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Abstract—Electricity being one of the most important 

components behind economic growth in 21st century, accurate 

electricity demand forecast became essential. Now with the 

deployment of smart meters that are capable of providing half-

hour energy usage data comes new opportunities for short-term 

demand forecasting. In this research two statistical timeseries 

models known as the seasonal auto-regressive integrated 

moving average (SARIMA) and with exogenous inputs 

(SARIMAX) are employed to study half-hourly energy demand 

forecast and daily peak forecast capability over a week at half-

hourly interval. The models are tuned and tested on a half-

hourly aggregate level data and individual meters data 

extracted from London smart-meter dataset. The models are 

also cross validated over different seasons to evaluate model 

robustness over different training data size and forecasting 

under different temperature conditions. The SARIMA model 

performed better at consistently forecasting daily-demand 

peaks, while the SARIMAX was overall more accurate as 

compared to the SARIMA at more computational cost. This is 

because of the exogenous temperature variable used in 

SARIMAX which explains some of the demand profile volatility 

due to temperature changes. This also resulted in a better fit for 

the SARIMAX model. The models tested in this paper can 

accurately forecast energy-demand at half-hour intervals and 

daily-peaks for a week-ahead forecast at a regional demand 

profile over different seasonal condition. 
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I. INTRODUCTION 

In 21st century electricity is deemed as one of the primary 
forces behind economic growth and an absolute essential in 
our daily life. Over the last decade with rapid economic 
growth demand for electrical power has increased 
significantly. While UK is expected to see additional growth 
in demand as a result of electrification of portion of heating 
needs, multi-vector interaction between energy, transport and 
waste sector [1]. To address this fast-growing energy demand 
in UK distribution network operators (DNOs) are migrating to 
become distribution system operators (DSOs). As DSOs have 
greater visibility into energy generation and distribution assets 
[2]. This enables DSOs to make the resources economical 
while reducing carbon footprint by contracting services from 
distributed energy resources and renewables developers using 
low carbon generation technologies. However, with access to 
a more distributed grid, generation assets and due to 
variability in outputs from renewable developers, grid 
balancing has become a major concern for UK based DSOs. 
If a distributed grid is not balanced properly, it can lead to 
collapse of the grid with massive rolling blackouts. The 
solution to this problem is to avoid traditional and expensive 
redundancy-based energy system model and designing a smart 
grid. Here, DSOs have access to load forecasts through a 
demand-side management system (DSM) and can actively 
optimise the grid by increasing generation by switching on 

more wind turbines or requesting users to shift/reduce the 
demand. 

Although this was almost impossible in the past, it is 
possible now with implementation of Advanced metering 
infrastructure (AMI). Since 2011, over 19.5 million smart 
meters have been installed in the UK. The high-resolution data 
generated by these smart meters can be used for energy 
demand forecasting [3]. Thus, the models need to be robust 
enough so that it can learn different demand features in 
different seasons from training data and produce accurate 
forecast and demand-peaks for optimisation. A large number 
of studies are carried out historically and in recent years on 
load forecasting which has practical and quantifiable impact 
on efficient power distribution and in-turn on the economy [4], 
[5]. Electricity demand/load-forecasting is a time-dependent 
problem and it is affected by factors such as temperature, 
appliances, occupancy and various other factors, which makes 
it a complex, multi-variate time-series forecasting problem.  

A. Aims and Objectives 

The aim of this paper is to compare two statistical time-
series forecast models with a focus on short-term load 
forecasting (a week ahead) at half-hour interval. Models 
selected in this research are known as SARIMA and 
SARIMAX. The specific research objectives are: 

• Cleaning, analysing and interpolating London smart meter 
data and associated weather data to identify and extract 
significant and meaningful features. 

• Extensive hyper-parameter tuning and multi-step cross 
validation to ensure optimal performance of the models 
without overfitting. 

• Evaluating effects of weather variables (temperature) on 
model forecasting accuracy and performance. 

B. Related Previous Work 

Now a days, due to very high electricity consumption, in 
recent years load forecasting and management systems are 
heavily being researched. This also provides practical and 
quantifiable impact on efficient power distribution and in-turn 
on the economy. The load forecasting methods can be divided 
into two main categories: data-driven or artificial intelligence 
(AI) model based and engineering/physical model based 
techniques. Engineering solutions involve very complex 
mathematical models, large number of system parameters to 
represent physical components. Not to mention that high-level 
of domain expertise is necessary to perform such complex 
model based forecast evaluation. Whereas, the data-driven 
models do not need such complex and detailed parameters and 
expertise. Instead AI models can learn from real-time 
historical smart meter data and also with season effects [6], 
[7]. Electricity demand/load-forecasting is a time-dependent 
problem and it is affected by factors such as temperature, 
appliances, occupancy and various other factors. These factors 



make it a complex, multi-variate time-series forecasting 
problem. Due to this complexity, various exogenous factors, 
strong seasonality combined with missing data and 
uncertainty, long-term forecasting becomes unreliable [8]. As 
a result, in recent years most of the research have been 
concentrated on short-term (day-week ahead) forecasting, 
which are more effective and usable [9]. AI models for smart 
meter can further be divided into three categories: traditional 
statistical models, machine learning (ML) models and deep 
learning (DL) models. Short-term can be hourly, daily or even 
weekly ahead forecasting. 

For energy usage forecasting several statistical models 
have been used. Some of the most commonly used statistical 
models for short-term load forecasting are regression analysis 
[10], state-space model [11], Gaussian mixture model (GMM) 
[12], spatial-temporal model [13], high order Markov chain 
model [14], Kalman filter model [15]. Some research [16] also 
demonstrated the effect of time-resolution on forecast 
accuracy using linear regression models. Researchers have 
also used multiple regression combined with genetic 
algorithm to model short-term electricity demand [17]. 
Backward elimination based regression models which uses 
climatic variables to improve model accuracy has also been 
found effective for energy-demand forecast in for a building 
[18]. GMM, conditional demand model, autoregressive 
moving average (ARMA) models have also been the baseline 
for energy demand forecasting and is widely used [19]. 
However, some statistical models may have limitations or 
assumptions such as the data needs to be stationary, or follow 
normal distribution etc. which may not be optimal for the data 
processing and hyper-parameter tuning of those models.  

Thus, researchers have also used machine learning models 
for demand/load forecasting. ML models like support vector 
regression (SVR) along with meta-heuristic optimization also 
showed great potential in demand forecasting while not 
suffering from the same limitations as traditional statistical 
models [20]. Chen et al. [21] used temperature variable to 
improve performance of the SVR model. Some researchers 
used hybrid wavelet SVM and neural networks to convert the 
time domain data [22]. In recent days, artificial neural 
networks (ANNs) are widely being tested for electricity-
consumption forecasting. ANN models such as multi-layer 
perceptrons (MLPs), recurrent neural networks (RNNs), long-
short-term-memory (LSTM) models for load forecasting have 
shown promising results [23]. However, one of the primary 
limitations of ANNs are, they are all black-box models and are 
not easily interpretable. Neural networks also need larger 
training data than traditional machine learning methods and 
can also be computationally expensive. In this research model 
interpretation has been given importance and therefore 
parametric statistical time-series models have been employed. 
Both SARIMA and SARIMAX are built on the ARMA 
model. However, it does not have the same limitations as 
ARMA model since both the models can capture non-
stationary data with seasonal components. 

II. SMART METER DATA AND METHODS 

The primary objectives of this paper is to test the 
generalisability and robustness of the two statistical time-
series models – SARIMA vs. SARIMAX. Therefore, the 
models are trained on highest-resolution, half-hourly load 
consumption values in KWh at an aggregate and individual 
level. The aggregate and individual data are extracted from the 
London smart meter dataset [24]. After pre-processing the 
data, half-hourly aggregated data was used for tuning and 

validation of the model over different seasons. Then the 
models were tested on the aggregate data. The next sections 
discuss the pre-processing of dataset, two models, and 
performance metrics used for model evaluation. 

A. London Smart Meter Data and Exploratory Analysis 

The dataset used in this study to evaluate the statistical 
time-series models is refactorized version of original dataset 
Smart Meter Energy Consumption Data [24]. We use the 
smart meter energy consumption data available in the dataset 
ranging from November 2011 to February 2014 from 5,567 
London households which were part of low carbon London 
project led by UK Power Networks. The dataset includes 
unique Smart Meter identifier and their respective power 
consumption in kilowatt hour (KWh) in different resolution, 
half-hourly, hourly and daily divided into 110 blocks of 
houses. It also includes hourly and daily weather data from 
London. The blocks are grouped by 18 ACORN groups. 
ACORN is a segmentation tool which categorises the UK’s 
population into demographic types based on socio-economic 
information about the household [25], [26]. According to the 
London Smart meter dataset documentation, A, B, C group 
belongs to affluent achievers’ group. These are middle-aged 
to old people who are financially successful and are of the 
‘baby-boomer’ generation. Here, group A lives in large plush 
mansions where group B lives in large metropolitan 
apartments and group C lives in large, detached houses. These 
groups likely to have high energy-demand which is analysed 
in detail in this section. Historical energy demand data from 
2013-01-01, 00:00:00 to 2014-02-28, 23:30:00 have been 
used due to relatively low missing data and bad timestamps 
compared previous years. 

The aggregate level historical half-hourly energy-
consumption data was calculated and used to train the models. 
The data transformation method is given as: 

  ��́ �  �
� ∑ 	��
�����          (1) 

where,  is the number of smart metres, � is the time lag. 

 
Figure 1. Aggregate level smart meter data over one year (2013) with 
boxplots showing distributions for each month. 

 
The aggregate level data is used to tune, and cross validate 

the models. This dataset is also used to evaluate seasonal 
temperature effects on forecast by splitting the training sets (3, 
6, 12 months) over Spring, Summer and Winter. In pre-
processing stage first, the meter IDs with lowest missing data 
are selected. Then the meter IDs with over unusually high 
(20,000 kWh) or unusually low (2,000 kWh) consumption are 
removed. Then the houses with zero mean and zero standard 
deviation are filtered out. And lastly meter IDs with less than 
3 kWh consumption for more than one month are filtered out 



as well. To test the effects of weather data on forecasting 
accuracy, hourly temperature data from London smart-meter 
dataset is used in SARIMAX model as an exogenous input. 
However, the temperature data, provided in the dataset is 
hourly observations of temperature in London. This is 
reindexed at half-hour interval and linearly interpolated to be 
used in this research. For data extraction, cleaning and 
interpolation of the aggregate data the Pandas library was used 
[27] as shown in Figure 1. 

B. Time-series Model Description 

In this paper two statistical models are used for short-term 
demand forecasting viz. seasonal autoregressive moving 
average (SARIMA) and seasonal autoregressive moving 
average with exogenous variable (SARIMAX) [28]. The 
exogenous variable used in SARIMAX model is the 
temperature data as shown in Figure 2. Both models belong to 
the traditional statistical timeseries model category. The 
SARIMA 	�, �, �
	�, �, �, �
  is based on Box-Jenkins 
ARMA 	�, �
  model. However, unlike the ARMA 	�, �
 
model, SARIMA 	�, �, �
	�, �, �, �
  is not restricted to 
stationary data. It can model non-stationary data due to its 
additional ∆�  differencing term. This model also takes into 
account seasonality by applying ARIMA 	�, �, �
 to lags that 
are integer multiples of seasonality. On contrary, the 
SARIMAX 	�, �, �
	�, �, �, �
  model takes additional 
exogenous variables �� with timestamp � being same for both 
�� and the timeseries �� . 

 
Figure 2. Temperature data for the SARIMAX model exogenous input. 

C. Performance Metrics 

Evaluation of the model performance is carried out by 
calculating forecasting error, which is the difference between 
actual and forecast values. Out of all the different error metrics 
a combination of scale dependent/independent error, 
percentage error and goodness of fit metrics are selected. 
Performance metrics used in this study are Akaike 
Information Criteria (AIC), coefficient of determination 	��
, 
root mean squared error (RMSE). RMSE is a scale-dependent 
metrics as a result the errors are on the same scale as the data 
[29]. Hence, it can be used to compare model performance 
over the same time-series. If ��  is the forecast and ��  is the 
ground-truth at time � over  number of test observations, the 
RMSE and MAE can be represented as: 

  RMSE 	�
 �  !∑ 	"#$%#
&'#()
�               (2) 

Two additional performance metrics used in this study are 
AIC and ��  to assess relative fit quality of the statistical 
models used in this study. Akaike Information Criteria (AIC) 
is an extension of maximum likelihood in multi-model 
situation. The AIC evaluates both risk of underfitting and 
overfitting of a model. If *  is the number of estimated 
parameters in the time-series and + is the maximum value of 
the likelihood function, AIC can be expressed as: 

  AIC � 2* 0 2 ln	+
        (3) 

Coefficient of variation or �� represents the proportion of 
variance of �345�  explained by the independent variables 

��465. Thus, �� can be used as an indication for how well the 
model is going to predict unseen variables through proportion 
of explained variance. Hence, �� is used as a goodness-of-fit 
indicator. �� can be calculated as: 

  �� �  ∑ 	"#789$":79;
'<()
&

∑ 	"#789$ "=#789 
'<()
&        (4) 

 

III. SIMULATIONS AND RESULTS 

We first develop and tune both the chosen statistical time-
series models to ensure best performance. Then we evaluate 
the model performance using the aggregate smart meter data. 
The models are implemented primarily using three Python 
libraries, Statsmodel, Scikit-learn and pmdarima [30], [31]. 
Model building, visualisation and forecasting is conducted on 
MacBook Pro with an Intel Core i7 2.9 GHz and 16 GB 
memory. While hyper-parameter tuning, and cross-validation 
were run on Windows 10 PC with an AMD Ryzen 7 3.6 GHz 
and 64 GB memory parallelised over 12 CPU cores. Integrated 
development environments used for this work are Jupyter 
notebook, PyCharm, Spyder using Python version 3.7. 
Tuning, forecasting results with and without exogenous 
temperature variable are discussed next. 

A. Model Selection and Hyper-parameter Tuning  

For both SARIMA and SARIMAX models, there are 
seven parameters 	�, �, �
	�, �, �, �
 , divided into two 
categories as model order 	�, �, �
  and seasonal order 
	�, �, �, �
 . The model order �  is estimated through 
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and 
Augmented Dickey-Fuller (ADF) test as:  

KPSS � @A$� ∑ BC��D��� E/GC�        (5) 

where, BC� �  ∑ HIJ,�J��  HI�  is residual, GC�  is estimation of 

variance of H� using HI�. 

ADF@Δ"#E �  N O P� O Q��$� O R�Δ"#S) O R�Δ"#S& O ⋯ (6) 

where, ��  is the data we are performing regression on. 

 
Figure 3. ACF/PACF plots for parameter estimation (time-lags on x-axis). 

The KPSS test is designed to complement unit-root test 
such as ADF to determine the �  parameter. The null 
hypothesis for KPSS test is the data is stationary while the null 
hypothesis for ADF test is that the data is non-stationary. To 
reject the null-hypothesis the p-value should be less than 0.05. 
The seasonal �  parameter is estimated using Osborn-Chui-
Smith-Birchenhall (OCSB) test which is similar to the ADF 



test. The null hypothesis of OCSB test is that timeseries 
contains a seasonal unit root. 

The model order 	�, �
  and seasonal order 	�, �
  is 
initially estimated through auto-correlation function (ACF) 
and partial auto-correlation function (PACF) plot using Box-
Jenkins methodology as shown in Figure 3. From the PACF 
plot in Figure 4 for the differenced data AR( � ) can be 
determined at � � 2, while the correlation around lag 47 can 
be interpreted as a seasonal corelation with seasonal � � 1. 
Thus, all combinations for ARMA 	�, �
 ranging from 0 to 3 
and seasonal order 	�, �
 ranging between 0 to 2 are tested to 
find the best parameters for both SARIMA and SARIMAX 
model. The best models above with highest R2 value are then 
selected for cross validation to identify the best SARIMA and 
SARIMAX model as shown in Table I.  

 
Figure 4. ACF/PACF plots with 1st order differencing for parameter 
estimation (time-lags on the x axis). 

 
Figure 5. Hyper-parameter tuning of SARIMA model. 

 
Figure 6. Hyper-parameter tuning of SARIMAX model with exogenous 
temperature variable. 

B. Cross-Validation Results 

Size of training set can also be very influential for 
predictive accuracy. If a model is trained on inadequate 
training data, the model might be too simple and never learn 
complex seasonal features. While large training sets with 
redundant features might result in very complex models with 

high computation time. Thus, after parameter tuning a cross-
validation was performed to understand model performance 
and accuracy depending on the length of training sets and 
forecasting season. However, for time-series forecasting the 
usual k-fold cross-validation could not be applied. This is due 
to the temporal correlation between time-lags and presence of 
non-stationarity and seasonality. Thus, for this research a 
modified rolling-window cross validation method was used. 
Where training window is varied between three, six, twelve 
months of half-hourly aggregate energy consumption data for 
a-week-ahead forecast. The cross-validation results are 
shown in Figure 7 and Table II using AIC, RMSE and R2.  

 
(a)            (b)               (c)  

Figure 7. Model cross-validation for 3, 6, 12 months. (a) Abs. AIC Score, (b) 
RMSE, (c) R2. SA1: SARIMAX (2, 1, 3) (2, 1, 2), SA2: (2, 1, 3) (1, 1, 1), 
SX1=SARIMAX (2, 1, 3) (1, 1, 1), SX2: SARIMAX (3, 1, 2) (1, 1, 1). 

TABLE I.  BEST PARAMETERS (P, D, Q) OF THE THE TWO MODELS 

Model Order 

Index 

Model 

Order 

	V, W, X
 

Seasonal 

Order 

	Y, Z, [, \
 

Abs. AIC R2 

SARIMA 107 	2, 1, 3
 	2, 1, 2, 48
 139623.84 0.92 

103 	2, 1, 3
 	1, 1, 1, 48
 139938.46 0.92 

SARIMAX 103 	2, 1, 3
 	1, 1 ,1, 48
 140090.92 0.93 

130 	3, 1, 2
 	1, 1 ,1, 48
 140127.10 0.93 

 
From Figure 7, the AIC score improves in proportion with 

training set size and R2 also follows a similar pattern with 
marginal improvement between the training sets. This is 
relatively more evident on SARIMAX model as compared to 
the SARIMA model. In terms of daily peak demand forecast, 
both models trained on three, six months data performed 
better than the models trained on twelve months training data. 
Similar trends can be observed in overall accuracy (RMSE) 
as well. This trend can be explained by the effect of 
temperature on forecast error. With lower temperature 
demand profiles volatility increases which results in more 
forecasting error. Models trained on three, six months are 
forecasting over spring and summer time when temperature 
is relatively higher compared to models trained on twelve 
months data which is forecasting over the winter. Also, 
models trained on limited data might learn bias or variance so 
selecting models on overall accuracy is not a good strategy. 
This is why R2 and AIC are primarily used for model selection 
in this research where R2 shows the variance of ground truth 
explained by the forecast and AIC ensures the model does not 
overfit the data.  

TABLE II.  CROSS-VALIDATION RESULTS FOR THE TWO MODELS 

Model Order 

Index 

Model 

Order 

	V, W, X
 

Seasonal 

Order 

	Y, Z, [
 

Abs. 

AIC 
R2 RMSE 

SARIMA 107 	2, 1, 3
 	2, 1, 2, 48
 84010.17 0.91 0.00035 

103 	2, 1, 3
 	1, 1, 1, 48
 84375.40 0.91 0.00035 

SARIMAX 103 	2, 1, 3
 	1, 1 ,1, 48
 84453.32 0.84 0.00062 

130 	3, 1, 2
 	1, 1 ,1, 48
 84422.38 0.90 0.00034 



C. Model Performance Evaluation  

In this section we have selected the best SARIMA and 
SARIMAX models based on the procedure discussed in the 
previous section. The models are selected mainly based on 
the R2 and AIC score. Where R2 is the same, the AIC score is 
used as secondary selection criteria. The best models are 
described in Table III. 

TABLE III.  TUNED MODEL PROFILES, TRAINING SIZE AND TIME 

Model Order  
	`, a, b
 

Seasonal 

Order 

	Y, Z, [, \
 

Training 

Data Size (in 

Months) 

Training Time 

(minutes over 

single core CPU) 

SARIMA 	2, 1, 3
 	1, 1, 1, 48
 12  68 

SARIMAX 	3, 1, 2
 	1, 1, 1, 48
 12  92 

 
The best models are then trained on twelve months 

aggregate level data and tested on one week ahead out of 
sample forecast at half-hour resolution to measure the 
accuracy. The generalizability of the models tested on three 
individual meters selected from three different socio-
economic classifications ACORN-A, B, C.  

1) SARIMA Fit Statistics and Forecast Results 

Best parameters estimated through parameter tuning and 

cross validation are order 	�, �, �
: 	2, 1, 3
 and seasonal 

order 	�, �, �
 : 	1, 1, 1
  and seasonal S: 48. The week 
ahead out of sample forecast result are shown in Figure 8. A 
zoomed version in the predicted part is shown in Figure 9. 

 
Figure 8. SARIMA week-ahead forecast with training and testing data. 

It is evident that the model is performing well, as the 
forecast very closely follows the ground truth and the 
departures are mostly within 95% confidence. The model 
does tend to underestimate the daily peak. However, the 
margin of error is very low over a week ahead prediction. The 
way SARIMA works, it fits separate ARIMA components to 
lags that are integer multiples of seasonality and differenced 
data. Now there is some evidence, fitting a higher order 
ARIMA might cause common factor problem and risk of 
overfitting. To ensure that the model is not overfitting, and it 
is extracting adequate temporal features from the dataset the 

model has been evaluated using a set of residual 	c� � �� 0
�I�
 diagnostic plots as shown in Figure 10.  

 
Figure 9. SARIMA week-ahead forecast for test data (zoomed Figure 8). 
 

The correlogram plot shows no significant correlation 
between the residual and the standardized residuals closely 
following close to the delta function. Normal Q-Q plot and 
histograms also show the residual is closely following a 
normal distribution with mean close to 0. This indicates that 
the model is performing well at extracting features from the 
data without overfitting and without learning significant bias. 
In addition, the ground truth vs forecast regression also fits a 
straight line. This demonstrates the model fit quality is good. 

 

 
Figure 10. SARIMA residual diagnostics. (a) standardised residual, (b) 
histogram of residuals with estimated density, (c) normalised Q-Q plot (d) 
correlogram of residuals, (e) predicted vs ground truth regression. 

2) SARIMAX with Exogenous Temperature Data 

Forecast and Fit Statistics 

Through cross-validation and hyperparameter tuning, the 
best model SARIMAX model was selected with order 
	�, �, �
: 	3, 1, 2
 and seasonal order 	�, �, �
: 	1, 1, 1
 
and the seasonality S: 48. The week ahead out-of-sample 
forecast a half-hour interval are shown in Figure 11 for both 
training and testing data with a zoomed version in Figure 12. 

 
Figure 11. SARIMAX week-ahead forecast with training and testing data. 



 
Figure 12. SARIMAX week-ahead forecast for test data (zoomed Figure 11). 

 

 
Figure 13. SARIMAX residual diagnostics plots. (a) standardised residual, 
(b) histogram of residuals with estimated density, (c) normalised Q-Q plot, 
(d) correlogram of residuals, (e) predicted vs ground truth regression. 

 
Similar to the previous model, SARIMAX is also 

underestimating the daily peak over a week ahead forecast. 
Except for some variations between 11am and 4pm, overall 
the model is closely following daily demand profiles, mostly 
within 95% confidence intervals. Residual diagnosis reveals 
that SARIMAX does not show sign of bias and overfitting. 
The correlogram shows the model is effective at extracting 
temporal features from the smart meter data. The histogram 
shows the residual closely following a Gaussian distribution 
which means the model is optimally learning features from 
the training dataset. In addition, the ground truth vs forecast 
regression also fits a straight line which demonstrates the 
model fit quality is good. 

D. Discussions 

The best models were selected through hyper-parameter 
tuning and cross validation resulted in accurate half-hourly 
forecast over global consumption profile. The tuned SARIMA 
and SARIMAX models has forecast error of RMSE 0.00053, 
0.00049 KWh respectively as shown in Table IV along with 
other criteria and associated model parameters. While in 
terms-of week-ahead daily demand-peak forecast the models 

do tend to underestimate. DSOs can integrate these 
forecasting techniques for week-ahead prediction at half hour 
interval and daily demand-peak forecast at a regional level. 
Because the global mean profile used in this research 
resembles regional demand profiles used in other research. As 
evident from the diagnostic plots, both statistical models are 
able to effectively learn the temporal features from the global 
profile. Although the dataset includes 5,567 houses, 
increasing the house number does not necessarily mean model 
accuracy will increase. To boost model performance, the 
additional data must have new features that the model can 
learn. 

TABLE IV.  SARIMA AND SARIMAX ERRORS ON THE TEST SET 

Model Order 

Index 

Model 

Order 

	V, W, X
 

Seasonal 

Order 

	Y, Z, [
 

Abs. AIC R2 RMSE 

SARIMA 103 	2, 1, 3
 	1, 1, 1, 48
 139938.46 0.92 0.00054 

SARIMAX 130 	3, 1, 2
 	1, 1 ,1, 48
 140127.1 0.93 0.00049 

 
According to recent research, lower temperature can cause 

more load variations which makes forecasting difficult during 
those weeks. This is evident in the reported RMSE where the 
models reported relatively low error during UK summer 
month July, as compared to the spring and winter months 
(April and December) which are relatively colder months. 
Although these variations could not be explained in SARIMA, 
the SARIMAX can translate some of these variations due to 
exogenous temperature input. This is reflected through higher 
R2 of 0.93 achieved by SARIMAX model as compared to 0.92 
for the SARIMA model. However, this comes at additional 
computational cost of 24 minutes more processing time for a 
single core CPU. However, the models tuned on global profile 
did not perform well in forecasting individual meters selected 
from three different socio-economic groups ACORN-A, B, C. 
The individual datasets show very high variations between the 
each other’s load profile and also shows high-level of 
volatility of the demand data. As a result, the models were not 
sensitive enough to learn those features in individual meters. 

IV. CONCLUSIONS 

This parametric time-series modelling study investigates 
the comparative performance of two statistical timeseries 
models called SARIMA and SARIMAX for short-term 
(week-ahead) load forecasting at half-hourly time resolution. 
These models are trained on twelve months of historical 
London smart-meter power consumption data. 
Generalisability of the model is tested on three different 
levels, on global mean, different seasons and individual house 
demand profiles and tested on respective test sets. The 
significant findings from this research are summarised as:  

• When optimised both SARIMA/SARIMAX models 
perform well and can provide accurate forecasting for 
aggregate demand at a regional level. 

• Adding more data does not mean more accurate model 
performance, unless those additional data comes with 
new features that the model can learn. 

• Cross validation over different seasons also reveal that, 
low temperature makes the prediction difficult. 



• SARIMAX model can partially overcome this issue with 
additional exogenous temperature variables that 
explained some of the variations. This resulted in lower 
overall forecast error during cross validation. 

• However, the SARIMA model performed relatively 
accurately as compared to the SARIMAX model in 
predicting daily demand peak. 

• While the SARIMA model is simpler and more accurate 
at daily peak demand forecasting, the SARIMAX is 
relatively more accurate overall, but at additional 
computational cost. 

• Although the models are generalisable over different 
seasonal forecast, it is not generalisable over different 
demand profile from different smart meters. 

Future research on short-term load forecasting can be 
improved by adapting these time series models to the 
individual demand profile clusters. The demand profiles can 
be identified using clustering of individual meters as the 
ACORN group is not a good classifier for different demand 
profiles. To make the predictors more accurate over all the 
houses in a profile cluster, more generalisable models such as 
the gradient boosting regression tree (GBRT) or LSTM can be 
used in future research. Similar season/day-based forecasting 
can also be used to improve predictive accuracy over different 
seasons. 
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