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Abstract

This work addresses the problem of anonymizing the
identity of faces in a dataset of images, such that the pri-
vacy of those depicted is not violated, while at the same
time the dataset is useful for downstream task such as for
training machine learning models. To the best of our knowl-
edge, we are the first to explicitly address this issue and deal
with two major drawbacks of the existing state-of-the-art
approaches, namely that they (i) require the costly training
of additional, purpose-trained neural networks, and/or (ii)
fail to retain the facial attributes of the original images in
the anonymized counterparts, the preservation of which is
of paramount importance for their use in downstream tasks.
We accordingly present a task-agnostic anonymization pro-
cedure that directly optimizes the images’ latent representa-
tion in the latent space of a pre-trained GAN. By optimizing
the latent codes directly, we ensure both that the identity is
of a desired distance away from the original (with an iden-
tity obfuscation loss), whilst preserving the facial attributes
(using a novel feature-matching loss in FaRL’s [49] deep
feature space). We demonstrate through a series of both
qualitative and quantitative experiments that our method is
capable of anonymizing the identity of the images whilst–
crucially–better-preserving the facial attributes. We make
the code and the pre-trained models publicly available at:
https://github.com/chi0tzp/FALCO.

1. Introduction
The ubiquitous use of mobile devices equipped with

high-resolution cameras and the ability to effortlessly share
personal photographs and videos on social media poses a
significant threat to data privacy. Considering that mod-
ern machine learning algorithms learn from vast amounts
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Figure 1. Comparison of the proposed method to CIAGAN [28]
and DeepPrivacy [17] in terms of identity anonymization and at-
tribute preservation.

of data often crawled from the Web [19, 39], it has become
increasingly important to consider the impact this has on
the privacy of those individuals depicted. Motivated by pri-
vacy concerns, many societies have recently enacted strict
legislation, such as the General Data Protection Regulation
(GDPR) [7], which requires the consent of every person that
might be depicted in an image dataset. Whilst such laws
have obvious benefits to the privacy of those featured in im-
age datasets, this is not without costly side effects to the
research community. In particular, research fields such as
computer vision and machine learning rely on the creation
and sharing of high-quality datasets of images of humans
for a number of important tasks including security [25],
healthcare [1, 12], and creative applications [19, 36].

A recent line of research focuses on overcoming this is-
sue by anonymizing the identity of the individuals in image
datasets. Through this approach, the machine learning com-
munity can still benefit from the wealth of large datasets of
high-resolution images, but without cost to privacy.
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This research field has seen several developments
throughout the last few years. Early methods proposed by
the computer vision community attempt to solve this prob-
lem with simple solutions based on blurring [10] or other
masking techniques, such as pixelation [13]. The result
of this masking process succeeds in anonymizing the im-
ages by completely hiding the identity-related components,
but as a consequence renders the facial attribute informa-
tion such as a person’s pose, expression, or skin tone (from
which many computer vision tasks learn) indecipherable.
Another problem with these methods is that, whilst the re-
sulting images may not be re-identifiable by humans, they
can often be reversed by deep learning models [29, 33].

Another line of work leverages the power of Generative
Adversarial Networks (GANs) [14], which have recently
been used for discovering controllable generation paths in
their latent or feature spaces [2,34,35,43,44]. Towards face
anonymization, GANs have been incorporated in order to
synthesize new images in order to obtain photos that main-
tain most of the image while changing the face of the subject
of interest. In particular, these approaches use techniques
like image inpainting [17], conditional generation [28], at-
tribute manipulation [22], or adversarial perturbation [40].
These works are able to obtain anonymized images that can
still be used for computer vision tasks such as tracking and
detection, with very good results in terms of privacy preser-
vation. However, many of these works lack the ability to
generate natural-looking faces and often fail to preserve the
original facial attributes in the anonymized images (or, on
the occasions in which such methods do preserve the facial
attributes, they fail to demonstrate this quantitatively). This
is critical for many applications which rely on the attributes
of the inner face, such as expression recognition [21], or
mental health affect analysis [11]. To further complicate the
picture, a fundamental problem often found with existing
works is the way in which the anonymized images copy not
just the original image’s background, but also more identi-
fiable features [17, 28], such as the clothes of an individual,
or their hair (see examples of this in Fig. 1). We argue that
leaving such structure of the images unchanged constitutes
a glaring privacy vulnerability, as one can re-identify the
original image from the anonymized counterpart by com-
paring the image background or person’s clothes.

Motivated by these concerns, in this work we propose
to de-identify individuals in datasets of facial images whilst
preserving the facial attributes of the original images. To
achieve this, in contrast to existing work [17, 22, 28, 45, 46]
that train custom neural networks from scratch, we propose
to work directly in the latent space of a powerful pre-trained
GAN, optimizing the latent codes directly with losses that
explicitly aim to retain the attributes and obfuscate the iden-
tities. More concretely, we use a deep feature-matching
loss [49] to match the high-level semantic features between

the original and the fake image generated by the latent code,
and a margin-based identity loss to control the similarity be-
tween the original and the fake image in the ArcFace [9]
space. The initialisation of the latent codes is obtained by
randomly sampling the latent space of GAN, using them to
generate the corresponding synthetic images and finding the
nearest neighbors in a semantic space (FARL [49]). In or-
der to preserve texture and pose information of the original
image, we perform inversion of the original image and re-
tain the parts that correspond to the properties we want to
preserve in the final code. This results in a latent code that
yields a high-resolution image that contains a new identity
but retains the same facial attributes as the original image.

The main contributions of this paper can be summarized
as follows:

• To the best of our knowledge, we are the first to address
the problem of identity anonymization whilst also ex-
plicitly retaining facial attributes.

• We propose a novel methodology and loss functions
working with pre-trained GANs capable of generating
high-resolution anonymized datasets.

• We show through a series of thorough experiments on
both Celeba-HQ [26] and LFW [16] that our method
competes with the state-of-the-art in obfuscating the
identity, whilst better-retaining the facial attributes un-
der popular quantitative metrics.

2. Related Work
Face obfuscation The first privacy-preserving ap-

proaches proposed were based on obfuscating the face of
the person. This means that different techniques, like blur-
ring, masking, or pixelating [3, 5, 31, 41] are used to com-
pletely remove the personally identifiable information (PII).
In the masking approach, the face region is simply cov-
ered with a shape such that the body or face of the per-
son is completely covered, with pixelation the resolution
of the face region is reduced, and blurring uses Gaussian
filters with varying standard deviation values, allowing dif-
ferent strengths of the blurring. Tansuriyavong et al. [41]
de-identifies people in a room by detecting the silhouette of
the person, masking it, and showing only the name to bal-
ance privacy protection and the ability to convey informa-
tion about the situation, Chen et al. [5] obscures the body
information of a person with an obscuring algorithm ex-
ploiting the background subtraction technique leaving only
the body outline visible. Naive de-identification techniques
that maintain little information about the region of inter-
est, such as pixelation and blurring, may seem to work to
the human eye, but there exist approaches able to revert
the anonymized face to its original state [29, 33]. To im-
prove the level of privacy protection, techniques defined as



k-Same have been introduced [32], where, given a face, a
de-identified visage is computed as the average of the k
closest faces and then used to replace the original faces from
the ones used in the calculation. This set of techniques
works very well in removing privacy-related information,
however, the result of the process completely removes the
information related to the facial region, resulting in sam-
ples that are impossible to use in applications that need to
use face detectors, trackers, or facial attributes. To solve
these issues, our method instead leverages the generation
capability of the state-of-the-art StyleGAN2 [20] to obtain
realistic-looking face images, which are still detectable and
that retain the facial attributes present in the original image.

Generative face anonymization After the advent of
GANs [14], several lines of work have been proposed to
tackle the problem of anonymization leveraging the genera-
tive power of these networks. Prior to this, [6, 27] proposed
auto-encoder based methods, in particular Cho et al. [6]
used such networks to learn to disentangle the identity in-
formation from the attributes given a vector representation
of an image, allowing then to tweak the identity part of
the vector to obtain an anonymized subject. This work re-
ported emotion preservation results, however in this case
we are concerned with the preservation of facial attributes
more generally. The main weakness of such methods is the
lack of sharpness of the generated images. Given the power
of StyleGAN2 to synthesize sharp, high-resolution images,
our framework avoids the problem of generating blurry im-
ages. Several methods [8, 17, 22, 28, 40, 45, 46] also employ
the use of GAN networks to similar ends, given their incred-
ible ability to capture the distribution of the training samples
and then generate similar looking images. DeepPrivacy [17]
extracts the face region along with sparse facial key points
from a face image, removes the face from the image us-
ing the bounding box coordinates and sets its region to a
constant value. This is passed to a conditional GAN [30],
along with background and pose information, which in-
paints a randomly generated face from StyleGAN2’s [20]
generator, while maintaining contextual and pose informa-
tion. CIAGAN [28] also uses a conditional GAN, perform-
ing a form of conditional ID-swapping. The model uses an
identity discriminator to force the generated image, condi-
tioned on the landmark information and masked image, to
display a different identity from the source one with sim-
ilar features to the borrowed identity. These two methods
obtain great privacy preservation results, but still lack the
ability to generate natural-looking faces for images of large
resolution. Even if contextual knowledge is injected un-
der the form of the masked original image, i.e., without
the face region, there is no guarantee that facial attributes
are retained after the anonymization. In the case of CIA-
GAN in particular, the results are visually similar to the
original subject only when the conditional ID happens to

share the same features such as gender, age or skin tone.
Using our attribute preservation loss, and thanks to “prior
knowledge” of textural information that we gain from the
original inverted image latent code, these issues are solved.
Techniques of ID-swapping, like [28], present also another
issue: since real images’ identity features are used to con-
dition the anonymized face, it is unclear if this truly solves
the privacy problem. These issues are avoided in our frame-
work, as the pre-trained generator outputs random, non-
existing faces and thus no information about the original
identities is retained. One of the most recent works, namely
IdentityDP [45], tackles the problem of anonymization in
a three-fold process: first an attribute encoder and an iden-
tity encoder are used to extract the corresponding features,
which are then injected into a GAN to reconstruct the orig-
inal image. In this way the encoders learn to disentangle
attribute and identity information. Then, the identity vector
is perturbed with Laplacian noise and, finally, it is passed to
the generator, along with the attributes vector to obtain the
de-identified image. In the absence of any publicly avail-
able implementation of [45], we do not provide quantitative
comparisons with [45]. We can, however, comment on their
qualitative results, stating that, indeed, the facial attributes
are maintained, but the resulting image can still be recog-
nized by a human observer. Our proposed method does not
suffer from such a problem, since the controllable similar-
ity allows us to obtain face images of completely different
persons that share the same attributes as the original subject.

3. Proposed Method
In this section, we present our method for anonymizing

the identity of faces in a given real face dataset by optimiz-
ing the representations of the dataset’s images in the latent
space of a pre-trained StyleGAN2 [20]. More specifically,
given a real dataset XR, we first create a fake dataset XF

by randomly generating a large set (i.e., such that |XF | >
|XR|) of fake images and obtaining the corresponding latent
codes in the W+ space of StyleGAN2, namely, W+

F . Addi-
tionally, we obtain the latent codes of the real dataset in the
W+ space by inverting its images using e4e [42], arriving
at a set of latent codes W+

R . In order to obtain meaningful
initial values for the latent codes that will be optimized to
create the anonymized version of the real dataset, namely
XA, we first pair the real images from the original set (i.e.,
XR) with fake ones from the generated dataset (i.e., XF ) in
the feature space of the ViT-based FaRL [49] image encoder
and use their latent codes for initializing the aforementioned
trainable codes. The latent codes of the anonymized dataset
are then optimized under the following objectives via two
novel loss functions: (a) to be similar to the corresponding
real ones, up to a certain margin, using the proposed iden-
tity loss (Lid), and (b) to preserve the facial attributes of
the corresponding real ones by being pulled closer in the
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Figure 2. Overview of the proposed method: optimizing the trainable portion of the latent code wi
Ã
∈ R5×512 to obfuscate the identity of

the resulting synthetic image xi
A with Lid whilst preserving the facial attributes with Latt.

feature space of the pre-trained FaRL [49] image encoder
using the proposed attribute preservation loss (Latt). In
this way, in contrast to state-of-the-art works [17, 28], the
anonymized images are optimized to inherit the labels of
the original ones. An overview of the proposed method is
given in Fig. 2.

The rest of this section is organized as follows: in
Sect. 3.1 we briefly introduce the pre-trained modules of
our framework, in Sect. 3.2 we discuss the initialization of
the latent codes that will generate the anonymized version
of the real dataset, and in Sect. 3.3 we present the proposed
optimization process and losses.

3.1. Background

StyleGAN2 We use the StyleGAN2’s [20] generator G,
pre-trained on the FFHQ [20] dataset and, in particular, its
W+ latent space. In this case, we operate on the latent
codes w ∈ R18×512, where the first 9 layers are responsible
for coarse- and medium-grained attributes (such as the head
pose and facial texture details), while the rest correspond to
more fine-grained attributes (such as the hair colour, or the
skin tone, as first identified in [19]).

e4e For the inversion of real images onto the W+ space
of StyleGAN2, we use e4e [42], which has been trained in
order to preserve a good trade-off between fidelity of the
inversion and editability in W+.

ArcFace For measuring the similarity of the identities
of two face images, we use ArcFace [9], which represents
images in a 512-dimensional identity-related feature space
using which we optimize the GAN latent codes to generate
images to maximize the cosine similarity between features
corresponding to the same face identity.

FaRL For the representation of images in a meaningful
and rich semantic feature space, we use FaRL [49], a uni-
versal facial representation scheme trained in a contrastive
manner in 20 million face images-text pairs. Specifically,
we use the ViT image encoder of the FaRL framework in or-

der to represent images in a 512-dimensional feature space
and find meaningful initial values for the latent codes that
will be optimized to anonymize the real dataset.

3.2. Fake dataset generation and pairing with real
images

Given a dataset XR of real face images, we incorporate
the generator G of a StyleGAN2 [20] pre-trained on the
FFHQ [20] dataset, in order to generate a set of fake face
images XF , where |XF | > |XR|. We do so by sampling
from the Z latent space of StyleGAN2, i.e., the Standard
Gaussian N (0, I), and by then obtaining the corresponding
W+ latent codes (using the input MLP of G), i.e., the set
W+

F . At the same time, we calculate the latent represen-
tations of the face images in the real dataset XR by invert-
ing them using e4e [42]. This assigns XR with the set of
corresponding W+ latent codes, i.e., the set W+

R . This is
illustrated in the left part of Fig. 2.

For pairing the real images in XR with fake ones in
XF we use the pre-trained FaRL [49] ViT-based image en-
coder EF and we represent all images of each dataset us-
ing the class (i.e., CLS) token representation, i.e., in a 512-
dimensional features space. By doing so, we obtain a pow-
erful feature representation of both datasets, which we sub-
sequently use in order to train a kNN classifier and obtain,
for each real image, the closest fake one in terms of the Eu-
clidean distance. More formally, after the aforementioned
process of generation and pairing, the images/latent codes
of the real dataset XR are paired with images/latent codes
in the fake dataset XF forming the following set of pairs

{
(
(xi

R,w
i
R), (x

i
F ,w

i
F )

)
: xi

R ∈ XR,w
i
R ∈ W+

R , (1)

xi
F ∈ XF ,w

i
F ∈ W+

F ,

i = 1, . . . , |XR|}.

In order to initialize the latent codes that will be opti-
mized to anonymize the real images, we use the above pairs



of real-fake latent codes as follows. Given the i-th real im-
age, we first modify the latent code of the corresponding
fake one (i.e., its nearest neighbor), wi

F ∈ R18×512, and
replace layers 3-7 with a trainable vector wi

Ã
∈ R5×512,

while we set its first three layers (i.e., layers 0-2) and the last
layers (i.e., layers 8-17) equal to the corresponding layers of
the real latent code wi

R. By doing so, we arrive at a latent
code wi

A ∈ R18×512, initialized so as a) we retain informa-
tion that is crucial for generating anonymized face images
with head pose and other coarse geometric details same as
the corresponding real ones (layers 0-2), b) we maintain the
color distribution and background information (layers 8-17)
of the real ones, and c) optimize information that is critical
for the identity characteristics of a face (layers 3-7). This is
illustrated in the centre part of Fig. 2.

3.3. Latent code optimization

In order to create an anonymized version XA of the real
dataset XR, we use the pairs of real-fake images obtained
and initialized by the process discussed in the previous sec-
tion and shown in (1), i.e., pairs of real and fake images
that are semantically close to each other in terms of the
FaRL image representation scheme. More specifically, the
real image of each pair, xi

R, along with the correspond-
ing anonymized image, xi

A, generated by the modified la-
tent code, wi

A, are used for calculating the proposed losses.
That is, the identity loss Lid(x

i
A,x

i
R) so as xi

A retains a
similar identity to xi

R, up to a desired margin, and the at-
tribute preservation loss Latt(x

i
A,x

i
R) that imposes that the

facial attributes of the original image are preserved in the
anonymized image.

Given a pair consisting of a real image xi
R and its

anonymized version xi
A, we estimate the learnable parts of

its latent code wi
Ã

∈ R8×512, for i = 1, . . . , |XR| by opti-
mizing the following losses:

Identity loss The identity loss is defined as follows

Lid(x
i
A,x

i
R) =

∣∣cos (EA(xi
A), EA(xi

R)
)
−m

∣∣ , (2)

where cos(·, ·) denotes the cosine distance, EA denotes the
ArcFace [9] identity encoder, and m denotes a hyperpa-
rameter that controls the dissimilarity between the real and
the anonymized face images. When m = 0, the pro-
posed identity loss imposes orthogonality between the fea-
tures of the real and the anonymized face images, leading to
anonymized faces with large identity difference compared
to the corresponding real ones. By contrast, when m = 1,
the proposed identity loss imposes high similarity between
the features of the real and the anonymized face images.
That is, the hyperparameter m controls the trade-off be-
tween data utility and privacy preservation.

Attribute preservation loss The attribute preservation
loss is defined as follows

Latt(x
i
A,x

i
R) =

∥∥EF (xi
A)− EF (xi

R)
∥∥
1
, (3)

where EF denotes the FaRL [49] ViT-based image encoder.
It is worth noting that we found empirically that using
the patch-level features of the ViT (i.e., the 14 × 14 512-
dimensional features, flattened as 14 · 14 · 512-dimensional
vectors, leads to better attribute preservation than using the
features at the class (CLS) token. We argue that maintaining
the raw representation allows for better results compared to
using only the class token, as this encodes a class contextual
representation of the image, while the untouched patches’
features contain a higher degree of information.

4. Experiments
In this section we evaluate the performance of our

anonymization framework against other state-of-the-art
anonymization works, evaluating our results on privacy-
related metrics in Sect. 4.2.1, and – in contrast to other
works – attribute classification metrics in Sect. 4.2.2. Fi-
nally, we show in Sect. 4.3 the impact of the identity loss
margin involved in our method through an ablation study.

Datasets We perform anonymization on the following
datasets: (i) CelebA-HQ [26], which contains 30000
1024 × 1024 face images of celebrities from the CelebA
dataset with various demographic attributes (e.g., age, gen-
der, race) and where each image is annotated with 40 at-
tribute labels related to the inner and outer regions of the
face, and (ii) LFW [16], which contains over 13000 images
collected from the Web (5749 identities with 1680 of those
identities being pictured in at least 2 images).

State of the art We compare our anonymization frame-
work with two state-of-the-art anonymization methods,
namely CIAGAN [28] and DeepPrivacy [17].

4.1. Evaluation metrics

We evaluate our method by quantifying privacy preser-
vation, image quality, and attribute preservation. We briefly
introduce the metrics we use below:

Image quality and identity anonymization We quan-
tify the ability to anonymize images by measuring the “re-
identification rate” (defined as the number of images whose
identity is still detected in the anonymized version, over
the total number of images) using FaceNet [38], pre-trained
on two large-scale face datasets (CASIA WebFace [47] and
VGGFace2 [4]). Moreover, we measure the “detection rate”
as the number of anonymized images for which a valid



face is successfully detected over the total number of im-
ages in the dataset. By quantifying how recognisable a
face is to a machine learning algorithm, this metric is an
important measure of the quality of the facial image. To
measure this, we use the MTCNN [48] face detector. An
ideal anonymization method would retain a valid face in all
anonymized images (100% detection rate), but anonymize
all the particular identities (0% re-identification rate). Fi-
nally, we report the Fréchet Inception Distance (FID) [15]
for all generated images as a measure of the quality of the
anonymized datasets.

Attribute preservation Unlike other works [17, 28], we
propose a protocol to quantify how well each method can
retain the attributes of the original images. More specifi-
cally, the evaluation is posed as a standard classification task
and the metric used to quantify this is the accuracy of clas-
sifiers on the real test sets when trained on the anonymized
training set. In this way, one can quantify how well the
anonymized training data has retained the original attributes
in the images. The train/test split structure followed is the
one provided by the official CelebA dataset in the case of
CelebA-HQ [26], while the images from LFW [16] are ran-
domly shuffled and then split with an 80-20 ratio. We use
a MobileNetV2 [37] to perform multi-label classification,
trained with a focal loss [24] to handle class imbalance.

4.2. Comparison to state-of-the-art (SOTA)

In this section, we report the evaluation performance of
our method compared to two other SOTA methods (CIA-
GAN [28] and DeepPrivacy [17]) using the evaluation met-
rics introduced earlier. Finally, in Sect. 4.2.3 we conduct a
qualitative comparison to the SOTA.

4.2.1 Image quality and De-identification

In Tables 1, 2 we show the results for FID, face detection,
and face re-identification for the two considered datasets.
We see that our method excels at producing the most
realistic-looking images under the FID metric for CelebA-
HQ in Tab. 1, and also outperforms the baselines for the
FID metric on LFW [16] in Tab. 2 when considering the
CelebA-HQ [26] dataset as the “target” distribution*. We
argue this success is due to the way in which we design our
method to operate in the latent space of a well-trained GAN,
capable of producing high-resolution, sharp images. On the
other hand, the existing SOTA involves techniques such as
image inpainting, which we find have a tendency to intro-
duce small artifacts in the anonymization procedure. The
realism of our generated images is further attested to by the

*Given that CelebA-HQ is of much higher quality than LFW, we report
both cases to demonstrate that our images can better match the distribution
of high-resolution data.

FID↓ Detection↑ Face re-ID↓
dlib MTCNN(%) CASIA(%) VGG(%)

Randomly generated 18.09 100 99.99 3.61 1.08
CIAGAN [28] 37.94 95.10 99.82 2.19 0.37
DeepPrivacy [17] 32.99 92.82 99.85 3.61 1.05
Ours (ID) 44.12 98.58 97.99 3.28 0.58
Ours (ID+attributes) 44.11 100 100 3.06 2.06
Ours 29.93 100 100 2.80 1.67

Table 1. CelebA-HQ [26] privacy and image quality results.

FID↓ FID (C-HQ)↓ Detection↑ Face re-ID↓
dlib MTCNN(%) CASIA(%) VGG(%)

CIAGAN [28] 22.07 85.23 98.14 99.89 0.17 0.91
DeepPrivacy [17] 23.46 123.67 96.70 99.57 2.74 1.52
Ours 27.45 68.88 100 100 2.07 1.58

Table 2. LFW [16] privacy and image quality results.

perfect face detection scores in both Tables 1 and 2 – indi-
cating the images contain recognisable faces readily usable
for downstream machine learning tasks.

However, our images are not just of high quality, but also
successfully anonymize the identity–we also see from the
last columns of Tables 1 and 2 that our anonymization re-
sults are competitive with the SOTA. However, it is impor-
tant to note that whilst the baselines excel under this met-
ric, they fail to preserve the attributes to the extent of our
method, which we detail in the next section.

4.2.2 Attribute preservation

In this section we quantify the attribute preservation of the
anonymization methods:

CelebA-HQ For CelebA-HQ [26], which provides im-
ages annotated according to 40 facial attributes, we first
train a MobileNetV2 [37] on the anonymized training sets
to predict the attributes of the images, and evaluate its per-
formance on the untouched test set–as a proxy measure for
how well the anonymized images have retained the original
expected facial attribute labels. Tab. 3 shows the perfor-
mances of our framework compared to the other methods
and also when training using the original dataset.

As can be seen, our method’s images result in a classifier
capable of almost the same accuracy as when training on
the original labels, demonstrating the ability of our method
to retain the original facial features. Whilst the other two
baselines also produce reasonable results under this com-
bined accuracy metric, we argue this is because of the way
in which they preserve the image outside the region of the
inner face of the images – out of 40 attributes, 17 correspond
to the “outer face” region. As shown in Tab. 5 with the
accuracy breakdown for the individual attributes, the face
inpainting methods excel at preserving the ”outer face” at-
tributes as expected, whereas we often outperform the base-
lines for attributes related to the “inner” region of the face,
such as “eyeglasses” or “smile”.



Inner face Outer face Combined
Original 0.8409 0.8683 0.8539
CIAGAN [28] 0.7277 0.8372 0.7852
DeepPrivacy [17] 0.7658 0.8511 0.8135
Ours 0.7817 0.8518 0.8181

Table 3. Attribute classification results on CelebA-HQ [26].

FID Detection Face re-ID Accuracy
MTCNN(%) CASIA(%) VGG(%)

Ours (m=.0) 29.93 100 2.80 1.67 0.8181
Ours (m=.9) 27.58 100 3.41 1.76 0.83

Table 4. Ablation study on the margin m on CelebA-HQ [26].

LFW Since no official annotations regarding facial at-
tributes are provided for the LFW [16] dataset, we instead
use two classifiers [18, 23] pretrained on CelebA-HQ [26].
The model of [23] predicts all the 40 attributes officially
provided by CelebA, while [18] predicts only 5 of them,
namely Bangs, Eyeglasses, No Beard, Smiling and Young
(more details on these two classifiers can be found in the
supplementary material A.1). For the original LFW [16]
dataset, we first predict “pseudo-labels” to approximate the
ground-truth attribute labels using [18, 23], and then pro-
ceed with the same classification procedure as above. As
we can see from the first column of Tab. 6, the accuracy
results when training on pseudo-labels on CelebA-HQ [26]
are close to those using the real labels in Tab. 3, validating
the reliability of the classifiers to generate accurate pseudo-
labels. Furthermore, we see in the last two columns of
Tab. 6 that our method is able to generate images that much
better preserve the facial attributes of the original images
than the existing SOTA anonymization methods, through
being able to train more accurate attribute classifiers.

4.2.3 Qualitative evaluation

In this section, we make a qualitative comparison to our
method and the SOTA. We show in Fig. 3, 4 the original
and anonymized images from the various methods on the
two studied datasets. As can be clearly seen, our method is
capable of retaining the facial attributes of the image to a
much greater extent than the baselines – [17] often changes
the expression and [28] often modifies the makeup of the
images. Crucially, our method also succeeds in removing
the background (and identifiable traces of the original im-
age, such as particular clothing choices), which we have ar-
gued is of vital importance to true anonymization–removing
any ability to infer the original image from the anonymized
counterpart. More qualitative results can be found in the
supplementary material A.2.

CIAGAN [28] DeepPrivacy [17] Ours
Outer face region
Bald 0.9778 0.9772 0.9769
Bangs 0.8127 0.85 0.8241
Black Hair 0.7927 0.7794 0.7864
Blond Hair 0.8497 0.8708 0.8707
Brown Hair 0.7626 0.7615 0.7593
Double Chin 0.9377 0.9362 0.9364
Gray Hair 0.9603 0.9569 0.9587
Receding Hairline 0.9168 0.9126 0.9117
Sideburns 0.9197 0.9228 0.9186
Straight Hair 0.53 0.7738 0.7702
Wavy Hair 0.6433 0.6603 0.6652
Wearing Earrings 0.6972 0.6721 0.7123
Wearing Hat 0.9636 0.9641 0.9595
Wearing Necklace 0.822 0.8017 0.81
Wearing Necktie 0.9288 0.9281 0.9273
Oval Face 0.7938 0.7796 0.7783
Chubby 0.9247 0.922 0.9153
Inner face region
5 o Clock Shadow 0.8579 0.8604 0.8711
Arched Eyebrows 0.6057 0.658 0.6684
Bags Under Eyes 0.6946 0.7156 0.7158
Big Lips 0.6167 0.5901 0.6194
Big Nose 0.6814 0.7228 0.7182
Bushy Eyebrows 0.774 0.8288 0.8267
Eyeglasses 0.9483 0.9622 0.9564
Goatee 0.9284 0.9289 0.9303
Heavy Makeup 0.6197 0.7492 0.6859
High Cheekbones 0.5356 0.668 0.6729
Male 0.6891 0.7917 0.8381
Mouth Slightly Open 0.5722 0.603 0.6305
Mustache 0.9398 0.9401 0.9323
Narrow Eyes 0.8925 0.8839 0.883
No Beard 0.5359 0.5571 0.7615
Pale Skin 0.9418 0.9446 0.9451
Pointy Nose 0.6239 0.6291 0.6689
Rosy Cheeks 0.8826 0.8553 0.8825
Smiling 0.5607 0.6505 0.6666
Wearing Lipstick 0.6234 0.7721 0.7579
Young 0.7583 0.7706 0.7848

Table 5. Accuracy of attributes (inner and outer face regions).

4.3. Ablation study

In this section, we perform an ablation study on the value
of the margin m that controls the similarity between the
identities. Concretely, we perform the same anonymiza-
tion procedure for 50 epochs for the whole CelebA-HQ [26]
dataset by changing only the value of m. In particular, we
consider two extremes of m = 0.0 and m = 0.9. The larger
the value of m, the more the resulting identity ought to be
close to the original, hence re-identification results should
be worse-off, while facial attributes should be better pre-
served.

We see from the results in Tab. 4 that m indeed offers
this trade-off, with the higher value of m offering better
attribute preservation at the cost to slightly worse identity
re-identification performance. As one expects, we also see
a lower value of FID using the higher margin, given the im-



CelebA-HQ (labels from [23]) LFW (labels from [23]) LFW (labels from [18])
CIAGAN [28] 0.7721 0.9143 0.7045
DeepPrivacy [17] 0.7902 0.9133 0.7019
Ours 0.8215 0.9157 0.7209

Table 6. Accuracy on CelebA-HQ [26] and LFW [16] of anonymized faces using the pseudo-labels generated by the classifiers of [18,23].

Original CIAGANDPOurs (.9) Ours (.0)

Figure 3. Anonymization results on CelebA-HQ [26] in compari-
son to DeepPrivacy (DP) [17] and CIAGAN [28].

age is encouraged to be more close to the original.

5. Conclusions

In this paper, we presented a novel anonymization frame-
work that directly optimizes the images’ latent represen-
tation in the latent space of a pre-trained GAN, using a
novel margin-based identity loss and an attribute preser-
vation loss. Our method acts directly in the latent space
of pre-trained GANs, avoiding the burden of the need to
train complex networks. We showed that our method is
capable of anonymizing the identity of the images whilst
better-preserving the facial attributes, leading to better de-

Original CIAGANDPOurs

Figure 4. Anonymization results on LFW [16] in comparison to
DeepPrivacy (DP) [17] and CIAGAN [28].

identification and facial attribute preservation than SOTA.
Acknowledgments: This work was supported by the EU
H2020 AI4Media No. 951911 project.



A. Supplementary Material
A.1. Pre-trained attribute classifiers

As discussed in the Sect. 4.2.2 of the main paper, for
the evaluation of the attribute preservation ability of the
proposed and other state-of-the-art anonymization meth-
ods, in the case of the LFW [16] dataset, due to the ab-
sence of attribute labels, we obtain pseudo-labels provided
by two pre-trained attribute classifiers, both pre-trained on
the CelebA [26] dataset. Specifically, we use the pre-
trained models provided by Anycost GAN [23] and Talk-
to-Edit [18]. The former provides predictions (i.e., pseudo-
labels) for the whole set of the 40 attributes of the CelebA
dataset, while the latter for 5 of them (namely, “Bangs”,
“Eyeglasses”, “Smiling”, “No Beard” and “Young”). By
using the aforementioned pseudo-labels, we performed
the training/evluation process similarly to the case of the
CelebA-HQ [26] dataset.

A.2. Additional qualitative results

In this section, we provide additional qualitative results
of the proposed method in comparison to two state-of-the-
art works, namely DeepPrivacy [17] and CIAGAN [28], in
both the CelebA-HQ [26] and the LFW [16] datasets, in
Figs. 5,6, respectively. We observe that, in both datasets, the
proposed method arrives at anonymized versions of the real
face images that preserve more effectively both a certain
level of similarity with the real ones and certain attributes
(such as the skin tone and overall texture, facial hair, etc).
By contrast, the state-of-the-art works [17, 28] either lead
to poor image quality (CIAGAN [28]) or/and fail to pre-
serve certain facial attributes (DeepPrivacy [17]). This is
also shown quantitatively in the Sect. 4 of the main paper.
Finally, similarly to the previous section, we report as “Fake
NN” the fake nearest neighbor (in the pre-trained FaRL [49]
space) of each real image and observe that the proposed
method provides an intuitive yet very simple way of ini-
tializing the latent codes that are then optimized in order to
generate the anonymized face images.

A.3. Insights in the optimization process

In this section, we provide additional insight on the two
stages of the proposed framework, i.e., the pairing of real
images with fake ones and the latent code optimization (dis-
cussed in detail in Sect. 3.2 and Sect. 3.3 of the main paper,
respectively). In Fig. 7 we show qualitative results of the
proposed method for two values of the m hyperparameter
(introduced in Sect. 3.3 in the main paper) that controls the
dissimilarity between the real and the anonymized face im-
ages. Specifically, when m → 0, the proposed identity loss
(Eq. (2) in the main paper) imposes orthogonality between
the features of the real and the anonymized face images,
leading to anonymized faces with large identity difference

Original CIAGANDPFake NN Ours

Figure 5. Anonymization results of the proposed method in com-
parison to DeepPrivacy [17] and CIAGAN [28] on the CelebA-
HQ [26] dataset. “Fake NN” denotes the nearest fake neighbor
of each real image, obtained in the pre-trained FaRL [49] image
representation space.

compared to the corresponding real ones. By contrast, when
m → 1, the proposed identity loss imposes high similarity
between the features of the real and the anonymized face
images. Also, for each real image in Fig. 7, we report its
corresponding fake nearest neighbor (obtained as described
in detail in Sect. 3.2 in the main paper), denoted as “Fake
NN”. That is, the fakes image drawn from a pool of gen-
erated images that are closest to the real ones in the fea-
ture space of the pre-trained FaRL [49]. The latent codes of
these fake neighbors are used for initializing the latent codes
that are optimized for anonymizing the respective real im-
ages. As shown in Fig. 7, the fake nearest neighbor (“Fake
NN”) provides a meaningful starting point for the optimiza-
tion of the anonymized latent code, but does not limit the fi-
nal anonymized generation with respect to facial attributes,
the skin tone, or the head pose. Finally, we observe that
m = 0.9 leads to anonymized faces with higher identity
similarity to the real ones compared to m = 0.0.



Original CIAGANDPFake NN Ours

Figure 6. Anonymization results of the proposed method in com-
parison to DeepPrivacy [17] and CIAGAN [28] on the LFW [16]
dataset. “Fake NN” denotes the nearest fake neighbor of each real
image, obtained in the pre-trained FaRL [49] image representation
space.

A.4. Processing time

As discussed in the main paper, the proposed frame-
work incorporates only pre-trained networks (i.e., Style-
GAN2’s [20] generator G, e4e [42], FaRL’s [49] ViT-based
image encoder EF , and ArcFace [9] identity encoder EA,
as shown in Fig. 1 in the main paper), while at the same
time the only trainable parameters are those of the latent
codes that are optimized to anonymize the real images (i.e.,
5 × 512 parameters per image). Learning each latent code
requires ∼ 3 sec/epoch in 1 Nvidia RTX 3090 (we train for
50 epochs), while generating an anonymized image from its
optimized latent code requires a single forward pass of the
optimized latent code through G (0.05 sec).

A.5. Limitations

As discussed in the main paper (Sect. 3), the proposed
framework relies on a pre-trained StyleGAN2 [20] genera-

Original 0.00.9Fake NN

Figure 7. Anonymization results of the proposed method for
m ∈ {0.0, 0.9} on the CelebA-HQ [26] dataset. “Fake NN” de-
notes the nearest fake neighbor of each real image, obtained in the
FaRL [49] image representation space.

tor (typically pre-trained in the FFHQ [20] dataset) for gen-
erating the set of fake images (as described in Sect. 3.2 in
the main paper), which are subsequently used for finding
appropriate pairs (nearest fake neighbors in the FaRL [49]
space) for each real image in order to initialize the latent
codes ultimately optimized for the anonymization of the
real images. This poses certain limitations to the proposed
framework that reflect the limitations of the adopted GAN
generator in generating faces statistically similar to the real
ones, i.e., to the ones that will be anonymized. That is,
the proposed method fails to anonymize real faces and to
preserve all the relative attributes (e.g., hats) at the same
time when the said attributes are not well-represented in the
dataset that the adopted GAN generator has been trained
with. Another limitation of the proposed framework con-
cerns the inversion method that it incorporates (e.g., the
e4e [42]), which might lead to unfaithful latent code inver-
sions and thus affect the anonymization results.
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