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Photo-induced enhanced Raman spectroscopy
(PIERS) has emerged as a highly sensitive surface-
enhanced Raman spectroscopy (SERS) technique
for the detection of ultra-low concentrations of
organic molecules. The PIERS mechanism has been
largely attributed to UV-induced formation of surface
oxygen vacancies (Vo) in semiconductor materials,
although alternative interpretations have been
suggested. Very recently, PIERS has been proposed
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as a surface probe for photocatalytic materials, following Vo formation and healing kinetics.
This work establishes comparison between PIERS and Vo-induced SERS approaches in
defected noble-metal-free titanium dioxide (TiO2−x) films to further confirm the role of Vo in
PIERS. Upon application of three post-treatment methods (namely UV-induction, vacuum
annealing and argon etching), correlation of Vo kinetics and distribution could be established.
A proposed mechanism and further discussion on PIERS as a probe to explore photocatalytic
materials are also presented.

This article is part of the theme issue ‘Exploring the length scales, timescales and chemistry
of challenging materials (Part 2)’.

1. Introduction
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique with broad-
ranging applications, including chemical and biochemical sensing, electrochemistry and catalysis
[1]. In conventional SERS, the Raman signal of molecules adsorbed onto appropriate surfaces may
be enhanced by several orders of magnitude [2–7]. The mechanism of SERS has been explained on
the basis of two combined processes, an electromagnetic (EM) effect and a chemical enhancement
(CE) contribution [8–10]. The former is usually the main contribution to SERS and it is induced by
resonant excitation of electron oscillations (plasmons) within metal nanoparticles [11]. In the CE
mechanism, the Raman cross-section of a molecule is enhanced due to changes in its electronic
polarizability upon adsorption to a substrate or upon resonant charge-transfer events between
the adsorbed molecule and the substrate [12].

Some years ago, our group reported on band enhancement beyond that of conventional SERS
using an effect we termed as photo-induced enhanced Raman spectroscopy, or PIERS [13]. In
our PIERS experiments, hybrid noble metal-supported titanium dioxide (TiO2) substrates were
irradiated under prolonged UV light prior to the deposition of an organic adsorbate, used as
target molecule. Band enhancement was attributed to an interaction between the noble metal-
molecule-semiconductor system and photogenerated oxygen vacancies (Vo) at the semiconductor
surface [14]. Photogenerated Vo states introduce donor sites at approximately 0.8 eV below the
conduction band (CB) edge of TiO2, [15] which may allow for the promotion of electrons into the
CB under laser irradiation. These electrons can then transfer into the Fermi level of noble-metal
nanoparticles and return to Vo states, strengthening the CE contribution in the Raman signal.
Formation of surface Vo sites under UVC-light irradiation (λ= 254 nm) was later confirmed via
time-resolved atomic force microscopy [16]. The proposed mechanism based on Vo was also
supported by the fact that PIERS is a transient effect and the enhanced signals decreased within a
range of 30–60 min upon exposure to air, which was attributed to the loss of surface vacancies [17].

The use of PIERS as a sensing technique has been reviewed recently [18]. As it has been pointed
out, different operation procedures have been followed, either ex situ—with irradiation of the
substrate before or after deposition of the target molecule—or in situ, with irradiation during
the Raman analysis. PIERS studies have been applied using a wide range of substrate materials,
from single semiconductors to hybrid noble metal-insulators. The influence of key parameters,
such as irradiation conditions (wavelength, irradiance, illumination time) or substrate structure
and morphology, has been discussed using a range of target adsorbates. Most of these studies
have explained the PIERS mechanism based on the formation of oxygen vacancies, as indicated
in the recent review and references therein [18]. Other authors have questioned the formation of
oxygen vacancies and attributed the PIERS effect to photo-induced charge-transfer (CT) processes
[19–22]. Interestingly, in contrast to previous observations, a very recent work demonstrated a
long-term PIERS effect (greater than 8 days) using gold-embedded porous TiO2 films as PIERS
substrates [23]. Based on cathodoluminescence measurements, these authors proposed two
different mechanisms for PIERS depending on the arrangement of the noble-metal nanoparticles,
either supported on or embedded in the substrate. The former would be supported by the
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presence of oxygen vacancies, as conventionally accepted, while the latter is due to a back transfer
of charges related to plasmon-induced charge separation in Schottky barriers with a narrow
depletion zone [23].

Recently, the PIERS effect has been used as a surface probe to evaluate photocatalytic
materials [24]. UV-induced Vo dynamics were monitored in situ, following decay kinetics of
Raman enhancements upon healing of Vo sites. Using different noble metal-supported metal-
oxide substrates, correlation was established between Vo kinetics and photocatalytic properties,
showing the key role of induced Vo lifetimes in photocatalytic performance. This novel
application of PIERS comes as a user-friendly complementary tool to specialized techniques such
as scanning tunnelling microscopy (STM) and electron paramagnetic resonance (EPR). A very
recent study, based on EPR and in situ infrared spectroscopy, has confirmed the role of Vo

as dynamic active sites in photocatalytic reactions, via activation of oxygen molecules [25]. A
question then remains whether PIERS can be applied as a tool for the evaluation of generic
photocatalytic substrates and under conditions relevant to photocatalytic applications.

In this work, the PIERS effect is used for the monitoring of Vo kinetics in defected noble
metal-free TiO2−x. In the case of noble metal-free SERS substrates, Raman enhancements can
mostly be attributed to CE mechanisms. Interesting emerging materials in this group include
two-dimensional inorganic compounds (MXenes) [22] and transition metal dichalcogenides [26],
in addition to simple metal-oxide (MXOY) semiconductors, such as Cu2O, [27] W18O49 [28]
and TiO2, [29,30], amongst others. The exact proportion of the two elements (M and O) in the
latter group provides a degree of freedom for the enhancement of the CE factor in SERS. The
engineering of defected metal oxides with oxygen vacancies (Vo) has been used to stimulate
charge-transfer processes across a wide range of applications [31–33]. Here, the generation of
Vo in TiO2 substrates is induced upon reduction of Ti4+ to Ti3+ species via UV-light irradiation,
vacuum annealing or inert-gas etching treatment [32,34]. Dynamic Raman studies monitoring Vo

kinetics are followed indirectly here, using a model molecule for SERS (rhodamine-6G) over post-
treated TiO2−x substrates. Comparison is established among the three treatment methods and the
implications to the PIERS mechanism are discussed. Further discussion is also presented towards
the use of PIERS in photocatalysis.

2. Methods

(a) Synthesis of TiO2 thin films
All chemicals were purchased from Sigma-Aldrich and used as received. TiO2 thin films were
synthesized using atmospheric-pressure chemical vapour deposition (CVD) from titanium
tetrachloride (TiCl4, 99%) and ethyl acetate (EtAc or C4H8O2, 99.8%) as metal and oxygen
precursors, respectively. All components of the CVD apparatus were kept at high temperature
(200°C). The precursors were mixed in a stainless-steel chamber (250°C) before accessing the
CVD reactor, which consisted of a 320 mm-long graphite heating block fitted in a quartz tube
with three Whatman heater cartridges. The temperature of the system was controlled by Pt-Rh
thermocouples. Nitrogen (BOC) was used as the carrier gas. Precursor bubbler temperatures and
gas flows were set to 1.2 l min−1 70°C and 0.25 l min−1 40°C for TiCl4 and EtAc, respectively. The
TiO2 films were deposited at 500°C on quartz slides (25 × 25 mm, Multi-Lab). Typical growth rates
under these conditions were ca 0.3 µm min−1. Film thicknesses (ca 500 nm) were estimated using
the Filmetrics F20 machine operating in reflectance mode in air against a FTO standard.

(b) Substrate preparation
Rutile TiO2 films were obtained from thermal treatment of as-deposited anatase films to 1000°C
for 5 h in air. Preliminary SERS studies were carried out on the annealed substrates and used as
reference. The rutile substrates were then treated following either (a) UV-light irradiation for 2 h;
(b) vacuum annealing at 1000°C for 1 h; (c) argon etching under high vacuum using argon ion
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bombardment in the XPS instrument (details below). A germicidal lamp (UVItec LI 215G) was
used for UV treatment (UVC light, λ = 254 nm, 12 mW cm−2). Reference data were obtained from
films annealed under air or etched and subsequently healed during exposure to air for 3 days.
The Raman measurements were carried out using rhodamine-6G (R6G) dye as target molecule,
which was drop-casted onto the TiO2 substrates from a 10−5 M methanol solution.

(c) Characterization techniques
Raman studies were carried out using a Renishaw 1000 spectrometer equipped with a He-Ne laser
(λ = 633 nm) and coupled to a microscope with a 50× objective. The Raman system was calibrated
using a silicon reference. Acquisition time was 10 s. Raman scattering spectra were recorded in
the range of 150–2000 cm−1. X-ray diffraction (XRD) analysis was carried out using a Bruker AXS
D8 (Lynxeye XE) diffractometer with a monochromated copper X-ray source (Kα1, λ = 1.54 Å)
under a glancing incident angle (θ ) of 1°. UV–Vis spectroscopy was performed using a Perkin
Elmer Lambda 950 UV/Vis/NIR Spectrophotometer. A Labsphere reflectance standard was used
as a reference. X-Ray photoelectron spectroscopy (XPS) was performed using a Thermo K-α
spectrometer with monochromated aluminium Kα radiation, a dual beam charge compensation
system and constant pass energy of 50 eV. Survey scans were collected in the range of 0–1200 eV.
High-resolution peaks were used for the principal peaks of Ti 2p, O 2p and C 1s. The peaks
were modelled using sensitivity factors to calculate the film composition. The area underneath
these bands is an indication of the element concentration within the region of analysis (spot size:
400 µm).

3. Results and discussion
Post-treated rutile TiO2−x films (500 nm) were used as PIERS substrates, following dynamic
Raman studies of R6G dye. X-ray diffraction and Raman spectroscopy analysis confirmed the
presence of the rutile phase (figure 1a,b). The post-treatment methods included (a) prolonged
irradiation under UVC light; (b) vacuum annealing; and (c) argon etching under high vacuum
conditions (see Methods)—henceforth, UV-TiO2−x, VA-TiO2−x and AE-TiO2−x films, respectively.
In every case, the post-treatment of the films resulted in a blue coloration of the films, which was
attributed to the reduction of Ti4+ into (blue) Ti3+ species. The coloration was particularly intense
in the case of AE-TiO2−x films, whereas it was comparably faint in the other two cases. These
observations were consistent with corresponding changes in UV/Vis absorbance (figure 1c). A
red shift of the absorbance was significant in the case of etched films while it was less pronounced
for UV-TiO2−x and VA-TiO2−x films. Similar changes in optical properties have been attributed
to the formation of sub-levels in the bandgap of TiO2 due to formation of oxygen vacancies (Vo)
[35]. It is worth noticing that UV/Vis spectroscopy is a bulk technique and the formation of small
densities of surface Vo sites may not have a drastic impact on absorbance. Previous studies [36]
have noticed the emergence of a broad band centred around ca 525 nm upon formation of Vo

sites. Unfortunately, interference in our optical measurements (so-called Newton rings) hindered
the unequivocal detection of this band. Both vacuum annealing and UVC-light irradiation are
known to produce small densities of Ti3+ species at the catalyst surface [37]. On the other hand,
argon etching is known to form significant defect states in metal-oxide materials. The presence
of reduced Ti3+ species could be confirmed for AE-TiO2−x films in the Ti 2p environment using
XPS (figure 1d). These changes were reversible upon exposure to air, consistent with previous
observations [38].

Dynamic Raman studies of R6G were carried out upon deposition of the dye immediately
after the post-treatment of the TiO2 substrates. R6G was chosen as model molecule due to its
high stability and Raman cross-section [39]. The three sets of data are shown in figure 2a–c.
In the first instant, right after deposition of the dye (t = 0 min), considerable enhancement of
the Raman bands was observed for the three post-treated TiO2−x films with respect to similar
SERS analysis before treatment (figure 2). The Raman spectrum of R6G is characterized by eight

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 S

ep
te

m
be

r 
20

23
 



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220343

...............................................................

(a) (b)

(c) (d)

in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

20

0

20

40

re
la

tiv
e 

ab
so

rb
an

ce
 (

%
)

cp
s 

(a
rb

. u
ni

ts
)

60

80

100

340 360 380 400 420 440
wavelength (nm)

460

TiO2
VA-TiO2–x

TiO2
TiO2–x

UV-TiO2–x
AE-TiO2–x

475 470 465 460 455 450
binding energy (eV)

445

30 40 50
2θ (°)

60 200 400 600 800
Raman shift (cm–1)

1000

Figure 1. Characterization of TiO2 substrates. (a) X-ray diffraction and (b) Raman spectra of a typical rutile TiO2 film.
(c) Absorption spectra of TiO2−x films after post-treatment using UVC-light irradiation (UV-TiO2−x), vacuum annealing (VA-
TiO2−x) and argon etching (AE-TiO2−x). The spectrum of an as-prepared TiO2 film is included for reference. (d) XPS Ti 2p region
before (blue lines) and after (orange lines) argon etching (AE-TiO2−x).

main vibrational modes, with an additional band at 611 cm−1 due to overlapping of in-plane
C–C–C ring bending vibrations and the TiO2 A1g mode [39]. The enhancement of the R6G spectra
adsorbed to the TiO2−x substrates was band-selective, which is a typical fingerprint of the CE
in SERS [13]. Average enhancement factors (EFs), collected from 24 to 30 positions across the
sample, relative to those obtained on the untreated films, were estimated as ×4.61, ×5.58 and
×7.61, respectively, for UV-TiO2−x, AE-TiO2−x and VA-TiO2−x films (table 1). This result may
seem surprising considering that the AE-TiO2−x film was defect-rich compared with UV-TiO2−x

and VA-TiO2−x films. Nonetheless, it is consistent with previous observations establishing an
optimum Vo density with a peak in photocatalytic efficiency [24]. Vo densities must be high
enough to favour carrier transport but not as high as to promote carrier trapping. A similar
analogy may be followed in road transport, where enough vehicles help people move around
easily but too many cause people to get stuck in traffic jams.

A series of Raman spectra were recorded after deposition of the dye and every 5 min at a single
position on the TiO2−x films. A clear intensity decrease was continuous for about 40 min from the
initial enhanced spectra (PIERS), eventually reaching average SERS intensities. These trends over
and above any laser-induced photobleaching are highlighted in figure 2d–f [17]. Band decrease
rates followed the same trend of average EFs, i.e. intensities dropped fast on UV-TiO2−x films,
followed by AE-TiO2−x and VA-TiO2−x films. Induced Vo healing lifetimes for each treatment
were estimated following a method reported in previous work (table 1). The longest Vo lifetimes
corresponded to VA-TiO2−x films, which remained blue for a long period of time compared with
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Figure 2. Dynamic Raman studies of R6G dye deposited on post-treated TiO2 films upon exposure to air. The post-treatment
processes included (a) argon etching, AE-TiO2−x (red lines); (b) vacuum annealing, VA-TiO2−x (green lines); and (c) UVC-light
irradiation,UV-TiO2−x (orange lines). Corresponding average enhancement factors (EFs) were obtained relative to SERS spectra
(blue symbols) using the untreated films (d–f ).

Table 1. Average enhancement factors (EFs) of R6G Raman bands using post-treated TiO2 substrates, namely UVC-light
irradiated (UV-TiO2−x), argon-etched (AE-TiO2−x) and vacuum-annealed (VA-TiO2−x) films. EF values were obtained relative
to SERS enhancements on the same films before treatment. Errors account for the average range upon surface mapping of the
films. Calculated Vo healing lifetimes were obtained upon exposure of post-treated films to air.

sample treatment relative EF Vo healing lifetime (min−1)

TiO2 1± 0.45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UV-TiO2−x 4.61± 0.36 16.69± 0.73
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AE-TiO2−x 5.58± 2.07 18.00± 0.49
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VA-TiO2−x 7.61± 2.10 209.16± 72.54
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UV-TiO2−x and AE-TiO2−x films. This observation was in spite of the initial dramatic coloration of
the AE-TiO2−x and it was attributed to the potential presence of bulk Vo sites in VA-TiO2−x films.
Oxygen atoms may diffuse from the bulk of the sample, particularly under vacuum annealing
conditions, causing bulk defects [36]. This is particularly relevant to defect engineering strategies
in photocatalysis [40], where Vo kinetics monitored using PIERS could be used to establish Vo

distributions under operation conditions.
The spectral enhancement observed in TiO2−x substrates can be attributed predominantly

to semiconductor-analyte charge transfer (CT). The CT mechanism can take place either from
Vo sites into the CB or from the valence band (VB). The optimum enhancement for CT-type
transitions should take place at one of the band edges since CT resonance is at maximum where
the density of states varies sharply. The semiconductor can also introduce inter-band transitions,
which may contribute to SERS enhancement. These resonances contribute to conventional metal-
based SERS in the same mechanistic way as molecular resonances. Thus, inter-band resonances
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Figure 3. Proposed charge-transfer (CT) pathways in defected TiO2−x. (a) Energy level diagram showing the band structure
of TiO2 and the HOMO/LUMO of R6G. (b) Oxygen-vacancy defects introduce band states at 0.5–1.0 eV below the CB of TiO2−x.
Viable resonant CT pathways open between transient vacancy levels and the VB and the LUMO.

should be considered in addition to CT contributions. Both types, molecular and inter-band
resonances, may be close in energy and interfere constructively or destructively. Without Vo

defect states, the promotion of electrons from the highest occupied molecular orbital (HOMO)
to the lowest unoccupied molecular orbital (LUMO) in R6G would require of two consecutive
processes: charge transfer from the HOMO into the CB followed by transfer into the LUMO
(figure 3). These CT processes involve excitation energies of 1.05 and 1.25 eV, respectively, and
they were ruled out under the excitation conditions of our experiments (i.e. photon energy of
1.9 eV, λ = 633 nm). Following a semiconductor-to-analyte CT mechanism with participation of
Vo defect states at 0.5–1.0 eV below the CB, CT resonance may promote electrons from VB into Vo

and from Vo and LUMO (figure 3). Direct excitation within the bandgap of rutile TiO2 (E = 3.0 eV)
and within the HOMO–LUMO gap in the R6G molecule (E = 2.30 eV) was ruled out under the
laser excitation energy used in our experiments (E = 1.9 eV). This was confirmed upon Raman
studies using an argon laser source (E = 2.4 eV), which promoted the spectrum of R6G (electronic
supplementary material, figure S1). The band enhancement observed under low-energy excitation
was thus attributed to molecular resonance.

Further work is required, with attention to theoretical studies, to ascertain the underlaying
mechanisms behind PIERS. As inferred in previous studies [23], the mechanisms will depend
on the type and engineering of substrate materials and target molecules used. As highlighted in
the literature [18], the participation of Vo in ultrawide-bandgap semiconductors and materials
that are not prone to producing vacancies is questionable. Any collateral change upon UV
irradiation could affect phonon vibrations, potentially affecting Raman band intensities. Even
within materials widely employed in SERS and relevant to photocatalysis such as TiO2, the
mechanisms of Vo formation may follow different pathways depending on the polymorph used.
It is known, for instance, that anatase (101) surfaces do not contain surface Vo sites, unlike
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rutile (110) surfaces. [41] PIERS studies using different single crystals can therefore shed light
on potential mechanisms for band enhancement.

Close to widespread solar photocatalysis applications, it is also important to investigate PIERS
under UVA-light irradiation (λ = 365 nm) in the range of a few mW cm−2. Following our initial
studies [13], PIERS enhancement was confirmed after UVA treatment of rutile TiO2−x films using
model organic compounds (electronic supplementary material, figure S2). Similar irradiation
conditions have been used in the literature [20,42,43]. Aktas et al. [43] investigated hybrid Ag-
supported TiO2 films under UVA light (4.5 mW cm−2) during short irradiation periods, noticing
correlation between irradiation time and band enhancement until reaching saturation (greater than
10 min). Prolonged irradiation beyond that point did not result in any further enhancement.

The role of surface-bound species in the PIERS mechanisms should also be considered.
There is extensive literature on the interactions of water and oxygen molecules and Vo sites.
Dissociation of water molecules, for instance, has been observed in Vo sites of rutile TiO2 [44].
As mentioned above, one of the ordinary procedures in PIERS experiments is the pre-irradiation
of the substrates followed by deposition of the target molecule, typically from solvents such as
methanol or ethanol solutions. Organic solvent molecules can act as sacrificial electron donors
on TiO2 scavenging photogenerated holes and contributing to electron transfer rates [45]. In the
case of methanol, molecular and dissociative adsorption can occur on surface defects in TiO2
[46]. The existence of long-lived induced Vo as active sites after deposition of target molecules
from methanolic solutions may be arguable, despite the expectedly short timeframes for the
desorption of methanol from TiO2 in air. In addition, defects have been reported to accelerate
the photocatalytic dissociation of methanol on TiO2, which has been attributed to a decrease of
the dissociation reaction barrier [46,47].

4. Conclusion
Defected noble-metal-free TiO2−x films have been compared as SERS and PIERS substrates,
following different post-treatment methods to induce formation of oxygen vacancies (Vo). The
post-treatment approaches included UV-light irradiation (UV-TiO2−x), vacuum annealing (VA-
TiO2−x) and argon etching (AE-TiO2−x). Raman band enhancement was demonstrated for every
case, suggesting Vo formation played a key role in the enhancement mechanism. Relative EFs—
with respect to SERS intensities—and Vo healing lifetimes upon exposure to air followed the
same trend, i.e. UV-TiO2−x < AE-TiO2−x < VA-TiO2−x despite the drastic reduction observed
in AE-TiO2−x films. This is in line with our previous observations correlating PIERS and
photocatalytic efficiencies, where optimum (goldilocks) Vo densities (as in the case of VA-TiO2−x)
were established in order to promote charge transport. The particular performance of VA-
TiO2−x films has been attributed to the formation of deep Vo sites in these films. Strategies
towards the engineering of materials containing deep Vo sites (as those observed in [23]) may be
highly effective for photocatalysis applications. Further considerations have also been discussed
with attention to defect engineering strategies. It is important to highlight that the chemical
enhancements described in this work are both substrate- and molecule-dependent and thus
appropriate protocols will need to be established before PIERS can be used as a universal tool
to evaluate photocatalytic materials.
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