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Since its discovery in 2001, the function of cytoglobin has remained elusive. Through
extensive in vitro and in vivo research, a range of potential physiological and pathological
mechanisms has emerged for this multifunctional member of the hemoglobin family.
Currently, over 200 research publications have examined different aspects of cytoglobin
structure, redox chemistry and potential roles in cell signalling pathways. This research is
wide ranging, but common themes have emerged throughout the research. This review
examines the current structural, biochemical and in vivo knowledge of cytoglobin pub-
lished over the past two decades. Radical scavenging, nitric oxide homeostasis, lipid
binding and oxidation and the role of an intramolecular disulfide bond on the redox
chemistry are examined, together with aspects and roles for Cygb in cancer progression
and liver fibrosis.

Introduction

Cytoglobin (Cygb) is the fourth member of the globin family found in humans after erythrocyte
haemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb). Discovered in 2001 and initially named
stellate cell activating protein (STAP) [1] and histoglobin [2] the physiological function of this protein
still remains to be elucidated. As a trivia side note, an episode of Star Trek Voyager (season 7 episode
5, ‘Critical Care’), first aired in late 2000, used the term cytoglobin as a fictional drug that was used to
treat ‘chromoviral infections and arterial aging’ [3]. The name of the real-life protein is derived from
its ubiquitous expression of the globin in vertebrate tissue [4]. Cygb expression is in the cytoplasm of
a wide variety of cell types including fibroblasts, chondroblasts, osteoblasts, and hepatic stellate cells
(HSCs) [5]. Cygb has also been located in the nuclei of numerous cell types including neurons [5,6],
the solitary tract [7], some hepatocytes [8] and myogenic progenitor cells [9]. It is the ubiquitous
nature of the protein that gives us an indication of why it has been more difficult than most to assign
a primary cellular role. Other globins, unlike Cygb, are typically expressed in a small range of specific
tissues or cell types, hence establishing their primary role(s) within a cell has been somewhat more
straightforward. Hb, one of the most extensively studied of all proteins, is expressed in erythroblasts
for oxygen transport in erythrocytes. Mb is expressed predominantly in the myocytes to facilitate
oxygen diffusion between the blood vessels and the myocyte mitochondria [10] or to store oxygen,
particularly in diving animals [11,12]. Ngb is predominantly expressed in nerve cells [13] where it acts
as a nitric oxide (NO) regulator [14], protecting neurons from hypoxic-ischaemic insults [5]. Each of
these globins has confirmed or proposed secondary functions that typically involve the redox chemis-
try of the protein. Androglobin (Adgb), the fifth globin discovered in 2012, is primarily expressed in
ciliated cells and spermatocytes, although studies into the structure of this multi-domain, circularly
permuted protein are ongoing and its function is currently elusive [15,16].

Phylogenetic analysis of Cygb suggests a common ancestor with vertebrate Mb ~500 Mya [4] and is
also related to the eye globin (GbE) of avians with a common ancestor ~300 Mya [17]. However, it
has also been speculated that Cygb may be more closely related to the Hbs of Agnatha (jawless fish),
with Mb being a distinct branch [17]. In teleost fish, Cygb appears to have been duplicated ~320-
350 Mya with two paralogous Cygb genes Cygbl and Cygb2 [18]. Both proteins are expressed in a
range of tissues, however, Cygb2 exhibits high expression in neuronal tissues, suggesting that the two
globins have sub-functionalisation following gene duplication [18].

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1


http://orcid.org/0000-0001-7474-2611
https://creativecommons.org/licenses/by/4.0/

<. = PORTLAND Biochemical Society Transactions (2023)
... PRESS https://doi.org/10.1042/BST20230081

Cytoglobin structure and key functional amino acids
The structure of cytoglobin shows the typical 3-over-3 alpha helical fold of non-truncated globins [19]. The
heme iron is hexacoordinate with a bis-His ligand set, similar to that of Ngb and some phytoglobins (PhytoGb
— previously non-symbiotic globins), but unlike the pentacoordinate geometry of respiratory globins such as
Mb and Hb. Hexacoordinate globins typically show enhanced thermal stability. The thermal stability of human
Cygb is high with a melting temperature of 95°C, just slightly below that of Ngb [20]. Highly conserved resi-
dues in the heme pocket are similar to those of other globins including the distal His81(E7) and proximal
His113(F8) histidine pair, a Phe(CD1) to stabilise heme binding and Leu46(B10) plus Val85(E11) for steric
control of ligand binding and heme pocket cavity arrangement [21-23] (Figure 1A). The protein can exist in
three conformations in vitro depending on the redox state of two cysteines, Cys38(B2) and Cys83(E9). Various
crystal structures show the protein in either a monomeric state with the cysteines reduced (monomergy) or
mutated (e.g. PDB:1VH5 [24] Figure 1B), or a dimer with two intermolecular disulfide bonds, Cys38-Cys83
and Cys 83-38 (dimers g) (e.g. PDB: 2DC3 [25], Figure 1C). A third state, yet to be crystallised, is that of a
monomer with an intramolecular disulfide (monomersg_g).

Cygb has extended N- and C-terminal extensions beyond the typical alpha helical fold of the globular part
of the protein with each extension ~20 amino acids long, making the human protein 190 amino acids in
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Figure 1. Structure of cytoglobin.

(A) Stereoview of the heme pocket environment with notable structural and functional amino acids (PDB: 2DC3). The heme is
shown edge-on with the heme pocket entrance to the front. (B) Monomeric protein, without intramolecular disulfide bond (PDB:
1VH5). The heme (red) is shown edge-on with the heme pocket entrance to the left. Proximal (His 113) and distal (His 81) are
shown in red and cysteines in orange. (C) Dimer conformation showing an intermolecular disulfide bond (Cys38-Cys83, PDB:
2DC3). Part of the C-terminal extension is seen in the lower left side and part of the N-terminal extension showing alpha helical
structure is seen in the lower right due to crystal packing. Heme is in red stick and cysteines in orange. SwissPDB viewer
v4.1.0 and POV-Ray v3.7.0 was used to create the figures.
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length and a molecular weight of ~21 kDa [4]. Crystal structures have shown that these extended domains are
primarily disordered, however, structural predictions (e.g. Alphafold [26]) and some crystal structures show
alpha helical structure for the N-terminal extension (e.g. PDB: 2DC3 [25]). Truncating the protein to remove
the extended N- and C-termini results in a slight decrease in thermal and structural stability [27]. Truncation
decreases the superoxide-scavenging capability (C-terminal loss only) and influences the monomers_g conform-
ation. The Cygb-1 from teleost fish are typically truncated, having lost the C-terminal intron. The N-terminal
extension is absent from zebrafish Cygb-2, possibly by a mutation in the lineage of D. rerio [18]. Globin X
(GbX) exhibits extended N- and C-terminal extensions, like that of Cygb [28]. However, unlike Cygb the
N-terminus of GbX has conserved myristoylation and palmitoylation sites anchoring GbX to the cell mem-
brane [29].

There has been considerable debate over the oligomeric state of the protein in vivo. This is a critical question
to be answered as the biochemical and biophysical properties of the monomers_g form behaves very differently
from the other two states. The protein monomers_g form has a distal histidine off rate over 600-fold faster than
the monomergy or dimers s, with only slight changes to the distal histidine on rate [30]. Therefore, in the
monomers_g state the protein has more pentacoordinate-like features, as exhibited by faster rates of exogenous
ligand binding and higher affinities [31]. Allosteric ligand binding has also been reported in the dimeric
protein [32,33]. Initial size exclusion chromatography (SEC) analysis of the protein, which is based on the
hydrodynamic radius of the protein, suggests a primarily dimeric form of the protein [34]. However, mass
spectrometric analysis of Cygb suggests that the B2 and E9 cysteines of Cygb form intramolecular disulfide
bonds rather than intermolecular bonds and that dimerisation is not based on the presence of the intermolecu-
lar disulfide bonds [35]. It is interesting to note that mutants of the distal E7 histidine result in primarily
monomeric proteins by SEC analysis, unlike the wild-type protein [36]. It has also been observed that the
hydrodynamic diameter of Cygb deviates from other globins due to the N- and C-terminal extensions [37].
Analysis by SEC-MALLS (Multi-Angle Laser Light Scattering), which does not require reliable molar mass
markers, shows the protein as a monomer and a truncated form of the protein without the N- and C-terminal
extension also shows a monomer by standard SEC analysis [37]. Therefore, the current evidence supports Cygb
as monomer in solution and in the range of concentrations expected in vivo.

Cytoglobin redox chemistry

Cygb shows several activities that could have potential physiological or pathological roles. Cygb binds oxygen
with an affinity of 0.2-3 Torr, depending on the conformation of the protein and the oxidation state of the
disulfide bond [37,38]. This is in the same range as the oxygen affinity of Mb. As Cygb is closely related to Mb,
an oxygen-carrying role was proposed in early studies on the globin [13,39]. Other studies also support a role
of Cygb in O, homeostasis, with disruption of O, homeostasis activating HSCs in liver tissues inducing hepatic
fibrogenesis [38,40]. However, expression level studies of the intra-retinal distribution of Cygb in the murine
eye suggests that Cygb is unlikely to have a role as a respiratory oxygen carrier [41]. Additionally, the concen-
tration of Cygb in most cells is in the low micromolar range, hence Cygb oxygen carrying would have little
direct impact on mitochondrial respiration [33].

As with all globins, oxyferrous Cygb shows rapid nitric oxide dioxygenase (NOD) activity, converting NO to
nitrate with the oxidation of the Cygb from ferrous to ferric. A rate constant of 3 x 10’ M~" s for this reactiv-
ity [42] is only slightly lower than that for other globins such as Ngb and Hb [43]. Numerous in vitro and in
vivo studies suggest a physiological or pathological role for this redox chemistry (currently 39 articles). Such
studies show that an enhanced expression of Cygb in fibroblasts resulted in decreased NO consumption and
intracellular nitrate production [44]. Furthermore, Cygb deficiency is thought to hinder NOD activity, resulting
in NO diftusion from HSC cells to neighbouring hepatate cells, leading to mitochondrial toxicity [45]. The cyst-
eine oxidation state has a moderate, 4-fold, effect on NOD activity [46]. In Cygb(—/—) mice, the NOD function
of Cygb is thought to play a critical role in regulating blood pressure and vascular tone [47].

Under hypoxic conditions, Cygb also shows a high nitrite reductase (NiR) activity, generating NO from
nitrite. Typical NiR rate constants for globins range from 0.12 M~ !s™! for Hb (T state) and Ngb [48,49] to
26.7 M~' 57! for globin X [50]. Cygb shows a similar range from 0.26 and 0.63 M™" for the monomerg ; and
dimers_g, respectively, to 32.3 M™' s™' for the monomers_g [51]. Thus with an activity range of over two orders
of magnitude, cysteine oxidation could act as a molecular redox switch under oxidative conditions [51]. Ligand
migration pathways are also affected by this proposed cysteine oxidation molecular switch [52]. It should be
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noted though, that while the B2 cysteine is highly conserved, the E9 cysteine is not. Therefore, if the B2-E9
cysteine oxidation does play a role in functional molecular switching, then this is an adaptation that requires
further phylogenetic and biochemical study. Intramolecular disulfide formation is induced with small amounts
of peroxide at low oxygen, making Cygb physiologically sensitive to low fluxes of peroxide under hypoxic con-
ditions [32]. By enhancing the histidine off rate and opening the heme pocket, such cysteine oxidation would
significantly enhance NiR activity under conditions of hypoxic stress. Such enhancement is not observed at
normoxic conditions, indicating that the formation of alternate oxygenated thiol intermediates may occur [32].
The NiR activity, although many orders of magnitude slower than NOD activity, has been proposed to play an
important role in NO generation and soluble guanylyl cyclase activation [53]. Several studies point to a role of
Cygb in detoxifying reactive oxygen species (ROS). Some of the findings include Cygb attenuating pancreatic
cancer growth via scavenging ROS [54], attenuation of ROS mediated liver fibrosis [55] and correlation with
Cygb and Ngb with ROS scavenging in mice [56].

For such redox activities to be physiologically relevant there needs to be an effective reducing mechanism to
return the high oxidation states of Cygb to ferrous in vivo. In vitro ferric Cygb reacts rapidly with ascorbate,
two orders of magnitude faster than pentacoordinate globins such as Mb and Hb [57]. In addition, cytochrome
b5/cytochrome b5 reductase reduces ferric Cygb 250-fold faster than Hb and Mb and up to 100-fold faster
than 5 mM ascorbate [58]. The rapid in vivo reduction systems of Cygb endorses redox activity as a physio-
logical role, such NO metabolism [59].

Role of cytoglobin in cancer and fibrosis

The link between Cygb and cancer progression, particularly with hypoxic tumours, is well established from
numerous studies on a variety of cancer types. Table 1 summarises the major finding of these studies. The con-
sensus is that Cygb can function as a tumour suppressor, frequently correlating with the down-regulation in
human cancers under conditions of normoxia [60-62]. However, under conditions of hypoxia, up-regulation of
Cygb is often observed in solid tumours. A number of transcription factors are involved in hypoxia-induced
Cygb up-regulation. Hypoxia inducing factor (HIF-1o) up-regulation of Cygb has been reported by numerous
studies [63-68]. In addition, inhibition of calcineurin, NFAT, and/or AP-1 activities have been shown to decrease
endogenous Cygb transcription in myocytes [66]. Solid neoplasms typically show decreased oxygen supply,
leading to changes in cell morphology [69]. This frequently leads to resistance of hypoxic tumours to radiother-
apy and some chemotherapeutic agents [70,71]. Improved outcomes of radiation therapy have been noted with
oxygen therapy [60,72]. It has been proposed, therefore, that Cygb is bimodal, being a tumour suppressor under
conditions of normoxia, but behaves to promote tumour growth under conditions of hypoxia [73].

The cellular pathways involving Cygb in cancer suppression or promotion are still unclear. However,
up-regulation of the NFkappaB/iNOS signal pathway and NO production has been observed in human cardiac
stem/progenitor cells with up-regulated Cygb, suggesting Cygb functions as a pro-survival factor in response to
oxidative stress [90]. Furthermore, in melanocytes knockdown or overexpression of Cygb sensitised or protected
the cells against ROS and reactive nitrogen species (RNS) induced apoptosis, respectively, with Cygb enhancing
heme oxygenase-1 and NRF2 expression [91]. CYGB gene is regulated by both promoter methylation and
tumour hypoxia in head and neck squamous cell carcinomas with expression correlating with the tumour’s bio-
logical aggression [77]. Current knowledge of the behaviour of Cygb in tumours suggests that expression of
Cygb could be used as a biomarker for early detection of cancer or liver fibrosis [91-93]. Previous reviews have
examined the role of Cygb in cancer in more detail, focusing on its role in hypoxia [60] or as a biomarker for
diagnosis and management [93]. Importantly, Cygb overexpression, as observed with some other globins,
arrests cell cycling at the G1 phase, resulting in impaired cell proliferation, possibly by hyperphosphorylation of
tumour suppressor retinoblastoma protein [94]. Furthermore, S phase kinase-associated protein 2, a highly
oncogenic protein that triggers G1/S transition of cell cycle, has been shown to interact with Cygb and facilitate
the periodic degradation of Cygb, promoting cell cycle progression [94].

Cygb, originally discovered in hepatocytes as STAP, is up-regulated in hepatic fibrosis. Cygb overexpression
reduces tissue fibrosis in both toxic and cholestatic models of liver injury and promotes recovery after the onset
of injury [95]. Carbon tetrachloride challenge induces liver fibrosis with early (24 h) induction of Cygb in fibro-
blasts of various tissues and hepatic HSCs, 24 h before the type I collagen Collal gene [92]. Cygb expression
levels may therefore act as a sensitive early marker for liver fibrosis and is postulated to play a role in collagen
metabolism [92]. Furthermore, Cygb may induce protection via apoptosis as reported in thioacetamide-induced
liver fibrosis in expression in rats, Cygb-transgenic mice and human stellate cells. Mechanisms of this
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Table 1 Observed links between cytoglobin and cancer development or effects of cytoglobin overexpression/

silencing/knockdown on cancer progression Part 1 of 2
Date
Cytoglobin Significant findings and of
Cancer/cell line expression conclusions study Reference
Early stage squamous cell Down-regulated Cygb down-regulated typically by 2006 [61]
oesophageal cancer ~70%. Promotor hypermethylation.
Pulmonary tumour cells Up-regulated Correlation between Cygb 2006 [74]
(A549) (hypoxia) up-regulation and hypoxia.
Oral squamous cell Up-regulated 65% Cygb promotor methylation 2006 [75]
carcinoma observed.
Lung cancer Down-regulated Implication of Cygb in the 2006 [62]
pathogenesis of non-small cell lung
cancer.
Lung and breast cancer Down-regulated/ Cygb promotor methylation 2008 [76]
cell line knockdown correlates with gene silencing. Cygb
knockdown increased colony
formation.
Head and neck squamous Down-regulated Cygb mRNA expression showed a 2009 [77]
cell carcinoma correlation with tumour hypoxia.
Human glioblastoma Up-regulated Up-regulated in ductal cells following 2010 [78]
multiforme cell lines, (hypoxia) 48 h hypoxia.
human primary tumour
specimens
Breast and lung tumours Down-regulated Cygb correlated with hypoxia. 2011 [79]
Mouse model. Knockout Drug-induced (DEN) liver and lung 2011 [80]
tumours in knockout mice.
Oesophageal cancer cells Down-regulated Protection from chemically induced 2012 [81]
oxidative stress (non-physiological
concentrations).
Non-small cell lung cancer Down-regulated Cygb promoter was methylated in 2013 [73]
cell lines 64% of cell lines. Demethylation
partially restored Cygb expression in
cell lines.
Non-small cell lung cancer Overexpressed Reduction in cell tumourigenicity, 2013 [73]
cell lines diminished migratory potential.
Gliomas Loss Cygb loss may contribute to tumour 2013 [82]
recurrence and a worse prognosis in
gliomas.
Archived ovarian cancer Down (62% of Cygb down-regulation positively 2014 [83]
specimens samples) correlated with advanced FIGO stage
and tumour grade.
SKOV3/SW626 cell lines Overexpressed/ Overexpression inhibited cell growth, 2014 [83]
silenced invasion, cell cycle progression and
cyclin D1 expression, silencing
promoted cell proliferation, invasion,
cell cycle transition and cyclin D1
expression.
Mouse NASH model Knockout Prominent inflammation and fibrosis 2015 [84]
(choline-deficient amino and liver cancer in Cygb (—/—) mice.
acid-defined diet) Ameliorated by N-acetyl cysteine
treatment.
Down-regulated Direct regulation of CYGB by 2016 [85]
(HEKnN) ANp63a.. CYGB has a protective role
Continued
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Table 1 Observed links between cytoglobin and cancer development or effects of cytoglobin overexpression/

silencing/knockdown on cancer progression Part 2 of 2
Date
Cytoglobin Significant findings and of
Cancer/cell line expression conclusions study Reference
Primary neonatal human Overexpressed/ in proliferating keratinocytes +/—
epidermal keratinocytes silenced (MCF7) H>O, treatment.
and MCF7 cells
Mouse model Knockout Increased colonic inflammation and 2018 [86]

macroscopic tumour development in
knockout mice. Neurexophilin and
PC-esterase domain family member
4 (Nxpe4) also decreased.

Breast cancer Induced (5F 203)/ Caspases and CYGB promote 5F 2019 [87]
MDA-MB-468 cells silenced 203-mediated apoptosis.

Silencing CYGB attenuated the ability

of 5F 2083 to induce caspase-3/-7

activation, proapoptotic gene

expression, LMP, and cathepsin B

release in MDA-MB-468 cells.

Oral squamous cell Overexpressed Increased cell growth and motility. 2021 [88]
carcinoma PE/CA-PJ41 Cygb up regulates apoptosis

regulating cardiolipin and protects

cells from cis-platin-mediated

oxidative stress.

HCT116 and SW620 Overexpressed/ Cygb overexpression increased lipid 2021 [89]
human CRC cells silenced ROS and malondialdehyde

accumulation, disrupted

mitochondrial function. Correlation

between Cygb expression and key

genes YAP1 and ACSL4 in

ferroptosis pathway.

Pancreatic cancer and Knockout Cygb negatively correlated with 2022 [564]
transgenic mice tumour size. Cygb suppresses

pancreatic stellate cell activation,

pancreatic fibrosis, and tumour

growth.

protection may include activation of caspase cascade pathways, acting as a scavenger of RNS and ROS, as well
as a potent regulator of HSC cell activation [96-98].

Lipid binding, lipid oxidation and cell signalling

Unusual amongst vertebrate globins, Cygb interacts with lipids and fatty acids resulting in marked changes to
the heme geometry and redox activity [99]. Only the monomers g form exhibits this conformational change
and only in the ferric oxidation state [99]. Interaction with oleate, cardiolipin or similar lipids and fatty acids
leads to a change in heme coordination from hexacoordinate to pentacoordinate state [100] with such changes
in the heme coordination occurring at ~1:1 lipid:protein ratio [99]. Similar interactions with lipid or lipid-
based molecules typically require an excess to induce a structural change. For example, the interaction of cyto-
chrome ¢ with cardiolipin requires ~30 cardiolipin molecules per protein to allow maximum change from
hexa- to penta-coordination, as measured by the ability to bind ligands such as CO to the heme iron [101].
Current evidence suggests that there is a specific site of binding between the lipid and Cygb. Although no
crystal structures of a lipid-bound Cygb have yet been forthcoming, binding models and mutagenesis studies
have given insights into the likely position of lipid binding. Lipid binding models of oleic acid, DOPA (dioleyl
phosphatidic acid (1,2-dioleoyl-sn-glycero-3-phosphate) and PIP3 (dioleyl phosphatidylinositol 3,4,5-trisphosphate
(1,2-dioleoyl-sn-glycero-3-phosphoinositol 3,4,5-trisphosphate) predicts the aliphatic chain extending into the
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hydrophobic core of the protein, with phosphate groups interacting with surface amino acids such as Lys111
and Lys116 and the ester groups interacting with Arg84 and Thr91 [102]. Mutation of Arg84(E10) and Lys116
(F10) in particular lead to significant decreases in lipid binding affinity and are surface exposed and close to
the entrance of the heme pocket [103].

It has been demonstrated that Cygb is also an effective lipid peroxidase in vitro, with the monomers g form
having significantly higher levels of activity compared with the monomergy and dimers_g states [100]. Anionic
phospholipids are oxidised in the presence of peroxide, but these phospholipids can also enhance the peroxida-
tic activity of Cygb [102]. These lipid oxidation reactions are more rapid compared with pentacoordinate
respiratory globins, but Ngb, another hexacoordinate globin shows no lipid peroxidase activity under similar
conditions [99]. Both Mb and Hb are known or proposed to contribute to lipid oxidation reactions under
pathological conditions such as vasospasm following intracranial hemorrhage [104-106] or acute kidney injury
following rhabdomyolysis [106-109]. The mechanisms for these involve the formation of radical-based lipids
from peroxide-driven ferric-ferryl globin redox chemistry that can result in a cascade of lipid oxidation. The
resulting lipid oxidation products frequently show potent cell signalling properties such as vasoactivity
[110,111] or activating the electrophile responsive element [112]. For more in-depth mechanisms and implica-
tions of these globin-generated lipid oxidation products see previous reviews [113-116].

It has been observed that Cygb overexpression in rat hepatic stellate cells decreases lipid radicals as shown by
decreased levels of lipid peroxidation biomarkers malondialdehyde and 4-hydroxy-2-nonenal [95]. In a THP-1
acute monocytic leukaemia human cell line, Cygb addition significantly attenuated the effects of oxidised low
density lipoproteins (LDL) [117]. Furthermore, injection of recombinant Cygb into atherosclerotic rats signifi-
cantly decreased LDL-cholesterol and increased HDL-cholesterol, inferring that Cygb may be able to prevent
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Figure 2. Possible cytoglobin biochemistry and cellular pathways.

Cygb is up-regulated by HIF-1 under conditions of hypoxia. Ferrous Cygb" (hexacoordinate) can react with nitrite under
hypoxic conditions to generate NO. Under normoxic conditions, the protein binds oxygen and can react with NO to form
nitrate. Physiological concentrations of ascorbate, and/or cytochrome b5/cytochrome b5 reductase rapidly return the ferric
protein to the ferrous form. Under conditions of stress, lipids can bind to Cygb to generate a pentacoordinate (CygbF) form that
(together with an internal disulfide bond) facilitates lipid oxidation reactions. The products of the reaction generate products
that can activate numerous cell signalling pathways including the Keap1/Nrf2 antioxidant response (or via a currently
unidentified alternative mechanism) and the PI3K/Akt pathway. Dashed lines depict pathways that are presumed or involve
multiple steps.
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atherosclerosis by regulating lipid metabolism and oxidative stress [117]. This apparent dichotomy in the in
vitro observations of prevalent lipid oxidation with cell responses may be explained by the observation that
lipid peroxidation, either through enzymatic or non-enzymatic pathways, results in a conversion of the satu-
rated fatty acid to an oxylipidome. Many members of this oxylipidome are electrophilic and can modulate anti-
oxidant and anti-inflammatory protective pathways [118]. Hence, lipid oxidation reactions up-regulate the
antioxidant defence or induce apoptosis [112,119]. Therefore, it is reasonable to suggest that the lipid peroxid-
ase activity of Cygb forms oxygenated lipid mediators that induce protective cellular responses in vivo
[100,102]. However, further studies are required to identify and confirm such pathways. A recent study has
demonstrated that hydrogen peroxide and NADPH oxidase 4 (NOX4) induced the import of Cygb into the
nucleus of vascular smooth muscle cells [120]. The data supports a new potential function of Cygb to inhibit
DNA damage and regulation of genes in the vasculature though binding with HMGB2, a non-histone DNA
interacting protein. Such subcellular localisation of Cygb under oxidative conditions has interesting implications
for cancer research and lipid signalling in the nucleus.

Summary

The functions and key molecular mechanisms of Cygb remains unclear. However, emerging evidence supports
a multifunctional role of Cygb in vivo. Cygb-induced protection against cancer proliferation and hepatic
inflammation and fibrinolysis gives us the clearest indication of the role of Cygb in cells, however, the biochem-
ical mechanisms of Cygb in these conditions does not yet have consensus. Increasing bodies of evidence
support the redox role of Cygb, be it related to NO homeostasis, ROS scavenging, inhibition of DNA damage
or lipid oxidation, it is likely to play a role in the activation of pathways that facilitate cell protection (Figure 2).
The role of lipid binding and its alteration of the characteristics of Cygb-induced redox chemistry, together
with the observation that Cygb is an efficient lipid peroxidase, has intriguing implications for cell signalling
pathways (both in the cytosol and nucleus) and the utilisation of the B2/E9 disulfide as a molecular switch.
However, it is clear that these observations require further studies to validate such roles in the proposed physio-
logical and pathological roles of Cygb.

Recent studies using mutations of key functional amino acids have provided insights into the mechanisms of
in vitro reactions and may provide a way forward to examine specific potential functions of Cygb in vivo. For
example, the mutation of the E7/B10 amino acids increases/decreases NiR activity by 1000-fold compared with
the wild-type [51]. A library of mutations and a comprehensive study of their effects on potential cellular
responses would allow specific potential functions to be explored in cell lines and in transgenic animal models.

Perspectives

e Cygb is a hexacoordinate member of the globin superfamily, discovered in 2001 and ubiqui-
tously expressed in mammalian tissues. Up-regulated by transcription factors such as HIF-1,
p63, AP-1 and NFAT under conditions of hypoxia, Cygb appears to play a crucial role in
hypoxia response, hepatic fibrosis and progression of specific cancer types.

e Current evidence supports a multifunctional role for Cygb with the oxidation state of a disul-
fide bond a potential modulator of its redox behaviour. Nitric oxide homeostasis, reactive lipid
interaction and ROS scavenging have all been suggested to play a role in the mechanism(s) of
cell protection.

e Understanding the roles of the redox chemistry of Cygb and the effect of the disulfide bond
as a potential molecular redox switch in vivo are crucial for elucidating the mechanisms and
pathways that Cygb induces cell protection. Furthermore, a clearer understanding of the
molecular mechanisms of Cygb and pathways that Cygb induces would clarify the potential
for Cygb as a biomarker or novel target for therapeutic intervention for cancer and other
diseases.
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