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Abstract

The activity of the hypothalamic-pituitary-adrenal (HPA) axis is
characterised by complex dynamics spanning several time-
scales. This ranges from slow circadian rhythms in blood hor-
mone concentration to faster ultradian pulses of hormone
secretion and even more rapid oscillations in electrical and cal-
cium activity in neuroendocrine cells of the hypothalamus and
pituitary gland. Here, we focus on the system’s oscillations on the
short timescale. We highlight some of the mathematical model-
ling and experimental work that has been carried out to char-
acterise the mechanisms regulating this highly dynamic mode of
neuroendocrine signalling and discuss some future directions
that may be explored to enhance understanding of HPA function.
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Introduction

Oscillatory dynamics underlies neuroendocrine signal-
ling and control. The stress-responsive hypothalamic-
pituitary-adrenal (HPA) axis is a good example of this,
where the pulsatile release of vital glucocorticoid hor-
mones (principally cortisol in man and corticosterone in

rodents) from the adrenal glands results in an ultradian
oscillation in blood glucocorticoid concentration. The
mean period of these oscillations varies between species,
and is typically approximately hourly in rodents [1], and
1—3 hin humans [2]. The nature of this ultradian activity
depends on many factors, including genetic and epige-
netic status as well as (patho)physiological state [3].

Central control of glucocorticoid secretion is mediated
by neurons in the hypothalamic paraventricular nucleus
(PVN) expressing corticotrophin-releasing hormone
(CRH) and arginine vasopressin (AVP). These neuro-
peptides are released into the hypophyseal portal vessels
at the median eminence, thus stimulating adrenocorti-
cotrophic hormone (ACTH) secretion from anterior
pituitary corticotroph cells. In turn, ACTH stimulates
the synthesis and secretion of glucocorticoids from the
adrenal cortex. Glucocorticoids exert their influence
over a wide range of timescales, and these effects are
mediated by both the glucocorticoid receptor (GR) and
mineralocorticoid receptor (MR) [4]. Glucocorticoids
inhibit their own secretion in a classic neuroendocrine
negative feedback loop by acting back on the hypo-
thalamus and anterior pituitary to inhibit the secretion
of CRH, AVP, and ACTH [5].

Microdialysis studies have shown that the ultradian
glucocorticoid oscillation in the blood is paralleled
within brain tissue [6,7]. Several studies have high-
lighted the physiological significance of these oscilla-
tions. In particular, glucocorticoid oscillations induce
bursts of GR binding to DNA and subsequent pulsatile
dynamics in GR-dependent gene expression [8§—10]. In
addition to dynamically regulating genomic signalling,
glucocorticoids also affect neuronal activity even more
rapidly (i.e., within minutes) through non-genomic ac-
tions; that is, independently of gene expression and de
novo synthesis of mRNA and protein [11]. These fast
effects may well underlie the acute behavioural re-
sponses that have been observed within minutes of
glucocorticoid exposure [12]. The phase of the ultradian
oscillation itself is important in regulating both hor-
monal [1] and behavioural [13] responses to acute
stress, which are most significant when the stress co-
incides with the rising phase of the oscillation.

The amplitude of the ultradian glucocorticoid rhythm is
modulated in a circadian manner by the hypothalamic
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suprachiasmatic nucleus (SCN) through direct and in-
direct connections to the PVN, which regulate CRH
gene expression and CRH secretion. The sensitivity of
the adrenal cortex to ACTH is also under circadian
control with sensitivity peaking during the active phase;
an effect that appears to be dependent on a direct SCN
polysynaptic neuronal connection to the adrenal via the
autonomic nervous system [14] as well as an endogenous
intra-adrenal circadian clock mechanism [15]. Loss of
SCN function abolishes the circadian, but not ultradian,
glucocorticoid rhythm, highlighting the pivotal role of
the SCN in regulating circadian HPA activity [16]; thus,
understanding circadian regulation of HPA activity pri-
marily amounts to understanding the function of the
SCN and its neural regulation of the PVN and adrenal
glands, which is beyond the scope of this article and has
been reviewed comprehensively elsewhere [17,18].
Here, we highlight some of the experimental and
mathematical work that has been carried out to under-
stand the regulation of HPA oscillations at the faster
ultradian timescale and discuss some future avenues for
research in this area.

Ultradian pulsatility in the system

The question of how the HPA axis generates ultradian
pulsatile dynamics in hormone secretion has remained a
puzzle ever since episodic cortisol secretion was
observed in man over half a century ago [19]. Ultradian
pulsatile patterns of ACTH were also later observed
[20], and these have been shown to be tightly correlated
with the pulsatile glucocorticoid pattern [2].

Neural signalling to the anterior pituitary is encoded in
the dynamic patterns of hypothalamic peptides released
into the hypophyseal portal vessels. This has led to the
basic hypothesis that there exists a neural oscillator
generating pulsatile bursts of CRH/AVP secretion, in
turn driving pulsatile secretion of ACTH and glucocor-
ticoids; a concept that bears strong similarity to the
tightly correlated pulsatile secretion of gonadotrophin-
releasing hormone and luteinizing hormone [21].
Indeed, pulsatile patterns of CRH and/or AVP secretion
have been observed at the median eminence of the rat
[22] and in the hypophyseal-portal circulation of the
sheep [23]. In light of these data, mathematical models
of the HPA axis have been developed that incorporate
pulsatile hypothalamic activity, and these have been
analysed to wunderstand how hypothalamic-driven
pulsatility in the system is regulated by glucocorticoid
feedback acting over multiple sites and time do-
mains [24,25].

To date, there has been relatively little biological
description of the neural oscillator mechanism(s)
involved in controlling PVN activity and the pulsatile
secretion of CRH and AVP, and this is perhaps the main
reason for the lack of modelling impetus in this area.

Ex vivo studies demonstrating episodic CRH release
from cultured hypothalamic explants from the macaque
suggest that an oscillator mechanism resides within the
hypothalamus [26]. Ultradian bursts of multi-unit
neuronal activity have been observed within the SCN
of the hamster [27], but ultradian HPA activity is
maintained following SCN loss-of-function [16]. Within
the PVN itself, CRH-dependent microcircuits of
excitatory and inhibitory feedback connections have
begun to be characterised [28], and as experimental
investigations continue to shed light on the regulatory
mechanisms within this neuronal population, mathe-
matical investigation into their potential role in gener-
ating and regulating CRH/AVP pulsatility will
hopefully follow.

Another hypothesis, which has been proposed and
explored primarily through mathematical modelling, has
been that the negative feedback action of glucocorti-
coids on the system can cause it to become dynamically
unstable, giving rise to ultradian oscillations in secretory
activity. In this scenario, the system as a whole would
function as a pulse generator. Ultradian oscillations have
been explored through systems of differential equations
in which variables describe the overall secretory activity
of an entire cell population; mathematical analysis of
these “black box” models of the HPA axis has shown
that an ultradian oscillation can indeed arise from
negative glucocorticoid feedback in the system. Most
models have considered negative glucocorticoid feed-
back at the level of both the hypothalamus and the
anterior pituitary, and it is this dual-feedback mecha-
nism that generates the system-level ultradian oscilla-
tion [29].

A key feature of dual-feedback models is that the CRH,
ACTH and glucocorticoid oscillations are generated at
the same frequency. However, some experimental
studies have found a lack of tight concordance between
basal CRH/AVP secretion and ACTH and glucocorticoid
pulsatility [23], as well as a lack of sensitivity of CRH
pulsatility to glucocorticoid withdrawal or dexametha-
sone treatment [26,30]. This suggests that hypotha-
lamic pulsatility may be sustained independently of
glucocorticoid feedback, and that ultradian activity in
the pituitary-adrenal system may also be regulated by
mechanisms independent from hypothalamic control.
This concept has been explored in principle using a
qualitative mathematical model of the pituitary-adrenal
system incorporating glucocorticoid feedback at the pi-
tuitary mediated via GR and driving it with a constant
pattern of CRH/AVP [31]. Numerical analysis of this
model has suggested that the feedforward—feedback
interaction between the pituitary and adrenal can sup-
port endogenous ultradian oscillations at a physiological
frequency. These theoretical predictions have subse-
quently been confirmed in vivo in the rat [32], lending
further support to the existence of a sub-hypothalamic
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pituitary-adrenal oscillator. It remains to be fully
established how hypothalamic pulsatility and the
pituitary-adrenal oscillator interact to control physio-
logical patterns of glucocorticoids.

Electrical oscillations in corticotroph cells
Work suggesting that feedforward and feedback in-
teractions between the pituitary and adrenal can give
rise to ultradian oscillations in the system implies that
the corticotroph cells of the pituitary play a central role
in controlling the dynamics of the system: these cells
must integrate the dynamic output from the hypothal-
amus and the oscillatory activity generated within the
pituitary-adrenal system. Mathematical models of
corticotroph activity have focused on describing the
mechanisms of action potential firing, primarily through
the Hodgkin-Huxley formalism. In particular, systems of
ordinary differential equations describing several ionic
currents present in these cells have been used to
describe their spontaneous and secretagogue-induced
electrical activity.

Action potentials in corticotrophs are calcium-
dependent and associated with rises in intracellular
calcium concentration [33]. Early models [34,35]
include a central role for L-type calcium currents (Ig,.1,)
and to a lesser extent for T-type, in the generation of
action potentials. While these models mainly focus on
the central role of calcium currents, they also account for
potassium currents. These include the delayed-rectifier
potassium channels (Ig 4;) and the voltage and calcium-
activated (Ix—c,) large conductance potassium (BK)
and small conductance potassium (SK) channels.

The role of potassium channels has been explored in
detail in later models, specifically for analysing
secretagogue-induced firing [36,37]. These models
explore the role of CRH, AVP and glucocorticoids in
shaping the electrical activity of corticotrophs. At rest,
corticotrophs display heterogeneous firing behaviour;
most corticotrophs fire low-frequency single action po-
tentials, while some display higher frequency firing and
‘pseudo-plateau bursting’ [36,38]. CRH increases firing
frequency through protein kinase A (PKA)-mediated
phosphorylation of L-type channels. This increase in
frequency is accompanied by a switch in firing from
single spikes to pseudo plateau bursting, a pattern
thought to be more efficient for the secretion of hor-
mones from pituitary cells [39].

BK channels play a central role in mediating the
spiking-to-bursting switch. CRH reduces BK currents
in a PKA-dependent manner [36,40]; pretreatment
with glucocorticoids can inhibit this transition, as well
as spontaneous activity, through BK-dependent and
-independent mechanisms [41]. Modelling efforts
focussed on the role of BK have theorised the presence
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of two sub-populations of BK channels (BKe,, and
BK¢,,) distinguished by their spatial association with
L-type calcium channels [36]. It has been assumed
that BKe,r channels represent stress-regulated exon
(STREX)-type channels, while BK-far channels repre-
sent ZERO-type BK channels lacking the STREX exon.
There is currently no experimental proof of the phys-
ical association of these variants with calcium channels
in corticotrophs; however, recent modelling and
experimental results indicate that an increase in the
association between BK and calcium channels and a
change in their activation constant could underlie the
changes in firing activity recorded in chronic
stress [42].

Contrary to CRH, stimulation with AVP only increases
firing frequency without changing the firing pattern
[36], although some reports show AVP-induced bursting
[43]. Whether these differences are methodological or
reflect a prominent heterogeneity in corticotroph
behaviour has not been determined.

Future directions

We have highlighted some of the modelling and exper-
imental approaches that have been used to investigate
the fast and complex dynamics of the HPA axis. These
models have helped to deepen our understanding of the
system’s behaviour, yet many questions remain. Here,
we identify some of the challenges that we believe can
be addressed through a combination of experimental
and modelling approaches informing each other.

It is the case for most models that complexity comes at
the cost of scale; system-wide models consider each of
the compartments of the axis as “black boxes”, while
models exploring the role of molecular components are
generally limited to single cells. Recent improvements
in computing power should allow linking these spatial
scales and defining system-wide models consisting of
individually modelled cells. Such multiscale models may
allow exploration of the impact of changes of single cell
function on system-level dynamics. In addition, they
may enable understanding of the role of cellular het-
erogeneity in the HPA system, which has been experi-
mentally described at the level of electrical activity [38],
calcium responses to CRH and AVP [43,44], and tran-
scriptional activity as highlighted by recent single-cell
RNA sequencing of HPA axis components [45].

The generation of multiscale models will require a deeper
biological understanding of the molecular processes at the
level of single corticotrophs, such as the intracellular
pathways and cellular dynamics controlling the secretion
of ACTH fromvesicles. Understanding how corticotrophs
communicate with each otherand with other pituitary cell
types will enable linking single-cell function to tissue-
level population activity. Functional cellular networks
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have been described for other cell types in the pituitary
[46], but it remains to be demonstrated whether the
distinctive anatomical corticotroph network holds phys-
iological significance [47].

Beyond understanding the “basal” dynamic function of
the HPA axis, mathematical models of this system can
be adapted to explain how its dynamic activity changes
depending on the physiological or environmental
context. This has been explored for conditions such as
acute psychological stress [48] and inflammatory stress
[49,50]. Expanding models of the HPA axis to include
SCN circadian regulation enables the characterisation of
environmental effects such as a disrupted light envi-
ronment [51], and coupling models of the HPA axis with
models of other neuroendocrine systems, such as the
hypothalamic—pituitary—gonadal axis [52], can offer a
mechanistic understanding of the complex dynamic
interplay between them.
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