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Abstract
The Ariel Space Mission aims to observe a diverse sample of exoplanet atmospheres
across a wide wavelength range of 0.5 to 7.8 microns. The observations are orga-
nized into four Tiers, with Tier 1 being a reconnaissance survey. This Tier is designed
to achieve a sufficient signal-to-noise ratio (S/N) at low spectral resolution in order
to identify featureless spectra or detect key molecular species without necessarily
constraining their abundances with high confidence. We introduce a P-statistic that
uses the abundance posteriors from a spectral retrieval to infer the probability of a
molecule’s presence in a given planet’s atmosphere in Tier 1. We find that this method
predicts probabilities that correlate well with the input abundances, indicating consid-
erable predictive power when retrieval models have comparable or higher complexity
compared to the data. However, we also demonstrate that the P-statistic loses repre-
sentativity when the retrieval model has lower complexity, expressed as the inclusion
of fewer than the expected molecules. The reliability and predictive power of the P-
statistic are assessed on a simulated population of exoplanets with H2-He dominated
atmospheres, and forecasting biases are studied and found not to adversely affect the
classification of the survey.
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1 Introduction

During the past decade, the number of exoplanet discoveries has increased expo-
nentially, bringing the total number of confirmed exoplanets to more than 5000 by
mid-2022. Numerous space missions are contributing to the effort of detecting new
exoplanets, such as Kepler [1, 2], TESS [3], CHEOPS [4], PLATO [5], GAIA [6],
together with ground instrumentation such as HARPS [7], WASP [8], KELT [9], and
OGLE [10]. Over time, the field emphasis has gradually expanded from the determi-
nation of bulk planetary parameters to the search for a deeper understanding of the
true nature of exoplanets and their formation-evolution histories.

Multiband photometry and spectroscopy of transiting exoplanets are currently the
most promising techniques for characterizing the composition and thermodynamics
of exoplanet atmospheres [11–30], as they allow us to effectively separate the signal
of the planet from that of its host star. Observations in the near- to mid-infrared can
probe the neutral atmospheres of exoplanets to study the signal from the rovibrational
transitions of molecules [15, 31].

Current instrumentation has enabled this kind of atmospheric characterization only
for a few tens of planets orbiting close to their host stars over a limited wave-
length range [e.g.17, 19, 32, 33]. A considerable contribution to exoplanetary science
will come from the James Webb Space Telescope (JWST ), launched in December
2021 [34], and Ariel. JWST provides broadband spectroscopy in the range of 0.6
to 28.5 micron of the electromagnetic spectrum, sufficient to detect all molecular
species [31, 35–39].

1.1 Ariel and its Tiers

TheAtmospheric Remote-Sensing Infrared Exoplanet Large-survey,Ariel, will launch
in 2029 as the M4 ESA mission of the Cosmic Vision program [40, Ariel Definition
StudyReport1].Arielwill conduct the first unbiased survey of a statistically significant
sample of approximately 1000 transiting exoplanet atmospheres in the 0.5–7.8 μm
wavelength range. Three photometers (VISPhot, 0.5–0.6 μm; FGS1, 0.6–0.80 μm;
FGS2, 0.80–1.1 μm) and three spectrometers (NIRSpec, 1.1–1.95 μm and R ≥ 15;
AIRS-CH0, 1.95–3.9μm and R≥ 100; AIRS-CH1, 3.9–7.8μm and R≥ 30), provide
simultaneous coverage of the whole spectral band. This broad spectral range encom-
passes the emission peak of hot and warm exoplanets and the spectral signatures of
the main expected atmospheric gases such as H2O, CO2, CH4, NH3, HCN, H2S, TiO,
VO [e.g.15, 31]. Ariel will allow us to comprehensively understand the formation-
evolution histories of exoplanets as well as to extend comparative planetology beyond
the boundary of the Solar System.

After each observation, the resulting spectrum from each spectrometer is binned
during data analysis to optimize the signal-to-noise ratio (S/N). Therefore, by imple-
menting different binning options, the mission will adopt a four-Tier observation

1 https://sci.esa.int/web/ariel/-/ariel-definition-study-report-red-book
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strategy, expected to produce spectra with different S/N to optimize the science return.
Tier 1 is a shallow reconnaissance survey created to perform transit and eclipse spec-
troscopy on all targets to address questions for which a large population of objects
needs to be observed. Tier 1 spectra have S/N ≥ 7 when raw spectra are binned into a
single spectral point in NIRSpec, two in AIRS-CH0, and one in AIRS-CH1, for a total
of seven effective photometric data points. A subset of Tier 1 planets will be further
observed to reach S/N≥ 7 at higher spectral resolution in Tier 2 and Tier 3 for detailed
chemical and thermodynamic characterization of the atmosphere. Tier 4 is designed
for bespoke or phase-curve observations [41].

1.2 Detectingmolecules in Tier 1 spectra

Among the main goals of Tier 1 observations is to identify planetary spectra that
show no molecular absorption features (because of clouds or compact atmospheres)
and to select those to be reobserved in higher Tiers for a detailed characterization of
their atmospheric composition and thermodynamics. Tier 1 observations, however,
have a much richer information content even though the combination of S/N and
spectral resolution might not be adequate to constrain chemical abundances with high
confidence using retrieval techniques.

Adapting existing data analysis techniques or developing new methodologies can
be essential to extract all relevant information from the Tier 1 data set. In a previous
study, [42] were successful in demonstrating, using color-color diagrams, that Tier
1 observations can be used to infer the presence of molecules in the atmospheres of
gaseous exoplanets, independently from planet parameters such as mass, size, and
temperature. However, their method has an estimator bias that depends on the magni-
tude of the instrumental noise; a detailed characterization of instrumental uncertainties
is required to remove the estimator bias before it can be used for quantitative predic-
tions. In this follow-up paper, we develop a new method that is both reliable and
unbiased to address the following question: can we use Tier 1 transmission spectra
to identify the presence of a molecule, with an associated calibrated probability?.
Hence, these calibrated probabilities can also be used to inform the decision-making
process to select Tier 1 targets for re-observation in Ariel’s higher Tiers for detailed
characterization.

Section 2 outlines the methodology used in this analysis. Section 2.1 describes our
data analysis strategy for detecting a molecule in these spectra. Section 2.2 details our
experimental data set, including the planetary population, forward model parameters,
atmosphere randomization, and noise estimation. Section 2.3 summarizes the spectral
retrievals performed, discussing the optimization algorithm and the priors used. Sec-
tion 2.5 describes the data analysis tools used to evaluate the probability forecasts of
the method. Section 3 details the results obtained in terms of forecast reliability (Sec-
tion 3.1), predictive power (Section 3.2), and bias of the abundance estimator utilized
(Section 3.3). Finally, Section 4 discusses all the results, and Section 5 summarizes
the main conclusions of this analysis.
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2 Methods

Tier 1 transmission spectra contain sufficient information to infer the presence of
several atmosphericmolecules [42], but Tier 1 observations are in general non-ideal for
quantitative spectral retrievals in terms of molecular abundances, as they are required
to achieve a S/N≥ 7when binned in only seven effective photometric data points in the
0.5-7.8 μm wavelength range [41]. Abundance posterior probabilities from retrievals
can however still be informative and here we develop a new method to identify the
presence of molecules in Tier 1 transmission spectra starting from these posteriors.

2.1 Analysis strategy

Given a marginalized posterior distribution of a molecular abundance, we compute an
empirical probability, P , that the molecule is present in the atmosphere of a planet,
with an abundance above some threshold, TAb, as:

P �
∫ ∞

TAb

P(x)dx (1)

where P is the marginalized posterior distribution and x represents the abundance
values. Thus, the predicted P depends on the assumed atmospheric model and the
selected abundance thresholdTAb. If the assumed atmospheric model is representative
of the observed atmosphere, then a clear correlation (above noise) between P and the
true abundance in Tier 1 data implies that P can be used to identify the most likely
spectra that contain a molecule, providing a preliminary classification of planets by
their molecular content. Thus, this P-statistic can be considered robust [43], even
when P(x) is too broad to constrain the abundance.

To test whether this method is sensitive enough, we need to simulate transmission
spectra as observed in Tier 1, using an atmospheric model that includes a certain
number of molecules. Then, we need to perform a spectral retrieval with the same
atmospheric model and compare each input molecular abundance with the predicted
P corresponding to that molecule. The test is successful if, for an agreed TAb, we
recover a high P for each large input abundance and a low P for each small input
abundance. To understand how well the method behaves under conditions similar to
the Ariel reconnaissance survey, we repeat this test on a large and diverse planetary
population.

In this study, we employ a simulated population of approximately 300 transmission
spectra of H2-He gaseous planets, which contain CH4, H2O, and CO2 trace gases
with randomized input abundances. Additionally, we introduce NH3 with randomized
abundances as a nuisance parameter since its spectral features overlap with those
of water and other molecules. We utilize NH3 to test the P-statistic’s efficacy and
investigate the robustness of its predictions under various assumptions, such as the
exclusion of NH3 from retrievals or the inclusion of additional molecules not present
in the population.

Therefore, we can study whether this method provides reliable predictions under
less favorable conditions when the assumed model is not fully representative of the
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observed atmosphere. This might provide some insight into how robustly the method
can reveal the presence of a molecule in a real observation when the atmosphere is
unknown. For this, we add or remove molecules from the retrieval model (hereafter,
“fit-composition”)with respect to the simulated composition. Then, we perform differ-
ent spectral retrievals, that use different fit-compositions, and compare the predictions
obtained from the P-statistic with the input abundances.

2.1.1 Model exploration

We consider three cases in our analysis. In the first case (referred to as R0), we use
an atmospheric model that includes CH4, H2O, CO2, and NH3 as trace gases, which
matches the composition used in the forward model generation of the population.

In the second case (referred to as R1), we consider a fit-composition that includes
only CH4, CO2, and H2O, omitting NH3. In this case, there is a possibility of inade-
quate representation of the data because NH3’s molecular features could overlap with
the observed features of other molecules (hence its adoption as a nuisance), particu-
larly H2O [31]. As a result, the retrieved values of P may not accurately reflect the
input abundances of H2O, leading to decreased reliability of the predictions.

In the third case (referred to as R2), we expand the fit-composition beyond the
input composition by including also CO, HCN, and H2S. It should be noted that the
spectral features of these additional molecules could also overlap with the observed
features of the other molecules. For instance, CO and CO2 exhibit a spectral overlap
around 4.5μm. Hence, even in this case, obtaining reliable predictions of the input
composition may not be obvious.

Table 1 provides a summary of the molecules included in the fit-composition for
each retrieval. For more detailed information on the retrievals performed, please refer
to Section 2.3.

2.2 Experimental data set

As a simulated population, we use a planetary population generated using the Alfnoor
software [42, 44]. Alfnoor is a wrapper of TauREx 3 [45] and ArielRad [46]. Given a
list of candidate targets and a model of the Ariel payload, it automatically computes
simulated exoplanet spectra as observed in each Ariel Tier.

Specifically, we use a subset of the POP-I planetary population of [42]. POP-I
consists of 1000 planets from a possible realization of the Ariel Mission Reference
Sample (MRS) of [41]. That MRS (hereafter, MRS19) comprises known planets in
2019 fromNASA’s Exoplanet Archive and TESS forecast discoveries. Here we ignore

Table 1 Molecules included in
the fit-composition for each
retrieval

Retrieval CH4 CO2 H2O NH3 CO HCN H2S

R0 � � � �
R1 � � �
R2 � � � � � � �
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the TESS forecasts, thus obtaining a sub-population of around 300 planets, that we
label POP-Is. Using POP-Is planets ensures that, in principle, we can compare our
results with those of [42].

Figure 1 shows that POP-Is comprises a diverse sample of planets mostly with
large radii (� 5 R⊕), short orbital periods (≤ 4/5 days), warm to hot equilibrium
temperatures (500 – 2500 ◦K ) and stellar hosts with different magnitudes in the K
band of the infrared spectrum (8 – 12mK ). Compared to the parameter space sampled
by the entire POP-I, this data set has more occasional statistics on smaller and longer-
period planets around brighter stars.

The detailed properties of POP-I (and therefore POP-Is) are discussed in [42] and
briefly summarized here. The forwardmodel parameters are randomized to test diverse
planetary atmospheres. The baseline atmosphere is a primordial atmosphere filledwith
H2 and He with a solar mixing ratio of He/H2 = 0.17. The vertical structure of the
atmosphere comprises 100 pressure layers, uniformly distributed in log space from
10−4 to 106 Pa, using the plane-parallel approximation. The equilibrium temperature
of each planet is randomized between 0.7 × Tp and 1.05 × Tp, where Tp is the
equilibrium temperature of the planet listed in MRS19; the atmospheric temperature-
pressure profile is isothermal. Constant vertical chemical profiles are added for H2O,
CO2, CH4, and NH3, with abundances randomized according to a logarithmic uniform
distribution spanning 10−7 to 10−2 in Vertical Mixing Ratios (VMR). Randomly
generated opaque gray clouds are also added with a surface pressure varying from
5×102 to 106 Pa to simulate cloudless to overcast atmospheres. Table 2 summarizes

Fig. 1 Parameter space distribution of the POP-Is planetary population used in this work, which comprises
about 300 selected planets from MRS19. The horizontal axis reports the planetary orbital period in days;
the vertical axis reports the stellar magnitude in the K band. Each data point represents a planet; the symbol
size is proportional to the planetary radius in Earth’s radii; the symbol color shows the expected planetary
equilibrium temperature. Light blue data points in the background show the entireMRS19/POP-I parameter
space for reference
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Table 2 Forward model
randomized parameters in POP-I

Parameter Unit Range Scale

TP / TP;MRS19
◦K 0.7; 1.05 linear

CH4 VMR 10−7; 10−2 log

CO2 VMR 10−7; 10−2 log

H2O VMR 10−7; 10−2 log

NH3 VMR 10−7; 10−2 log

Pclouds Pa 5×102; 106 log

the randomized parameters of the POP-I forward models. For each planet, POP-I
contains the raw spectrum binned at each Ariel Tier resolution (“noiseless spectra”),
the associated noise predicted by the Ariel radiometric simulator, ArielRad, for each
spectral bin, and the number of transit observations expected to reach the Tier-required
S/N. To simulate an observation, we scatter the noiseless spectra according to a normal
distribution with a standard deviation equal to the noise at each spectral bin. The
“observed spectra” data set is built by repeating this process for each planet in POP-
Is. As in [42], the Tier 1 data used in this work are binned on the higher resolution
Tier 3 spectral grid: R = 20, 100, and 30, in NIRSpec, AIRS-CH0, and AIRS-CH1,
respectively. The noise is that of Tier 1, which yields a S/N > 7 if data were binned
on the Tier 1 spectral grid. This is to prevent the loss of spectral information that may
occur in binning.

2.3 Retrievals summary

To perform the retrievals, we use the TauREx 3 retrieval framework [45], the same
used to generate the raw POP-Is spectra. In the retrieval model, we include opaque
gray clouds, pressure-dependent molecular opacities of various trace gases, Rayleigh
scattering, and Collision-Induced Absorption (CIA) of H2-H2 and H2-He. Table 3
reports a referenced list of CIA and all molecular opacities used in this study.

Table 3 List of opacities used in
this work and their references

Opacity Reference(s)

H2-H2 [47, 48]

H2-He [49]

H2O [50, 51]

CH4 [52, 53]

CO2 [54]

NH3 [55, 56]

CO [57]

H2S [58]

HCN [59]
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Table 4 Fit parameters and their
priors for the retrievals

Parameters Units Priors Scale

MP MJ ±20% linear

RP RJ ±10% linear

CH4 VMR 10−12; 10−1 log

CO2 VMR 10−12; 10−1 log

H2O VMR 10−12; 10−1 log

NH3 VMR 10−12; 10−1 log

CO VMR 10−12; 10−1 log

HCN VMR 10−12; 10−1 log

H2S VMR 10−12; 10−1 log

We take a conservative approach by choosing larger bounds for the pri-
ors than those used for the random forward spectra generation, reported
in Table 2

The free parameters of the retrievals are the radius and mass of the planet, as well
as the molecular mixing ratios, as listed in Table 4. We use broad logarithmic uniform
priors for the molecular abundances, ranging from 10−12 to 10−1 in VMR. For the
mass and radius of the planet, we select uniform priors of 20% and 10% around the
respective values listed in MRS19. The gray cloud pressure levels are not included
as free parameters in the retrieval because of their degeneracy with other parameters
such as the radius [60].

We set the evidence tolerance to 0.5 and sample the parameter space through 1500
live points using the Multinest algorithm2 [61, 62]. We disable the search for mul-
tiple modes to obtain a single marginalized posterior distribution of each molecular
abundance to insert in Eq. 1.

We then perform the three different retrievals (respectively R0, R1, and R2)
described in Section 2.1 on each POP-Is planet. We use the Atmospheric Detectabil-
ity Index (ADI) [19] to assign statistical significance to the results of these retrievals.
Given theBayesian evidence of a nominal retrievalmodel, EN , and of a pure-cloud/no-
atmosphere model, EF , the ADI is:

ADI =
{
log(EN ) − log(EF ), if log(EN ) > log(EF )

0, otherwise
(2)

ADI is a positively defined metric, equivalent to the log-Bayesian factor [63, 64]
where log(EN ) > log(EF ). To compute EF , we perform an additional retrieval for
each planet with a flat-line model with the planet radius being the only free parameter.

2.4 Abundance threshold

We utilized the marginalized posteriors to estimate the P-statistic using an abundance
threshold of TAb = 10−5, which is considered “molecular-poor” according to the
definition by [42]. This threshold is higher by 1-2 orders of magnitude compared to

2 v3.11, Release April 2018
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the Tier-2 detection limits reported by [44]. The “molecular-poor” condition is met
for approximately 40% of the atmospheres due to the randomization boundaries set
for each molecule (see Table 2). The ability to detect a molecule depends on factors
such as opacities, correlations among molecules, and noise in the measured spectrum.
Therefore,TAb can be optimized for eachmolecule in futurework, althoughwe applied
the same abundance threshold for all in this pilot study.

2.5 Data analysis tools

The P-statistic can be used to reliably classify planets for the presence of a molecule
with an abundance above TAb when P correlates with the Ab true value. The stronger
the correlation above noise fluctuations, the larger the predictive power. Because this
classification is binary and P is defined in the range 0 → 1, we can use standard
statistical tools such as calibration curves and ROC curves [65, 66] to evaluate the
performance of this method in revealing the presence of molecules and in selecting
Tier 1 targets for higher Tiers. These curves are routinely utilized by the Machine
Learning community3, as they present the forecast quality of a binary classifier in a
well-designed graphical format.

2.5.1 Calibration curves

A calibration curve [e.g.66] plots the forecast probability averaged in different bins
on the horizontal axis and the fraction of positives, in each bin, on the vertical axis
(see Fig. 2 for a generic example). In this work, the fraction of positives is the fraction
of POP-Is planets with true abundance larger than TAb, and the forecast probability is
the corresponding P-statistic. Calibration curves provide an immediate visual diag-
nosis of the quality of binary classifier forecasts and the biases that the forecasts may
exhibit.

For well-calibrated predictions, the forecast probability is equal to the fraction of
positives, except for deviations consistent with sampling variability. Therefore, the
ideal calibration curve follows the 1:1 line. Miscalibrated forecasts can be biased dif-
ferently depending on whether the calibration curve lies on the left or on the right of
the 1:1 line. A curve entirely to the right of the 1:1 line indicates an over-forecasting
bias, as the forecasts are consistently too large relative to the fraction of positives,
as seen in the calibration curve of Classifier 1 in Fig. 2. On the contrary, the cali-
bration curve of Classifier 2 shows the characteristic signature of under-forecasting,
being entirely on the left of the 1:1 line, indicating that the forecasts are consis-
tently too small relative to the fraction of positives. There may also be more subtle
deficiencies in forecast performance, such as an under-confident forecast, with over-
forecasting biases associated with lower probabilities and under-forecasting biases
associated with higher probabilities, as seen in the calibration curve of Classifier
3.

3 In Python, the package scikit-learn [67] (v1.0) provides the method calibration_curve in
sklearn.calibration and the method roc_curve in sklearn.metrics.
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Fig. 2 Calibration curves of three mock classifiers, exhibiting different forecast quality and biases. The
legend reports the B-S of the forecasts of each classifier. The calibration curve for perfectly calibrated
forecasts is reported for reference

Calibration curves paint a detailed picture of forecast performance, often summa-
rized in a scalar metric known as the Brier Score [B-S,68], which is defined as the
mean square difference between probability forecasts and true class labels (positive
or negative); the lower the B-S, the better the predictions are calibrated. From Fig. 2,
we see that Classifier 3 achieves the best B-S, although the forecasts are not well cali-
brated. In general, uncalibrated forecasts can be calibrated using calibration methods
such as Platt scaling and Isotonic regression [69–71].

2.5.2 ROC curves

Given the predicted probabilities of a classifier, and a selected probability threshold
P, the number of True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN), are defined in Table 5.

A binary classifier with high predictive power assigns larger P to positive observa-
tions (true label “Yes") and smaller P to negative (true label “No"). This maximizes
TP and TN, and minimizes FP and FN.

A ROC curve [e.g.66] is a square diagram that illustrates the predictive power at
different values of the probability threshold P. It plots the False Positive Rate (FPR)

Table 5 Contingency table
formulating all four possible
outcomes of a binary
classification problem

True label
Forecast Forecast label Yes No

P ≥ P Yes TP FP

P < P No FN TN
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on the horizontal axis and the True Positive Rate (TPR) on the vertical axis (see Fig. 3
for a generic example), defined as:

FPR = FP

Negatives
= FP

FP + TN
(3a)

TPR = TP

Positives
= TP

TP + FN
(3b)

FPR and TPR are commonly known as “false alarm” and “hit” rates. ROC curves are
constructed by calculating the TPR and FPR from the number of TP, TN, FP, and FN
as P decreases from 1 to 0. The ideal classifier minimizes the FPR while maximizing
the TPR; thus, its ROC curve is the unit step function. On the other hand, the worst
possible classifier is a random classifier with a ROC curve along the 1:1 line. Real-
world classifiers have intermediate ROC curves ranked by how close they are to the
unit step function. As seen in Fig. 3, Classifier 3 exhibits the highest predictive power,
as the corresponding ROC curve arcs everywhere above the ROC curves for Classifiers
1 and 2.

ROC curves portray a detailed picture of predictive power, often summarized in
a scalar metric known as the Area Under the Curve (AUC), the fraction of the unit
square area subtended by a ROC curve. The higher the AUC, the higher the predictive
power. The ideal classifier has AUC = 1.0; the random one has AUC = 0.5. From
Fig. 3, we see that, as expected, Classifier 3 also achieves the largest AUC.

ROC curves can also be used to select the optimal classification threshold P, which
roughly corresponds to the position on the curve where the TPR cannot be raised
without significantly increasing the FPR. For example, as seen in Fig. 3, the optimal

Fig. 3 ROC curves of the same mock classifiers shown in Fig. 2, exhibiting different predictive powers.
The legend reports the AUC associated with each ROC curve. The ideal and worst possible classifier ROC
curves are reported for reference. Several probability thresholds P at regularly spaced intervals are also
displayed on each curve
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P for Classifier 3 is around 0.5, where it achieves a TPR of nearly 0.9 at a low FPR
of approximately 0.1. Reducing P to 0.4 is not advantageous, as it only increases the
TPR to approximately 0.95, at the expense of increasing the FPR to almost 0.3.

2.6 Using calibration and ROC curves

Using calibration curves and the B-Smetric, we can immediately diagnose the forecast
quality of the P-statistic and its potential biases. Suppose that the forecast probability
P matches the fraction of planets with input abundances greater than TAb (fraction
of positives) in each probability bin. In that case, the prediction of the method is
well-calibrated. Moreover, we can compare the forecast quality achieved for different
molecules using the B-S metric. If the forecasts are not well calibrated, we can infer
which kind of bias affects the predictions of the method by inspecting the shape of the
calibration curve. If the forecasts show an over-forecasting bias (as in the example of
Classifier 1, Fig. 2) and therefore incorrectly classify a fraction of planets as bearing
a molecule, too many Tier 1 planets may be selected for re-observation in higher
Tiers, resulting in less optimal scheduling of observations. On the contrary, an under-
forecasting bias (as in the example of Classifier 2, Fig. 2) may imply that fewer Tier
1 planets than possible would be scheduled for re-observing in higher Tiers.

Using ROC curves and the AUC metric, the power of the P-statistic to predict the
presence of molecules can be assessed. The closer the ROC curve approaches the unit
step function (AUC � 1, Fig. 3), the higher the predictive power. Moreover, we can
directly compare the predictive power achieved for different molecules by analyzing
the shape of the corresponding ROC curves and the AUC values.

The shape of the ROC curve provides a way to select the optimal classification
threshold, P∗, for the problem under study. For instance, P∗ can be chosen in a trade-
off process that maximizes the TPRwhile keeping the FPR at an acceptable low value.

This choice can aid the selection of Tier 1 targets for re-observation in a higher
Tier: a large FPR would result in a poor allocation of observing time while a low
TPR would result in a reduction of observational opportunities. It can also benefit
population studies where one might need to track the presence of certain molecules
across families of planets and extrasolar systems. These types of studies are outside
the scope of this work, but can profit from the methodology developed here.

3 Results

As detailed in Section 2.1, we designed a method based on the P-statistic to reveal
the presence of a molecule in Tier 1 spectra. In the following sections, we use the
statistical tools described in Section 2.5 to show the performance of the P-statistic in
predicting the presence of several molecules in our simulated planetary population.
In particular, in Section 3.1, we use calibration curves to assess the reliability of the
predictions of the method and related biases, while in Section 3.2, we use ROC curves
to assess the predictive power of the method and discuss the optimal classification
threshold, P∗. In Section 3.3, we use the median abundance as an estimator of the
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true abundance and investigate its biases in the low S/N regime to explain the biases
observed in the calibration curves.

3.1 Detection reliability

3.1.1 Retrieval R0

Figure 4 shows the analysis performed to evaluate the reliability of the method when
using the abundance posteriors of the retrieval R0, which uses the same atmospheric
composition as the one used in the generation of the simulated atmospheres (see
Table 1). The subplots in each column share the same horizontal axis with the predicted
probability P that a molecule is present with an input abundance, Abmol , above the

Fig. 4 Detection reliability analysis for CH4, H2O, and CO2 from the R0 retrievals, that implement a
model that is fully representative of the simulated atmospheres. All plots in the same column share the
same horizontal axis with the predicted probabilities, P(Abmol > 10−5), that a molecule is present in the
atmosphere of a planet, with an abundance above the selected abundance threshold, TAb = 10−5. Top row:
histogram with the frequency of the P forecasts. Middle row: diagrams showing the correlation between P
values on the horizontal axis and input abundances on the vertical axis. The linear fit parameters of the data
points are reported on each legend. For visual reference, the dotted horizontal lines show the position of
TAb and the dotted vertical lines the value 0.5 on the x-axis. Bottom row: calibration curves with associated
bootstrap confidence intervals; each legend shows the B-S of the forecasts
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selected abundance threshold TAb = 10−5 (see Section 2.4). The figure reports the
results for CH4, H2O, and CO2, shown from left to right, respectively.

The top row displays histograms of the P-statistic realizations, which exhibit a
bimodal distribution. Two peaks are observed in the distribution, with one located at
P ≈ 0.2 and the other at P ≈ 0.8,with the former beingmore prominent.Additionally,
a valley is observed at intermediate values, with P ≈ 0.5.

The middle row shows the correlation between the predicted probabilities on the
horizontal axis and the input abundances of each molecule on the vertical axis. We
take a rough measure of the correlation by calculating the angular coefficient of the
data points from a linear fit. These coefficients are listed in Table 6. The lower right
quadrant of these diagrams (P � 0.5 and Abmol < 10−5) is almost empty of data
points, indicating that whenever the method predicts a high P , the corresponding input
abundance is likely higher thanTAb. However, not all planets with an input abundance
greater than TAb are associated with a high P , as the upper left quadrants of these
diagrams (P � 0.5 and Abmol > 10−5) are not empty of data points.

The bottom row shows the calibration curves computed for each molecule; each
curve is shown with a bootstrap confidence interval calculated using 1000 bootstrap
samples. That is, following [72], we randomly remove ∼ 1/e ≈ 36% of the data
from each of these samples and replace them by repeating some randomly cho-
sen instances of the ones kept. For each molecule, we calculate the B-S using the
brier_score_loss method of sklearn.metrics [67], with the associated
uncertainty estimated from the same bootstrap samples. Table 6 lists the B-S values
obtained.

The calibration curves show an under-forecasting bias (curve to the left of the 1:1
line; see Section 2.5.1) especially associated with larger forecast probabilities, giving
a fraction of positives ≈ 1.0 for P � 0.6. On the contrary, the probabilities are better
calibrated for P � 0.4. From the B-S values (less accurate forecasts receive higher B-
S), we see that CH4 is the best-scoring molecule, probably due to its strong absorption
spectral features.

It is possible that the observed under-forecasting of the calibration curves and
the bimodality of the P-statistic distribution are both related to the sampling of the
parameter space. This is briefly discussed further in Section 4.2.

Table 6 Best-fit value for the
angular coefficient m from the
linear fit log(Abmol ) ∝
m P(Abmol > TAb), with
TAb = 10−5, and Brier Score
for the calibration curves for all
possible combinations of
retrievals and molecules

Retrieval molecule m B-S [%]

R0 CH4 3.9 12 ± 1

H2O 4.6 16 ± 1

CO2 4.0 15 ± 1

R1 CH4 3.2 15 ± 1

H2O 3.8 17 ± 1

CO2 3.7 14 ± 1

R2 CH4 3.9 13 ± 1

H2O 4.4 16 ± 1

CO2 3.9 16 ± 1
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Fig. 5 Same as Fig. 4. Detection reliability for the R1 retrievals, implementing a model that excludes NH3
from the fit-composition

3.1.2 Retrieval R1

Figure 5 shows the same analysis for the retrieval R1, which includes only CH4, CO2,
and H2O in the fit-composition and excludes NH3, although this molecule is present
in the data set (see Table 1).

Comparing the histograms from the top row of this figure with those obtained for
the retrieval R0 (Fig. 4), we notice a decrease in the forecast frequency at low P ,
especially for CH4 and H2O, with a reduced peak at P around 0.2. On the contrary,
high values of P are more frequent, enhancing the peak at P around 0.8: for CH4,
more than 30% of the data set receives P between 0.8 and 0.9. These are samples with
high input abundance.

The plots in the middle row show an increase in the scatter in the data points
compared to R0. In this case, we find a decrease in the correlation between P and the
input abundances, and the angular coefficients of the linear fit are reported in Table 6.
Planets that receive P � 0.8 have high input abundance, Abmol > 10−5.

The calibration curves for H2O and CH4 in the bottom row are, within the uncer-
tainties, closer to the 1:1 line than for R0, both for high and low forecast probabilities.
Although this might appear closer to the ideal behavior, it could be misleading. The
B-S is higher than for R0, because the mean squared difference between the forecasts

123



Experimental Astronomy

and true class labels is larger. This is visualized in the middle plots: for Abmol < 10−5

(negative true class label), there aremany forecast valueswith P > 0.5. In otherwords,
the correlation between the P-statistic and the true input abundances is weaker. In con-
trast, the entire CO2 calibration curve shows the signature of under-forecasting. The
curve for CO2 is almost the same as for R0, likely because the missing NH3 affects
less the CO2 abundance posteriors. On the other hand, the overlap of NH3 with H2O
but also CH4 makes the model used in the retrieval less suitable to describe the data.

The reduced correlation between probability forecasts and input abundances, as
well as the higher B-S values, suggest that excluding NH3, despite its presence in the
data set, leads to less representative abundance posteriors. However, predictions for
CO2 are less affected, possibly because this trace gas has less spectral overlap with
NH3 compared to H2O or CH4.

3.1.3 Retrieval R2

The results of the same analysis for the retrieval R2, which includesCO,HCN, andH2S
as additional molecules to the fit-composition (see Table 1) are very similar to those
of R0 (see Section 3.1.1). Therefore, we refer the reader to Table 6 that summarizes
the results for the correlation between predicted probabilities and input abundances,
along with the B-S values, and to Fig. 13 in Section A of the Appendix.

3.2 Predictor assessment

3.2.1 Retrieval R0

Figure 6 shows the analysis performed to assess the predictive power of the P-statistic
(ability to maximize TP and TN while minimizing FP and FN) when using the abun-
dance posteriors from the retrieval R0. The figure reports the results for CH4, H2O,
and CO2, shown in different columns from left to right, respectively.

The upper row shows the calculated ROC curves for each molecule. Each curve is
reported with a bootstrap confidence interval calculated using 1000 bootstrap samples,
with the same random removal and replacement of the data as discussed in Section 3.1,
involving 1/e ≈ 36% of the data. For each molecule, we calculate the AUC using
the roc_auc_score method of sklearn.metrics [67], with the associated
uncertainty estimated from the same bootstrap samples. TheAUCvalues thus obtained
are collected in Table 7. For all molecules, the ROC curves are close to ideal behavior
(curve near the unit step function, see Section 2.5.2), showcasing that the P-statistic
has significant predictive power. Consequently, the corresponding AUC values are
> 0.9, with no considerable variation between molecules, implying similar predictive
power.

For each molecule, the bottom row shows the number of TP, TN, FP, and FN (see
Table 5), used to construct the ROC, versus the probability thresholdP. Also shown are
the associated confidence intervals estimated from the same bootstrap samples. These
diagrams provide information on how the predictive power of the method changes as
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Fig. 6 Predictor assessment analysis for CH4,H2O, andCO2 from theR0 retrievals, that implement amodel
that is fully representative of the simulated atmospheres. Top row: ROC curves with associated bootstrap
confidence intervals. The ideal and worst possible classifier ROC curves are reported for reference. The
legends report the AUC associated with each ROC curve. Several probability thresholds P at regularly
spaced intervals are also displayed on each curve. Bottom row: TP, TN, FP, and FN curves plotted as a
function of the probability threshold P, with confidence intervals from the same bootstrap estimation

Table 7 AUC of the ROC curves and probability odds at the probability threshold P = 0.5 for all possible
combinations of retrievals and molecules

Retrieval molecule AUC [%] TP [%]: FP [%] TN [%]: FN [%]

R0 CH4 93 ± 1 43 ± 3 : < 1 42 ± 2 : 15 ± 3

H2O 92 ± 1 37 ± 3 : < 1 41 ± 3 : 23 ± 3

CO2 91 ± 1 45 ± 4 : 1.7 ± 0.3 37 ± 2 : 17 ± 3

R1 CH4 86 ± 2 51 ± 3 : 16 ± 1 27 ± 2 : 7 ± 2

H2O 82 ± 2 47 ± 3 : 15 ± 1 26 ± 2 : 13 ± 3

CO2 90 ± 1 48 ± 3 : 5.6 ± 0.5 33 ± 2 : 14 ± 2

R2 CH4 93 ± 1 41 ± 3 : < 1 42 ± 2 : 17 ± 3

H2O 92 ± 1 37 ± 4 : < 1 41 ± 2 : 23 ± 3

CO2 91 ± 1 45 ± 3 : 1.7 ± 0.3 37 ± 2 : 17 ± 3
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P varies from 1 to 0 and aid in the selection of the optimal classification threshold P∗
(see Section 2.6).

Given the randomization of trace gas abundances in the forward model (10−7 to
10−2 on a uniform logarithmic scale, see Table 2), and the selected abundance thresh-
old (TAb = 10−5), the data set contains ∼ 60% positive observations and ∼ 40%
negative observations. By definition, for P = 1, the number of positive forecasts,
NP = TP + FP, is zero, and the number of negative forecasts, NN = TN + FN, is
equal to the size of the data set. Therefore, at this probability threshold, TN � 40% and
FN � 60%. As P decreases, NP increases (TP and FP increase), while NN decreases
(TN and FN decrease). For P = 0, NN is zero and NP is equal to the data set size; at
this classification threshold, TP � 60% and FP � 40%.

In those cases where there are no external constraints on which misclassification is
more bearable (FP or FN), the intersection of their curves gives an optimized classi-
fication threshold P∗.

From this intersection, we obtain P∗ ≈ 0.3 for all molecules. For confirmation, we
can trace this P∗ on the ROC curves. As expected, it roughly corresponds to the point
where we cannot significantly increase TPR without increasing FPR, which is at TPR
≈ 0.8. If, instead, we need a more conservative number of FP, we can choose a higher
P∗, for example P∗ = 0.5, the default classification threshold for a binary classifier.

A concise way to demonstrate the effectiveness of the P-statistic in rejecting mis-
classifications is by computing the odds TP:FP and TN:FN, estimated from the curves
in the bottom row of Fig. 6. Odds relate to the probability that a molecule is correctly
identified at the selected P, with an example shown in Table 7, estimated at P∗ = 0.5.
The table shows that the P-statistic is quite effective in rejecting FP, as they are neg-
ligible for all molecules at this threshold. Moreover, TPR at P∗ = 0.5 indicates that
more than 60% of the positives in the dataset is correctly identified, with TP values of
approximately 45%, 35%, and 45% for CH4, H2O, and CO2, respectively (rounded
to the nearest 5% from the odds values listed in the table). However, at this P, FN
increases to approximately 15-25% of the dataset (as seen in the bottom row of Fig. 6
at P∗ = 0.5), resulting in TN:FN odds of less than 3:1.

3.2.2 Retrieval R1

Figure 7 shows the same analysis for the retrieval R1.
Comparing the ROC curves in the top row with those obtained for the retrieval

R0 (see Section 3.2.1), we notice a decrease in the predictive power of the method,
measured by a reduction in AUC for CH4 and H2O, as reported in Table 7. On the
contrary, the CO2 ROC achieves the highest AUC, similar to that of R0, possibly
caused by the limited overlap between NH3 and CO2, when compared to the case of
CH4 and H2O.

The plots in the bottom row show a significant reduction in the performance of the
FP curve compared to that achieved for R0: for CH4 and H2O, it is above 10% up
to P � 0.6, instead of < 1% at P � 0.5. The TN curve also shows a decrease in
performance: it remains below 30% to P � 0.6, instead of reaching 40% at P � 0.4
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Fig. 7 Same as Fig. 6. Predictor assessment for the R1 retrievals, implementing a model that excludes NH3
from the fit-composition

in R0. Although the TP and FN curves demonstrate relatively better performance, the
optimal classification threshold denoted as P∗, determined at the intersection of the
FP and FN curves, increases to approximately P∗ ∼ 0.65, 0.5, 0.4 for CH4, H2O,
and CO2, respectively. Tracing these P∗ values on the ROC curves reveals that they
correspond to a TPR of approximately 0.8 for all molecules, similar to R0, but with a
significantly worse FPR, as a consequence of the reduced predictive power.

Table 7 reflects this, showing the odds of TP:FP and TN:FN at the same probability
threshold P∗ = 0.5, which was used for R0. In this case, the method is less efficient
in rejecting FP, despite having TP of approximately 50% and 45% for CH4 and H2O,
respectively, resulting in only about 3:1 odds for TP:FP. However, the method is still
effective in correctly identifying planets with CO2, with TP:FP odds of about 9:1. As
for TN:FN, the results are similar to R0, with a slightly better rejection of FN in the
case of CH4 (4:1 instead of 3:1).

3.2.3 Retrieval R2

The results from the same analysis for the retrieval R2 are very similar to R0’s (see
Section 3.2.1). Therefore, we refer the reader to Table 7 that summarizes the AUC
values obtained and the odds TP:FP and TN:FN at the probability threshold P∗ = 0.5,
and to Fig. 14 in Section A of the Appendix.
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3.3 Abundance estimates

Tier 1 might not be adequate for reliable abundance retrieval, for which higher Ariel
Tiers are better suited. Therefore, we study the retrieved Tier 1 abundances to inves-
tigate trends in their distribution that may clarify some of the behavior observed in
the calibration and ROC curves seen in the previous sections. The abundance esti-
mator used is obtained from the median of the marginalized posterior distribution of
the log Abmol with asymmetric error bars estimated from the 68.3% confidence level
around the median. In particular, we are interested in investigating the regime of input
abundances under which this median-based estimator is unbiased.

3.3.1 Retrieval R0

Figure 8 reports the analysis performed to investigate potential biases affecting
the median of the marginalized posteriors when used as an estimator of the log-
abundances. The figure reports the results for CH4, H2O, and CO2, shown in different
columns from left to right, respectively. NH3 exhibits similar behavior to the other
three molecules, but it is not included in the figure in line with the decision to treat it
as a nuisance in this study.

Panels in the top row show the molecular log-abundance input vs. the retrieved with
the error bar. A solid black line serves as the ideal trend (1:1 line) for visual reference.
The color bar indicates the distances between the input and retrieved log-abundance,
expressed in units of the uncertainty σ on log Abmol , estimated by averaging the
asymmetric error bars. Blue colors denote distances up to 1σ ; red colors represent
distances in the range of 1 → 2σ . Larger distances are marked with black circles,
which serve to diagnose potential trends and biases that may affect the retrieval results.
In addition, the symbol size reflects the signal-to-noise ratio (S/N) of each observation
as estimated in the AIRS-CH0 spectroscopic channel, providing insight into possible
trends between the distance to the input abundance and the S/N condition.

The retrieved abundances exhibit good agreement with the input abundances in the
large abundance regime, characterized by limited scatter around the ideal trend and
by low retrieved uncertainties. This regime is generally observed for Abmol � 10−4,
but starts to break down at 10−5 � Abmol � 10−4. For Abmol � 10−5, the input
abundances are rarely retrieved accurately. This analysis can provide insights into the
detection limits of CH4, H2O, and CO2 in Ariel Tier 1, which are estimated to be
around 10−4. These values can be compared with the expected detection limits of the
same molecules in Ariel Tier 2, which are anticipated to be significantly lower, with
previous studies [44] reporting limits between 10−7 and 10−6.5.

Let the log-abundance S/N be defined as 1
σ

| log Abmol |, where Abmol is the true
value of the molecular abundance. The middle row panels in Fig. 8 show the plot of
log-abundance S/N vs. the difference between the retrieved and input log abundances.
It can be observed that the distribution of data points is broadly separated into two
sub-populations at a S/N of about 5. Data points with high S/N correspond to cases
where the input is confidently retrieved and aligned along the 1:1 line in the upper
row diagrams, indicating unbiased estimation. On the other hand, data points with low
S/N cluster in the bottom left portion of the diagram. In these cases, the median is no
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Fig. 8 Comparison between the retrieved molecular abundances and their true values is shown from the
R0 retrievals. The estimator for the retrieved log-abundances is the median of the posterior distributions
from the retrievals. Top row: retrieved vs. input molecular abundances. The solid black line represents the
ideal trend, and the color bar visualizes the distance between input and retrieved abundances in units of
uncertainty σ . The symbol size is proportional to the S/N in the AIRS-CH0 spectroscopic channel. Middle
row: log-abundance S/N vs. the difference between the retrieved and input log-abundances. A black dashed
line is drawn at a value of 5 on the vertical axis for visual reference. Bottom row: true abundances vs. the
difference between the retrieved and true log-abundances, in units of σ . Dashed vertical lines are drawn at
3 and 5-σ . Text boxes show the number of 2-, 3-, and 5-σ outliers

longer an unbiased estimator of the true value, as the corresponding data points lie to
the left of the 1:1 line in the upper row diagrams. As discussed further in Section 4.2,
these cases have posteriors dominated by the prior imposed in the retrieval and are
best treated as upper limits.

In the bottom rowofFig. 8, the true abundances are shownvs. the difference between
the retrieved and true abundances, in units ofσ . The diagrams provide a visualization of
howmany samples are 2-, 3-, and5-σ outliers, allowingverification that the distribution
is compatiblewith the tail of the abundance posteriors. The number of outliers is shown
in the text box inserted in the diagrams and (converted into percentages) in Table 8.
Assuming that the abundance posteriors are representative of the data, the fraction of
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Table 8 Percentage of data
points counted outside three
confidence intervals for all
possible combinations of
retrievals and molecules

Retrieval molecule > 2σ [%] > 3σ [%] > 5σ [%]

R0 CH4 5.6 0.7 
 1

H2O 1.3 0.3 
 1

CO2 5.0 1.3 0.7

R1 CH4 32.9 19.6 11.6

H2O 17.9 13.6 9.6

CO2 16.6 10.3 6.6

R2 CH4 6.0 0.7 
 1

H2O 1.3 0.3 
 1

CO2 5.3 1.7 1.3

expected outliers outside is 5%, 0.3%, and 
 1%, respectively at 2-, 3-, and 5-σ . We
find good agreement between the percentages reported in Table 8 and these values,
withminor deviations compatible with the statistical fluctuations of a random variable.

3.3.2 Retrieval R1

Figure 9 shows the same analysis for the retrieval R1.
The top row shows that, although there is still a correlation between the retrieved

and input abundances, it is less significant than for R0. Furthermore, comparing the
retrieved and input abundances yields different regimes for each molecule. However,
themain difference fromR0 is the significant number of data points at distances greater
than 2σ (marked by black circles), corresponding to 2-σ outliers. In particular, for all
molecules, most of these points are located to the right of the ideal trend, indicating
the presence of an overestimation bias for the retrieved abundances. These data points
are located in the region y � 5 and x > 0 in the plots in the middle row. Therefore,
in addition to the overestimation bias for the abundances, their retrieved uncertainties
are underestimated. Furthermore, the bottom-row diagrams show a larger number of
outliers compared to the R0 case: too many for the posterior to be considered repre-
sentative. This is a consequence of an atmospheric model which is not representative
of the data, biasing the likelihood, the abundance posteriors, and the median estimator
of the abundances.

3.3.3 Retrieval R2

The results of the same analysis for the retrieval R2 are very similar to those of R0,
including the number of outliers that are compatible with the expectations for a model
that is representative of the data. Therefore, we refer the reader to Table 8, and to
Fig. 15 in Section A of the Appendix. Here, we only stress that adding molecules to
the fit-composition that are not present in the data set does not appear to significantly
bias the abundance posteriors, compared to R0. This is further discussed in Section 4.2.
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Fig. 9 SameasFig. 8 for theR1 retrievals, implementing amodel that excludesNH3 from thefit-composition

4 Discussion

In this section, we first discuss the similarities between the results from the retrievals
R0 and R2, shown in Sections 3.1 and 3.2. Then we apply the ADI metric to compare
all retrievals from the point of view of the Bayesian evidence (Section 4.1). Finally,
we expand the discussion to the role of the priors in the retrieved abundance posteriors
(Section 4.2).

The results of Sections 3.1 and 3.2 show that the predictions of the P-statistic for
the retrievals R0 and R2 are comparable, despite the quite different fit-compositions,
while the reliability of the P-statistic is lower in the R1 case. The R0 model and its
parameters are identical to those used to generate the POP-Is population, and the R2
extends the parameter space with new molecules. In R2, the abundance posteriors for
CH4, H2O, and CO2 do not appear to be significantly affected by the addition of CO,
HCN, and H2S in R2, despite that the latter three spectral signatures partially overlap
with those of CH4, H2O, and CO2 [31]. It should be noted that the absence of the
three molecules from the simulated atmospheres is correctly revealed in R2 by their
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low P-statistic, shown in Fig. 10, that take values smaller than 40% for CO, HCN, and
H2S, respectively. The extension of the analysis to include the calibration and ROC
curves to these molecules is left to future work.

The analysis, therefore, suggests that the P-statistic is robust (that means, provides
reliable results) against retrieval models that are over-representative of the observed
atmosphere. However, the P-statistic can no longer be considered robust when the
retrieval models are under-representative of the observed atmosphere.

In the current study, the threshold abundance used to estimate the P-statistic remains
constant for all molecules. While it is possible to optimize this threshold for individual
molecules, we leave this aspect for future research as discussed in Section 2.4. Low-
ering the threshold reduces the information provided by the ROC curves. To achieve
the optimal point of operation, one must balance the True and False Positive Rates,
which is necessary to promote a Tier-1 target to higher Tiers. It is important to note
that ROC curves calculated at different threshold levels provide a statistical estimation
of the sample’s completeness, enabling the inference of population-wide properties
such as the fraction of planets containing certain molecules. While this aspect requires
further investigation in future research, it should be noted that the fraction of positive,
� (planets with true abundance in excess of TAb) is related to the fraction of Tier-1
targets, �̃, selected with P(> TAb) > P by

� = �̃ − FPR

T PR − FPR
.

The similarities between the R0 and R2 models are further discussed in the next
section.

4.1 ADI comparison

The ADI metric, described in Section 2.3, is used to assess the statistical significance
of a model atmosphere with respect to a featureless spectrum using the log-Bayesian
factor. A large ADI suggests that a featureless spectrum is less favored by the data.

Fig. 10 Histogram of the frequency of use of each possible P forecast for CO, HCN, and H2S, using the
abundance posteriors from the retrieval R2. The dotted vertical line marks the default binary classification
threshold P = 0.5 for reference
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From the ADI definition, the log-Bayesian factor of two competing models is the
difference between their respective ADI.

Figure 11 shows the ADI differences between the R0 model and the two competing
models, R1 and R2, plotted against NH3 abundances. A large, positive difference
indicates that the competing models are less representative of the data compared to
R0. The median ADI values for all retrievals are approximately 91, 86, and 92 for
R0, R1, and R2, respectively, as shown in the text box within Fig. 11. This suggests
that a featureless atmospheric model is not favored by the data, and R1 is the least
representative, as expected. This is further supported by the fact that theADI difference
between R0 and R1 increases with increasing NH3 abundance, indicating that higher
NH3 abundances make R1 less representative compared to R0, in agreement with the
analysis of Section 3. In contrast, the ADI difference between R0 and R2 is close to
zero, with a scatter described by a standard deviation of approximately 0.5, which is
independent of NH3 abundance. This confirms that R2 is similarly representative of
the data compared to R0, despite describing a wider parameter space.

4.2 Priors

In this section, we discuss the impact of the log-uniform priors adopted in the analysis
on the results presented. The consequence is a non-Gaussian posterior distribution,
and the mean, mode, and median are not equivalent moments of the distribution. In
particular, the median is not an unbiased estimator of the true abundance as shown in
Fig. 8 for low log-abundance S/N (hereafter, “abundance S/N”). This can be explained
in terms of the Bayesian formulation of the posterior, P , which is proportional to the
product of the likelihood, L, and the prior, �.

P ∝ L × � (4)

Fig. 11 Bayesian evidence comparison of the retrievals R0, R1, and R2, measured in ADI. The horizontal
axis plots the input abundances of NH3; the vertical axis reports the ADI difference between R0 and the
other two retrievals, R1 and R2. The y-axis uses a matplotlib “symlog” scale with the linear threshold
set at 1 for better visualization. The text box on the bottom shows the median ADI reported by each retrieval
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Because �(log x) is uniform, �(x) ∼ 1/x , for large abundance S/N, the likelihood
dominates, the posterior is Gaussian (because of the central limit theorem), and the
median estimator is unbiased. For low abundances, the prior dominates, P(x) ∝ 1/x ,
and the median is an estimator of the molecular abundance that is biased towards
low abundances. This is shown in Fig. 12. Each panel shows the probability density
function (PDF) of the likelihood, prior and posterior normalized to 1 at the peak, for
three cases where the abundance S/N is 4.0, 5.5, and 7.0, respectively, from the top to
the bottom panel, assuming an input abundance of 10−5. The posterior is likelihood-
dominated when the abundance S/N is 7 and is prior-dominated when the abundance
S/N is 4.

Although logarithmic uniform priors are often assumed in spectral retrieval studies,
they are certainly not “uninformative priors” [73, 74]. Clearly, using these priors biases
the median estimator of the molecular abundance in the low S/N regime, explaining
the trends seen in Fig. 8. As a side note, log-priors on molecular abundances could as
well introduce biases on the derived elemental abundances, therefore the issue has to
be investigated carefully in future studies.

The low abundance S/N targets are those that contribute to the leftmost peak in the
bimodal distribution of the P-statistic (Fig. 4). Further investigation is however needed
to fully understand the origin of the P-statistic bimodality and its under-forecasting
properties.

5 Conclusion

The Ariel Tier 1 is a shallow reconnaissance survey of a large and diverse sample
of approximately 1000 exoplanet atmospheres. It is designed to achieve a signal-to-
noise ratio (S/N) greater than 7 when the target exoplanet atmospheric spectra are
binned into 7 photometric bands. Tier 1 enables rapid and broad characterization of
planets to prioritize re-observations in higher Tiers for detailed chemical and physical
characterization. However, Tier 1may not have sufficient S/N at the spectral resolution

Fig. 12 The probability density functions (PDF) of the likelihood, prior and posterior are shown by the red,
blue, and black lines, respectively. The PDFs are normalized to 1 at their peak. The assumed abundance S/N
is 4.0, 5.5, and 7.0, respectively, from the top to the bottom panel. An input abundance of 10−5 is assumed
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required for high-confidence abundance retrieval of chemical species. Nonetheless, it
contains a wealth of spectral information that can be extracted to address questions
requiring population studies.

In this study, we have introduced a P-statistic, which is a function of the data
that is sensitive enough to reveal the presence of molecules from transit spectroscopy
observations of exoplanet atmospheres and can be used as a binary classifier. The P-
statistic is estimated from themarginalized retrieval posterior distribution and provides
an estimate of the probability that a molecule is present with an abundance exceeding
a threshold, fixed atTAb ∼ 10−5 in this study, but can be optimized in future analyses.

We have tested the performance of the P-statistic on a simulated population of
gaseous exoplanets, POP-Is, with traces of H2O, CH4, and CO2 of randomized abun-
dances, in a H2-He dominated atmosphere. NH3 is also included as a disturbance
parameter to test the robustness of the P-statistic. For this, three models are used in the
retrievals: R0, which is representative of the data; R1, which is under-representative
as it excludes NH3; and R2, which is over-representative as it includes additional
molecules not considered in the simulated POP-Is.

We find that the P-statistic estimated from R0 posteriors shows a clear, above-
noise correlation with the input abundances, allowing us to infer the presence of
molecules. The P-statistic appears to follow a bimodal distribution, where targets
with low abundance S/N are likely contributors to the peak at low P values. This is
supported by the distribution of the median of the abundance posterior, which is an
unbiased estimator of the true value only when the abundance S/N is sufficiently large
(typically above 5). The P-statistic is affected by an under-forecasting bias, but this is
not expected to adversely affect the classification of the planets in the survey as it can
be calibrated in principle. This is further evidenced by ROC curves with large AUC,
indicating that the P-statistic can be used to implement a reliable classifier for the
presence of molecules. However, further investigation is needed to fully understand
the origin of the P-statistic bimodality and its under-forecasting properties.

The results obtained appear not to be affected by the increase in complexity of the
assumed atmospheric model, implemented in this study with the R2 retrieval model, as
indicated by similar calibration and ROC curves. We find that the predictive power of
the P-statistic is adversely affected by an under-representative model, as implemented
in the R1 retrieval model, which is evident from a weaker correlation between the P-
statistic and the input abundances, and themedian of the posterior abundance no longer
being a reliable unbiased estimator of the true value, even in the high abundance S/N
regime.

Based on our findings, we conclude that the P-statistic is a reliable predictor of the
presence of molecules within the parameter space explored, as long as the retrieval
model matches the complexity of the data. Models that are under-representative can
result in poor predictive power, while the investigated over-representative model does
not seem to adversely affect classification. Further investigations are needed to test
the robustness of the P-statistic over a wider parameter space, particularly including
a wider set of molecules in both the simulated population and retrievals.
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Software ArielRad [46], TauREx 3 [45], Alfnoor [42, 44], Astropy [75], h5py [76],
Matplotlib [77], Numpy [78].

Appendix A Complementary figures

Fig. 13 Same as Fig. 4. Detection reliability for the R2 retrievals, that implement a model that is over-
representative of the simulated atmospheres, by including CO, HCN, and H2S as additional trace gases
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Fig. 14 Same as Fig. 6. Predictor assessment for the R2 retrievals, that implement a model that is over-
representative of the simulated atmospheres, by including CO, HCN, and H2S as additional trace gases
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Fig. 15 Same as Fig. 8 for the R2 retrievals, that implement a model that is over-representative of the
simulated atmospheres, by including CO, HCN, and H2S as additional trace gases
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