up the perturbative existence argument

In the spirit of the schematic notation used in the previous section, we set u = (v, ¢).
Moreover, consistent with this notation let 1 denotes a solution to the evolution equations
(4.27a) and (4.27b) arising from some data 0, prescribed on a hypersurface at r = r,. We
refer to & as the background solution. We will construct solutions to (4.27a) and (4.27b)

which can be regarded as a perturbation of the background solution in the sense that
u=1u+au.
This means, in particular, that one can write

e=é+é, TI=I+TD,  ¢o=0¢+0. (4.28)

The components of €, T and QUS are our unknowns. Making use of the decomposition (4.28)

and exploiting that 4 is a solution to the conformal evolution equations one obtains the

equations
9,0 = Ko + Q(I' + )0 + Q)0 + L(7)b + L(7), (4.29a)
I+ A&+ ¢))0,¢+ A%(é + &)d.d = B(I + I + B(I' + 1) . (4.29b)

Now, it is convenient to define

- 5 I 0 _ g 0 0
A(r,z,0) = , A%(r,z,0) = ,
0 I+ A%é+eé) 0 A*(e+é)
and
B(r,z, 1) = uQii + L(z)i + Ku,
where
. [vQo 0 _ [oQu+ Q)0 L(z)¢+ L(z)o
uQu = oL 5 , L(z)u= ,
0 B¢ +B((I)¢ 0 0
_ Ko 0
Ku = ,
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denote, respectively, expressions which are quadratic, linear and constant terms in the

unknowns.

In terms of the above expressions it is possible to rewrite the system (4.29a)-(4.29b) in

the more concise form
A°(7,z,0)0,1 + AY(1,2,1)0,1 = B(r,z, ). (4.30)

These equations are in a form where the theory of first-order symmetric hyperbolic systems
can be applied to obtain a existence and stability result for small perturbations of the initial
data 1,. This requires, however, the introduction of the appropriate norms measuring the

size of the perturbed initial data 1.

Remark 37. In the following it will be assumed that the background solution u is given
by the Schwarzschild-de Sitter background solution written in a conformal Gaussian gauge
system as described in Proposition 11. It follows that the entries of @1 are smooth functions

on M, =[0,2] x S, ~[0,2] x S! x §2.

Theorem 2 (existence and uniqueness of the solutions to the conformal evo-
lution equations). Given u, = U, + U, satisfying the conformal constraint equations on

S, and m > 4, one has that:

(i) There exists € > 0 such that if

Hﬁ*HS*,m < g, (431)

then there exists a unique solution 1 € C™2([0,2] x S,,RN) to the Cauchy problem
for the conformal evolution equations (4.30) with initial data u(0,x) = a, and with

N denoting the dimension of the vector u.

(i) Given a sequence of initial data al" such that

n—o0

105, m <&, and a5, 0,

then for the corresponding solutions u™ € C™2([0,2]xS,,RY), one has |[a™||s, ., =

5

0 uniformly in T € [T*, 5) as n — oo.
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Proof. The proof is a direct application of Kato’s existence, uniqueness and stability theory
for symmetric hyperbolic systems [50] to developments with compact spatial sections —see

Theorem 12.4 in [81]; see also [56]. O

Remark 38. In view of the localisation properties of hyperbolic equations the matching
of the perturbation data on R, does not influence the solution u on D™ (R,). Accordingly,
in the subsequent discussion we discard the solution u on the region M, \ D*(R,) as this

has no physical relevance.

Moreover, given the propagation of the constraints, Lemma 8, and the relation between
the extended conformal Einstein field equations and the vacuum Einstein field equations,

Lemma 2, one has the following:
Corollary 2. The metric
g=0°g
obtained from the solution to the conformal evolution equations given in Theorem 2 implies
a solution g to the vacuum FEinstein field equations with positive Cosmological constant on

M = DT(R.). This solution admits a smooth conformal extension with a spacelike con-

formal boundary. In particular, the timelike geodesics fully contained in M are complete.

Remark 39. The resulting spacetime (M,g) is a non-linear perturbation of the sub-
extremal Schwarzschild-de Sitter spacetime on a portion of the Cosmological region of the

background solution which contains a portion of the asymptotic region.

Remark 40. As R, is not compact, its development has a Cauchy horizon H*(R,).

4.6 The main result

We summarise the discussion of the preceding sections with a more detailed formulation

of the main result of this chapter:
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Theorem 3. Let u, = 0, + u, denote smooth initial data for the conformal evolution
equations satisfying the conformal constraint equations on a hypersurface S,. Then, there
exists € > 0 such that if

lidlls, <& m >4

then there exists a unique C™ 2 solution g to the vacuum Einstein field equation with
positive Cosmological constant over [Ty, 00) X S, for 7. > 0 whose restriction to S, implies
the initial data u,. Moreover, the solution u remains suitably close (in the Sobolev norm

| - |]5m) to the background solution .
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Chapter 5

Spinors and spacetime

5.1 Introduction

One of the most important areas of application of spinorial methods is the study of asymp-
totic properties in General Relativity. These methods are particularly powerful when com-
bined with a technique which employs conformal rescalings for the analysis of the structure
of the Einstein field equations and their solutions [59, 60]. The purpose of this chapter is
to develop the formalism of spinors in spacetime. The discussion builds up from the basic
features of the so-called spacetime spinors with the main aim to introduce the essential
features of the space-spinor formalism. This is a framework in which spinors are endowed
with a Hermitian inner product and will be used in Chapter 6 to analyse the asymptotic be-
haviour of the Maxwell-scalar field system on a fixed background. In particular, it provides
a systematic approach to the construction of evolution equations which can be regarded

as the spinorial equivalent of the 1 + 3 decomposition for tensors.

It is important to notice that throughout this chapter the signature convention for
Lorentzian spacetime metrics will change to (+, —, —, —). This will be the preferred con-

vention for the rest of this thesis.
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5.2 Spacetime spinors

In this section, the formalism of spacetime spinors, also known as 2-spinor formalism, is
discussed. In particular, the basic features of 2-spinors in spacetime is presented. Given a
spacetime (M, g), at any given point p € M it is possible to associate a spinorial structure.
This structure is closely related to the representation theory of the group SL(2,C). This
group has two inequivalent representations in terms of two-dimensional complex vector
spaces which are complex conjugates of each other. This discussion then begins with the

definition of a symplectic vector space following [81].

5.2.1 2-Spinors algebra

Let & denote a complex vector space, a 2-dimensional symplectic vector space is defined

as follows:

Definition. A symplectic vector space is a 2-dimensional vector space & endowed with a
2-form
[,]:6x6 —C

which is
(i) Skew-symmetric: given £, € S
& ml = —[n, €]
(ii) Bilinear: given §,m,¢ € S and z € C one has
E+zCn=[&nl+2[Cnl, &0+ (] =[&n]+ 2§ (]

(iii) Non-degenerate:

it [&n =0 forall €& then £=0.
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Let &* be the dual space of &. We build the tensor algebra over & and &* in the
usual way. Given bases of G and &* we may define a non-natural isomorphism between
the two spaces: two vectors are regarded as being the "same" if their components with
respect to the two bases are identical. However, the skew-scalar product defines a natural

isomorphism: to the element, &€ € G we associate [€, -] € &* which is a linear map

e —€ = ]e6.

5.2.2 Spin bases

The definition of the 2-dimensional symplectic vector space & implies that the space of
vectors orthogonal to a non-zero vector & consists of the vectors proportional to £. In other
words, given £, € &, they are linearly dependent if [, ] = 0 so that n = 2§, with z € C
and z # 0. This is a consequence of the skew-symmetric scalar product for which every

vector is self-orthogonal. This property can be used to construct a spin basis.

Definition (Spin basis). Given two vectors o, € &. If 0 is non-zero and ¢ is such that

l0,t] =1, then {o,t} is a spin basis for .

Remark 41. From this definition it is clear that ¢ is not unique, since it is possible to add

an arbitrary multiple of o to it preserving the normalisation.

Given a vector € € &, the components of & with respect to the spin basis {0,¢} are

denoted as €4, with A = 0, 1, where
§=¢"+¢',

with

It follows that
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Similarly, due to the natural isomorphism between & and &*, the components of the dual

vector & € &* are denoted by &4, with A = 0, 1, where

£ = €OO + Ell’a

with
€OE_[La€]7 £1E[Oaé]'

The discussion in this thesis uses a combination of index-free and abstract index notation.

A complete rigorous discussion is given in Penrose and Rindler [61].

5.2.3 The spinor €4p

Since the skew-symmetric 2-form [-, ] is a function
RE 6G®6 — C,
there exists a 2-spinor e 5 € S 4p such that

[€,m] = eaptn®.

The spinor €45 is called the e-spinor. Since

it follows that €45 is skew-symmetric, i.e. e4p = —ega. The condition that {o,¢} is a spin

basis for © translates into

eABOAoB = EABLALB =0, GABOALB =1.

In components with respect to this basis, we have

0 1
-1 0

€AB =

This is a non-singular matrix and its inverse is defined, up to a conventional factor —1, as

EAB — _(E—l)AB‘
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The convention on kernel letter of dual elements means that e4,p can be regarded as an

index-lowering operator. For

€, m] = ean&™n® = (eant™)n”,
one has that [¢, ] is the dual of £# and so
& = (eapé?).
This equation has an important concomitant. Since €p is non-singular we have
()P = leap(e )P = €547 = ¢,
where 64 is the spinor Kronecker’s delta and define

EBC — —(6_1)30

so that

Thus, the spinor €45 provides a convenient way to express the duality between the spaces

S and &*. Now, given a linear transformation applied to a spin basis
o = a0 + B4, i =~ot 4+ 64,
since the same transformation hold with indices lowered
04 = @0y + By, Ia =704+ 04,
one has that {6, 7} form a spin basis if and only if
[0,i]] =ad — By =1.

Thus, the transformation matrix is in SL(2,C). Since the condition that a linear transfor-
mation preserves spin bases is the condition that it be a symplectomorphism, hence Sp(2)

is isomorphic to SL(2, C).
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5.2.4 Decompositions in irreducible components

Since G is a 2-dimensional space, for any spinor ( one has

C~~[ABC]--~ =0
for at least two of the bracketed indices must be equal. In particular, we have the Jacobi
identity
eaBécp) = 0 = €apécp + €ac€pp + €ap€BC-

This is used in the form given by the following lemma

Lemma 9. Let (_ap.. be a multivalent spinor. Then

1
C.ap..=C (aB).. + §€AB<...C’...C-

The proof of this lemma can be found in [70, 81]. This is a special case of a more

general result:

Theorem 4. Any spinor (_ap.. can be decomposed as the sum of the totally symmetric

spinor C(a..ry and products of €-spinors with totally symmetric spinors of lower valence.

The proof of this theorem can be found in [61]. The type of spinorial decompositions
provided by this theorem will be used systematically in the rest of this thesis. In particular,

we will make use of a decomposition in irreducible components defined as

_ 1 P 1or 1. raq
XABCD =X(ABCD) + 5 X(AB)P" €CD + 5 XP" (CD)€AB + JXP @ €ABECD
1 1 1 (5.1)

+ §€A(CXD)B + §€B(cXD)A - §€A(C€D)BX7

where
XAB = XQ(AB)Qa X = XPQPQ-
From definition (5.1), it follows that
XaBcp =0

if and only if

X(4Bcp) = 0, Xupp =0, e x =0.
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5.2.5 Components with respect to a basis

In order to discuss spinors in terms of a specific basis it is convenient to introduce bold

indices 4, B, ... ranging over 0, 1. Thus, £4 and 74 represent the components of £4 and

np with respect to a specific basis.
Given a spin basis {0, t}, one introduces the symbol e4* where

A A A LA

M
o

Il
Q
M
g

Il

4, so that one has

and dual cobasis €
eateB = 6,48,
Using this notation, one has that two spinors é4 and ng can be written as
fA = §A€AA, B = 77B€BB

where the components £4 and ng are given by

fA = fAEAA, nB = nBEBB-

The components of the skew-symmetric spinor €45 with respect to the basis e4* are given

by
1 B 040" 04l 0 1
€AB = €AB€A €B = =
a0 Lt -1 0
From the definition of ¢4Z it follows that
0 1

(AB = ABA (B _

-1 0

5.2.6 Complex conjugation of spinors

To relate spinors with tensors, one needs to consider the operation of complex conjuga-

tion. In our conventions given a spinor (4 € & the operation of complex conjugation

corresponds to
¢h=¢",
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~— Al i . ! ! . . . . .
where (4 € &4, A spinor (49U, pus vy with m unprimed contravariant indices, n
)
primed contravariant indices, [ unprimed covariant indices and p primed covariant indices

describes the most general type of spinor. It is obtained from the G-linear map
CiGax - XBexBgx- XByxGx .. x6Fx6" x...x6" — C.

The algebra &° is then extended to include this more general type of spinors with primed

and unprimed indices. Since & and & are not isomorphic, one can write

Caar = Cara,

so that the relative position of primed and unprimed indices is irrelevant. Conversely,
reordering groups of primed or unprimed indices is only allowed in the case of spinors
with special symmetries. The rules for the raising and lowering of the indices of valence
1 spinors are naturally extended to higher valence spinors. Primed indices are raised and

A'B’

lowered using the spinors € and €4 5 which are related to €4? and e, by

eV'B' = (AB

) €A'B = €4B,

! 1A »24
B' _ (A'B _

. . . — A’ —
with the convention of setting €4 and €45 = €arpr.

The discussion concerning the irreducible decomposition of spinors, in particular Lemma
9 and Theorem 4, can be easily extended to the case of spinors with primed indices or com-

binations of primed and unprimed indices.

5.3 The relation between spinors and world tensors

This section explores the relationship between spinors and World tensors. Spinors provide
a simple representation of several tensorial operations. Although every four-dimensional
world tensor can be represented in terms of spinors, the converse is not true. Some spinors
admit no discussion in terms of World tensors. This observation is based on the fact that
2-spinors are related to representations of SL(2,C), while world tensors are related to the
Lorentz group, O(1, 3). These groups are not isomorphic to each other. The correspondence

between 2-spinors and world tensors is established via the Hermicity property.
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5.3. The relation between spinors and world tensors

5.3.1 Hermitian spinors

A spinor £ € &° is said to be Hermitian if it is equal to its complex conjugate, that is
£=¢

This implies that &£ needs to have the same number of primed and unprimed indices. Hence,
if £ is a spinor with the same number of primed and unprimed indices & 44/ pp P ~HH’

the Hermicity condition reads as

EE'..HH' e EE'..HH'

§aar.. DD =&an.. DD

Now, given two bases {o,¢} and {0,z} of & and &, respectively. A spinor £44" € GAY

can be written in terms of these bases as
M = a0 + AT + oV + diter (5.2)

for a, b, ¢, d € C. In the case of the spinor £é44" being Hermitian it follows that a, b € R
and ¢ = d. It follows that one can think of the Hermitian spinor £é44" € 44" as describing

a four-dimensional World vector £°.

This discussion can be extended to higher valence Hermitian spinors so that one can
regard each pair of unprimed-primed indices as associated with tensorial indices. From this

discussion, it follows that the metric tensor g, has spinorial counterpart g44pp Where

JAANBB' = €ABEA'B/ (5.3)
with the following properties
gANBB _ ABAB (5.4a
ganpp gt = gan® =644, (

gAA/BB/gAA/BB, = 4, (54C
JAA'BB = BB/AA’- (5.4d
Moreover, given a vector va4 € G 44 it follows that

BB’ AA'BB’ AA’
v =vaA'g ) UBB' = U JAA'BB’-
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Chapter 5. Spinors and spacetime

5.3.2 The Infeld-van der Waerden symbols

In order to describe the correspondence between spinors and World tensors at a point
p € M, one can consider a basis {e,} C T'|,(M) and its dual basis {w®} C T%|,(M) so

that (w® e,) = d,°. Moreover, let

Gab = g(eaa eb)

denote the components of the metric g with respect to the {w®}. This basis is g-orthogonal
—i.e. gap = Map- Finally, let {ea} C & denote a spin basis, and let e4p denote the
components of the spinor €45 with respect to this basis. The scalars gq, and €4p can be

put in correspondence with each other via an equation of the form

a b
€ABEA'B’ = 0" AA'0 BB/ Nab, (5.5)

where 0% 44/ are the so-called Infeld-van der Waerden symbols. These can be regarded as

the entries of four (2 x 2) matrices, @ = 0,...,3. Given 044/, one defines the inverse

B

symbol o,BB’ via the relations

’ / /
O’aAA UbAA/ = 5ab, OaAA O’aBB/ = (SBA5B/A . (56)

Using these expressions it follows that equation (5.5) can be inverted so that

AA' _ BB’
Nab = 0a” " Ob" €ABEA'B- (5.7)

This equation together with the observation that n., = Mqp leads to

AL AAT (5.8)

! / . oy . . . . .
Thus, 0,24 and 0,BB" describe Hermitian matrices. These matrices satisfy the relations

(5.5), (5.6), (5.7) and (5.8) and can be explicitly written as

oA = L [1 O gan = L [0
v2io 1] V21 o/

JzAA’EL 0 0'3AA,EL 1 0
V2 - o) V2o -1

154



5.3. The relation between spinors and world tensors

Hence, corresponding, up to a normalisation factor, to the so-called Pauli matrices. Now,
consider an arbitrary vector v € T'|,(M) and a covector u € T*|,(M). In terms of the

bases {e,} and {w®}, these can be written as

v =%, v = (W, v),

U = Ugw?®, Ug = (U, €4).

. . oy . /
The components v® and u, can be put in correspondence with the Hermitian spinors v44

and u4 4 using the Infeld-van der Waerden symbols via the rules

/ /
pAA — yag AN

UAA = UaT" AN

These correspondences can be extended to tensors of arbitrary rank. For example, given
the tensor Ty, its components with respect to {e,} and {w?®}, denoted by Typ°, are in

cc’

correspondence with the spinor T'4 4/’ via the following

cc’ _ c_a b cc’
T aa BB =T a0 440" BB O .

cc’

The spinor T' g4 BB is called the spinorial counterpart of the tensor components 7' p€.

5.3.3 Null tetrads

Given a Hermitian spinor 44 € &4 in terms of the spin bases {o,¢} and {o,z} it
can be written according to Equation (5.2). Hence every spin basis {o,t} gives rise to
an associated vector basis consisting of null vectors. This null tetrad has the peculiarity
of consisting of two real null vectors and two complex null vectors which are the complex

conjugate of each other. Hence, let

/ _ A / _A / _ A/ _ ’ _ A
ZAA = OAOA, AA AFA AA = OALA mAA = LAOA (5'9)

and let [*, n® m® and m® denote the tensorial counterparts of the above spinors. One has
that
lan® = —m,m"* =1, (5.10)
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Chapter 5. Spinors and spacetime

and all the remaining contractions vanish. This null tetrad {l,n,m,m} can be used to

construct an orthonormal tetrad {e,} as follows

1
ey = ﬁ(l +n) (5.11a)
1 _
e = \/ﬁ(m%—m) (5.11b)
ez = ﬁ(m —m) (5.11c¢)
es = L(l—n). (5.11d)

~

The relations (5.10) can be used to show that {e,} is an orthonormal tetrad with eg being
timelike, while ey, es and eg are spacelike. Moreover, since a right-handed phase change

in the spin basis of the form

ot —s et Ay i, A
gives right-handed rotations
e — cos 20eq + sin 20e,, (5.12a)
e, — —sin 20e; + cos 20e, (5.12b)

with eg and es unchanged, the triad {e1, ea, es} as defined by Equations (5.11b)-(5.11d)
is said to be right-handed.

5.4 The spinorial structure of the spacetime manifold

The discussion of the previous section has been restricted to spinors at a given point of
the spacetime manifold M. A spinorial structure on the whole spacetime manifold M is
called a spin bundle and is denoted by &(M). In order to relate spinors defined at different
points of the spacetime manifold, it is necessary to introduce the concept of connection and
its associated covariant derivative. Hence, the notion of connection needs to be extended
so that it applies to spinorial fields. A spinorial field is a smooth assignment of a spinor

SA,__CD/_,_F/G“'LP/"'N to each point of the spacetime manifold. The sets of spinorial fields
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5.4. The spinorial structure of the spacetime manifold

over M will be denoted similarly to the sets of spinors at a point, that is, &*(M), & (M),
&4(M) and so on.

5.4.1 The spinorial covariant derivative

A spinorial covariant derivative is a map
Vaa : 65 p m(M) — &% 4p am(M).

satisfying the following properties:

(i) Linearity: Given EB-C'p p B € GB"'CID,__E/(M),

B..C" B..C" B..C" B..C'
Vaa (€ D.E +N D)= Vaa D+ Vaan D..E'-

(ii) Leibnitz rule: Given the fields ¢ p € &5 p p(M) and nCy 1 €
GF'"G/H...I’ (M)

/ ! /

B..C" B..C" F..G
w1 Vaak p..m+E D..5'Vaan H..I-

Vaar (€8 p g™y ) =n"C

(iii) Hermiticity: Given the field £ 5 € &5+, (M) one has that

- !

VawbB-p g =Vant®“p p.
(iv) Action on scalars: Given a scalar ¢, then V¢ is the spinorial counterpart of
V0.

(v) Representation of derivations: Given a derivation D on the spinor fields, there

exists a spinor €44 such that

!

B..C" AA! B..C
Dn D =& Vaan D..E's

for all B¢ p @ € &*(M).

For more details about this construction see [61, 70, 81].
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Chapter 5. Spinors and spacetime

5.4.2 Spin connection coefficients

The spinorial counterparts of the connection coefficients I'%, are given after suitable con-

traction with the Infeld-van der Waerden symbols by the spinor components

! /

cc _ cc cc
F'aa™" B =w”" cc:Vaaepp

! . . . . . . . . .
where Vaa = eaa ' Vau is the directional covariant derivative in the direction of e 4.

Now, since

/ / ’ _ ’
w®c ccr = €CCEC cy eBB/BB = EBBEB/

It follows that

/ !

’ ’
Taa““ Bp = “cdpVanes” + € 65V anen®,
so that upon defining the spin connection coefficients
FAA/CB = EcchA/EBC7 (513)

one has

’ ’ — !

Furthermore, since

5BC = EBQECQ
and by requiring that
Vaadg® =0,
one has that
Taa®p = -89V

From this relation, it follows that the action of the spinor covariant derivative V4. on a
spinor &/ ¢C" is given by

’

!/ ! — ! ! ! — !
Vanép©C =ean(€pY) —Taa™ péar©C +TaanENC +TanC niép Y.

This relation can be generalised to spinors of arbitrary valence and several primed and

unprimed indices.
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5.4. The spinorial structure of the spacetime manifold

5.4.3 Metric and Levi-Civita spin connection coefficients

The spinorial counterpart of the metric compatibility condition
Vagoe =0
is given by
Vaagppcoo = Vaalepcepcr) = €pcrVanepe + epeVanepco =0,

from which one has

Vanepe =0, Vaaepo = 0.
These relations can be written in an explicit form so that
P
Vaaepe = eanlesc) — Taatsepc — Taa®ceng = 0,
— / — !
Vaaepco =eanlepc) — FAA’P BE€pC’ — FAA’Q cepq = 0.
Since eaa/(epc) =0, ean(€pc) = 0 and €pe, €per are constants, it follows that

l'aaBc =T aa(Be),; Faapco =T aamen.

5.4.4 The spinorial curvature

The spinorial counterpart of the curvature tensors can be introduced naturally by looking
at the commutator of spinorial covariant derivatives. One can write

/

cc oo PP
(Vaar, Vep)l™" = R"" ppraaspé

/ . . . .
where RYY ppiaarpp is the spinorial counterpart of the Riemann curvature tensor R¢gqy,
and

(Van, V] =VaaVes — Ve Var — Saa’ ™t ppVpp
with 244 g being the spinorial counterpart of the torsion tensor ¥,% of V.

. . ! . .
In order to express the Riemann curvature spinor RCC DD AaBB in terms of spin con-

nection coefficients one makes use of the expression of the geometric curvature
Reaap = 0a(Tsa) — Op(Ta%a) + T%a(TeTa — Tals) + Tofal'a® — Tafalss — Lol ol %
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contracted with the Infeld-van der Waerden symbols, so that one has

/

cc’ _ cc’ cc’ cc’ FF' F
R*" ppaasp =eaan(Usp™" pp) — e (T'aa™" pp) + Urr™" b (U " Aar —Tana™" BB/)

!

FF’ cc’ FF’ cc’ FF’ C
+ FBB/ DD’FAA/ FF' — FAA/ DD’FBB’ FF' — ZAA’ BB’FFF’ DD’

Now, using the definition of spin connection coefficients (5.13), one can define

Rpaanp =ean(Tep°p) —epp (Taap) —TreCplaa’s
~TprCplaa” 5 +TraCplep’ a4+ TarCplee’ o
+ T8 plan’r —TaaFoleer — Lana™™ e Trrp
so that
R ppraass = Rpaapdn® + R praaspdn® (5.15)

which can be regarded as the first Cartan structure equation.

5.4.5 The spinorial Ricci tensor and Ricci scalar

To introduce the spinorial counterpart of the Ricci tensor and Ricci scalar, we consider

Equation (5.15) contracted with the spinors epc and ep e so that
Rocppraass = —Repaappecp — Ropraappecn. (5.16)

One then uses the following skew-symmetry

Repaasp = —Repppaa

along with the split
Repaasp = Ropapean + Ropapean

so that one has

1 ,
Repaapp = §RCDAQ’BQ €ap + §RCDA’QB’Q€AB (5.17)
The spinorial counterparts of the Ricci tensor and scalar, Ry4 g and R, are obtained

from Equations (5.16) and (5.17) as

Q Q Q

1 / — /
P P
Raapp = _iRPA BQ' " €ap — §RP’A’ B'Q €aB + Rapapq~,
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5.5. Space-spinor formalism

/

R == —2RPQE1PQE

The spinorial counterpart of the symmetric trace-free part of the Ricci tensor @, is defined

as

1 1

DPupap = §RAA’BB’ - gRGABeA/B’

and satisfies the following symmetries

CI)ABA’B’:q)BAA’B’:(I)ABB’A’:@BAB’A" (519)

5.5 Space-spinor formalism

In the remaining part of this chapter, it is discussed the space-spinor formalism. This con-
stitutes a framework for spinors in which a further structure is introduced — the so-called
Hermitian inner product and it can be used to describe foliations of spacetimes. In partic-
ular, it provides a suitable description of the geometry of three-dimensional Riemannian
manifolds. The notion of space spinors provides a systematic approach to the construc-
tion of evolution equations which can be regarded as the spinorial equivalent of the 1 + 3

decomposition for tensors.

5.5.1 The Hermitian inner product

Let (M, g) denote a four-dimensional Lorentzian manifold. At each point p € M is

associated a two-dimensional symplectic vector space S|,(M).

A Hermitian inner product on a symplectic two-dimensional vector space & is a function
(,):6x6 —C
which is

(i) Hermitian: given £, € &

(&;m) = n,§).
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Chapter 5. Spinors and spacetime

(ii) Linear in the second entry: given £,7m,( € G and z € C one has
(€.n+2¢) = (&m) +2(& Q).

(iii) Positive definite: given & € G one has

(£,6)>0

and

(€,6)=0 if and only if & = 0.

As a consequence of (i) and (i7) it follows that given &£, m,{ € & and z € C one has

(E+2¢,m) =(&mn) +2(¢;n)

i.e. the Hermitian inner product is antilinear in the first entry.

5.5.2 Hermitian conjugation

The Hermitian inner product can be expressed using a Hermitian spinor waa € & 44/ (M)

such that
(& m) = wann*. (5.20)
Given a spinor basis {€44}, the components of @ 44 with respect to the basis are given by

/

wWwAA = wAA/GAAEA/A

These components w 44/ are the entries of a diagonalisable (2 x 2) matrix whose eigenvalues
are positive, in accordance with the positivity condition. Furthermore, the scaling of the

basis {e44} can be fixed so that the matrix (w44) reduces

10
1

(wan) =
—i.e. the identity matrix. As a consequence of this normalisation condition, one has

— — -1/ /
TWAA = 04047 + Lala :€1A€1 A/—}-€0A€O Ay (521&)
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5.5. Space-spinor formalism

oA = 040" + 147" = el yen? — uer?, (5.21b)
oM = 025 + AT = o + e ten (5.21c)
From this, it follows that
wanw? B = §,45. (5.22)
In particular, w4 wt =9,
The operation of Hermitian conjugation T is a map
M 6" (M) — &°(M)
such that given s € &(M), its Hermitian conjugate pu' 4 is defined as
pwha=wa ia. (5.23)
From this definition, it follows that one can write
(&) = want¥nt = = = nac. (5.24)

This operation can be extended to higher valence spinors by requiring that given pu, A €
GS°*(M) one has
()" = pfAl,

Since w44+ is the identity matrix, it follows that
i a = (=D *ua,a,
Furthermore, due to the positive definite condition, one has
TA — ; ; _
wopa =0 if and only if pgq = 0.

The Hermitian conjugate of the e-spinor is provided by

A’ B’
el ap = wa wpPenn = eap.
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Chapter 5. Spinors and spacetime

5.5.3 Timelike congruences

Let S be a spacelike hypersurface of the spacetime (M, g). It is possible to postulate the
existence of a spinorial structure on this hypersurface. A sufficient condition is that the
vacuum Einstein field equations can be solved on S. Hence, since this spacetime is globally
hyperbolic, it admits a spinorial structure. Furthermore, the g-normal to & induces the
operation of Hermitian conjugation. The resulting spinorial structure on S is denoted by
S&(S) endowed with the operation of Hermitian conjugation . Let T be a future-directed
timelike vector of the spacetime (M, g). Let S; be the hyperplanes generated by 7. Since
this vector is not necessarily hypersurface orthogonal, these hyperplanes do not necessarily
coincide with the tangent bundles to the leaves of the foliation of M. Let 744" be the

spinorial counterpart of 7, normalised so that

g(t,7)=2.

AA

It is possible to identify this spinor with 744" = w expressing the Hermitian inner

A4 induces a Hermitian product on S, so that given

product. More precisely, the spinor 7
&4t € G(8) one has

(&,m) =Tan&"n. (5.25)

This is due to 744" being the spinorial counterpart of a spacetime vector, so that

Tan€ANA = 10V €N (5.26)

AA’ A

—i.e. 744" is a Hermitian spinor. Moreover, since 744" is timelike future-directed and the

vector €464 describes a future-directed null vector, it follows that

Tan &Y >0,

justifying the choice 744" = w44’ Hence, there exists a spin basis {ea”} such that
AN = eerofA/ + 61A€1/A/
and
TantP =4, (5.27)
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The tensorial counterpart of a spinor fia, a/,..4, 47, can be expanded in terms of the spatial
frame {€ap} if and only if the following conditions hold

TAlA’l TAkA’k

A A Agar, = 0, A A Agar, =0

—i.e. the spinor pa, ar,. a, 4, is spatial with respect to 7. Hence, the space spinor coun-
terpart is given by

/ A/

— Ay k —
,LLA1Bl...AkBk - TBl . TBk /“LAlA/l...AkA/k - /’L(AlBl)(AkBk)

To obtain the space spinor counterpart of tensors that are not spatial, one introduces the
projector

! ! 1 !
WP au = eaen” — §TAA’7'BB ;

so that given a non-spatial spinor 4, 4/, .4, 4, its projection is the spatial spinor

’
i AR

AL A
Eaan. Aca N BB BuB'y-

Then, the space spinor version of the above spatial spinor is obtained by contracting the

. . . . !/
primed indices with 7.7

B’

/ !
7o AN

/
o R

§(A1C1).(AkC) = TCy BB BuB W S AL A AL AT -

The pure time components of {4, 4/,..4, 47, can be obtained by contraction of each primed-

. . . . . /
unprimed pair of indices with 744" as

A A A1 A’ AR A
5141 1"'AK P k’SA1A/1~~~AkA'k'

Eventually, the mixed time-spatial components of 4,4/, 4,4/, are obtained by suitable

/

. . /
contractions with 744" and 757".

A useful example for this discussion is provided by a Hermitian spinor v44 € G*(M)

for which one has the following space-spinor decomposition

1 / 1
PP B
VAA = iTAA’UPP’T — T AV(BA) = iTAA’U - TQA'U(QA)

/ . !/ .
where v = vpp 7. Upon defining vap = 754 vaa and observing that v = UQQ one can
rewrite the previous equation as

1
UAB = 5€ABY +vuB)-
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5.5.4 The Sen connection and the acceleration vector

The space spinor counterpart of the spacetime spinorial covariant derivative V 44/ is ob-

tained by contraction with the timelike spinor 744" as

Y
Vap=75" Vaa

which in turn can be written as

1
Vap = §€ABD + D, (5.28)

where the operator D is the directional derivative of the connection V in the direction of
7 defined by

/
D=1V,

whereas the operator D g is the Sen connection of V associated to 7, defined as
DAB = T(BAIVA)A/.
According to these definitions, one has
1 Q
VAA/ :§TAA’D_TA/ DAQ (529)

Remark 42. The timelike vector 7 is not necessarily hypersurface orthogonal, so the
Sen connection has non-vanishing torsion which can be expressed in terms of the covari-

/ . .
44" Furthermore, even in case of 7 being hypersurface orthogonal,

ant derivative of 7
D ap doesn’t coincide with the Levi-Civita connection D of the intrinsic 3-metric of the

hypersurfaces S, orthogonal to 7.

Given the spinor x defined as

1 ,
XABCD = ETDC VapTccr. (5.30)

Using the decomposition of V 45 given by Equation (5.28), one has

1

XABCD = 5€ABXCD + X(AB)CD
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5.5. Space-spinor formalism

where

1 o 1 o
= —78" DTan, = —7p" DapTccr.
XAB NG B AA X(AB)CD NG D ABTCC

The spinor x4p corresponds to the acceleration vector of T, whereas x(apycp is related to

the Weingarten tensor of the distribution defined by 7.

In the hypersurface orthogonal case the spinor x(apycp corresponds to the extrinsic
curvature of the orthogonal hypersurfaces S,, the covariant derivative D 45 acts on a given

spinor &¢ as

1
Dapéc = Dagée + EX(AB)CQfQ (5.31)
and it is torsion-free. Since
DABECD =0 (532)

and using the symmetry xapcp = XaB(cp), one has
DABECD =0. (533)

Hence, D 4p coincides with the spinorial counterpart of the Levi-Civita connection of the
leaves of the foliation defined by 7. Furthermore, where D,4p is not a real differential

operator, D 4p satisfies

(DAch)T = _DABgTC-

Hence, D 45 is a real differential operator.

The space-spinor formalism is used in Chapter 6 to exploit the symmetry properties of

the Maxwell-scalar field system to contruct a suitable system of evolution equations.
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Chapter 6

The Maxwell-scalar field system near

spatial infinity

6.1 Introduction

Among the main open questions in Mathematical Relativity, there is the so-called problem
of spatial infinity —see e.g. [36]. This problem concerns the understanding of the conse-
quences of the degeneracy of the conformal structure of the spacetime at spatial infinity.
A systematical method to tackle this problem goes back to the seminal work of Friedrich
[28]. The key idea of this work is the development of a representation of spatial infinity, the
so-called F-gauge, which allows the formulation of a regular Cauchy problem in a neigh-
bourhood of spatial infinity for the conformal Einstein field equations. In this setting, it is
possible to show that, unless the initial data is fine-tuned, the solutions to the conformal
Einstein field equations develop two types of logarithmic singularities at the critical sets TF
where null infinity meets spatial infinity. There are logarithmic singularities associated to
the linear part of the equations and the ones associated to the non-linear equations which
appear at higher order in the expansion. In the particular case of time-symmetric initial
data sets for the Einstein field equations which admit a point compactification at infinity

for which the resulting conformal metric is analytic, it is shown in [25] that a certain sub-
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set of the logarithmic singularities can be avoided if the conformal metric h satisfies the

conformally invariant condition
D{zpubjk} = 07 b= 071727"‘7

where b;;, denotes the Cotton-Bach tensor of the metric h and {...} denotes the operation
of computing the symmetric trace-free part, in particular, if h is conformally flat then
bjr = 0. Although this condition is necessary to avoid logarithmic singularities at the
critical sets it is not sufficient. It has been shown that static solutions to the Einstein field
equations are logarithmic-free at the critical points of Friedrich’s representation of spatial
infinity. Moreover, the analysis in [79, 80] strongly suggests the conjecture that, among the
class of time-symmetric initial data sets, only those which are static in a neighbourhood
of infinity will give rise to developments which are free of logarithmic singularities at the
critical sets. The gluing techniques developed in e.g. [14, 12] allow the construction of

large classes of initial data sets with this property.

In general, linearised fields propagating on the Minkowski spacetime also develop loga-
rithmic singularities at the critical sets —see e.g. [77, 78]. In particular, the Maxwell field
system provides useful insights to study the linearised gravitational field and as a model
for the Bianchi equations satisfied by the components of the Weyl tensor. Looking beyond
linear model problems for the Einstein field equations, it is natural to look for systems
which can be used to understand the effects of the non-linear interactions on the regularity

of solutions at the conformal boundary.

In this chapter, we consider the possibility of using the Maxwell-scalar field system
on the Minkowski spacetime for this purpose. More precisely, we study the asymptotic
properties of the Maxwell-scalar field system near spatial infinity. The content of this

chapter is based on:

M. Minucci, R. Panosso Macedo, & J. A. Valiente Kroon, The Maxwell-scalar field
system near spatial infinity, J. Math. Phys. 63, 082501 (2022).
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6.1.1 The Maxwell-scalar field system

The Maxwell-scalar field system is described by the Maxwell equations with sources coupled
with a conformally invariant wave equation. The coupling is realised by means of the
covariant derivative. The main considerations in this chapter allow us to formulate a
regular finite initial value problem for this system near spatial infinity. More precisely, we
develop a theory for the solutions to these equations in a neighbourhood of spatial infinity
—in particular, the solution jets at the cylinder at spatial infinity. This can be done by
studying their asymptotic expansions near spatial infinity with a technique that goes under
the name of F-expansions. This construction exploits the fact that the cylinder at spatial
infinity, Z, is a total characteristic of the evolution equations associated with the Maxwell-
scalar field system. Accordingly, the evolution equations reduce to an interior system
(transport equations) upon evaluation on the cylinder Z. These transport equations allows
us to relate the properties of the initial data, as defined on a fiduciary initial hypersurface
S,, with radiative properties of the solution which are defined at null infinity Z* and fully

determine the solution jets on the cylinder at spatial infinity.

6.1.2 The main result

The main outcome of this analysis is contained in the following theorem:

Main Result 3. For generic analytic data for the Maxwell-scalar field system with finite
enerqy, the solution jets on the cylinder at spatial infinity Z develop logarithmic singularities

at the critical sets T*.

In other words, generic solutions to the Maxwell-scalar field system are singular at the
critical sets Z*. Under the further assumption that these singularities propagate along
null infinity, it is possible to analyse the consequences of these singularities on the peeling

properties of the Maxwell and scalar fields. One has the following corollary:

Corollary 3. If the solution jets give rise to a solution to the Mazwell-scalar field system

near L, then the Mazwell-scalar field system generically has logarithmic singularities which
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spread along the conformal boundary destroying the smoothness of the Faraday tensor and
scalar field tensor along the conformal boundary. In particular, there is no classical peeling

behaviour at null infinity.

Although the content of the Main Result is analogous to what it is obtained in the
case of the Einstein field equations, the detailed analysis leading to the result shows that,
in fact, the Maxwell-scalar system is not a good model problem as the elements of the
solution jets are more singular at the critical sets than what a direct extrapolation from the
vacuum conformal Einstein field equations would suggest. This new singular behaviour can
be traced back to the cubic coupling between the Maxwell and scalar fields. The latter is

the most important insight obtained from our analysis.

6.2 The cylinder at spatial infinity and the F-gauge

The purpose of this section is to provide a succinct discussion of Friedrich’s representation
of the neighbourhood of spatial infinity for the Minkowski spacetime. This conformal rep-
resentation, known as the cylinder at spatial infinity, is well suited to analyse the behaviour
of fields near spatial infinity. In this representation, spatial infinity i which corresponds
to a point in the standard representation of the Minkowski spacetime is blown up to a

2-sphere. Further details on this construction can be found in [28, 74, 40].

6.2.1 Conformal extensions of the Minkowski spacetime

We start with the Minkowski metric 77 in spatial spherical coordinates (%, 3,6, ¢) as given
by Equation (1.4) with 7,, = diag(1,—1,—1,—1), { € (—00,0), p € [0,00) and where o
denotes the standard metric on S%. A strategy to construct a conformal representation of
the Minkowski spacetime close to % is to make use of inversion coordinates (z®) = (t,z")
defined by —see [70]—

ot = -3t/ X3 X? =7, 745",
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St
N

Figure 6.1: Left: The region D, the complement of the light cone through the origin, in
the physical Minkowski spacetime. Intuitively, this region contains spatial infinity. Right:

the corresponding region D in the Penrose diagram of the Minkowski spacetime.

which is valid in the domain

D= {p € R*| i (p)#(p) < 0},
representing the complement of the light cone through the origin.
The inverse transformation is given by

it = -2t/ X3 X% =n,atz".

Observe, in particular, that X2 =1/ X2, Using these coordinates one identifies a conformal

representation of the Minkowski spacetime with unphysical metric given by

n = X2,

[
[1]
Il

2 ~
n,
where

n = Nudz" @ da”.
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6.2. The cylinder at spatial infinity and the F-gauge

Thus, one has a conformal representation of Minkowski spacetime which is also flat.

The introduction of an unphysical radial coordinate via the relation p? = §,z0%0",

allows us to write the metric ) as
n=dt®dt —dp®dp — p’o, ==t - p%

with ¢ € (—00,00) and p € (0,00). In this conformal representation, spatial infinity i°

corresponds to the origin of the domain
D = {p € R" | 2" (p)z”(p) < 0}.

This region contains the asymptotic region of the Minkowski spacetime around spatial
infinity. The relation between the two representations of spatial infinity is illustrated in
Figure 6.1. Observe that (¢, ) are related to (¢, p) via

{:_L ﬁ:_i
t2_p2’ t2_p2‘

Finally, introducing a time coordinate 7 through the relation ¢ = p7 one finds that the

metric 17 can be written as

N=pdre@dr—(1-7)dp®dp+ prdp @ dr + prdr @ dp — p°o.

6.2.2 The cylinder at spatial infinity

The conformal representation containing the cylinder at spatial infinity is obtained by

considering the rescaled metric

1
n=-—-n. (6.1)
2
Introducing the coordinate o = — In p the metric  can be reexpressed as

n=dr®dr — (1 -71)do®do - 7(dT®do+do®dr) — 0.

Observe that spatial infinity i°, which is at infinity with respect to the metric 17, corresponds
to a set which has the topology of R x S? —see [28, 1]. Following the previous discussion,

one considers the conformal extension (M, n) where
"7:@2"7’ @Ep(l_Tz)v
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and
M={peR'| —1<7<1, p(p)>0}.

In this representation future and past null infinity are described by the sets

sr={peMirp) =1}, s ={peM|rp) =-1},
while the physical Minkowski spacetime can be identified with the set

M={peM| -1<7(p) <1, p(p)>0}.
In addition, the following sets play a role in our discussion:
T={pe M| I7(p)| <1, p(p) = 0},
corresponding to the cylinder at spatial infinity, and
Tr={peM|r(p) =1, pp) =0}, I ={peM|r(p)=-1, p(p) =0},
which describe the critical sets where null infinity touches spatial infinity. Additionally, let
Sc={peR'|ilp) =0}, S.={peM|r(p) =0}

describing the time-symmetric hypersurface of the Minkowski spacetime. The region where
S, intersect Z is denoted with Z°. A schematic representation of these sets is shown in

Figure 6.2.

6.3 The Maxwell-scalar field system

In this section, we provide a brief account of the Maxwell-scalar field system with particular

attention to its conformal properties and formulation in terms of spinors.

6.3.1 Equations in the physical spacetime

In the following let £, denote an antisymmetric tensor (the Faraday tensor) over a space-
time (M, g) and let V be the Levi-Civita connection of the metric §. The Maxwell equa-

tions with source are given by
@aﬁ’ab = jb, (62&)
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I+ A
70 u
z- I~

Figure 6.2: Left: schematic representation of the cylinder at spatial infinity of the
Minkowski spacetime in the so-called F-gauge where null infinity corresponds to the lo-
cus of points with 7 = £1. The cylinder Z is a total characteristic of Maxwell-scalar field
equations. Right: longitudinal section in which the angular dependence has been sup-
pressed. Here U denotes an open set in a neighbourhood of ¢ and M(U) its development;
T+ are the critical sets where the cylinder meets spatial infinity and Z° is the intersection
of the cylinder with the initial hypersurface. These figures are coordinated rather than
conformal diagrams —in particular, conformal geodesics correspond to vertical lines. This

picture is inspired by [81].

ViaFrq = 0. (6.2b)
The homogeneous equation (6.2b) is automatically satisfied if one sets
Fab - 6afib - 6lr’zlaa

where A, denotes the 4-vector gauge potential. Coupled to the above, we consider the

conformally invariant wave equation

D.,9% — ~Rp = 0, (6.3)

=

where ¢ denotes a complex scalar field. The coupling between the Maxwell field and the

scalar field is encoded in the covariant derivative
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where q is a coupling constant (the charge). The current J, in the inhomogeneous equation

(6.2a) is given by

Ty = 1039, 65.9))
Gauge invariance

The Maxwell-scalar field system (6.2a)-(6.2b) and (6.3) is invariant under the gauge trans-
formation

¢~) — (;3' = eixgzz, A, — fl’a = A, + VaX, (6.4)

in the sense that F,, and .J, are not affected by the transformation. Moreover, the Lorenz

gauge condition

VoA, =0, (6.5)
is preserved by the transformation (6.4) for any y such that
Oy = 0.

Even with the Lorenz gauge condition imposed, there is some residual gauge freedom left.
This residual gauge freedom can be fixed at the level of the initial conditions —in particular,
there is a natural choice which allows to control the initial value of the components of A,

and its derivatives by the energy of the system —see Section 6.5.

Conformal transformation properties
Consider a conformal rescaling of the form
Gab = E'2§ab-

Associated with the latter we define the unphysical Faraday tensor, unphysical vector po-

tential and the unphysical scalar field via

F = Fab, A, = fla, o= E_l(b,
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so that a computation using the standard conformal transformation formulae (see e.g. [81])

shows that
Ve = Jb, (6.6a)
VieFyg =0, (6.6b)
Fu =V, A, — VA, (6.6¢)
9,0 — é}w ~0, (6.6d)
where
D, =V, —ig4,
and
I, =103, - 69,3, 67)
In particular, it follows that
Jo =22,
Moreover, one can verify that
Ve, =0.

Introducing the Hodge dual F};, of the Faraday tensor in the usual way via
1
Fp = a CdF ca
ab 26 b d

the Maxwell equation (6.6b) can be rewritten as

6.3.2 Spinorial expressions

In this subsection, we provide the spinorial version of the equations in the unphysical

spacetime.

Let Fy4 g denote the spinorial counterpart of the Faraday tensor F;. It satisfies the

well-known decomposition

Faaxpp = ¢apean + Oapean,
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where ¢pap = ¢ap) is the so-called Mazwell spinor —see e.g. [70, 81]. A calculation with

this expression shows that equations (6.6a) and (6.8) are equivalent to
VP wdap = Jaw, (6.9)

where
Jan = iq (cbVAA'Qf) - ¢VAA’¢> +29%(0)* Aaw,

is the spinorial counterpart of the current .J, and A44/ is the spinorial counterpart of the
vector potential A,. Observe that both A44 and J44 are Hermitian spinors. In view of

its symmetries, equation (6.6¢) can be rewritten as

bap = Vaudp™. (6.10)

The wave equation for the vector potential and the generalised Lorenz gauge

It is well known that in the Lorenz gauge, the vector potential satisfies a wave equation.

In light of the Lorenz gauge condition in spinorial form
VAY Agu =0, (6.11)
it is possible to remove the symmetrisation in the equation (6.10) so as to obtain
VawAs® = dap. (6.12)

Applying V4 5/, using the spinorial Maxwell equation (6.9) and making use of the commu-

tator of the covariant derivative V 44/ one obtains
OApp + 20 anpp A = Jpp.

Now, since
Jep = 24°|¢* App +190V pd — 190V 5@
the wave equation for the vector potential reads as
OApp + 20 aupp A = 29%|¢*App +190V s ¢ — 140V pp 6.
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The wave equation for the Maxwell spinor

The unphysical charged wave equation is given by

gabgagb(b - féqs = 0.

This equation can be recast in spinor formalism by replacing
D, =V, —igA,
and then by separating the soldering forms so that we have
¢ = g?pAsn A + 20qA 'Y 400 + iqdV au A
Hence, by using the Lorenz gauge condition (6.11) we have

|:|¢ = q2¢AAA/AAA/ + 2iqAAAIVAA/¢.

Summary

In summary, the study of the Maxwell-scalar field system can be reduced, making use of

the generalised Lorenz gauge condition (6.11), to the system of wave equations
O¢ = q°pAsn A + 2ig AV 4000, (6.13a)
OAaa + 20 apap APE = 29|02 Asar + 190V an ¢ — iqdV 4n:0. (6.13b)

These equations are supplemented by initial conditions for the values of ¢ and A, 4 and

of their normal derivatives. This will be discussed in more detail in Section 6.5.

6.3.3 Decomposition of the equations in the space-spinor formal-
ism

Before providing a detailed decomposition of the equations (6.13a)-(6.13b), it is convenient
to provide a rougher decomposition which brings to the foreground the structural prop-
erties of the evolution system and its relation to the Maxwell constraint equations. This
decomposition is done using the space-spinor formalism as described in e.g. [81] —see also

[5, 69).
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Basic relations

Let 744" denote the spinorial counterpart of a timelike vector field 7¢ tangent to a congru-

AA

ence of curves. The Hermitian spinor 7% is chosen to have the normalisation

/

TAA/TAA = 2.

Consistent with the latter, we consider a spin dyad {o®, 1} chosen so that

’ —A’ —A’
744 = oo 4 AT

It follows then that

/
TAA/TBA = 5AB.

The above relations induce a Hermitian conjugation operation via the relation
ph =74 i,

with the obvious extension to higher valence spinors. In particular, one has that 14 = 02.
The space-spinor formalism allows working only with spinors with unprimed indices. In
this spirit, one has the following decompositions for the spinorial counterpart of the current

vector and the vector potential:

JAA’ = %jTAA’ —jABTBA/7 (614&)

AAA’ = %O&TAA/ —OéABTBA/, (614b)
with jap and a4 p symmetric spinors.

o . . . . . !/ .
Decomposition of the covariant derivative. The spinor 744" also induces a decom-

position of the spinorial covariant derivatives V 44/. For this, one introduces
__AA _ A
D=7""Vau, Dap = 74" VB,

the Fermi and Sen connections associated to the congruence defined by 7%—see Chapter

d.

180



6.3. The Maxwell-scalar field system

The Maxwell equations in space-spinor form. Some manipulations show that the

spinorial Maxwell equation (6.9) can be decomposed as

DAB(bAB = %ja

Doap — 2D% adp)0 = —jap-

The former equation is to be interpreted as a constraint while the latter as evolution
equations —in fact, it can be shown to be (up to some numerical factors) a symmetric
hyperbolic system for the independent components of ¢4p, see [81]. Similarly, from the

equation (6.12) one obtains the system

Da + 2D %10 + V2ax2% ac — 2v204 4B o — xACauc = 2A(2),
Dacp — Depa — \/QQX(CAD)A — 2D apya — x(c*apya
+2v2a*8x(c1apyB + Saxep = 260D,
where xap and yapcp are, respectively, the acceleration and Weingarten spinors defined

by the relation

Vaatoer = —3xepTanter + V2xapeptP amler.
and where
dap =14 78" dcrp
is the Hermitian conjugate of ¢ ap.
The scalar field. It is also illustrative to express equation (6.13a) in terms of the Fermi

and the Sen connections D and D 5. Making use of the decomposition (5.29), a calculation

gives that
D¢+ 2D DB = —V2xAP 45D + X PDapd + 2v2x 4% o DAP o,

Remark 43. The equations presented in this section are completely general and make no
assumption on the background spacetime. When evaluated on the conformal representation

of the Minkowski spacetime discussed in Section 6.2.2 they acquire a much simpler form.
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Detailed decomposition in conformal Minkowski

In this section, we consider the decomposition of the various fields in the case of the

conformal representation of Minkowski spacetime discussed in Section 6.2.2.
Frame choice. Following [30] we consider a Newman-Penrose (NP) frame satisfying

g(eAA', eBB') = €AB€A'B/,

(1—T +pap>>
( .10,

€01’ =
ﬁ
€10 = _7X—7

of the form

€00’ =

€111 =

Hg\H
[\D (\&]

where X | and X _ are complex vectors spanning the tangent space of S? with dual covectors

a, and a_ such that metric of the 2-sphere is given by
oc=2a"®@a +a ®@ah).
The vector 7* giving rise to the space-spinor decomposition of the Maxwell-scalar field
introduced in Section 6.3.3 is chosen as
T" = ego” + 11" = \/5(37)&‘
A peculiarity of the conformal representation introduced in the equation (6.1) is that

the Ricci scalar vanishes —that is,

R[g] = 0.

The reduced wave equations. As the expression of the wave operator in the F-gauge
acting on a spin-weighted scalar will be used repeatedly, it is convenient to define the

F-reduced wave operator B acting on a scalar ( as
. . R 1=
B¢ =(1—7)CH+2mp — p*¢" —27¢ — 555( — 555(, (6.15)
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where for simplicity of the presentation we have used the notation

87'7 /Ea

P

and @ and @ denote the NP eth and eth bar operators —see e.g. [61, 70]. In particular,
the operator %(55 4 99) corresponds to the Laplacian on S?.

After some lengthy computations, best carried out using the suite xAct for tensorial and
spinorial manipulations in the Wolfram programming language [54], the wave equations

(6.13a)-(6.13b) can be seen to be equivalent to the scalar system:

Wy = q%(;oﬁ — 20} + 2aoa2> +1v2q(201p¢' + ad — 27016 + aed6 — a200),
Mo — 4y = 20%0]6f +iv20(d6 — 60),

Moo + o = 2%l + jgwaz ~ §d9),

IMr—d=2¥aﬂd2+ig0MV—¢W)+

Mo + s — 2026 + j’iwﬂaﬁ — 405).

7

The scalars «, ag, a; and as have spin weight 0, 1, 0, —1, respectively. In particular,
a denotes the time component of the Hermitian spinor A4 while ag, oy, as are the

independent components of its spatial part —cfr. the decomposition in equation (6.14b).

It is observed that the righthand sides of the above wave equations can be decoupled
if one defines

ar =a o, J+ =J L1,

all of them of spin-weight 0. In terms of these new variables, the system of wave equations

can be rewritten as
My = s,
Mo, — 26y = j4,
Mo +2a_=j_,
Mo + ap = Jo,
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Mo, + az = Ja,
with the obvious definitions. For future use, it is observed that the source terms

s = S(ja ¢7 Qgp, O, Cki),

jO :jO(qus)aOaaQaa:l:)a j? :j2(£7¢7a07a27a:t)7 j:t :j:l:(g_:vqs?ama?aa:l:)a

are at most cubic polynomial expressions in the unknowns ¢, aq, as, a..

6.4 General structural properties and expansions near

spatial infinity

In this section, we discuss general structural properties of the evolution system, equations
(6.24a)-(6.24e), associated to the Maxwell-scalar field system. In particular, we study
a type of asymptotic expansions near spatial infinity which was first introduced, for the
conformal Einstein field equations, by H. Friedrich in [28]. In the following, we refer to these
expansions as F-expansions. This construction exploits the fact that the cylinder at spatial
infinity, Z, introduced in Section 6.2.2 is a total characteristic of the evolution equations
associated to the Maxwell-scalar system. Accordingly, the evolution equations reduce to an
interior system (transport equations) upon evaluation on the cylinder Z. This can clearly
be seen from the form of the reduced wave operator B as given by equation (6.15) —all the
0, derivatives disappear from the equation if one sets p = 0. These transport equations
allow to relate properties of the initial data, as defined on a fiduciary initial hypersurface

S,, with radiative properties of the solution which are defined at null infinity #*.

For the convenience of the subsequent discussion we define

oy J+ -2 000 0000

o ) J- 0 200 0000
a= , ] = , A= , B =

% Jo 0 000 0 010

o3 J2 0 000 0 001
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In terms of the above vectors and matrices the system (6.24a)-(6.24¢) can be rewritten as

My = s, (6.16a)
Bo + Aa+Ba =3. (6.16b)
The source terms can, in turn, be written as
s = ¢a'Qa + a'K(z)0¢,
j = 2q|¢|*a + ¢LAG + oL,
where T denotes the Hermitian transpose of a vector (i.e. transposition plus complex conju-

gation), Q is a constant matrix, while K(x) and L(z) are coordinate-dependent matrices.

Observe that if ¢ = 0 then K(z) = L(z) = 0.

6.4.1 Transport equations on the cylinder at spatial infinity

The key observation in our analysis is that the F-reduced wave operator B, as defined by
(6.15), reduces to an operator intrinsic to Z. Defining the F-reduced wave operator on Z,

A = B|7, acting on a scalar ( as

AC=(1-7)(—21¢ - ;(58 +99)¢.

one readily observes that this operator is intrinsic to Z. An alternative way of express-
ing this observation is that the cylinder at spatial infinity is a total characteristic of the

evolution system (6.16a)-(6.16b).

Remark 44. The intrinsic operator A is clearly hyperbolic for |r| < 1. However, at
7 = 41 it degenerates. To investigate the effect of this degeneracy at the critical sets ZF

it is convenient to study the transport equations implied by evolution equations.

The leading order transport equations

Evaluating equations (6.16a)-(6.16b) on Z (i.e. at p = 0) one obtains the interior system

of wave equations:
490 = p0q0IQa® + o OTKGH®, (6.17a)
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40 + AG© + Ba® = 29160 2a® + ¢OLAGO + FOLIF®,  (6.17h)

with
o = ¢z, o = alz.

Initial data for the system (6.17a)-(6.17b) is provided by the restriction of the initial data
for the fields ¢, ¢, a and & on S, to Z.

Remark 45. The interior system (6.17a)-(6.17b) is, in principle, coupled and non-linear.
However, certain classes of initial data allow for a decoupling of the system. This feature

is discussed in Section 6.6.

Higher order transport equations

Making use of the structural properties of the evolution system (6.16a)-(6.16b) it is possible
to consider higher-order generalisations of the transport equations introduced the previous

subsection. To this end, one considers the commutator
_ - /
OyE( — WOY( = 27pdh( — 2ppdh ¢’ — p(p — 1)05C,

with 9% denoting p applications of the derivative d,. Now, applying the operator 9, to
equations (6.16a)-(6.16b) a total number of p times and restricting to Z one finds that

AOP) 4+ 27pdpP) — p(p— 1)¢(p) = s

Aa?) + Aa® + 27’po'z(p) + Ba® — p(p _ 1)a(;n) _ R(p)7

where s and R® denote source terms which depend on the solutions of the lower-order
transport equations —i.e. (¢®), o)) for p’ such that 0 < p' < p — 1. This observation
allows implementing a recursive scheme to compute the solutions to the transport equations

to any arbitrary order —modulo computational complezities.
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6.5 Initial conditions

In this section, we discuss the construction of initial data for the Maxwell-scalar field

system in the Lorenz gauge. Accordingly, throughout it is assumed that

VA, = 0.

6.5.1 General remarks

The wave equations (6.13a)-(6.13b) suggest that a natural prescription of initial data for

the Maxwell-scalar field system is
¢*7 D(b*h AAA’*7 DAAA’*-

Notice that the components of A and DAy, cannot be prescribed freely. Moreover,
there is some gauge freedom that can be used to set certain components to zero —see

below.

Remark 46. The above is not necessarily the most physical way of prescribing initial

conditions. A more physical choice is to prescribe

Oss Do,, TIABx*5 HABx,

where nap and pap denote, respectively, the spinorial counterparts of the electric and
magnetic parts of the Faraday tensor with respect to the normal to the initial hypersurface

S,. In order to fix the asymptotic behaviour one requires finiteness of the energy

&= [ (100 +Imf? + ) an. (6.15)

2 Jrs

In addition, the electric and magnetic parts are subject to the Gauss constraints implied
by the equation
A .
D B¢AB = %J .
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6.5.2 Data on time symmetric hypersurfaces

In the following, we assume, for simplicity, that the initial hypersurface S, is the time-
symmetric hypersurface with ¢ = constant in the Minkowski spacetime. Accordingly the
extrinsic curvature vanishes in this hypersurface —thus, we have that in the initial hyper-
surface Dyp = D 4p —that is, the Sen connection coincides with the Levi-Civita connection
of the intrinsic metric to S,. Notice, however, that it is not assumed that the acceleration
vanishes on the initial hypersurface —this is for consistency with the conformal Gaussian

gauge used to write the evolution equations.

Following the discussion in [68] we make use of the residual gauge freedom in the Lorenz
gauge to set the initial value of the time components of A, and DA, to zero initially. In

terms of the space-spinor split of A,, this is equivalent to requiring
a, =0, Da, = 0.
It follows then from the Lorenz gauge condition that
DAPa,p = Ix*Payp. (6.19)

This equation has to be treated as a constraint on the spatial part a4g. Observe how this

last equation involves the acceleration.

The definition of the Maxwell spinor in terms of A4/ yields the condition

Q

¢ap = —2dap — Du®ap)q, on &,

where for brevity we have written cap = Daspg. Substituting this relation into the Gauss

constraint
AB .
D™ pap = %J
one concludes that

DB, p = —j. (6.20)
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Solving the constraints for a,p and d,p

In order to solve the constraint equations (6.19) and (6.20) one can make use of the Ansatz

oap = Dapo + D(AQUB)Q, (6.21&)

&ap = Dapm + D(AQWB)Q, (6.21b)

with o, 7 scalars and 045, map symmetric, real valence 2 spinors —the latter is essentially
a spinorial version of the Helmholtz decomposition. The substitution of the Ansatz (6.21a)-
(6.21b) in the constraints (6.19) and (6.20) leads to elliptic equations for the scalars o, 7.

The spinors o4 and m4p are free data.

Time symmetric initial conditions

Time-symmetric initial data conditions for the Maxwell-scalar system, i.e. initial conditions
giving rise to solutions which are time reflection symmetric with respect to the hypersurface
S,, are set by requiring

gb:(), dABZO, on S*.

It follows from the above that j = 0. Thus, the only constraint equation left to solve is
equation (6.19) which can then be solved using the Ansatz (6.21a). A further consequence

of auyp = 0 is that
bap = —Da%apq, buap = —Ds%apq.

Now, defining the electric and magnetic parts of ¢, with respect to the Hermitian spinor
744" by

nap = 3i(dap + Gan), piap = 5(dap — Gan),
one readily finds that

HAB = 0, on S*.

Remark 47. This is the spinorial version of the well-known result stating that the magnetic

part of time-symmetric data for the Maxwell field is vanishing.
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Asymptotic conditions

The asymptotic behaviour of the initial data can be fixed in a natural way from the

requirement of the finiteness of the energy on the (physical) initial hypersurface.

Scalar field. The finiteness of the energy as defined by equation (6.18) requires

©a¢* = 0(f72)7 (ﬁAB>* = 0(f72>7 (MAB)* = 0(7;72)'

These conditions are satisfied if

¢ =0(F""),  (Gap).=o(F").

In particular, one can consider an initial scalar field with leading behaviour given by

Pe =T +en with ¢ a constant.

In order to obtain the conformal version of the above condition recall that © = p(1 — 72)

and, moreover, 7 = 1/p and @ = O, = 71 = p. Thus,
¢*:w—1g§*:p—1g5*:¢+... :

For simplicity, one can assume that ¢, is analytic in a neighbourhood of spatial infinity.
Results analogous to the ones derived here can, at the expense of complicated and lengthy

recursion arguments, be obtained also for weaker differentiability assumptions.

Electric field. To analyse the asymptotic behaviour of the electric part of the Maxwell

field from the conformal point of view, it is observed that

where 7 and 7% are, respectively, the physical and unphysical normals to the initial hy-

persurface S,. Accordingly, for a Coulomb-type field E; = O(1/72) it follows that
E;=w 'E; = 0(p).
In terms of the components with respect to the frame one has
E;=0(1),  nap=0(1).
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Gauge potential. For the gauge potential one has that A, = A,. Moreover, for a
Coulomb-type field one has A, = O(1/7) so that in terms of the spatial components with

respect to the frame:

An Ansatz for the initial data

In order to give a more concrete Ansatz for the construction of the initial data for the
Maxwell-scalar field system, in the following it will be assumed that the freely specifiable
data ¢, and oo are analytic in a neighbourhood of spatial infinity. It follows then from the
ellipticity of the equation for the o that this scalar will also be analytic in a neighbourhood

of i°. Consistent with the above let

ZZ Z n,@n,l,m(%m>pn7 (622&)
=0 m=

Z Z Z ' zn,l,m 1— s}/}m)pn, (622b)

n=|1—i| I=|1—i| m=—1 "

where o; for i = 0, 1, 2 denote the three (complex) independent components of o4 and
sYim denote the spin-weighted spherical harmonics —see e.g. [61, 70]. Moreover, ©n.im
and 0; ., are constants. Finally, in accordance to the above, we look for a scalar of the
form

|

0= i i Z aan;l,m(%m)pn7 (6'23)

with 0,1, constants.

6.6 Solution jets

In this section, we start our systematic study of the solutions to the Maxwell-scalar field
in a neighbourhood of spatial infinity. In order to gain some insight into the nature of the
solution we first analyse the decoupled case in which the charge constant ¢ is set to zero. In

this case the Maxwell field and the scalar field decouple from each other and the resulting

191



Chapter 6. The Maxwell-scalar field system near spatial infinity

evolution equations are linear. We then contrast the behaviour of this decoupled case with

that of the case where q # 0.

We recall that the system to be solved can be written as

My = s, (6.24a)
Mo, — 2, =y, (6.24b)
Mo 2 =), (6.24c)
Mo, + oy = Jo, (6.24d)
Mo, + as = Jo, (6.24e)

where the source terms s, ji, jo and j, are polynomial expressions (at most of third order)

in the unknowns.

Remark 48. A key property of the unknowns in the system (6.24a)-(6.24e) is that they

all possess a well defined spin-weight —see e.g. [61, 70, 81]. More precisely, one has that:

O, ay have spin-weight 0,
Qo has spin-weight 1,

Qo has spin-weight —1.
The above spin-weights determine the type of expansions of the coefficients in terms of
spin-weighted spherical harmonics.

In order to ease the discussion we make the following simplifying assumptions:

Assumption 1. The discussion will be restricted, in first instance, to the time symmetric

case. Accordingly, it is assumed that
6. =0, @ =0, dap =0.
In addition, assume initial conditions for which
iz =0, .|z = 0, o]z =0

and, in general,

¢*|I 7& 0.
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Observe that the class of initial data to be considered has a vector potential which, on
the initial hypersurface, vanishes to leading order at spatial infinity. Crucially, the scalar
field does not vanish at the leading order. The main conclusions of our analysis can be
extended, at the expense of lengthier computations, to a more general non-time symmetric

setting.

In the following, for conciseness, we write the conditions in Assumption 1 as:

0 _ (0 ©0) _

ay, = o, = gy, =0, (6.25a)
o) = af) = af) =0, (6.25b)
O =0, 49 =0 (6.25¢)

with ¢, € C a constant.

As we have seen before, see Section 6.4, the cylinder at spatial infinity is a total char-
acteristic of our evolution equations. We can use this property to construct, in a recursive
manner, the jets of order p at Z, J?[p, a, p > 0 of the solutions to the evolution equations.

Recall that the jet is defined as

Jp[¢7a] = {ag¢|p:07 aijcdpz()}-

Knowledge of the jet JP[¢, a] provides very precise information about the regularity of the
solutions to the evolution equations in a neighbourhood of spatial infinity and its relation

to the structure and properties of the initial data.

6.6.1 The decoupled case

Setting the charge parameter q = 0, equations (6.24a)-(6.24e) readily reduce to the linear

system of equations

Hy=0
-CK+ = O,
Ho_ =0,
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Mo, + 269 = 0,
.042 - 20&2 = 0.
Defining
P = gry| ) — gp B () — gp B (r) — gp B
P = p¢|p707 ay’ = pa:l:|p707 Qp " = pOZ0|p70, Qg " = ,3042|pfo,

p =0,

a calculation that shows that the solutions corresponding to the p-order elements of J?[¢, ]

satisfy the intrinsic equations

Accordingly, in the following, we study the following three model equations:

A0 +2p7o® = 0,

Aagr) + 2p7a(p) =0,
aa? 4 opra® =,
A +2(pr +1)al =0,
A +2(pr — 1)al =o.

AC+2p7( =0,
AC+2(pr+1)( =0,

AC+2(pr — 1) =0.

Remark 49. In the subsequent analysis it is assumed that:

(6.26a)
(6.26b)
(6.26¢)

(a) the scalar ¢ in equation (6.26a) has spin-weight 0 and admits an expansion of form

1
- ;Cplm mpp7

(b) in equation (6.26b) the scalar ¢ has spin-weight 1 and admits an expansion of the

form

c=§i2

l

COplm( Ylm)ﬂp,

|
p=11=1 m=—1 p:
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(c) in equation (6.26¢) the scalar ¢ has spin-weight —1 and admits an expansion of the

form

oo P l
C:ZZ Z C2plm 1Y2m)pp
p=11=1 m=—

The above expansions are consistent with the discussion regarding the freely specifiable
initial data in Section 6.5.2 and equations (6.22a)-(6.22b) and (6.23), in particular. Observe

that at order p? the highest allowed spherical harmonic corresponds to ¢ = p.

Substituting the Ansétze in Remark 49 into the model equations (6.26a)-(6.26¢) one

obtains, respectively, the ordinary differential equations

(1— T2>Cp;€,m +27(p — 1)ép;€,m + @+ O —p+ 1) pem =0, (6.27a)
(1= 7)ot +2((0 = D7+ 1) Copstam + (0 + O = p + 1)Co e = 0, (6.27h)

(1= 7)Coptm + 2((19 -7 — 1)62,p;e,m +(p+0)—p+1)Cpuem=0. (6.27c)

Equations (6.27a)-(6.27c) are examples of Jacobi ordinary differential equations. A discus-
sion of the theory of these equations can be found in the monograph [71]. The subsequent
analysis is strongly influenced by this reference. More details can be found in Appendix

B.2.

Remark 50. It can be readily verified that if (., (7) is a solution to equation (6.27b)

then (g p.p.m(—7) solves (6.27¢). Thus, it is only necessary to study two model equations.

In the decoupled case, the key insight is that the behaviour of the solutions to equations
(6.27a)-(6.27¢c) depends on the value of the parameter . For 0 < ¢ <p—1,p > 1 the

nature of the solutions is summarised in the following:

Lemma 10. The solutions to the system (6.27a), (6.27b) and (6.27¢c) can be written as

1_7-17 _ 1-'-7'p _
Grtan(1) = At () PP+ By (5 ) PEIP(0)

1 — 7\ @+ B 147\
Goptan(T) = Cen (5 ) P @) 4 Dy () PO,

1 — 7\ @+ _ L+7r\®D
Copitm(T) = Epytm ( ) PP () 4 B, ( ) PP (o),

2 2
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with P\ (1) Jacobi polynomials of order n and where
Ap;ezm7 Bp;£>m7 Cp;£7m7 -Dp;g’m; Ep;€7m7 Fp7£>m E (C
denote some constants which can be expressed in terms of the initial conditions.

However, for equation (6.27a) in the case £ = p we have the following proposition:

Lemma 11. For [ = p the solution to the equation (6.27a) can be written as

L—7\? /14 T7\? T ds
<p;p,m(7'):( 9 ) < 9 > (CLP;E,M‘I'C?@;&W/O (1_Sz)p+1)>

where Ci p.pm, Copem are integration constants.

Remark 51. Observe that the general solution given in Lemma 11 has logarithmic sin-
gularities unless the constant Cj ., vanishes. Letting Copm = Cppm(0) and Ceppm =
Cpipm(0) one readily finds that

2
Cl,p;&m =2 pc*p;p,m'

Similarly, one has that

o
Ova;evm - 2 pC*P§P7m'

Thus, there is no logarithmic divergence if and only if C.*p;pm = 0 —that is, when the initial

data for  is time symmetric. In particular
Co00 = C1 + C’z(log(l — 1) —log(1+ 7‘))

In this case, one has that the logarithmic divergences are avoided if Co;o,o (0) =0.

Similarly, one obtains an analogous result for equations (6.27b) and (6.27c):

Lemma 12. For { = p the solution to equations (6.27b) and (6.27¢c) can be written as

1 —7\®t) /1 4 7\ @D T ds
oo (57) (557 (o Coim [ 5735

1—7m\®D /1 + T (p+1) T ds
. _ Cs i + Corn / ,
C2.pipm (7) ( 2 > < 2 ) 5pitm + C6pitm 0 (1+s)P2(1—s)P

where Cs ppmy Capom, Cspims Copem are integration constants.
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It follows from the above that the solutions for (p y.pm (7) and (o p.p.m (7) have logarithmic

singularities unless the constants Cjy .., and Cg gy vanish. Now, if we let (pppm =

Copipm (0) and éO,*p;p,m = ('OJJ;p,m(O), it follows that

1 (p+1) 1 (p—1) 1 2p
CO,*p;p,m = 5 5 Ay = 5 Q.

On the other hand, we have that

. 1 -7\ (1+7\?V [T ds
Gaan() = =30 0(157) (7)o [ i)

1 1—17 (P+1) 1+7\ T ds
+2<p_1>< 2 ) ( 2 )(a*+a*/o (1—s)p+2(1+s)1’>

N 1—171 (p+1) 1 +T (p—1) a*
2 2 (1—T7)p2(1+ 1)

Thus, it follows that

CO*,p;p,m - 2(2p—1) ay + ﬁa*-

Hence in this case the condition Cohp;pym = 0 does not eliminate the logarithms in the
2
solution. However, recalling that (o p.pm = (%) pa*, it follows from the previous equation

that

P Y: 2p+1
s = 2% Coxpipym + 20 )CO*,p;p,m-

Consequently, in order to have solutions without logarithmic divergences one needs a, = 0

or, equivalently,
Co*vp;pvm = _2<0*)p;p7m'

Remark 52. The polynomial solutions to equation (6.27b)in the case ¢ = p are, thus, of

the form
Co.pspim = Cospipym (1 — 7)1 4 7)),
Now, since a(7) = a(—7) is a solution for the equation for (3., ,,» we have that to avoid

logarithms in the solutions to equation (6.27¢c) one needs the condition

éZ*,p;p,m = 2C2*,p;p,m~
In this case, the polynomial solution is given by
Cppm(T) = Cuppm(1 + T)(p+1)(1 - T)(p_l)'
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Making use of the above results, the properties of the solutions to the transport equa-
tions implied by the decoupled (i.e. linear) Maxwell-scalar system at the cylinder at spatial

infinity Z can be succinctly summarised in the following proposition:

Proposition 12. Given the jet JP[p, | for ¢ = 0 one has that:

(i) the elements of the jet have polynomial dependence in T for the harmonic sectors with

0 </l <p-—1 and, thus, they extend analytically through T = £1;

(ii) generically, for £ = p, the solutions have logarithmic singularities at T = £1. These

logarithmic divergences can be precluded by fine-tuning of the initial data.

Remark 53. The key insight from the analysis of the decoupled system is that for a given
order p, the elements in JP[¢, ] only exhibit singular behaviour at the critical sets Z=
where spatial infinity touches null infinity for the harmonics with the highest admissible /.

All other sectors with ¢ < p are completely regular for generic initial conditions.

6.6.2 The coupled case

In this section, we provide an analysis of the behaviour of the elements of the jet J?[¢, &
in the case q # 0 with particular emphasis on their regularity at the critical sets Z=. In
order to keep the presentation concise we focus on the differences with the decoupled case

—see Remark 53.

The p = 0 order transport equations

We start our analysis of the full non-linear system by looking at the solutions corresponding
to the jet J°[¢, a] —that is, the order p = 0. By evaluating the system (6.24a)-(6.24¢) one
finds that

A0 = 5O (6.28a)
A =260 = ;19 (6.28b)
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6.6. Solution jets

a4+ 269 = ;O (6.28c¢)
mg )+ al? = 5, (6.28d)
Al 4+l = 4, (6.23¢)

This order is non-generic as under Assumption 1, it can be readily verified that the above
transport equations decouple and it is possible to write down the solution explicitly. More

precisely, one has that:

Lemma 13. The unique solution to the 0-th order system (6.28a)-(6.28¢) with initial
conditions (6.25a)-(6.25¢) is given by

0 _ O _

¢(0) = o,, oy =0, o 0 _ .

Qy
Remark 54. As it will be seen, the 0-th order jet J°[¢, ] given by the above lemma

allows to start a recursive scheme to compute the higher order jets J?[¢, o] with p > 1.

The p > 1 transport equations

In order to analyse the properties of the jet of order p, JP[¢, a| for given p = n, we assume

that we have knowledge of the jets

Ilo.a], Jo.af,....J" ¢, a.

Under this assumption and taking into account Lemma 13 one finds that the elements of

JP[¢, a] satisfy the equations —cfr. the general discussion in Subsection 6.4.1:

A 1 2™ = 5, (6.29)
A +2(nr — 1)al” = 2¢*|p.[Pal” + 71, (6.29D)

ac® +2(n7 + Da™ = 2¢2|p,2a™ + 5™, (6.29¢)
Aozé") + QnToz(n) + ao =2q |90*|2 '+ ](()n)7 (6.29d)
aos” +2n7al” + o8 = 262 |p. 2ol + 55, (6.29)

where s, jE_L ), Jo" ) and 32 depend, solely, on the elements of J?[¢, ], 0 < p <n — 1.
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Remark 55. The key new feature in the above equations is the presence in (6.29b)-(6.29¢)
of the terms involving the constant 2q?|p,|? in the right-hand side of the equations. These
terms arise from the cubic nature of the coupling in the source terms in the Maxwell-
scalar field system. This feature does not arise in systems with quadratic coupling like
the conformal Einstein-field equations or the Maxwell-Dirac system. In particular, observe

that one is led to consider model homogeneous equations of the form

AC+2(nt —1)¢ — 3¢ =0, (6.30a)
ACH+ 207+ (1 — %) =0 (6.30b)

with s = 2¢°|p,|2. As will be seen in the sequel, the solutions of these equations for generic

choice of s is radically different to that of the case »x =0 —i.e. ¢ =0.

Now, assuming that the various fields have an asymptotic expansion as in Remark 49

one is led to consider a hierarchy of ordinary differential equations of the form

(1-— TQ)én;g’m +2(n — 1)T§Z.5n;g7m +((l—n+1)(n+0)Pnem = Sntm, (6.31a)
(1= 7)Aot + 2(—=1 4 (0 — D7)ty oo + (C+1) —n(n — 1) — 30) 4 pitm = Jtmitom,
(6.31b)
(1 =72 ot + 21+ (n — DTV i + L+ 1) —=n(n — 1) — 39)0 pim = J—mem, (6.31¢)
(1= 7)o nem + 2(n = )70 mem + (€ =1+ 1)(n + £) = 5)Q0000m = Jomstm, (6.31d)
(1 = 7 nstm + 2(n — D)7 + (6= 1+ 1) (0 + £) = ) Qomitim = J2mitm (6.31e)

for 0 </ <n, —¢ <m < /¢ and with the source terms

Snlm jJr,n;@,m; jf,n;é,my jO,n;Z,ma j2,n;€,m7

known as a result of the spherical harmonics decomposition of the lower order jets J?[¢, a]
for 0 < p <mn — 1. The homogeneous version of equations (6.31b)-(6.31e) does not fit the
general scheme of solutions discussed in Subsection 6.6.1 for the decoupled system. In fact,

one has the following general result from [71] which we quote for completeness.
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Lemma 14. The Jacobi ordinary differential equation
(1—71%a+ (5—04—(04—1—5—1—2)7)&—1—7@:0

has polynomial solutions if and only if v is rational.

So, the question is whether it is possible to characterise the solutions in an easy manner?
For this, we resort to Frobenius’s method to study the properties of the equations in terms
of asymptotic expansions at the values 7 = £1 —see [72], Chapter 4. The homogeneous

version of the equations (6.31b)-(6.31e) can be described in terms of the model equation

(1= +2(c+ =17+l +1)—n(n—1)—3x)( =0 (6.32)
where
—1 for oy
=49 1 for o_

0 for ¢, ag, o
—recall also that » = 2q*p?. Following Frobenius’s method, we look for power series
solutions of the form
(=01-7)>_D(1-7)  Dy#0. (6.33)
k=0
Substitution of the Ansatz (6.33) into the model equation (6.32) leads to the indicial
equation
2r(r—1) —2¢r —2(n — 1)r = 0.

The solutions to the indicial equation for the various values of ¢ are given in Table 1.

Once the solutions to the indicial equation are known, Ansatz (6.33) leads to a recur-
rence relation for the coefficients D;, in the series. The details of this computation are
given in Appendix B.3. The key observation for the subsequent discussion is that for a

given value of ¢, the root r; = 0 of the indicial polynomial does not lead to a valid series

solution as the recursion relation breaks down at some order. In order to obtain a second,
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—1]10|n-—1
0 0 n
1 0| n+1

Table 1: Roots of the indicial equation.

linearly independent solution to equation (6.32) one needs to consider a more general type
of Ansatz. Again, following the discussion in [72] we look for a second solution of the form

(= i Gr(l1 —7)F + (1 —7)2log(l — 7) i Mi(1— 1), Go#0, My#0. (6.34)
k=0

k=0

A detailed inspection of the recurrence relations implied by the Ansatz (6.34) shows that
all the coefficients M, for k =1, 2,... and G for k =0, 1, 2, ... can be expressed in terms
of the coefficient M, —again, see Appendix B.3 for further details.

Remark 56. The previous analysis has been restricted, for concreteness, to the behaviour
of the solutions to the homogeneous model equation (6.32) near 7 = 1. A similar analysis

can be carried out mutatis mutandi to obtain the behaviour of the solutions near 7 = —1.

Remark 57. Observe that the logarithmic singularity of the solutions given by (6.34) is
modulated by a term of the form (1 — 7)™. Accordingly, within the radius of convergence

of the series, the whole solution is of class C"™2~! at 7 = +1.

Remark 58. It is of some interest that the solutions to the model equation (6.32) can be
written in closed form in terms of hypergeometric functions. This representation, however,
makes it harder to examine the regularity properties of the solutions at the critical values
T==I1.

The discussion in the previous paragraphs can be summarised in the following:
Proposition 13. The general solution to the model equation (6.32)

(1=7)C+2(+ (n=Dr) + (Ul +1) =n(n—1) =) =0,  »x#0

with ¢ =—1,0,1,0<{<n,n=1, 2, ..., consists of:
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(i) one solution which is analytic for T € [—1,1];

(i7) one solution which is analytic for T € (—1,1) and has logarithmic singularities at

T = +1. At these singular points the solution is of class C">~1.

Remark 59. The key observation from the previous analysis is the fact that the solutions
to the homogeneous equations in the coupled case have one solution with logarithmic
singularities for every 0 < ¢ < n and —¢ < m < ¢. This is in contrast to the decoupled
case where only the solutions corresponding to the spherical harmonics with ¢ = n had

logarithmic divergences.

The solution to the inhomogeneous equations

Having analysed the behaviour of the solutions to the homogeneous part of the trans-
port equations we proceed now to briefly discuss the behaviour to the full inhomogeneous
equations (6.31a)-(6.31e). For this we rely on the method of variation of parameters as

discussed in Appendix B.4.

In the following let ¢ denote any of the unknowns (¢n.0.m, Ot ntms O nitims Q0ntims O2.n:0m)
in the transport equations (6.31a)-(6.31e). These equations are described through the

model equation
(1=7)C+2(c+(n—D)7)C+ (1 —n)+L(0+1) — 2)¢ = f(7), ¢=-1,0,1, (6.35)

where f denotes the corresponding source terms (Spn.¢.m, j+,n;z,m, 3—,n;€,m> 30,n;é,ma 52,n;e,m).
Moreover, let (; and (» denote two linearly independent solutions to the homogeneous

problem. The method of variation of parameters gives the general solution to (6.35) in the

form
C(1) = A1(7) G (T) + As(1)Ca(T), (6.36)
where
A7) = A — /OT Wfé?f%ﬂ (1 J_“ Z) ds, (6.37a)
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Ap(7) = Age + /O ' wj((f)f (;))n G - z)zgds, (6.37b)

with A;, and A,, constants fixed by the initial data. The details of the derivation of these
expressions can be found in Appendix B.4. For ease of presentation, the discussion in this
subsection is focused on the the behaviour of the solutions at 7 = 1. A similar discussion

can be made, mutatis mutandi, for the behaviour at 7 = —1.

Consistent with Proposition (13), we distinguish two cases for the solutions of (6.36)

as follows:

(i) the two solutions to the homogeneous equation are smooth at 7 = 1;

(ii) one of the solutions to the homogeneous problem is smooth at 7 = 1 while the other

has a logarithmic singularity.

In the following for simplicity of the presentation it is assumed that the source term
f is regular at 7 = 1 —i.e. it does not contain singularities of either logarithmic type or

poles.

Case (i). We observe that the integrands in equations (6.37a) and (6.37b) contain a pole
of order n + 2¢ at 7 = 1. The decomposition in partial fractions will, for generic source

f(s), contain a term of the form
1

1—s

which, when integrated gives rise to a logarithmic term In(1 — 7). This type of logarithmic

singularity can be precluded if the zeros of the expressions

Gs)f(s)(L+7)%, Ga(s)f(s)(1+ 7)™

have a very fine-tuned structure. The latter can be, in principle, reexpressed in terms of
conditions on the initial —this task, however, goes beyond the scope of this analysis. Thus,
the generic conclusion is that even if the solutions ¢; and (, to the homogeneous problem
do not contain logarithmic singularities at 7 = 1, the actual solutions to the transport

equations at a given order will have this type of singularities unless the initial conditions
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are fine-tuned. The regularity (or more precisely, lack thereof) of these singularities is
controlled by the factors of (1 — 7) appearing in the functions (; and (. It can also
be readily verified that the structure of these factors in (; and (5 is such that the final
solution as given by formula (6.36) has no poles at 7 = 1 —that is to say, the only possible

singularities are of logarithmic type.

Case (ii). In the following we assume that (s is the solution to the model homogeneous
equation containing the logarithmic term. A quick inspection of equation (6.37b) the shows
that this term will give rise, generically, to logarithmic singularities similar to those in Case
(i). The situation is, however, different for expression (6.37a) for which the denominator
already contains a In(1 — 7) term. The decomposition in terms of partial fractions gives

rise to a term of the form
In(1—7)
(1—-7)"

which, after being integrated, gives rise to a singular term of the form
In*(1 — 7).

This is the most singular term arising from the integration of the partial fractions decom-
position of the integrand in (6.37a). As in Case (i), the coefficients in the partial fractions
decomposition can, in principle, be expressed in terms of initial data —thus, this singular
term could be removed by fine-tuning. The remaining terms in the expansion give rise, at
worst, to singular terms containing In(1 — 7) and some power of 1 — 7. As in Case (i), it
can be verified that the solution arising from formula (6.36) does not contain poles at 1 —7

—that is, again, all singular behaviour is of logarithmic type.

Remark 60. More generally, in view of the recursive nature of the of the transport equa-
tion in which the source terms at order n are given explicitly in terms of lower-order jets,
the source terms will contain logarithmic terms involving powers of In(1 — 7). Because
of the structural properties of the variation of parameters formula will then give rise to
higher-order logarithmic terms. The discussion in the previous paragraphs thus shows
that even in the optimal case where the source is completely regular, logarithmic terms

will arise.
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6.6.3 Summary

The discussion in this section can be summarised in the following:

Theorem 5. For generic initial data for the Mazwell-scalar field the jet JP[o, ], p >
1 contains logarithmic divergences at the T = +1 —i.e. at the critical sets IT where
null infinity meets spatial infinity— for all spherical harmonic sectors. The logarithmic

divergences are of the form

(I£7)"In"*(1£7)
for some non-negative integers iy, fia.

Remark 61. The situation described in Theorem 5 is to be contrasted with the situation
in the decoupled case in which for the solution jet at order p, for generic initial data,
there always exist spherical sectors without logarithmic singularities —see Proposition 12.

Moreover, due to the absence of source terms the logarithmic singularities are of the form
(I+£7)*In(1+7)

for some non-negative integer us. It is in this sense that the non-linear coupling of the
Maxwell and scalar fields gives rise to a more singular behaviour at the conformal boundary

and, consequently, a more complicated type of asymptotics.

6.7 Peeling properties of the Maxwell-scalar system

In this section, we translate the results on the regularity of the solutions of the Einstein-
Maxwell at the conformal boundary obtained in Section 6.6 into statements about the
asymptotic decay of the fields in the physical spacetime. The most important consequence
of regularity (smoothness) at the conformal boundary of a field is the so-called peeling
—i.e a hierarchical decay of the various components of, say, the Maxwell field along the
generators of outgoing light cones. As the asymptotic expansions of Section 6.6 generically
imply a non-smooth behaviour at the conformal boundary, one expects a modified peeling

behaviour.
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6.7. Peeling properties of the Maxwell-scalar system

6.7.1 The Newman-Penrose gauge

The discussion of peeling properties fields is usually done in terms of a gauge which is
adapted to null infinity —the so-called Newman-Penrose (NP) gauge. The relation between
the NP-gauge and the F-gauge used to compute the expansions in Section 6.6 has been
studied in detail, for the Minkowski spacetime, in [40]. In this subsection we briefly discuss

the associated transformation formulae.

In the following, the discussion will be restricted to the case of .# . Analogous con-
ditions can be formulated, mutatis mutandi, for .#~. The NP gauge is adapted to the
geometry of null infinity. Let {€/, 4.} denote a frame satisfying n(e/y 4, €55/) = €aB€an
in a neighbourhood U of #*. The frame is said to be in the NP-gauge if it satisfies the

conditions:

(i) the vector €/, is tangent to £+ and is such that
Virey; =0.
(ii) There exits a smooth function u (retarded time) on U that satisfies e}, (u) = 1 at
It
(iii) The vector egpq is required to satisfy
eoo = N(du, ).

(iv) Let
Nu. =1{p €U | ulp) = u.},

where u, is constant. Then the frame €/, 4/, tangent to N, U .# | satisfies

/
VOO’eAA/ =0 on Nu..

In [40], the relation between the NP-gauge frame {€4 4.} and the F-gauge frame {€a4/}
for the Minkowski spacetime, as defined in Section 6.3.3, was explicitly computed. This

computation assumes the conformal factor
O = p(l - 7-2)a
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Chapter 6. The Maxwell-scalar field system near spatial infinity

and its key outcomes are summarised in the following:

Proposition 14. The NP-gauge frame at . and F-gauge frame in the Minkowski space-

time are related via

e;lA, = ABA./_\B/AreBB/, (638)
with
9 iw —iw 1
R /LS O N N X )
\/_p(l +7) 2

where w is an arbitrary real number that encodes the spin rotation of the frames on S?. For
the NP-gauge frame at ., the roles of the vectors ey and €y, are interchanged, and

NP-gauge frame is related to the F-gauge by equation (6.38) with A given by

0 _e_iw\/ﬁ(l_T) 1 2e™ 1 A0 _
A% = 5 , Ao_i\/ﬁ(l—ﬂ’ A1 =A% =0. (6.40)

6.7.2 The scalar field

We start our discussion of the peeling properties by looking at the scalar field. In order to

carry out this computation we make the following assumption:

Assumption 2. On M, the scalar field ¢ satisfies the asymptotic expansion
S|
o= j¢(p)Pp +o1(pY)
p=0 D
for some sufficiently large N and where ) are contained in the solution jet J®)[¢, ] as
)

discussed in Section 6.6. The remainder o1(p") is assumed to be, at least, of class C*.

Remark 62. Making use of a generalisation of the estimates near Z introduced in [30]
for the massless spin-2 filed it is, in principle, possible to relate, in a rigorous manner,
Taylor-like expansions like the one in Assumption 2 arising from the jets computed in
Section 6.6 and actual solutions to the Maxwell-scalar field. The main challenge in the
present case compared to the analysis in [30] is the non-linearity of the system of equations.
The discussion of this problem, which would allow to reduce Assumption 2 to more basic

hypothesis falls, however, outside the scope of the present thesis.
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6.7. Peeling properties of the Maxwell-scalar system

Consistent with Assumption 2 and following the discussion of Section 6.6, generically,

the scalar field has, near Z the form
¢ =¢,+O0(p(l —7)n(l —7)).

Now, recall that the physical scalar field é is related to the unphysical one via b = O¢
with © = p(1 — 7%) &~ p(1 — 7) near 7 = 1 —i.e £ . Accordingly, one has that

¢ =p(1 = 7). + O(p*(1 — 7)’In(1 — 7).

Finally, expressing the latter in terms of the physical radial Bondi coordinate 7 ~ 1 — 7

(5—+O<hw>

Thus, to leading order, the physical scalar field satisfies the classic peeling behaviour.

one concludes that

Polyhomogeneous (i.e. logarithmic contributions) are subleading,.

6.7.3 The Maxwell field

In analogy to the discussion of the scalar field, we make the following assumption on the

components of the Maxwell spinor —cfr. Assumption 2:

Assumption 3. On M, the components of the Maxwell spinor ¢ ap satisfy the asymptotic

exrpansion

Z 925 P+ o1 (pN), i=0,1, 2,

for some sufficiently large N and where ¢§p) the coefficients contained in the jet JP[@] of
the Mazwell field which can be computed from the solution jet JP)[¢, ] as discussed in
)

Section 6.6. The reminder o1(p") is assumed to be, at least, of class C*.

A careful inspection of the solutions to the Maxwell-scalar field equations at order p = 1
following the discussion in Section 6.6 shows that, for generic data, close to null infinity,

T one has that

$o = O((l —7)%In(1 — 7‘)),
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Chapter 6. The Maxwell-scalar field system near spatial infinity

61 =0((1-7)In(1-7)),
g = O(ln(l - T))

The above expressions are given in the F-gauge. To analyse the peeling properties of
solutions with this behaviour we transform into the NP gauge making use of Proposition

14. More precisely, the physical components of the Maxwell spinor in the NP gauge éo,

ggl, q~52, are given by:
b0 = OAP (A% bpg,
¢1 = OA" 1A% pg,
$2 = OAT 1A dpg.

Observing that, to leading order, the physical Bondi radial coordinate satisfies 7 ~ 1 — 7,

one concludes that

Jo=0 <h~lf> 7 5 =0 <h~lj> 7 Gy =0 (lnf) '
T T T

The key point to notice in the above expressions is the presence of a logarithm in the

leading term of the radiation field —¢- in the conventions used in this article. This is a
specific property of the Maxwell-scalar field system — for a decoupled Maxwell field on

flat spacetime, the behaviour of this particular component is always

w=o()

—see e.g. [73].
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Chapter 7

Conclusions and future perspectives

In this thesis, the conformal Einstein field equations have been discussed along with several
applications. These equations, their origin and motivation have been presented in Chapter
2. The main strength of using the conformal Einstein field equations as a tool for analysing
the global properties of solutions to the Einstein field equations consists of their behaviour
under conformal transformations. This property allows one to study the physical spacetime
(M, §) through the analysis of its conformal extension (M, g). Furthermore, in the context
of the initial value problem, it allows to reduce, in certain cases, global problems into local
ones, e.g. the proof of the semiglobal non-linear stability of the Minkowski spacetime and

the global non-linear stability of the de Sitter spacetime — see [23, 24].

As discussed in Chapter 2, there are two versions of the conformal Einstein field equa-
tions: the standard conformal Finstein field equations and a more general version rep-
resented by the extended conformal Finstein field equations. The former requires gauge
fixing by means of gauge source functions, whereas for the latter this is done by exploiting
the notion of conformal Gaussian systems of coordinates. In both cases, one obtains a
first-order system of symmetric hyperbolic evolution equations. Conversely, in the clas-
sical discussion of the Cauchy problem in General Relativity due to Foureés-Bruhat [18],
the hyperbolic reduction of the Einstein field equations using the gauge source functions

associated with the choice of harmonic coordinates, reduces the Einstein field equations to
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a second-order hyperbolic system for the metric components.

In Chapter 3, the first application of the conformal Einstein field equations is discussed.
This chapter contains a discussion on the non-linear stability of de Sitter-like spacetimes.
More precisely, it is discussed how the extended conformal Einstein field equations and a
gauge based on the properties of the conformal geodesics can be used to study the non-
linear stability of this class of spacetime. This analysis identifies a class of spacetimes for
which it is possible to prove non-linear stability and the existence of a regular conformal
representation. These special properties are not shared by generic Cosmological solutions.

Thus, it is important to identify the situations in which this is the case.

The use of conformal methods in General Relativity poses an important question: can
the conformal Einstein field equations be used to analyse the stability of black hole space-
times as well as asymptotically simple spacetimes? Observations have shown that the
Cosmological constant in our Universe is positive, thus spacetimes that describe isolated
systems within a de Sitter universe are physically relevant for this type of analysis. In this
regard, the strategy described in Chapter 3 is used in Chapter 4 to discuss the non-linear
stability of the Cosmological region of the Schwarzschild-de Sitter spacetime. This analy-
sis is the first step in a programme to study the non-linear stability of this region of the
Schwarzschild-de Sitter spacetime. Here we show that it is possible to construct solutions
to the vacuum Einstein field equations in this region, containing a portion of the asymptotic
region, which are, in a precise sense, non-linear perturbations of the exact Schwarzschild-de
Sitter spacetime. Crucially, although the spacetimes constructed have an infinite extent
to the future, they exclude the asymptotic points Q and Q'. These points correspond to
the regions of the spacetime where the Cosmological horizon and the conformal boundary
seem to meet. From the analysis of the asymptotic initial value problem in [39] it is known
that the asymptotic points in the conformal boundary, from which the horizons emanate,
contain singularities of the conformal structure. Thus, they cannot be dealt with by the
approach used in the present work which relies on the Cauchy stability of the initial value
problem for symmetric hyperbolic systems. The next step in our programme is to reformu-

late the existence and stability results discussed in Chapter 4 in terms of a characteristic
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initial value problem with data prescribed on the Cosmological horizon. However, it is
necessary to prescribe the characteristic data away from the asymptotic points to avoid
the singularities of the conformal structure. Alternatively, one could consider data sets
which become exactly Schwarzschild-de Sitter near the asymptotic points. Given the com-
parative simplicity of the characteristic constraint equations, proving the existence of such
data sets is not as challenging as in the case of the standard (i.e. spacelike) constraints. In
what respects the evolution problem, it is expected that a generalisation of the methods
used in [45] should allow us to evolve characteristics to reach a suitable hypersurface of

constant coordinate 7.

On the other hand, it is conjectured that the singular behaviour at the asymptotic
points can be studied by methods similar to those used in the analysis of spatial infinity —
see [28]. The latter consists of the introduction of a new representation of spatial infinity
known as the cylinder at spatial infinity. In this representation, spatial infinity is not
represented as a point but as a set with the topology of a cylinder. This construction
allows us to formulate a regular finite initial value problem for the conformal Einstein field
equations. This framework is used in Chapter 6 to analyse the effects of the interaction
of a Maxwell field and a scalar field at the critical sets Z+ and Z~ where null infinity .#

meets spatial infinity °.

The Maxwell-scalar field system offers useful insights to study the linearised gravita-
tional field and as a model for the Bianchi equations satisfied by the components of the
Weyl tensor. More precisely, this provides a possible model problem for the Einstein field
equations, as it can be used to understand the effects of the non-linear interactions on the
regularity of solutions at the conformal boundary. The study of the non-linear interaction
between the Maxwell and scalar fields shows a more singular behaviour than what can be
expected by studying the behaviour of the fields when non-interacting. The cubic coupling
in the Maxwell-scalar field equations generically makes the solutions more singular than
what would be expected from the mere analysis of the linear analogue. This situation
stands in stark contrast to that of systems with quadratic coupling like that of the Ein-

stein field equations for which the solutions to the homogeneous transport equations in
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Chapter 7. Conclusions and future perspectives

both the linear and full non-linear case share the same type of logarithmic divergences. In
this sense, the Maxwell-scalar field is not a good toy model to analyse the effects of non-
linear interactions in a neighbourhood of spatial infinity. Other models which potentially
overcome this shortcoming are the Dirac-Maxwell system and the Yang-Mills system for

which the coupling is quadratic.

Finally, we observe that for generic initial data which have finite energy and are analytic
around Z the solution to the transport equations on Z have logarithmic singularities at the
critical sets Z+ and Z~. The propagation of the singularities at Z* along the conformal
boundary destroys the smoothness of the Faraday tensor and the scalar field tensor at Z*

so that, in contrast to a decoupled context, there is no peeling behaviour.
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Appendix A

Details of Kato’s theorem for
symmetric hyperbolic systems and a

note on future geodesic completeness

A.1 On Kato’s existence and stability result for sym-

metric hyperbolic systems

In this appendix, we make some remarks concerning the hypothesis in Kato’s existence,
uniqueness and stability result for symmetric hyperbolic equations in [49]. The results in
this reference and, in particular the main Theorem II, are very general and presented in an
abstract manner. This abstract presentation hinders the direct applicability of the theory.
The purpose of this Appendix is to provide a guide to the use of this theorem and to verify

that the main evolution system satisfies the hypothesis of the result.

Kato’s theory is concerned with symmetric hyperbolic systems in which the unknown u
is regarded as a P-valued function over R™ where P is a Hilbert space. The Hilbert space
can be real or complex and, in fact, infinite-dimensional. In the present analysis, we are

interested in the case where P is finite-dimensional —say, of dimension N. In this case,
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future geodesic completeness

the symmetric hyperbolic system becomes a standard partial differential equation. For
concreteness we set here P = RY and m = 3. The following discussion of Kato’s theorem

will be made with this particular choice in mind.

Kato’s theorem is concerned with (N-dimensional) symmetric hyperbolic quasi-linear

systems of the form
A°(t, z,u)0u + A%(t, z,u)d,u = F(t,2,1). (A.1)
for0<t<T,z€R3 a=1,2, 3, and initial conditions
u(0,z) = u,(z). (A.2)

In Kato’s theory, it is convenient to regard the coefficients A%(¢,z,u) and A%(t,z,u) as
non-linear operators depending on ¢ sending R™-valued functions (i.e. the vector u) over
R? into (N x N)-matrix valued functions on R® —in Kato’s terminology these are the
elements of B(P), the space of bounded linear operators over P. Similarly, F(¢,z,u) is
regarded as a non-linear operator depending on t sending R™V-valued functions on R? into

RN -valued functions on R3.

Consider now H*(R3, RY), the space of (R")-vector valued functions over R? such that

their entries have finite Sobolev norm of order s. Let D be a bounded open subset of
H*(R3,RY). Writing
At z,u) = (ai(t,z,0),  Flzu) = (fitbzw), ij=1...N, p=0,...3
one has that for fixed t and u € D
aj(t,z,u) : R™ = R,
filt,z,u) : R™ — R.
Key in Kato’s analysis are the uniformly local Sobolev spaces HE. Let C5°(R3 R)

denote the sets of smooth functions of compact support from R? to R. Given any non-zero

¢ € C§°(R3 R) not identically zero, then u € H$, if and only if

sup H ¢zu Hs< oo, (bm(g) = (b(y _g)'

zeR3 o
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A.1. On Kato’s existence and stability result for symmetric hyperbolic systems

Remark 63. In other words, the vector-valued function u is in H;, if its Sobolev norm
of order s over any compact set over R3 is finite and remains finite as one considers larger

and larger compact sets on R?.

Remark 64. The spaces H;, satisfy nice embedding properties analogous to those of H*

—see Lemma 2.7 in [49].

In the following, it will be assumed that for fixed ¢ and u € D, the coefficients
afs(t,z,u(z)) are functions from D to HJ(R? R). For fi(t,z,u(z)) one has the more
relaxed condition of being a function from D to H*(R3 R). In Kato’s more abstract termi-
nology this is equivalent to requiring that A* is a function from D to HZ,(R3, B(P)) and
F from D to H*(R?,P).

One has the following reformulation of Theorem II in [49]:

Theorem 6. Let s be a positive integer such that s > 3/2+ 1 =15/2. Let A*(t,z,v(z)),
F(t,z,v(z)) and v € D as above with 0 < t < T. Assume that the following conditions
hold:

(i) The components aj;(t,z,v(x)) (respectively, fi(t,z,v(z))) are bounded in the H}-

norm (respectively H®-norm) for v € D, uniformly in t.

(ii) For each t, the map v(z) — A“(t,z,v(z)) is uniformly Lipschitz continuous on D
from the H°-norm to the HC-norm, uniformly in t. Similarly, the map v(z)
F(t,z,v(x)) is Lipschitz continuous from the H°-norm to the H-norm, again uni-

formly in t.

(i1i) The map v(x) — A°(t,x,v(z)) is Lipschitz continuous on D from the H* 1-norm to

the HE; ' -norm, uniformly in t.

(iv) The maps t — A%(t,z,v(x)) are continuous in the HY-norm for each v € D. Simi-

larly, the map t — F(t,z,v(z)) is continuous in the H-norm for each v € D.

(v) The map t — A°(t,x,v(z)) is Lipschitz-continuous on [0,T] in the H:; '-norm,

uniformly for v € D.
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(vi) For each v € D the matriz-valued functions A*(t,z,v(z)) are symmetric for each

(t,z) € [0,T] x R™.

(vii) The matriz A°(t,z,v(x)) is positive definite with eigenvalues larger than, say, 1 for

each (t,z) and each v € D.
(viii) u, € D.
Then there is a unique solution u to (A.1)-(A.2) defined on [0, T'] where 0 <T" <T such

that
uc C0,7;DJuCHo,T'; H (R RY)],

where T can be chosen common to all initial conditions u, in a suitably small condition

of a given point in D.

In practice, the conditions of the above theorem are hard to verify. Kato provides
sufficient conditions ensuring that conditions in the above theorem are satisfied (Theorem

IV in [49]:

Theorem 7. Suppose that s > 3/2+ 1 =15/2. Let Q be the subset of R® x RN consisting
of pairs (z,v) such that

v — v (x)] < w, z eR?

where w > 0 and v, € H*(R3 RY) c CL(R3 RY) are fired. Let, as before,

A" [0,T) x Q — B(RY),

F:[0,T] x Q — RY,
where B(RY) denotes the set of (N x N )-matriz valued functions over R with the properties
(a) A% € C[0,T; Cy(, B(RY))],
(b) A€ Lip[0, T; G5~ (2, B(RY))],

(¢) F € C[0,T;C5HH(Q,RM)],
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(d) F, € L=[0,T; H*(R3,RN)] N C[0,T; H*(R3, RN)],

where Fo(t,z) = F(t,z,v.(x)). Then conditions (i)-(v) in Theorem 6 are satisfied by A",
F provided that D is chosen as a ball in H*(R3, RY) with v, as centre and a sufficiently
small radius Ry. In addition, (ix) is satisfied if (a) is assumed to hold with s replaced by
s+ 1.

Remark 65. The sets CJ (2, B(RY)) and Cy(Q, RY) denote the spaces of functions having

derivatives up to the r-th order which are continuous and bounded in the supremum norm.

Remark 66. If the A* are polynomials in p it actually suffices that the coefficients only
be in C[0,T; H2)] and also in C'[0,T; HE; '] for A°.

A.2 Future geodesic completeness of the background

solution

The geodesic completeness of the metric (3.2) can be shown using the theory developed in

[10] —in particular, Corollary 3.3 in this reference applies to the present situation.

More precisely, the theory in [10] applies to spacetimes (M, g) such that M = [t,, 00) X
S where t, > 0 and S is a smooth 3-dimensional manifold. The metric g has the 3+ 1 split

g=—a’W@uw’+ hijwi ® w,

with
W’ = dt, w' = dzt + pdt.

There exist numbers 0 < a_, oy such that
O<a_-<a<ay.

The metric b = h;;dz* ®@da? is a geodesically complete Riemannian metric on S, = {t} x S

such that there exists a constant C; > 0 such that
Clhij (t.)vivj S hij (t)Uin
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for all vectors on T'S and t € [t,, 00). Furthermore, there exists another constant Cy such
that
BZ/BZ S 027 te [t07 OO)

In the following let Kj; denote the extrinsic curvature of the hypersurfaces S;, Ky is

tracefree part and K its trace.

With the above conditions, the metric g is future geodesically complete if the following

two conditions hold:

(i) D;aD'a is bounded by a function of ¢ which is integrable on [te, c0);

(i) K <0 and K,;;K" is integrable on [te,0).

The metric (3.2) can be readily seen to satisfy the above conditions. In particular,
as a = 1, the norm of the spatial gradient of the lapse vanishes and, accordingly, it is
integrable —this verifies condition (i) above. Moreover, the extrinsic curvature of the

hypersurfaces of constant ¢ is given by
K;; = —sinht cosh t%;;,
so that it is pure trace. Moreover, one has that
K = —3cotht <0, t € [te, 00).

As K3 = 0 in this case one has that (ii) is also satisfied. It follows then that the

background metric g is future geodesically complete.
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Appendix B

Details of the analysis of the

Maxwell-scalar field system

B.1 The trace-free Ricci spinor

The use of commutators to obtain the wave equations satisfied by the components of the
gauge potential leads to terms involving the spinorial counterpart of the tracefree Ricci
spinor —see Equation (6.13b). The symmetries of the tracefree Ricci spinor (5.19) imply

the decomposition

Supcp = §Pacepp + 3PepTap T B + §PcpTan T D
+10 s prop + 2 @upT  prep + Papent BT b
+1Phacppt’ 5" b,
where
®4p = ®ap), ®45cp = PaBeD)-
A direct computation of the components of the Schouten tensor of the Weyl connection

associated to the covector fs4 in the conformal representation of the Minkowski spacetime

given in the F-gauge shows that all its components vanish. Observing that

A

1
Lba = Lab + fafb - §fcfcgab - vbfcw
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it follows then that
D = ! o Y
Apap = fan BB 2fCC’f €ABEA'B’ BB fan
In the present case, one has that
fan = —zapTu,

consistent with the fact that fy474" = 0. Combining the above observations, one can

conclude that

¢ =-1, ®4p =0, ®4pcp = T(ABTCD)-

B.2 Properties of the solutions to the Jacobi ordinary

differential equation

In the following, it will be convenient to define
Dpapa=(1-1i+ (B—a—(a+B+2)7)a+nn+a+p+1)a, (B.1)
so that the general Jacobi equation can be written as
Dapa=0. (B.2)

A class of solutions to (B.2) is given by the Jacobi polynomial of degree n with integer

LG

It follows from the above that

parameters («, 3) given by

P (r)

and that
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Solutions to (B.2) satisfy the identities

D(n,a,8) <<1;7—)a a(7)> = (1 ; 7')0‘ Dnta,—a,pa(T), (B.3a)

1+7\7* 1+7\7"
Dasr ((457) " a0) = (157) " Devsscmatr) (B.30)

e ((57) " (57)000) = (555) (557) P i3

which hold for |7| < 1, arbitrary C*-functions a(7) and arbitrary values of the parameters

a, 3, n.

An alternative definition of the Jacobi polynomials, convenient for verifying when the

functions vanish identically, is given by

with
= (a+1)(a+2) - (a+n),
nl

k:!(n;k)!(
(n+k+a+p),

L = a+k+1)(a+k+2)---(a+n)x(n+1+a+p)n+2+a+p8): -

=Mn+1l+a+p)(n+2+a+p) - 2n+a+p).

Thus, for example, for « = = —p and n = p + ¢ one finds that the string of products
in the above coefficients start at a negative integer value and end up at a positive one

indicating that one of the factors vanishes. Accordingly, the whole coefficient must vanish.

B.3 Details of the computation of the series solutions

The purpose of this appendix is to discuss some of the details in the computation of the
series of solutions presented in Proposition 13. The approach followed here is a variation

of the classical Frobenius method —see e.g. [72], Chapter 4.
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B.3.1 The first solution
Following the main text, we consider the model equation

(1—=7C+2(c+(n—D1)¢+ (U +1) —n(n—1) — 2) =0, (B.4)
and we look for solutions satisfying the Ansatz

gzu—fyfﬂ%g—fﬁ, Dy # 0. (B.5)

k=0

Differentiation of this power series gives
= ik+er1—T)k+7"1
(= Z r)(k 41 — 1)Dy(1 — 7)F=2,
Hence, observing that
2ln—1)r=2(n—-1)(1—-(1—-1))

and by replacing the derivatives into the model equation (B.4) one obtains the indicial
polynomial

(2r(r—1)—2¢sr —2(n—1)r) =0. (B.6)

Accordingly, one has that for ¢ = —1 one has the roots ry = 0 and ro =n —1; for ¢ = 1
the roots are 1 = 0 and r, = n + 1; whereas for ¢ = 0 one has the roots r; = 0 and
ro = n. Some further lengthy manipulations lead to the following recurrence relations for

the coefficients in the Ansatz (B.5):

(i) for¢=1and r; =0

k(k—3)+2n+ (n(l—n)+£((+1)—
2k(k —n—1)

VA
Dk-‘rl:_ )Dk7

while if 7o = n + 1 one has

(k+n+1)(k+n)+n(l—n)+0l+1)—32)—2(k+1)
2k +n+1)(k+n—1)

Dy = — Dy;
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(ii) for ¢ = —1 and r; = 0 one has

k(k—3)+2n+ (n(l—n)+({+1)— )
2k(k —n+1)

Dy = — Dy,

while if 7o = n — 1 one has

(k+n—1)(k+n—4)+2n+n(l—n)+I(l+1)—2)

D = — D,
k+1 Qk(k’—i—n— 1) k>
(iii) finally, if 5 = 0 and r; = 0 one has that
D __k(k—3)+2n+(n(1—n)+€(€+1)—%)D
S 2k(k —n + 1) "
while if 79 = n one has
(k+n)(k4+n—=3)+2n+(n(l—n)+L{lL+1)— x)
Diyr =— Dy.

2k(k+n)

Two key observations can be drawn from the previous expressions:

(i) all the recurrence relations associated to non-zero roots of the indicial polynomial

are well defined for £ > 0. Accordingly, these lead to an infinite Taylor series for the

solutions. These series can be resumed as hypergeometric functions. These solutions

are regular and, in fact, analytic at 7 = 1. Analogous series solutions can be obtained

for 7 = —1.

(ii) All the recurrence relations associated to zero roots of the indicial polynomial become

singular for a certain non-zero value of k. Accordingly, these recurrence relations do

not lead to well-defined series solutions.

In summary, the procedure described in this section only provides one independent

solution to the second-order model ordinary differential equation (B.4).

B.3.2 The second solution

Motivated by the method of reduction of order we look for a second solution to the model

equation (B.4) of the form

¢ = i Gr(l—=7)* +In(1 —7) i M (1 — 7)%F7, Gy # 0, My # 0.

k=0 k=0

225



Appendix B. Details of the analysis of the Maxwell-scalar field system

The substitution of the Ansatz (B.7) into equation (B.4) leads again to the indicial polyno-
mial (B.6). Moreover, the coefficients Mj, can be shown to satisfy, for the various choices of
the parameter ¢, the same recurrence relations as in the previous section. Accordingly, in

the following we only consider the non-zero roots of the indicial polynomial and the series
Z Mk(l — T)’H_TQ
k=0

is a formal solution to the model equation (B.4). The rest of the analysis is split in cases

corresponding to the possible values of <.

The case ¢ = 0. In this case, the root of the indicial polynomial is r =n. For £ < n — 2

one has the recurrence relation

k(k —1) — 2(n — Dk — (n(1 — n) + £ + 1))
ok(k+ 1) —2(n— 1)k +1)

G = Gy.

For kK = n — 1 one has

—2n
Gy = —(n—=1)(n—=2)+2nn—-1)—=2(n—1)+ (n(1 —n) + £({ + 1))M0'
For 0 > k > n one has
a Ck(k—1) =2nk+2k — (n(1 —n) +L({+1)) —2k—2(k+1)+2(n—1)M
k1 = Wk +1) —2(n—D(k+1) FT R+ — 2 — )k 1)

(k—1)+k—2n+2
k(k+1)—=2(n—1)(k+1)

Mi_,.
+2 k

In conclusion, in the case ¢ = 0 one obtains a second linearly independent solution which

contains a logarithmic singularity at 7 = 1. This solution has only one undetermined

constant —namely M.

The case ¢ = 1. In this case, the non-zero root of the indicial polynomial is given by

ro =n+ 1. For kK <n — 1 we have the recurrence relation

k(k — 1) — 2(n — 1)k — (n(1 —n) + £(£ + 1) — 5)

G = T ) =2k 1) — 2 — D+ 1)

Gy.

For &k = n we have the recurrence relation

B (n+2)
Gn = —nn—1)+2n(n—1)+ (n(1 —n) +L({+1) —%)MO'
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B.3. Details of the computation of the series solutions

For kK > n + 1 we have the recurrence relation

k(k—1)—=2(n—1)k—(n(1—n)+£({+1)— )
2k(k+1)—2(k+1)—2(n—1)(k+1)
—2k—-2k+1)+k+2+2(n—-1)
2k(k+1)—2(k+1)—2(n—-1)(k+1)
k—2n+2
k(k+1)—2(k+1)—2(n—1)(k+1)

Gy = G

k—n

My_,—1.
+2 k 1

Again, this solution has a logarithmic singularity at 7 = 1 and the free constant is M.

The case ¢ = —1. In this case, the non-zero root of the indicial polynomial is given by

ro =n— 1. If Kk <n — 3, we have the recurrence relation

k(k — 1) — 2(n — 1)k — (n(1 —n) + £(£ + 1) — 5)

Gii1 = Gg.
hH 2k + 1)(k —n+2) g
If Kk =n — 2 we have
2(n —1
Gn,QI— (n ) Mo.

n—2)n+1)+n(l—n)+L{l+1)—x)

If £ > n — 1 the recurrence relation is the following

B(k=1) =2~ Dk — (n(1—n) + (¢ +1) = 30) , _A(k+1) —2(n—1)
2k +1)(k —n+2) ok + ) (k—n+2)

2k —2n+1
kA Dk—n+2)

Gk-‘rl = k—n+2

k—n+1-

All the above expressions lead to well-defined formal series solutions to the model
equation (B.4) containing a logarithmic singularity at 7 = 1. The regularity of the solutions
is regulated by the value of the corresponding root to the indicial polynomial. For example,

for ¢ = 0, the logarithmic part of the solution contains the factor
In(1 —7)(1—7)".
Accordingly, the first n derivatives of the solution are finite at 7 = 1.

The analysis sketched in this appendix is summarised in Proposition 13 in the main

text.
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Appendix B. Details of the analysis of the Maxwell-scalar field system

B.4 Solving the inhomogeneous transport equations

In this section, we discuss a general procedure to compute the solutions to the inhomoge-

neous equation
1= 42+ (n—D7)C+ (n(L —n) + L+ 1) — )¢ = f(r), ¢=-1,0,1.

In the following, for convenience, we write the latter in the form

. 26+ n—=171): (n(l—n)+L{l+1)— )
S ) ==

(=i, fm=2" @y

Let, in the following (; and (5 denote solutions to the homogeneous problem

s 2c+m—=1D7): (Ml —=n)+LL+1)— )

Ta—my ¢f ) <=0

We follow the method of variation of the parameters and look for solutions of the form

(1) = Au(T)Gu () + Az(7)Ca(7)

subject to the restriction

AiC+ Ay = 0.

A calculation readily yields

é = Alél + Azéz,
(= AiC+ Al + Alél + Azéz,

so that by replacing these relations into (B.8) one has that
AG+ Al = f.
Accordingly, one obtains the algebraic system

C1A1 + C2A2 =0,
€L1A1 + ézAz = f
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B.4. Solving the inhomogeneous transport equations

For convenience, we rewrite this in matricial form as

S I e B9)
G G Ay f
The latter can be recast as
A _ 1 G —G 0
A, (1 —72)W(r) -G G f 7

G G
a G
denotes the Wronskian of the system (B.9). It readily follows then that

where

Wi(r) = C1C2 C2él7 (B.10)

Ay - COf)

C oy G f(m)
A0 =Wy
Integrating, we conclude that
Ay(1) = Ay — /OT (1—(2{5;)(5)(18’ (B.11a)
A2*+/ 1—2{55)(3 ds, (B.11b)

with A, and A,, constants.

The Wronskian

Differentiating the definition of the Wronskian W (7), Equation (B.10), and using Equation
(B.8) one readily finds that

_2(§ +(n—1)7)
(-7

The solution to this ordinary differential equation is given by
W(r) = e, A() = a(r).
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Appendix B. Details of the analysis of the Maxwell-scalar field system

It follows then that

1—171

2
1+> (1—7%)"1 W, a constant.
-

W(r) = W*(
Substituting the latter expression in (B.11a)-(B.11b) one obtains the explicit expressions:

Aq(1) = A — ’ ()f(S))n<1+S> ds,
)

o Wi(l—=s%)"\1—s

Ax(r) = Ay + [ 1>_f;2n<1+5> ds.
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