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Impedance learning for human-guided robots
in contact with unknown environments

Xueyan Xing, Etienne Burdet, Weiyong Si, Chenguang Yang, IEEE Senior Member, and Yanan Li, IEEE Senior
Member

Abstract—Previous works have developed impedance control
to increase safety and improve performance in contact tasks,
where the robot is in physical interaction with either an envi-
ronment or a human user. This paper investigates impedance
learning for a robot guided by a human user while inter-
acting with an unknown environment. We develop automatic
adaptation of robot impedance parameters to reduce the effort
required to guide the robot through the environment, while
guaranteeing interaction stability. For non-repetitive tasks, this
novel adaptive controller can attenuate disturbances by learning
appropriate robot impedance. Implemented as an iterative
learning controller, it can compensate for position dependent
disturbances in repeated movements. Experiments demonstrate
that the robot controller can, in both repetitive and non-
repetitive tasks: i) identify and compensate for the interaction,
ii) ensure both contact stability (with reduced tracking error)
and maneuverability (with less driving effort of the human user)
in contact with real environments, and iii) is superior to previous
velocity-based impedance adaptation control methods.

Index Terms—Human-robot-environment interaction control;
learning control; impedance control.

NOMENCLATURE

d Environmental disturbance.
M ,B, g Inertia, Coriolis coefficient, and gravity of the

robot.
u Robot control input.
v Velocity of the robot end-effector.
x Position of the robot end-effector.
ξ Integration variable of space (for stability analysis).
fh Interaction force between the human and robot.
xe Rest position of the environment.
xh,xr Reference positions of the human and robot.
eh, e Tracking errors of the human and robot.
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Kh,Khv Stiffness and viscosity matrices of the human arm.
Ks,Kvs,kps,xes Spatial form of K,Kv ,kp,xe.
J Index of driving effort of the human user.
V Lyapunov function of the system (for stability anal-

ysis).
K,Kv,Ke Coefficients of the disturbance and control ma-

trix.
K̂, K̂v, k̂p Estimations of K,Kv ,kp, where kp = −Kxe.
aj , bj , cj Parameters of the velocity-based adaptation in e-

q. (24)
PE Capability of the method in terms of contact stability.
Ti ith iteration period for repetitive tasks.
A,Av,Ap,Λ Parameters of the proposed iterative

impedance learning method.
Af ,Ad,Ac Parameters of the proposed adaptive impedance

learning method.
η, µ Parameters of the improved Λ.
T Maximum iteration period for repetitive tasks.
σ Integration variable of time (for stability analysis).
E Total tracking error.
K̂s, K̂vs, k̂ps Estimations of Ks,Kvs,kps.
PF Capability of the method in terms of maneuverability.

I. INTRODUCTION

V arious robotic applications, such as (tele)operating a
microrobot, demand a robot to be guided by a human

while interacting with the environment. Most existing robotic
interaction control schemes focus on achieving an effective
interaction either with the human operator, or with an en-
vironment. However, during the execution of many human-
robot interaction tasks, the robot may concurrently interact
with an environment, for example during human-guided
tooling. This interaction may destabilise the movement, affect
task performance, and fatigue the human operator. Our vision
to avoid these shortcomings is for a robot to understand the
human intention, while learning to compensate for identified
reproducible interaction dynamics during movement.

When a human user guides a robot to complete a tooling
task such as cutting, polishing, or drilling, they need to exert
a force on the robot to move it along the planned trajectory
and achieve satisfying tooling performance. For instance,
as a human user carries out a carving task, they need to
apply a certain force to manipulate the blade along a desired
trajectory. If the engraved plate is of hard texture, there will
be a large resistive disturbance that will degrade the carving
performance. If the human user wants to maintain the carving
quality, more effort is needed to overcome the unknown



disturbance. In this case, a robot that complies with human
movement while concurrently attenuating environmental dis-
turbance is required.

To analyze the interaction of the human operator with the
robot and its environment, we define maneuverability as the
degree of difficulty to guide the robot for completing a task
in the presence of environmental perturbations. The more
easily the human operator can guide the robot, the higher
the maneuverability. We also define contact stability as the
capability for the robot to ensure good task performance
despite environmental perturbations. The robot should both
i) allow the human operator to easily move and flexibly
operate the robot thus yielding high maneuverability, and
ii) complete the task with a small error in the presence of
perturbation from the environment, such as vibration due to
a nonhomogeneous material and undesirable friction, i.e. the
contact stability has to be guaranteed. Usually, the contact
stability is guaranteed at the expense of the maneuverability,
or vice versa. When the human user tries to improve their
performance, i.e., to reduce the tracking error, they need more
effort to compensate for the disturbance, which will result
in decreasing maneuverability. Conversely, with less human
control effort, the task performance will be deteriorated due
to the negative effects of the disturbance. In other words,
maneuverability and contact stability are hard to ensure
concurrently. Our goal is to develop an interaction controller
that makes robots able to interact with their environment,
while offering both high maneuverability and contact stability
to the human operator.

A. Previous works in human-robot interaction

How to design a robot controller for intuitive and effi-
cient human-robot interaction is a prevalent research topic
in the robotics field. Robots that interact with humans to
perform their functions include rehabilitation robots, robotic
exoskeletons, collaborative robots (cobots) for micro ma-
nipulation and industrial assembly, and semi-autonomous
vehicles. Impedance control is often used on these contact
robots to yield a compliant interaction of a robot with its
human operator.

Facing uncertain human behaviors, a number of works esti-
mate the human impedance or intention to dynamically adjust
the robot’s impedance parameters for efficient and stable
interaction. For instance, it has been proposed to regulate the
robot impedance using muscle activity measured with surface
electromyography, although the underlying control is limited
by the large signal variability and neural constraints [1], [2].
To address these limitations, several approaches used the
force and position information of the human limb, which can
be directly measured by sensors, to infer their impedance and
adjust the robot’s impedance correspondingly [3], [4]. Other
works estimate intention or characteristics of the human
partner, e.g. trajectory in [5] or human impedance in [6],
[7] for adjustment of the robot’s impedance. Alternatively, a
velocity-related heuristic rule scheme has been considered in
[4], [8] to adjust robot impedance, rather than relying on
the human partner’s behaviour. In addition, several works

considered that human movements obey a certain probability
distribution that can be identified to infer their intention
[9]. Based on time-series data, the motion intention was
estimated using the sparse Bayesian learning method in [10],
and an adaptive impedance control algorithm was developed
for effective human-robot collaboration. Instead of adjusting
the robot’s impedance, the robot’s reference trajectory can
be updated to achieve efficient human-robot interaction [11].
A review of human-robot interaction control can be found
in [12]. However, previous works do not explicitly consider
concurrent interactions between the robot, human operator,
and environment.

B. Existing works on robot-environment interaction
Contact tooling tasks by definition involve a desired in-

teraction between the robot and the environment. Control
theory has been used to consider robot-environment inter-
action stability, and to develop impedance adaptation. In
[13]–[15], the interaction force between the robot and the
human was considered as an environmental force, where
neural and iterative learning controls were used to mitigate its
negative effect. Different from [13]–[15], the adaptive control
strategy in [16] could generate the desired interaction force
between robot and environment by adjusting the feedforward
force, impedance, and trajectory of the robot. Reinforcement
learning approaches have also been proposed to determine
the optimal impedance parameters of the robot controller to
achieve desired robot-environment interaction performance
[17]–[20]. A reward function including contact information,
e.g. the interaction force, was used to determine the optimal
impedance parameters of the robot controller to achieve de-
sired robot-environment interaction performance [21]. Fuzzy
logic controllers have also been developed for impedance
adaptation of the robot. Based on a fuzzy neural network
learning algorithm, an adaptive controller was designed in
[22] for adjusting the impedance parameters of the robot so
as to produce smooth control even during transitions from
free movement to contact. However, the controllers designed
in [13]–[22] do not consider a human operator.

Fig. 1: Human-robot-environment interaction: A robot is guided by a human
operator while in physical contact with an environment.

C. Contributions of this paper on human-robot-environment
interaction

Different from the aforementioned works that considered
either the interaction between robot and environment, or the
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interaction between robot and human, we will consider here
both the human operator and the environment. We will design
a robot controller that automatically infers the intention of the
human and adapts to an uncertain environment by learning
the resulting impedance to improve the task performance.
It is not a simple combination of two controllers for robot-
environment interaction and human-robot interaction, as the
two control objectives can be contradictory, leading to a
conflicting trade-off between maneuverability and contact
stability as discussed above. Our idea is to maintain the
robot’s maneuverability by inferring the human intent while
only introducing additional impedance to deal with the envi-
ronmental disturbance and thus ensure contact stability. As a
result, both the maneuverability and the contact stability can
be ensured during the human-robot-environment interaction,
and the conflict between the human effort and the task
performance is addressed.

The designed impedance learning strategy can be applied
to both non-repetitive tasks, such as engraving or drawing,
in the form of adaptive learning, and repetitive tasks, such
as grinding or polishing, in the form of iterative learning. In
the collaborative tasks considered in this paper, the robot is
guided by the human user that assists them to complete a
task in the presence of uncertain environmental disturbances.
As illustrated by Fig. 1, the human user holds the robot and
their interaction force can be measured by a force sensor.
Simultaneously, the robot interacts with the environment for
a certain tooling task. As the interaction force between the
robot and the environment is typically subject to significant
noise, it is not measured by a force sensor. Instead, due to
repetitive interaction and periodicity of the environmental
parameters, the disturbance from the environment can be
learned by the robot.

The remaining of the paper is organized as follows: Sec-
tion II formulates dynamics of and issues with the human-
guided robot in contact with the environment. An adaptive
variable impedance control is developed in Section III for
non-repetitive tasks. Section IV presents an iterative control
method with variable impedance learning for repetitive tasks
considering position dependent disturbances. An experiment
to test the algorithm’s ability to identify a known virtual
environment and yield stable interaction behavior is described
in Section V. Section VI presents an experiment to test the
effectiveness of the proposed impedance learning scheme in
interaction with real environments. Section VII summarizes
the contribution of this paper and analyzes the advantage of
the proposed control method by comparing with the existing
velocity-based adaptation method. The variables used in the
paper are listed in Nomenclature.

II. PROBLEM FORMULATION

A. Dynamics of human-robot-environment interaction
We aim to design a controller for a human-guided robot

that can stably interact with an environment. The dynamics
of the n-degree of freedom (DoF) human-guided robot can
be modelled as

M ẍ+B ẋ+ g = fh + d+ u, (1)

where x = [x1, · · · , xn]
T ∈ Rn is the position vector

of the end-effector, M ∈ Rn×n the inertia matrix of the
robot, B ∈ Rn×n the positive definite matrix related to
the Coriolis force, g ∈ Rn the gravity force on the robot,
fh ∈ Rn the vector of the measured interaction force signals,
d ∈ Rn disturbance due to the interaction with an unknown
environment, and u ∈ Rn the robot command vector. In the
model in eq. (1), parameters of the robot M ,B, g are time-
varying and state-related, but their arguments are omitted in
this paper to facilitate the readability.

In this paper, the human force fh is expected to be
minimised, even with an environmental disturbance d. While
both fh and d are external forces on the robot controller, fh

is considered ‘desirable’ as it indicates the human’s planned
trajectory and d is ‘undesirable’ as it may cause instability.

The interaction force can be modelled as [23]

fh = M ẍh +B ẋh −Kh eh −Khv ėh, eh = x− xh,
(2)

where xh ∈ Rn is the desired position vector of the human
that is unknown to the robot, Kh ∈ Rn×n and Khv ∈ Rn×n

are stiffness and viscosity matrices of the human arm and
eh ∈ Rn is the tracking error between xh and x. The first
two terms of eq. (2) correspond to the feedforward force to
compensate for the system dynamics and the last two terms
to muscle viscoelasticity. Notice that eq. (2) is not used in
the following robot controller design, but only for analysis
purpose. If the robot is without disturbance and only with
gravity compensation, i.e. d = 0 and u = g, then combining
eqs. (1,2) yields

M ëh + (B +Khv)ėh +Kh eh = 0 , (3)

which shows that the robot can stably follow xh correspond-
ing to the human’s motion intent and the instability in practice
is largely caused by the environmental disturbance.

Since the human force can guide the robot to the desired
position without disturbance and control, under such an ideal
case, the robot passively follows the desired human trajectory
as expected and eh ≈ 0. Then using eq. (2), we have

M ẍh +B ẋh = fh . (4)

If we define the reference position vector of the robot as
xr ∈ Rn, replacing xh in eq. (4) with xr yields

M ẍr +B ẋr = fh . (5)

With eq. (5), the reference trajectory of the robot xr is
available for the impedance control designed in the following
sections.

B. Stability analysis for human-robot-environment interac-
tion

This section analyzes the system stability to develop an
impedance learning controller for an ideal case with mea-
surable disturbance. Let us consider a general visco-elastic
model of the environment:

d = K(x− xe) +Kv ẋ , (6)
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where K ∈ Rn×n and Kv ∈ Rn×n are the coefficients
of the disturbance and xe ∈ Rn is the rest position of the
environment.

When there is no external disturbance and the robotic
control is designed only for gravity compensation, i.e. u = g
and d = 0, according to eq. (1)

M ẍ+B ẋ = fh (7)

in which fh is driving the robot toward xh as shown in
eq. (4) and the interaction system is stable if eq. (7) holds.

If only the gravity compensation is considered in the
robotic controller, considering the system in eq. (1) with
u = g and the disturbance d in eq. (6), the model of the
human-guided robot can be rewritten as

M ẍ+ B̄ ẋ+ C̄ x+ ā = fh , (8)

where

B̄ = B −Kv , C̄ = −K , ā = Kxe. (9)

It is clear that when the disturbance is resistive to the robot
movement, i.e. the matrices K and Kv are positive definite,
the human-guided robot in eq. (8) could become unstable in
the presence of large disturbances because of the undesired
terms B̄, C̄ x and ā in eq. (9), such that more human effort
is needed for a stable contact. Therefore, to achieve a stable
contact with the environment while maintaining the robot’s
maneuverability, a robotic controller is required to attenuate
the effect of the disturbance.

According to the model in eq. (1), if the environmental
disturbance d is measurable, a robot controller with gravity
compensation can be designed as

u = −d+ g (10)

such that eq. (7) holds even with the disturbance. This would
enable the human to use little effort to ensure the contact
stability and guide the robot. In practical operation, the
environmental disturbance is hard to be accurately estimated.
In the next two sections, an impedance controller is designed
based on the human-guided robot model in eq. (1), which
does not require knowledge of d and xh to guarantee the
contact stability and the robot maneuverability.

III. IMPEDANCE CONTROL DESIGN FOR NON-REPETITIVE
TASKS

For the non-repetitive task considered in this section, the
coefficients K and Kv of the disturbance in eq. (6) and the
rest position of the environment xe are constant. Then an
adaptive impedance control is designed as

u = −K̂ x− K̂v ẋ− k̂p −Keė+ g (11)

with impedance learning laws

˙̂
K = ė xTAf ,

˙̂
Kv = ė ẋTAd ,

˙̂
kp = Ac ė, (12)

where e ∈ Rn is the tracking error of the robot

e = x− xr , (13)

and Af , Ad, Ac,Ke ∈ Rn×n are positive definite diagonal
matrices.

Eq. (12) can be used to compute K̂, K̂v , and k̂p for the
control of eq. (11). For example, K̂ can be computed from
K̂ (t+∆t) = ėxTAf∆t + K̂ (t) using Euler integration
with a predefined initial value K̂ (0), where ∆t denotes
the sampling time. In eq. (12), we know that K̂, K̂v ,
and k̂p update depending on the variation speed of the
tracking error ė, and the position x and velocity ẋ of the
system. Since the disturbance d in eq. (6) can be rewritten
as d = Kx − Kxe + Kv ẋ, it is related to the position
x, the velocity ẋ of the system, as well as the rest position
of the environment xe. As a result, the controller will
update its three parameters according to the current tracking
performance, which is indicated by ė, and the current degree
of disturbance, which is indicated by x and ẋ. Besides,
according to the backward difference method, ẋr can be
represented as ẋr = xr(t)−xr(t−∆t)

∆t , where ∆t is the
sampling time and thus ẍr = xr(t)−2xr(t−∆t)+xr(t−2∆t)

(∆t)2

according to [24]. By substituting the expressions of ẋr

and ẍr into eq. (5), the reference trajectory of the robot
xr (t) used in eq. (13) can be updated using xr (t) =[
(∆t)

2
fh −Mxr (t− 2∆t) + (B∆t+ 2M)xr (t−∆t)

]
× (M +B∆t)

−1.
Substituting eq. (11) into eq. (1) yields

M ẍ+ (B + K̂v)ẋ+ K̂ x+Keė+ k̂p = fh + d (14)

which can be rewritten as

M ẍ+ B̌ ẋ+ Č x+Keė+ ǎ = fh + d , (15)

where

B̌ ≡ B + K̂v , Č ≡ K̂ , ǎ ≡ k̂p . (16)

From eq. (16), it is clear that the impedance matrices B̌, Č,
ǎ are regulated according to the variation of the disturbance
d with learning laws in eq. (12). When K̂x+ K̂vẋ+ k̂p ≃
Kx+Kvẋ−Kxe, eq. (7) holds with an additional assistive
force Keė provided by the robot such that the human can
guide the robot with fh free from the disturbance.

Using eqs. (5,6,11), eq. (1) can be rewritten as

M ë+ (B +Ke) ė = K̃ x+ K̃v ẋ+ k̃p , (17)

where K̃, K̃v ∈ Rn×n and k̃p ∈ Rn are defined as

K̃ = K − K̂, K̃v = Kv − K̂v, k̃p = kp − k̂p, (18)

while kp = −Kxe.
Using these notations, we can formulate Theorem 1: For

an n-DoF human-guided robot used in a non-repetitive task,
the adaptive impedance control strategy in eqs. (11,12) can
eliminate the adverse effect of the disturbance d and regulate
the robot behavior so that the stability of the closed-loop
system in eqs. (17,18) is guaranteed in the presence of d.
The proof of Theorem 1 is provided in Appendix 1.

Theorem 1 indicates that the disturbance can be learned
using our adaptive impedance control scheme, thus the con-
troller in eq. (11) enables eq. (7) to hold for the closed-
loop interaction system. As impedance learning in eq. (12)
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regulates the robot impedance to compensate for the effect
of the disturbance during the interaction, the human user does
not need to overcome the contact instability caused by the
disturbance, and the effort to steer the robot is reduced. The
above control process can be found in Fig. 2.

In eq. (11), u is derived by analyzing the stability of the
disturbed human-robot-environment interaction system based
on Lyapunov’s stability theory [25]. We first need to select a
Lyapunov function of the system (V in eq. (32) in Appendix
1) that includes the tracking error and the estimation error of
the disturbance parameters that we want to minimize, then
u is designed to make the controlled system stable through
V̇ ≤ 0.

For the designed control u, the initial values of the
estimated control parameters in eq. (11), K̂ (0), K̂v (0),
k̂p (0), affect the transient performance but not the steady-
state performance, and they are typically initialized as zero.
However, the learning parameters Af , Ad, Ac in eq. (12)
should be manually tuned to be large enough to provide
adequate convergence speed of the controlled system.

IV. ITERATIVE IMPEDANCE CONTROL FOR
HUMAN-GUIDED ROBOT IN REPETITIVE TASKS

When the robot performs a repetitive task, the environment
has spatial periodicity, thus the disturbance can be considered
as a function of the position as discussed in [26]. To further
elaborate, instead of constant matrices, coefficients of the
disturbance are spatially periodic, i.e. their values are the
same for the same position in different iterations. We modify
here the adaptive impedance control proposed in Section
III for repetitive tasks, making it suitable for space-related
disturbances with varying coefficients. The subscript s is
used for space-related variables and time-related variables are
without s. The subscript i of a variable denotes its iteration
number.

In the ith iteration, the spacial form of the environmental
disturbance di in eq. (6) is written as

di = Ks(xi − xes) +Kvs ẋi, (19)

where Ks, Kvs ∈ Rn×n and xes ∈ Rn are the spatial
form of K, Kv and xe, respectively, which satisfy Ks,i =
Ks,i−1, Kvs,i = Kvs,i−1, xes,i = xes,i−1.

Based on the disturbance in eq. (19), the robot control u
is redesigned as

ui = −K̂i xi − K̂v,i ẋi − k̂p,i −Keėi + g, (20)

where the control parameter matrix Ke ∈ Rn×n keeps the
same for each iteration, and impedance parameter matrices
K̂i ∈ Rn×n, K̂v,i ∈ Rn×n, and k̂p,i ∈ Rn are updated in

time as

K̂i =

{
K̂i−1 + ėi x

T
iAΛ for t ∈ [0, Ti]

K̂i−1 for t ∈ (Ti , T ],

K̂v,i =

{
K̂v,i−1 + ėi ẋ

T
iAv Λ for t ∈ [0, Ti]

K̂v,i−1 for t ∈ (Ti , T ],

k̂p,i =

{
k̂p,i−1 +Ap Λ ėi for t ∈ [0, Ti]

k̂p,i−1 for t ∈ (Ti , T ],
(21)

where A, Av and Ap are Rn×n diagonal matrices with
positive constant elements, Ti ∈ [0, T ] is the actual learning
time of the ith iteration, T is the maximum iteration period,
Λ = diag{λ1 · · ·λn} ∈ Rn×n in which λj =

∣∣vj∣∣−1
and

vj ∈ R is the current robot velocity along the jth dimension,
j = 1, · · · , n.

In traditional iterative learning control, a fixed iteration
period is needed to ensure system stability. However, humans
never repeat a movement with exactly the same time duration
[27]. In our proposed method, the learning laws in eq. (21)
are designed as piecewise functions. Based on this, we use
the method in [15] and introduce Λ to deal with the varying
iteration period. When the current velocity increases, the
learning speed will correspondingly decrease due to the
decrease of Λ, so that the possible spatial inconsistency
caused by the varying velocity can be corrected with our
proposed update laws, and the stability of the human-robot-
environment interaction system can be guaranteed. With
the maximum iteration period T , the controller updates its
coefficients for t ∈ [0, Ti] and stops updating for the rest
of the duration since there is no valuable information to
be learned. T could be theoretically set to be large enough
to cover all possibilities so that the actual learning time Ti

can eventually achieve it in the sense of lim
i→∞

Ti = T [15],

[28]. However, if T is too large, the control period will
be correspondingly extended, which will reduce the control
efficiency. Therefore, T should be determined according to
the task execution time. In practice, T can be set slightly
larger than the prescribed movement time (e.g. as 4’30” for
a 4’ planned duration) to guarantee that the task can be
completed.

Substituting eqs. (5,6,20) into eq. (1) yields

M ëi + (B +Ke) ėi = K̃i xi + K̃v,i ẋi + k̃p,i, (22)

where K̃i, K̃v,i ∈ Rn×n and k̃p,i ∈ Rn are defined as

K̃i = Ki − K̂i, K̃v,i = Kv,i − K̂v,i, k̃p,i = kp,i − k̂p,i,
(23)

where kp,i = −Ki xe,i.
With above-mentioned equations, we can formulate The-

orem 2: For the n-DoF human-guided robot described by
eq. (1) in repetitive tasks, the iterative impedance control
strategy in eq. (20) with impedance learning laws in eq. (21)
can guarantee the stability of the closed-loop system in
eqs. (22, 23) in the presence of environmental disturbance, i.e.
eq. (7) is satisfied with the proposed control. The proof of this
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theorem is presented in Appendix 2, where the robot control
is first designed to be space-related to conform with eq. (19)
and then transformed to time domain for implementation.

Fig. 2: Control block diagram of the human-guided robot for non-repetitive
and repetitive tasks.

The block diagram of the resulting human-guided robot
control for repetitive tasks is shown in Fig. 2. In order to
avoid K̂, K̂v , and k̂p becoming too large when the robot
velocity is close to zero, λj defined in eq. (21) can be revised

with λj =

{ ∣∣vj∣∣−1
, if

∣∣vj∣∣ ≥ µ(∣∣vj∣∣+ η
)−1

, if
∣∣vj∣∣ < µ

, where a constant η

is added to λj when
∣∣vj∣∣ is less than a positive constant µ.

V. CONTROL VALIDATION WITH H-MAN ROBOT

To test the ability of the proposed impedance controller
to identify the environmental disturbances and stably com-
pensate for it, an experiment was implemented on a pla-
nar H-MAN robot with a virtual, software designed dis-
turbance. The experiment was approved by the Sciences
and Technology Cross-Schools Research Ethics Committee
of Sussex University, UK (reference number ER/YL557/1).
Six human subjects without known sensorimotor impairment
were recruited, who all gave their informed consent prior to
participating. International units are used in the following,
unless specified.

Fig. 3: Experimental setup with H-MAN robot to test the algorithm on a
virtual environment interaction.

The experimental setup with the planar H-MAN robot is
shown in Fig. 3. A graphical user interface (GUI) is designed
to display the target trajectory and the cursor indicating the
handle’s position. In the experiment, the human operator
holds the handle and guides the robot to track the target

trajectory with the cursor on the GUI. The H-MAN robot
is equipped with an ATI Mini 40 force/torque sensor at
the handle. Since the virtual disturbance is introduced in
software as a part of the control input of the robot (instead
of stemming from interaction with a physical environment),
the force measured by the load cell is only from the human.

To evaluate our proposed adaptive impedance control, the
following three control conditions were compared:

• Control off : The robot control is 0;
• Velocity-based: The velocity-based impedance adapta-

tion proposed in [4]:

uj = −min
{
aj e

−bj |ẋj |, cj

}
ẋj , aj , bj , cj > 0 (24)

where j = 1, 2 stands for x or y axis;
• Impedance learning: The proposed control method with

impedance learning was used.
Each subject was instructed on how to use the H-MAN

robot, and then practiced the task. Recording began when
the subject felt confident in performing the task. Each subject
carried out five trials in each of the three control conditions,
whose order is unknown to them.

Sections V.A-C present the results of a representative
subject, and the overall performance of the six subjects is
described in Section V-D.

A. Non-repetitive task

In the non-repetitive task, the target displayed
on the GUI moved in a circular trajectory[
10 cos( π

4.5 t) 10 sin( π
4.5 t)

]T cm. One trial consisted of
tracking this trajectory once. The disturbance was set as
d =

[
dx dy

]T
=

[
20x1 + 4 ẋ1 20x2 + 4 ẋ2

]T
N.

The velocity-based control in eq. (24) was implemented
with a1 = a2 = 500, b1 = b2 = 3 and c1 = c2 = 50.
Impedance learning was implemented using the controller in
eqs. (11,12) with parameters Ke = 0.1 I2, Af = 0.5 I2,

Ad = I2, Ac = 0.05 I2, where I2 =

[
1 0
0 1

]
.

The maneuverability defined in this paper was evaluated
using the l2-norm of the instantaneous tracking error ∥e∥,
while the contact stability was measured using the human
effort, J , to drive the robot

J =

∫ T0

0

|fT
h(t)v(t)| dt, (25)

where T0 is the task duration and v is the velocity of the
interaction system. To evaluate the disturbance identification,
the learned two-dimension disturbance d̂ for non-repetitive
tasks

d̂ =
[
d̂x d̂y

]T
= K̂ x+ K̂v ẋ+ k̂p (26)

can be analyzed, where K̂, K̂v , k̂p are coefficients of the
disturbance learned according to eq. (12).

Fig. 4a shows the trajectories of a representative subject
in one trial. In Fig. 4a, the dashed black line, corresponding
to the subject guiding the robot without control and without
disturbance, serves as a reference for best possible guidance.
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Fig. 4: Results of a representative subject for the non-repetitive task with the H-MAN robot, in the conditions of control off (in red), velocity-based adaptation
(blue) and with the proposed adaptive impedance learning method (green). a: Actual trajectories over one trial in each condition. b: Average learned and actual
disturbance. c: Average tracking error magnitude with ± standard deviation (std) error bars. d: Average effort of the user with ± std error bars.

This reference trajectory slightly deviates from the 10 cm
radius circle, due to the H-MAN sensing error from cable
deformation and to the variability of exerted force. We see in
Fig. 4a that in the control off condition the disturbance largely
affects the tracking error performance so that an effective
control strategy is necessary to mitigate this negative effect.
Although the velocity-based impedance adaptation improves
the tracking performance, there is still tracking error with this
method which does not model the environment interaction.
Figs. 4c,d suggest that the proposed impedance learning con-
troller yields better tracking performance while decreasing
the effort to drive the robot for tracking the moving target.
This arises as this controller accurately identifies the virtual
environment. Fig. 4b indeed shows that the disturbance d is
well identified.

B. Repetitive task

In the repetitive task, one trial consists of guiding
the robot during four iterations to track a target moving
on a smaller circle. The target trajectory is defined as[
5 cos(0.25π t) 5 sin(0.25π t)

]T cm in the presence of dis-
turbance d =

[
dx dy

]T N where dx = 28(sin 160x)2x +
4(sin 80x)2ẋ and dy = 28(cos 240y)2y + 4(cos 40y)2ẏ.

In our experiment, when the human subject stopped at a
position for the prescribed time, we consider that the human
completed the task. Since Ti in our proposed method in
eq. (21) is the time required by the human movement in the
ith iteration to complete the movement, it is computed as
the time recorded by the timer of the robot achieving speed

below the specified threshold minus this prescribed time. The
above-mentioned method of obtaining Ti is also adaptable for
the experiment with Panda robot in Section VI-B.

The iterative impedance learning in eqs. (20,21) was im-
plemented with the parameters Ke = 0.1 I2, A = I2,
Av = Ap = 0.05 I2, η = 1, µ = 0.01, T = 24 s. The
iterative learning scheme was compared with the conditions
of control off and velocity-based impedance adaptation in
eq. (24) with parameters a1 = a2 = 500, b1 = b2 = 2,
c1 = c2 = 100. The maneuverability and the contact stability
were evaluated from the last iteration of the five trials,
where the effort metric J in eq. (25) is restricted to the last
iteration’s period

J =

∫ Tm

0

|fT
h,m(t)v(t)| dt, (27)

where Tm is the last iteration’s duration and m equals 4 for
this experiment. Similarly, the learned disturbance in eq. (26)
is redefined as

d̂ =
[
d̂x d̂y

]T
= K̂m xm + K̂v,m ẋm + k̂p,m , (28)

where K̂m, K̂v,m, k̂p,m are computed from eq. (21).
Fig. 5a shows the trajectory in the three control conditions

over one trial of each subject. Here also the disturbance has
a significant effect on tracking performance relative to the
reference trajectory (without disturbance and without control)
which is partly addressed by the velocity-based adaptation.
In comparison, the proposed impedance learning method
reduces the tracking error (Fig. 5c) to a minimum, and also
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Fig. 5: Results for a repetitive task carried out by a representative subject (same subject as Fig. 4) with the H-MAN robot, in the three conditions of control
off (red), with the velocity-based adaptation (blue) and with the proposed iterative impedance learning method in the last (4th) iteration (green). a: Actual
trajectories over one trial. b: Average learned and actual disturbances. c: Average tracking error magnitude with ± std error bars. d: Average effort of the user
with ± error std bars.

minimizes the effort to drive the robot (Fig. 5d). The average
learned and the actual disturbance of four iterations are
illustrated in Fig. 5b. We see that the disturbance learned by
iterative impedance learning laws in eq. (21) converges to the
actual values. In comparison with the non-repetitive tracking
task above, the controller can now identify a more complex
disturbance which contributes to the good performance of our
proposed method.

C. Performance with disturbance at different levels

An additional experiment with the H-MAN was carried
out by the same subject as before in order to explore how
our proposed impedance learning method deals with different
levels of disturbance in both non-repetitive and repetitive
tasks.

Performance and effort were investigated at increasing
levels L = 1, 2, 3, 4, 5 of disturbance. For the non-repetitive
task the disturbance was (with x1, x2 in m and ẋ1, ẋ2 in m/s)
d =

[
dx dy

]T N where dx = 8(1+ 5L)x1 +0.4(1+ 2L)ẋ1

and dy = 8(1+5L)x2 +0.4(1+ 2L)ẋ2. The disturbance for
the repetitive task was with dx = 20(1+3L)(sin 10x1)

2x1+
8(1+L)(sin 10x1)

2ẋ1 and dy = 20(1+3L)(cos 10x2)
2x2+

8(1 + 1L)(cos 10x2)
2ẋ2. Five trials were carried out with

each control condition, which were presented in the same
pseudo random order as before.

Tracking performance representing the contact stability

was analyzed using the total error

E ≡
∫ T

0

∥e(t)∥ dt, (29)

where T is the non-repetitive task duration or the duration
of the last iteration for the repetitive task.

To evaluate the improvement of contact stability and ma-
neuverability, we calculate the decrease of total error and
effort with velocity-based adaptation and impedance learning
relative to the control off condition, respectively, using

PE =

{
EN−Eex

EN
× 100 for velocity-based adaptation

EN−Ede

EN
× 100 for impedance learning,

(30)

PF =

{
JN−Jex

JN
× 100 for velocity-based adaptation

JN−Jde

JN
× 100 for impedance learning,

(31)

where EN , Eex and Ede are values of E defined in eq. (29)
in the conditions of control off, with the velocity-based
adaptation and with the proposed impedance learning method
respectively; similarly, JN , Jex and Jde are respectively
the values of J (defined in eq. (25) for non-repetitive tasks
and eq. (27) for repetitive tasks). According to eqs. (30,31),
PE and PF indicate the improvement of trajectory tracking
accuracy and effort-saving using velocity-based and proposed
controls, respectively. The higher value the index is, the
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Fig. 6: Relative reduction of total tracking error and effort with disturbances of increasing magnitude (defined in the text) in the non-repetitive task (a) and
in the repetitive task (b).

Fig. 7: Results of experiment carried out by six human subjects with the H-MAN robot and different control conditions, to validate the proposed impedance
learning on a virtual disturbance. Average and ± std of total tracking error and effort are over the five trials in the non-repetitive task (a) and in the repetitive
task (b) where only the last iteration (of the five trials) is considered.

greater improvement brought by the controller. The param-
eters of the velocity-based and proposed controllers were
maintained as in Sections V.A-B.

Fig. 6 shows the average percentage index PE and PF

of five trials in different tasks. As we see in Figs. 6a and
6b, impedance learning does not offer an obvious advan-
tage over the velocity-based method to reduce the tracking
error for an environmental disturbance of small amplitude.
However, in both the non-repetitive and repetitive tasks, the
tracking performance benefits increase with the disturbance
level, exhibiting less tracking error at higher levels. Due to
the limited capability of controllers in improving trajectory
tracking performance and the limitation of the robot platform,
no further improvement over L = 3 is observed in Fig. 6b.

Fig. 6 shows that the effort reduction with both the
velocity-based and impedance learning control increases with
the disturbance level in the non-repetitive and repetitive tasks.
However the benefits of the impedance learning approach are
larger compared to the velocity-based approach.

D. Overall results of multiple subjects with H-MAN robot

We can see in Fig. 7 that the proposed control with
impedance learning outperforms the velocity-based control in
improving the tracking performance and minimizing effort for
both non-repetitive and repetitive tasks, which demonstrates
its advantages in ensuring the contact stability and maneu-
verability of the interaction system.

VI. APPLICATION TO 3D TASKS WITH UNKNOWN
ENVIRONMENT

A second experiment was carried out to test the efficiency
of impedance learning control in 3D tasks involving unknown
environment’s interactions, as well as its robustness to the
variability of duration when humans repeat a movement. As
shown in Fig. 8a, subjects guided a 7-DoF Franka Emika
Panda robot along a reference shape previously traced by the
robot while interacting with a cordless rotary carving tool
and a grinding tool as shown in Figs. 8c and 8d, respectively.
Compared with the software designed disturbance in Section
V, the disturbance in this section arises from the contact with
the environment due to the hard texture of the environment
and the vibration caused by the high-frequency rotation of the

9



Fig. 8: Experimental setups for 3D tasks in contact with the environment. a: Franka Emika Panda robot with 7-DoFs used in the experiments. b: Mechanism
with handle to separate measurement of the user applied interaction force from the interaction with the environment. c: Non-repetitive carving task. d: Repetitive
grinding task and the CAD schematic drawing of the 3D surface.

tool. This experiment tests whether the interaction model of
eq. (6) is valid in this case and if the controller yields stable
and efficient movement assistance to the human operator.

To decouple the human force from the environmental
interaction, a mechanism was fixed between the robot ex-
tremity and the tool as shown in Fig. 8b. This mechanism
was designed to measure the force exerted by the operator and
separate it from tool interaction with the environment. The
Franka Control Interface (FCI) provides the current status of
the robot and an external workstation PC was connected with
the Panda robot via Ethernet to realize real-time control at
1 kHz. Joint position and velocity as well as the force exerted
on the robot were recorded at 1 kHz.

The experiment protocol was approved by the UWE Re-
search Ethics Committee (UWE REC REF No: FET-2122-
59). A total of 12 human subjects without known senso-
rimotor impairment were recruited to carry out one of the
two tasks with the Panda robot (with six subjects for each of
them), who gave their informed consent prior to participation.
Each subject was allowed to practice until becoming familiar
with the robot guidance and the carving or grinding task.
They then carried out five trials in each of the conditions
control off, velocity-based control in eq. (24) and impedance
learning as described in Section V, and were naive to the
conditions tested.

Sections VI.A-B show detailed results of a representative,
while the overall results of the six subjects are provided in

Section VI-C.

A. Non-repetitive carving task

In the non-repetitive carving task, an “8” shape in red
colour was first traced by the robot on a hard wooden board
with a cordless rotary carving tool as shown in Fig. 8c. Then
each subject guided the robot along this shape once for a
trial in the three control conditions. Velocity-based adaption
was implemented with a1 = a2 = 200, b1 = b2 = 10,
c1 = c2 = 20, and impedance learning with Ke = 150I2,
Af = Ad = Ac = 1000 I2.

The time to carry out the tasks between different trials
varies. To be able to compare different trials of a subject
and between subjects, the errors in all trials of all subjects
were normalised to the average duration of a representative
subject.

Fig. 9a shows the character carved by a representative
subject in the first trial of the three control conditions. The
average norm of the path error ∥e∥ and the average effort J
of the human user defined in eq. (25) of five trials is shown
in Fig. 9b and Fig. 9c, respectively. Both the path error and
driving effort in the last trial are lowered slightly using the
velocity-based control, and reduced more using impedance
learning.
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Fig. 9: Results of a representative subject in the non-repetitive carving task with the Panda robot, in control off (grey), with velocity-based control (green),
and with the proposed adaptive impedance learning method (blue). a: “8” carved by the human user. b: Average norm of path error with ± std error bars. c:
Average effort of the human user with ± std error bars.

B. Repetitive grinding task

In the repetitive grinding task, a cordless rotary tool was
mounted on the designed mechanism to grind a rough 3D-
printed surface as shown in Fig. 8d. An arc was first traced by
the robot on the 3D surface as the reference for the subjects
before recording. Then each subject held the force sensor and
carried out trials to grind the 3D surface along the reference.
Five trials were completed in each condition, where one
trial consists of four iterations (m = 4 for eqs. (27,28)),
i.e. four times back and forth. The parameters were set as
a1 = a2 = 200, b1 = b2 = 5, c1 = c1 = 10 for the
velocity-based adaptation and Ke = 200I2, A = Av =
100 I2,Ap = 350 I2, η = 0.001, µ = 0.005, T = 8 s,
a1 = a2 = 200, b1 = b2 = 5, c1 = c1 = 10 for impedance
learning.

The results of a representative subject are shown in Fig. 10.
We see in the photos of grinding performance of Fig. 10a
that all iterations of the first trial deviate from the reference
with control off and velocity-based adaptation, without any
apparent learning taking place. This bias is caused by the non-
negligible robot mechanical impedance experienced when
guiding the robot along the 3D surface. To analyze how
the tracking performance changes with iterations, the 3D
recorded data is reproduced in Fig. 10b, which shows the
path from the average of back and forth movements in all
iterations. We see that the velocity-based method yields a
slight improvement, but performance does not improve over
the iterations. With iterative impedance learning, the first
iteration similarly deviates from the desired path, but the
movement approaches it more with each iteration.

Fig. 10c shows the resulting error and standard deviation
error bars as a function of normalized time, in the last

iteration over the five trials. The average driving effort in
eq. (27) is shown in Fig. 10d. Overall, Fig. 10 exhibits that
the velocity-based approach enables limited performance
improvement, while impedance learning results in a clear
decrease in both path error and the driving effort.

C. Experiment results of multiple subjects for carving and
grinding tasks

Figs. 11a and 11b show average values of total path error
E defined in eq. (29) and average effort J , respectively over
the six subjects that carried out each experiment. We see in
Fig. 11 that the velocity-based adaptation algorithm reduces
the tracking error and effort relative to control off in two
tasks with a limitation as the disturbance can not be fully
compensated for. By comparison, the proposed impedance
method reduces them more, exhibiting less error and effort
than with velocity-based control. These results suggest that
impedance learning can handle temporal variability in human
movements, and ensure both contact stability and maneuver-
ability in the presence of a real environment.

VII. DISCUSSION

For a human-guided robot, environmental disturbances can
result in contact instabilities, requiring the human to increase
their control effort at the expense of loss of maneuverability.
In this paper, to concurrently ensure contact stability and
maneuverability, a novel impedance control scheme was
developed. This was first done for non-repetitive tasks, where
the robot updates its impedance to adapt to the disturbance
with constant coefficients. An iterative impedance control
strategy was then designed to handle disturbances with
varying space-related coefficients. With the proposed control,
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Fig. 10: Results of a representative subject (same subject as Fig. 9) in the repetitive grinding task with the Panda robot. a: Three C-shaped trajectories grinded
by the human user. b: Actual trajectories of the human user in the 3D space in four iterations. c: Norm of path errors with ± std error bars. d: Average effort
of the human user with ± std error bars.

the human effort can be reduced with stable interaction and
the robot can follow the desired trajectory in the presence
of environmental disturbances. The larger the disturbance,
the more obvious the advantage of the proposed strategy.
The effectiveness of the proposed impedance control scheme
for both non-repetitive and repetitive tasks was validated in
experiments to identify a known virtual interaction and to test
performance in interaction with real environments.

The experiments also showed that our impedance learning
controller outperforms the commonly used velocity-based
impedance adaption of [4]. Similar to our method, the
velocity-based adaptation method considers both interactions
with the human operator and the environment. It infers the
human’s active intention according to human’s velocity, while
the robot controller cancels the effect of the environmental
disturbance. However, this method does not involve any
learning techniques, and the selection of its parameters re-
quires prior knowledge about the task. Namely, the degree
of the relationship between the control input and the velocity
of the system should be properly reflected when setting the
parameters A′ = diag{aj}, B′ = diag{bj}, C ′ = diag{cj}.
For instance, parameters A′ and C ′ should be selected
according to the possible range of velocities of the task so that
a variation of the damping within [C ′,A′] can be obtained.

In contrast, the impedance learning controller introduced

in this paper uses an explicit model of the environment
interaction. As a consequence, it does not require prior
knowledge of the environment to guarantee the stability of
the system, as was proved in the appendices and verified in
the experiments carried out in real environments.

The proposed controller may be extended to teleoperation,
where impedance learning can ensure the contact stability
between the remote robot and its environment, while no
additional control effort is required from the human oper-
ator. The learning capability of the proposed controller may
play a more significant role where time delay exists in the
teleoperation system. In this case, even if the human operator
makes more control effort, they may still fail to handle the
contact between the robot and the environment. One of our
future works will be investigation of this hypothesis.

APPENDIX 1: PROOF OF THEOREM 1

This Appendix describes the proof of Theorem 1 in Sec-
tion III. To attenuate the undesired effect of the unknown
environment during trajectory tracking, both tracking error
and estimation errors are minimized. We therefore introduce
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Fig. 11: Total error and effort of six subjects in the carving and grinding tasks carried out on the Panda robot with control off, velocity-based adaptation and
impedance learning. Each column shows the average and ± std error bars.

the Lyapunov function candidate

V = V1 + V2 + V3 + V4 ,

V1 =
1

2
ėTM ė , V2 =

1

2

n∑
j=1

1

Aj
f

(
k̃j

)T
k̃j , (32)

V3 =
1

2

n∑
j=1

1

Aj
d

(
k̃j
v

)T
k̃j
v , V4 =

1

2

n∑
j=1

1

Aj
c

(
k̃jp

)2

,

where V1 is a quadratic function of the robot tracking
error, and V2, V3, V4 denote the squared estimation errors of
disturbance coefficients; k̃j , k̃j

v ∈ Rn are respectively the
jth column vectors of Rn×n matrices K̃ and K̃v , where
j = 1, 2, · · · , n; k̃jp ∈ R is the jth element of Rn vector
k̃p in eq. (18); positive constants Aj

f , A
j
d, A

j
c ∈ R are

the jth diagonal elements of Rn×n matrices Af , Ad, Ac,
respectively.

Using eq. (17) and the skew-symmetry property, i.e.,
ζT( 12Ṁ −B)ζ = 0 for ∀ζ ∈ Rn, the derivative of V1 is

V̇1 = ėT
(
−Ke ė+ K̃x+ K̃v ẋ+ k̃p

)
. (33)

Taking the derivatives of V2, V3, V4 and using eq. (12) yields

V̇2 = −
n∑

j=1

1

Aj
f

(
k̃j

)T ˙̂
kj = −

n∑
j=1

(
k̃j

)T
ėxj , (34)

V̇3 = −
n∑

j=1

1

Aj
d

(
k̃j
v

)T ˙̂
kj
v = −

n∑
j=1

(
k̃j
v

)T
ė ẋj , (35)

V̇4 = −
n∑

j=1

1

Aj
c

k̃jp
˙̂
kjp = −

n∑
j=1

k̃jp ėj . (36)

where k̂j , k̂j
v ∈ Rn are the jth column vectors of Rn×n

matrices K̂ and K̂v , and k̂jp, xj , ej ∈ R are the jth elements
of Rn vectors k̂p, x and e.

Then V̇ can be computed by summing up eqs. (33-36) as

V̇ = V̇1 + V̇2 + V̇3 + V̇4

= ėT
(
−Ke ė+ K̃x+ K̃vẋ+ k̃p

)
−

n∑
j=1

k̃jp ėj

−
n∑

j=1

(
k̃j

)T
ėxj −

n∑
j=1

(
k̃j
v

)T
ėẋj (37)

= −ėTKe ė ≤ 0,

where the term ėTK̃x is cancelled by −
n∑

j=1

(
k̃j

)T
ėxj ,

ėTK̃vẋ by −
n∑

j=1

(
k̃j
v

)T
ėẋj , and ėTk̃p by −

n∑
j=1

k̃jpėj .

Applying Lemma A.6 in [29], it then follows

lim
t→∞

ė = lim
t→∞

ë = 0 (38)

and with eq. (17)

lim
t→∞

(K̃x+ K̃v ẋ+ k̃p) = 0 (39)

so that the environmental disturbance can be estimated and the
human can easily guide the robot even with the disturbance
of an unknown environment.

APPENDIX 2: PROOF OF THEOREM 2
In the space domain, the robot controller in eq. (20) can

be rewritten as follows

ui = −K̂s,i xi − K̂vs,i ẋi − k̂ps,i −Keėi + g , (40)

where space-related impedance matrices K̂s,i ∈ Rn×n and
K̂vs,i ∈ Rn×n and vector k̂ps,i ∈ Rn should be updated
with the position change of the robot.

The undesired effect of the unknown environment is ex-
pected to be cancelled by the robot during trajectory tracking,
which is both to minimise the tracking error and improve the
environment identification. Consequently, a Lyapunov func-
tion candidate is designed as follows to prove the stability of
the controlled human-guided robot in Section IV

Vi = Ve,i + Vk,i + Vv,i + Vp,i ,
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where Ve,i denotes the robot tracking error; Vk,i, Vv,i

and Vp,i are estimation errors of the coefficients of the
disturbance represented by the introduced Ψ functions; Ω =
{x, 0 ≤ t ≤ T}; k̃j

s,i ∈ Rn and k̃j
vs,i ∈ Rn are the jth

column vectors of Rn×n matrices K̃s,i = Ks − K̂s,i and
K̃vs,i = Kvs − K̂vs,i, respectively; k̃jps,i ∈ R is the jth
element of Rn vector k̃ps,i = kps − k̂ps,i; sgn (·) is the
sign function; positive constants αj , αj

v, α
j
p ∈ R are the

the jth diagonal elements of Rn×n matrices A, Av, Ap,
respectively. Since the stability of the iterative learning
control is verified from the perspective of iterations instead
of time, Vk,i, Vv,i and Vp,i are respectively designed to be
in an integral form of functions Ψks,i, Ψvs,i and Ψps,i in
one iteration.
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and similarly
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0
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where σ is an integration variable of time, the system
Lyapunov function in eq. (41) is positive and satisfies Vi > 0.

The following cases are considered for stability analysis:
Case 1: t ∈ [0, Ti]. In such a case, εi = ei holds and taking
the derivative of Ve,i yields

V̇e,i = ėT
iMëi +

1

2
ėT
i Ṁėi (45)

Based on the skew-symmetry property [25], substituting
eq. (22) into eq. (45) yields

V̇e,i = ėT
i

(
−Ke ėi + K̃i xi + K̃v,i ẋi + k̃p,i

)
. (46)

The integral of eq. (46) can be calculated as

Ve,i =

∫ t

0

V̇e,i dσ + Ve,i (0)

=

∫ t

0

ėT
i

(
−Ke ėi + K̃i xi + K̃v,i ẋi + k̃p,i

)
dσ .

(47)

Define

∆Ve,i = Ve,i − Ve,i−1 (48)

and then we have

∆Ve,i ≤
∫ t

0

ėT
i

(
−Keėi + K̃i xi + K̃v,i ẋi + k̃p,i

)
dσ .

(49)

Similarly, we define

∆Vk,i = Vk,i − Vk,i−1, (50)

∆Vv,i = Vv,i − Vv,i−1, (51)

∆Vp,i = Vp,i − Vp,i−1. (52)

Then according to eq. (42), we get

∆Vk,i =
1

2

n∑
j=1

1

αj

∫ sj

0

[(
k̃j
s,i

)T
sgn

(
vj
)
k̃j
s,i

−
(
k̃j
s,i

)T
sgn

(
vj
)
k̃j
s,i−1 +

(
k̃j
s,i

)T
sgn

(
vj
)
k̃j
s,i−1

−
(
k̃j
s,i−1

)T
sgn

(
vj
)
k̃j
s,i−1

]
dξj . (53)

Define

∆K̂s,i (ξ) = K̂s,i (ξ)− K̂s,i−1 (ξ) , (54)

∆K̂vs,i (ξ) = K̂vs,i (ξ)− K̂vs,i−1 (ξ) , (55)

∆k̂ps,i (ξ) = k̂ps,i (ξ)− k̂ps,i−1 (ξ), (56)

and thus we have

K̃s,i (ξ)− K̃s,i−1 (ξ) = −∆K̂s,i (ξ) , (57)

K̃vs,i (ξ)− K̃vs,i−1 (ξ) = −∆K̂vs,i (ξ) , (58)

k̃ps,i (ξ)− k̃ps,i−1 (ξ) = −∆k̂ps,i (ξ). (59)
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Using eq. (57), eq. (53) can be rewritten as

∆Vk,i = −1

2

n∑
j=1

1

αj

∫ sj

0

[(
k̃j
s,i

)T
sgn

(
vj
)
∆k̂j

s,i

+
(
k̃j
s,i−1

)T
sgn

(
vj
)
∆k̂j

s,i

]
dξj

= −
n∑

j=1

1

αj

∫ sj

0

(
k̃j
s,i +

1

2
∆k̂j

s,i

)T

sgn
(
vj
)
∆k̂j

s,i dξj

(60)

and thus one gets

∆Vk,i ≤ −
n∑

j=1

1

αj

∫ t

0

(
k̃j
i

)T ∣∣vj∣∣∆k̂j
i dσ . (61)

Similarly, using eqs. (43,58) and eqs. (44,59) yields

∆Vv,i ≤ −
n∑

j=1

1

αj
v

∫ t

0

(
k̃j
v,i

)T ∣∣vj∣∣∆k̂j
v,i dσ, (62)

∆Vp,i ≤ −
n∑

j=1

1

αj
p

∫ t

0

k̃jp,i
∣∣vj∣∣∆k̂jp,i dσ . (63)

Summing up inequalities (49,61,62,63) yields

∆Vi ≤
∫ t

0

ėT
i

(
−Ke ėi + K̃i xi + K̃v,i ẋi + k̃p,i

)
dσ

−
n∑

j=1

1

αj

∫ t

0

(
k̃j
i

)T ∣∣vj∣∣∆k̂j
i dσ

−
n∑

j=1

1

αj
v

∫ t

0

(
k̃j
v,i

)T ∣∣vj∣∣∆k̂j
v,i dσ

−
n∑

j=1

1

αj
p

∫ t

0

k̃jp,i
∣∣vj∣∣∆k̂jp,i dσ. (64)

Substituting eq. (21) into inequality (64), we have

∆Vi ≤
∫ t

0

ėT
i

(
−Ke ėi + K̃i xi + K̃v,i ẋi + k̃p,i

)
dσ

−
n∑

j=1

∫ t

0

k̃jp,iė
j
i dσ −

n∑
j=1

∫ t

0

(
k̃j
i

)T
ėi x

j
i dσ

−
n∑

j=1

∫ t

0

(
k̃j
v,i

)T
ėi ẋ

j
i dσ

= −
∫ t

0

ėTi Ke ėi dσ ≤ 0, (65)

where eji ∈ R and xj
i ∈ R are the jth elements of ei ∈ Rn

and xi ∈ Rn, respectively.

Case 2: t ∈ (Ti, T ]. According to the definition of εi and
eqs. (47,48), one gets

∆Ve,i ≤ Ve,i (t)

=

∫ Ti

0

ėT
i

(
−Ke ėi + K̃i xi + K̃v,i ẋi + k̃p,i

)
dσ.

(66)

Observing eq. (21), it is known that K̂i, K̂v,i, and k̂p,i

stop updating during t ∈ (Ti, T ] so that ∆K̂i = ∆K̂v,i =
∆k̂p,i = 0. Then according to eqs. (61-63), the following
inequality holds

∆Vk,i +∆Vv,i +∆Vp,i

≤ −
n∑

j=1

1

αj

∫ Ti

0

(
k̃j
i

)T ∣∣vj∣∣∆k̂j
i dσ

−
n∑

j=1

1

αj
v

∫ Ti

0

(
k̃j
v,i

)T ∣∣vj∣∣∆k̂j
v,i dσ

−
n∑

j=1

1

αj
p

∫ Ti

0

k̃jp,i
∣∣vj∣∣∆k̂jp,i dσ. (67)

Combing inequalities (66,67), we have

∆Vi = ∆Ve,i +∆Vk,i +∆Vv,i +∆Vp,i

≤
∫ Ti

0

ėT
i

(
−Ke ėi + K̃i xi + K̃v,i ẋi + k̃p,i

)
dσ

−
n∑

j=1

1

αj

∫ Ti

0

(
k̃j
i

)T ∣∣vj∣∣∆k̂j
i dσ

−
n∑

j=1

1

αj
v

∫ Ti

0

(
k̃j
v,i

)T ∣∣vj∣∣∆k̂j
v,i dσ

−
n∑

j=1

1

αj
p

∫ Ti

0

k̃jp,i
∣∣vj∣∣∆k̂jp,i dσ. (68)

As a result, similar to inequalities (64,65) in case 1 with
t = Ti, we obtain

∆Vi ≤ −
∫ Ti

0

ėT
i Ke ėi dσ ≤ 0. (69)

Combining inequalities (65,69), we see that ∆Vi ≤ 0 holds
in both cases 1 and 2. Consequently, as the initial energy
of the human-robot system is bounded, Vi is monotonically
decreasing with iterations when ∆Vi < 0. Since Vi is defined
to be positive, according to the definition of Vi in eq. (41), it
indicates that

lim
i→∞

K̃s,i = lim
t→∞

K̃vs,i = lim
t→∞

k̃ps,i = 0 . (70)

When ∆Vi = 0, it gives rise to

ėi = ëi = 0 (71)

thus

K̃i xi + K̃v,i ẋi + k̃p,i = 0 (72)

according to eq. (22). As a result, the disturbance can be
estimated by the proposed impedance learning method and
the robot can follow the desired trajectory of the human in
the presence of disturbances. Theorem 2 is thus verified.
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