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Abstract

Using the electron’s spin in addition to its charge represents a promising avenue for
future solid-state devices. The potential of this field of research, called spintronics,
has been propelled by the advent of graphene and related atomically-thin materials,
which have enabled unprecedented electric control over spin dynamics and spin-charge
conversion effects in layer-by-layer systems.

This thesis aims to contribute towards a broader understanding of spin-dependent
phenomena in two spintronic platforms of much current interest; honeycomb layers and
interfaces hosting two-dimensional electron gases and topologically protected states.
These systems are characterized by rich symmetry-breaking spin-orbit coupling effects,
which render theoretical descriptions of electronic structure and spin transport highly
nontrivial. Therefore, this work aims to develop a unified microscopic treatment that
captures, on equal footing, disorder-limited spin dynamics and disorder-enhanced spin-
charge conversion effects, two complementary phenomena at the heart of modern spin-
tronics.

On the first front, we put forward a diagrammatic method that allows the derivation
of space and time-dependent kinetic equations for generic 2D electronic systems. Ap-
plied to adatom-decorated graphene, it uncovers the interband spin-orbit scattering at
the origin of sizable current-induced spin currents. Secondly, we study the possibility of
acquiring twist-angle control over spin-charge conversion effects in novel graphene-based
heterostructures, where a rotation angle between adjacent layers strongly modifies the
spin texture of electronic bands, thus opening the possibility of realizing unconven-
tional spin galvanic effects. Our formulation is also applied to studying spin-orbit
torques in ferromagnet bilayers. We find that skew scattering from ubiquitous short-
range impurities can produce significant damping-like torques, allowing for all-electrical
magnetization switching of a nearby micromagnet.

Our work highlights the crucial role played by electronic structure modifications at
interfaces in the generation of spin-dependent forces experienced by transport electrons
and the necessity for an adequate treatment of impurity scattering for describing the
behaviour of realistic spintronic materials.
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Chapter 2

Introduction

2.1 Spintronics

The study of materials guided by the principles of quantum mechanics, known as solid-
state physics, is an ever-evolving field fueled by a constant discovery of new condensed-
matter phenomena. An example of such materials are semiconductors, which nowadays
play a central role in electronics and, therefore, modern technology. In the late 20th

century, an exciting sub-field of solid-state physics was born, inspired by the possibility
of storing and manipulating information encoded in the electron spin. This modern
area of research – dubbed spintronics – has already revolutionised random access mem-
ory (RAM) proposing devices with zero standby power dissipation, denser bit-cell, and
better reading/writing performances [1, 2], and is poised to make its most significant
leap yet. The overarching aim of spintronics is two-fold. The first is to establish a con-
sistent theoretical framework that encompasses the study of i) magnetic structure and
spin excitations, ii) the coupling of spin to other degrees of freedom (DOFs), and iii) the
microscopic mechanisms underlying spin transport. The second goal is to realise these
ideas in practical applications, such as information processing and data storage, where
spintronics seeks to improve the capabilities of mainstream silicon-based electronics
using new-generation devices [3].

Early research in spintronics had its focus on on the strong exchange interaction be-
tween conduction electron spins and magnetic moments of a ferromagnetic layer (FM),
leading to the discovery of the giant magneto-resistance effect (GMR) in 1989 [4] and
underpinning the development of spin-valve sensors, hard disk drives, and magnetore-
sistive RAM (MRAM). Recently, relativistic spin-orbit coupling (SOC) has attracted a
great deal of attention from the community as it provides means to control the spin DOF
by pure electrical means. The various manifestations of SOC – intrinsic SOC, random
SOC induced by impurities, and symmetry-breaking SOC on surfaces and interfaces
– were shown to play a significant role in many spin-dependent phenomena, including
spin relaxation, [5, 6, 7, 8], current-induced spin-polarization (CISP) [9, 10, 11, 12], and
current-induced spin-current (CISC) [13, 7, 14, 15].

An important task in this emergent field of research is to develop unified micro-
scopic descriptions that account for the rich phenomenology displayed by spintronic
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materials. For example, charge-spin interconversion effects have been traced back to a
subtle interplay between band topology and spin-orbit scattering mechanisms. These
manifestations of SOC are broadly classified as intrinsic and extrinsic depending on the
specific role of disorder. Intrinsic effects arise from the relativistic electronic structure
of the material investigated, where the impact of disorder is secondary. For instance,
the resulting effective spin-orbit fields experienced by the electrons may be topologi-
cal in nature, translating into a non-trivial Berry phase that affects the quasiclassical
equation of motion and leads to purely-intrinsic spin currents, i.e., the intrinsic spin
Hall effect [16]. We also include the Edelstein effect (EE) [17], in which an applied
electric current generates a perpendicular spin polarization due to the entanglement of
spin and orbital DOFs, courtesy of the symmetry-breaking Rashba interaction.

Extrinsic mechanisms, on the other hand, result from spin-dependent scattering
of the electrons by randomly distributed impurities. For instance, spin-orbit-active
scatterers can mediate the emergence of spin-polarized current and net spin polarization.
In fact, upon interaction with the SOC-active impurities, wave packets are preferably
deviated asymmetrically by an impurity, depending on the relative sign between their
spin and angular momentum. This mechanism is called skew-scattering [18] and is
responsible for the appearance of the extrinsic spin Hall effect (SHE) [19], consisting of
the generation of a transverse spin-current by application of charge current, as well as
more exotic variants of the EE effect, discovered in recent works [20].

Spin-charge dynamics is also addressed by current research, aiming to understand
better the evolution of spin-related phenomena over time and space. Great importance
is attributed to spin-relaxation, i.e., the disappearance of initial non-equilibrium spin
accumulation, being ubiquitous in realistic media and crucial in experiments. This
effect also relies entirely on the interplay between scattering processes and SOC [21].

In recent years, the focus of spin-orbitronics has been shifting from semiconductor
heterostructures, quantum wells [22, 23, 24], and traditional metallic spintronic systems
[25, 26] to recently discovered materials with exotic electronic properties. Examples are
surfaces of 3D topological insulators (3D-TIs), graphene-based heterostructures, and
graphene decorated with adatoms — all 2D systems with unconventional Dirac-like low-
energy excitations that have attracted great interest due to their distinct potential to
realize strong and gate-tunable SOC transport phenomena [27, 28, 29, 30, 31, 32, 33, 34].

This shift towards new materials has motivated some interesting methodology de-
velopments. A simple but relevant example is graphene. The vanishingly small density
of states associated with its pristine band structure can be easily shown to favour strong
(resonant) skew scattering contributions to the CISC, which in turn requires the use of
linear-response frameworks that go beyond commonly employed ladder (Born) approxi-
mations. One of these frameworks is a SO(5) quantum diagrammatic technique, treating
the low-energy band structure in an exact fashion and single-scattering events at all
orders in the impurity potential. It has provided great insight into the physics of skew
scattering, the validity of semiclassical treatments of coupled spin-charge transport, and
the breakdown of perturbative approaches to studies of quantum contributions to CISC
[31, 19, 35]. This SO(5) nonperturbative approach, treating sublattice and spin DOF on
equal footing, has been subsequently extended to the study of rich transport phenom-
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ena caused by the interplay of Rashba interaction, spin-valley coupling and magnetic
proximity effects [36, 37, 8]. Extensions of the widely-used Boltzmann equation have
also been instrumental in discovering and comprehending novel quantum effects, such as
the anisotropic-spin precession mechanism (ASP), stemming from different components
of a spin-dependent scattering potential and generating sizable CISP [38].

In this thesis, we will revise and extend these techniques, aiming to uncover new
effects in systems of interest in spintronics. In particular, we develop a novel method,
based on the diagrammatic treatment of the Kubo-Streda formula, to derive the com-
plete set of spin and charge drift-diffusion and continuity-like equations non-perturbatively
in the impurity potential for single-scattering events. We dub this technique Diffuson
Hamiltonian method. The employment of this novel approach in studying graphene
monolayers with random sources of local spin-orbit fields, will allow us to uncover
the interband spin-orbit scattering mechanism, yielding to sizable current-induced spin-
current which can overshadow the traditional skew scattering contribution. Our inter-
est in charge-spin conversion mechanisms in graphene extends to the study of bilayer
systems where graphene is placed atop a substrate. These systems are critical in spin-
tronics due to the enhancement of uniform proximity effects. Specifically, we discover
that twisted graphene-based Van der Waals (vdW) heterostructures support highly
anisotropic spin-density-current responses enabling full control over the in-plane orien-
tation of non-equilibrium electron spin. The last findings of our projects concern the
physics of the spin-orbit torque, one of the most promising mechanisms for applications
that exploits charge-to-spin conversions. We find that CISP induced at the interface of
ferromagnetic bilayer systems produces a torque that allows magnetization switching,
paving the way toward new generation RAMs.

2.2 Spin-orbit phenomena in solids

2.2.1 Spin-orbit interaction in solids

SOC is the driving force of coupled spin-charge transport, also being a key factor in
spin relaxation. An intuitive interpretation of this interaction is provided by electrody-
namics, where the origin of the SOC is traced back to the relativistic transformation
of electromagnetic fields. This effect produces corrections to the electrons’ energy lev-
els of atomic spectra [39], band structures in solids (intrinsic and structure-induced
SOC) [40, 41], and influences the electrons’ interaction with impurities (extrinsic ran-
dom SOC) [31, 38]. According to special relativity, the effective magnetic field that an
electron orbiting a nucleus perceive in its rest frame is

BSO = −v × E

c2
, (2.1)

where E is the electric field in the rest frame of the nucleus, v is the electron velocity,
c is the speed of light, and we used |v| ≪ c to approximate the Lorentz factor by
unity. The existence of the particles’ intrinsic magnetic moment, related to their spin,
generates an interaction that enters the Hamiltonian as
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HSOC = −µs ·BSO, (2.2)

where µs = −(ge/2me)S is the electrons’ magnetic moment and S = (ℏ/2)s is the spin
operator, with s = (sx, sy, sz) the vector of Pauli matrices. The constants in Eq.(2.2)
are the gyromagnetic factor of a free electron ge ≃ 2, and the electron mass me =
9.11× 10−31 kg. A subtle, but crucial, correction to Eq.(2.2) is offered by the Thomas
precession, which is a relativistic modification to the angular velocity experienced by the
electron in its rest frame [42]. It results in a new term in the Hamiltonian ∼ −S · ωT ,
where ωT = v × a/2c2 is the Thomas angular frequency, and a is the centripetal
acceleration.

Both relativistic corrections to the hydrogen atom and the effects of impurities can
be described by a radial electric field E = −∂rV (r)r/er, where V (r) is the electrostatic
energy of the electron in the central field and e = 1.6×10−19C is the elementary charge.
We also notice that the effective spin-orbit field can be cast as BSO ∼ r×p = L, where
p = mev is the electrons’ momentum and L is the orbital angular momentum. Putting
all the pieces together, the interaction Hamiltonian finally becomes

Hrad
SOC = − ge

4 em2
e c

2

∂rV (r)

r
L · S, (2.3)

where we used that a = eE/me. This simple equation already hints at the consequences
of including the SOC interaction in crystalline solids.

Semiconductors with a zinc blende structure, such as GaAs, InSb, and CdTe, provide
excellent examples since their dispersion relation can be (relatively) easily interfaced
with the atomic interactions in the material via the extended Kane model [43, 44].
This theoretical framework shows that the valence band originates from bonding p-like
states (orbital angular momentum l = 1) and the conduction band from antibonding
s-like (l = 0) and p-like states. With the SOC taken into account, the spin and the
orbital angular momenta are no longer good quantum numbers and the total angular
momentum J = S+L must be introduced to diagonalize Eq.(2.3). One finds electronic
states with j = 1/2, 3/2, which are split in energy and strongly modify the band
structure by inducing significant band gaps (Fig.(2.1)).

Another example is pristine graphene, where the projection of Eq.(2.3) onto the
manifold of π-orbital states yields an intrinsic spin-orbit interaction commonly referred
to as Kane-Mele SOC [41, 45]. In this scenario, the spin of an electron initially in the
pz state at site A is flipped due to the intraatomic spin-orbit interaction. As a result,
it transitions to a σ state at the same site. This electron then hops to an intermediate
site B, facilitated by the spin-conserving σ bond in the system. Finally, at site B, the
electron undergoes a second spin-flip transition, leading to its arrival at site C, which
is the next-nearest neighbour to A. At this point, the electron is back in the pz state
with its original spin orientation intact [46]. The Kane-Mele interaction opens a small
gap at graphene’s Dirac points, rendering graphene a quantum spin Hall insulator [47].

In more exotic materials, the contribution of the SOC to the system’s electronic
band structure determines new quantum states of matter. For instance, in the family
of Y3XC solids [48] the choice of the X element (Ga, Tl) determines a TI or a Dirac
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semi-metal phase, while in Sb2Te3, Bi2Te3, and Bi2Se3 the presence of a strong SOC
establishes topological insulator features [49].

Figure 2.1: Qualitative sketch of the electronic structure of a sp3-bonded semiconductor
around the Γ point derived from the extended Kane model. The fundamental gap
at p = 0 distinguishing bonding and antibonding states is ∆gap, while ∆

c (v)
SOT is the

conduction "c" (valence "v") gap induced by SOC. Further splittings for p ̸= 0 are still
due to the SOC, and define heavy and light quasiparticles [21].

The intuitive picture of the SOC provided by Eq.(2.3) can be complemented by
analysing the possible system’s symmetries, either naturally present in the crystalline
structure or specifically engineered. Broken symmetries are important because they can
induce splittings in the spin DOF. To see that, we consider two essential symmetries
in quantum mechanics; time-reversal T and inversion-symmetry I. If both are present,
the system’s energy bands ϵn,s(p), with n and s being the band and spin index s =↑, ↓,
are spin-degenerate:

ϵn,↑(↓)(p)→
T
ϵn,↓(↑)(−p)→

I
ϵn,↓(↑)(p), (2.4)

which implies ϵn,↑(↓)(p) = ϵn,↓(↑)(p) and shows explicitly the spin degeneracy in the band
structure. The presence of a Zeeman interaction induced by an external magnetic field
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also breaks the time-reversal symmetry, leading to spin-split bands. In non-magnetic
materials (time-reversal invariant systems), the lack of the inversion symmetry is at the
origin of the splitting and is accompanied by the emergence of spin-orbit interactions.
Notable examples are the Dresselhaus SOC, present in non-centrosymmetric bulks [50],
the Rashba SOC, generated by breaking the mirror reflection symmetry about a plane,
and the spin-valley SOC, appearing in honeycomb layers with broken sublattice symme-
try (C3v point group), such as group VI dichalcogenides and hexagonal BN [41, 51, 52].

A more realistic picture of the SOC in solids also considers local sources of spin-
orbit interactions mediated by impurities, adatoms, and fluctuations in the spin-orbit
field (e.g., due to interface roughness) [19, 53, 54]. Such interactions impact the cou-
pled spin-charge dynamics along side with uniform (intrinsic) spin-orbit interactions,
as shall be explored in-depth later in this thesis. For instance, magnetic or spin-orbit-
active impurities activate a skew scattering mechanism that yields an extrinsic SHE and
renormalizes the CISP. Additionally, random Rashba-type interactions also contribute
to charge-spin interconversion effects through the ASP mechanism.

The SOC phenomenology heretofore investigated allows us to consider a more gen-
eral expression for Eq.(2.3), namely

HSOC =
ge

4 em2
e c

2
(∇V (r)× p) · S, (2.5)

where V (r) = V0(r) + Vext(r) + Vimp(r) gathers the effect of the periodic crystal po-
tential V0, the external applied potential Vext, and the extrinsic term Vimp generated
by quenched disorder in the system. Eq.(2.5) encompasses the SOC on the crystal’s
electronic band structure, originating from V0 (intrinsic SOC) or periodic ad-atom in-
sertions V per

dis (uniform extrinsic SOC), and local effects due to randomly distributed
impurities in the sample, described by V ran

dis (random extrinsic SOC). It also describes
symmetry-breaking SOC effects due to surfaces and interfaces.

The coupling between the spin and orbital DOFs will lead to detectable effects
whenever Eq.(2.5) is a significant perturbation. It explains, for example, why random
sources of SOC can affect the electron’s trajectory in a spin-dependent fashion, i.e. skew
scattering. A similar net effect occurs through the ASP mechanism, where quantum
interference between different components of the scattering potential induces strong
spin–momentum correlations. Another well-studied case occurs in systems dominated
by spatially uniform symmetry-breaking SOC (also known as structure-induced SOC),
where the the Fermi surface displays characteristic k-space spin textures. Consequently,
the application of electric fields influences the electron’s spin, leading to pure spin
currents and non-equilibrium spin polarisation that accompany the steady-state electric
current. Furthermore, in proximitised graphene systems endowed with well-defined
spin-quantization axes around the Dirac points, skew scattering develops efficiently
even in the absence of random SOC sources [55].

2.2.2 2D spintronics

The unusual and distinctive properties of low-dimensional solid-state systems garnered
a lot of attention due to their technological potential. Here, we include zero-dimension
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quantum dots (promising to fabricate single-electron transistors, new generation so-
lar cells [56], etc.), one-dimension carbon nanotubes [57] (successfully employed in the
medical [58] and tech sector [59]), and, most notably for spintronics applications, two-
dimensional systems. Amongst them, two-dimensional gases (2DEG) are primarily used
in traditional technologies, like MOSFETs and diodes, where electrons can move only
in two dimensions of 3D multilayered apparatuses. However, these systems only scratch
the surface of the possibilities that two-dimensionality can offer.

For instance, the topological order in bulk solids gives rise to the family of the 3D
topological insulators (3D-TI), which behave as nonmagnetic insulators in their interior
but possess metallic surface states. As a result, the electrons can flow only at the surface,
which can be considered a new form of 2D metal [60, 61]. Interestingly, these systems
exhibit an unusually robust coupling between the spin and momentum DOF, resulting
in unprecedented spin-charge interconversion effects [62]. TIs are therefore considered
excellent candidates for spintronics applications.

Another class of 2D systems are atomically-thin materials, which up until the early
2000s had only been thought as a pure abstraction. Naively, their experimental reali-
sation seems to defy the Mermin-Wagner theorem, which states that long-wavelength
fluctuations supress long-range order in one and two spatial dimensions [63]. As such,
to many, the isolation of one-atom-thick graphene in 2004 [64] came to a surprise. The
assumptions of the famous theorem are circumvented, most trickery, by anharmonic cou-
pling between bending and stretching modes that facilitate rippled membranes living
in the 3D space [65]. Beyond graphene, advances in nanofabrication opened the doors
to the realization of monolayers starting from virtually any given bulk vdW material
[66, 67], like insulators (e.g. hexagonal boron-nitride), semiconductors (e.g. group-
VI transition metals dichalcogenides), and metals (e.g. NbS2). The unprecedented
properties of these materials span from electrical and optical to structural [68].

In terms of spin-related phenomena, there is no shortage of wonder. Considering the
case of graphene, the combination of high electronic mobility and ultra-small intrinsic
SOC makes gives way to micrometer-long spin diffusion lengths [69, 70, 71], promising
for spin transfer. On the contrary, group-VI TMDs possess strong spin-valley coupling
which is exploitable for manipulating the spin degree of freedom of Dirac electrons
in graphene/TMD heterostructures [37]. Also, being graphene an open surface, the
adatom absorption of certain atomic species is also possible, opening the possibility of
controlling graphene’s SOC and generating new spin-related phenomena [38].

Before diving into the rich spin-orbit-coupled phenomena hosted by two-dimensional
systems, we briefly review the paradigmatic Rashba-coupled 2DEG for illustrative pur-
poses. The Hamiltonian reads as

H = p2/2m + HR, (2.6)

where
HR = αR(s× p) · ẑ, (2.7)

is the Rashba SOC (RSOC), αR is the Rashba coupling constant reflecting the strength
of the spin-orbit interaction, m is the effective mass of the electrons, and p = (px, py).
This interaction lifts the spin degeneracy for p ̸= 0, splitting the dispersion relation
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into two subbands ϵ± = p2/2m ± αR p as shown in Fig.(2.2a) [72, 73, 74]. The spin

Figure 2.2: Effect of the Rashba spin-orbit interaction on the band structure of 2DEGs.
(a) Spin-splitting and dispersion law for ϵ±. The quantity ∆R = mα2/2ℏ2 is the distance
between the minima of the two bands. (b) Rashba-induced spin texture for a positive
Fermi energy crossing both bands. The arrows mimic the direction of the spin moment,
and the tangential winding of the spin texture is a direct consequence of the transverse
spin-momentum locking, as described by Eq.(2.8).

polarization associated with each spin-split band can be easily shown to be

⟨s⟩p,χ = ⟨p, χ| s |p, χ⟩ = χαR

|p| (p× ẑ) , (2.8)

where χ = ± corresponds to the upper (lower) band. This equation shows a specific
spin-momentum locking in which the spin orientation is always orthogonal to the par-
ticle’s momentum. Fig.(2.2b) shows a visualization of Eq.(2.8) at the Fermi level, i.e.
the spin texture, where the momentum is replaced by the Fermi momentum, p→ pf .

As discussed later, spin-momentum locking is at the origin of the Edelstein effect [17]
and the Dyakonov-Perel spin-relaxation mechanism [7], making RSOC of paramount
importance in spintronics. More sophisticated versions of these phenomena can be
achieved by coupling the Rashba effect with the skew-scattering, as demonstrated in
recent literature [20, 35], or by considering different spin textures (Fig.(2.3)), results of
distinct SOC and interactions [75, 38] (see Chaps.(6) and 7)).

2.2.3 The skew-scattering mechanism

Collisions between electrons and randomly distributed impurities induce extrinsic spin-
related phenomena that dominate the spin-charge response functions even in the dilute
regime, i.e., when pf l≫ 1, with l being the mean free path. Such scattering events are
described quantum mechanically by the Lippmann-Swinger equation [78] which finds
the final state |ψ(p, χ, V )⟩ of a diffused incident wave packet |p, χ⟩ and provides the
related scattering cross section
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Figure 2.3: Fermi-surface spin textures associated with different symmetry-breaking
SOC effects: Dresselhaus (a), persistent (b) [76], Rashba + Zeeman interaction (c) [8]
and (d) RSOC in graphene/TMD heterostructures for different twist-angles [77]

.

dσχχ′

dΩ
= |f(p′χ′, pχ)|2 , (2.9)

where f(p′χ′, pχ) ∼ ⟨p′, χ′|V |ψ(p, χ, V )⟩ is the scattering amplitude (entering the Fermi
Golden Rule). Here, V is the impurity potential and χ, χ′ are spin quantum numbers.
Equation (2.9) is generally treated perturbatively, and in most literature within the
first Born approximation (FBA) [79], where f(p′χ′, pχ) ∼ ⟨p′, χ′|V |p, χ⟩. The inclusion
of the SOC, either uniform or random, affects dramatically the scattering amplitudes
in both spin-conserving and spin-flip channels [18], see Chap.(4) for further details. An
adequate treatment beyond the FBA shows that, in rather general grounds, electrons
are preferably deviated from impurities asymmetrically depending on the relative sign
between their spin moment and orbital angular momentum. As a result, electron-
impurity cross sections become asymmetrical, σχ(θ) ̸= σχ(−θ) (Fig.(2.4)).

At the lowest order, skew scattering is captured by retaining the third order in the
scattering potential expansion. The effect is not necessarily weak, though, as it can
be strongly enhanced in the resonant scattering regime (in which case nonperturbative
T-matrix calculations are required [80, 19]).

2.2.4 Current-induced spin polarization

In gyrotropic media, where some components of polar vectors (like electric fields) and
components of axial vectors (like spin moments) transform according to the same rep-
resentation and are, therefore, related, the entanglement between the electrons’ spin
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Up

Down

Figure 2.4: Semiclassical skew scattering mechanism. Particles with spin up (in blue)
and down (in red) are deviated more likely to the left or right after a scattering event
with an impurity (in grey).

and orbital DOFs with broken mirror symmetry, allows the appearance of a current-
induced spin polarization (CISP), or inverse spin-Galvanic effect, a major focus of this
thesis [81]. After experimental evidence of the phenomenon [82, 83], the first theoreti-
cal studies in semiconductors [17] explained the results by accounting for the RSOC in
the effective quadratic Hamiltonian of two-dimensional systems, expressed by Eq.(2.6).
According to this picture, the shifting of the Fermi rings, induced by an applied elec-
tric field E, yields an out-of-equilibrium unbalance between spins oriented in opposite
directions due to the spin-momentum locking (see Fig.(2.5)). In other words, the ac-
celeration of the electrons in an external electric field generates a net spin polarisation
of the electron gas perpendicular to E.

According to linear-response theory, the non-equilibrium spin density is given by

⟨Sµ⟩ = Kµν Eν , (2.10)

where µ, ν = x, y and ⟨...⟩ stands for the statistical average. The conversion is entirely
controlled by the 3 × 2 charge-spin linear-response tensor K̂. For a Rashba-coupled
2DEG, only xy(yx) components are nonzero, and Kxy = −Kyx due to O(2) symmetry.

The CISP has a rich phenomenology. For example, systems with pure Dresselhaus
SOC display a collinear Edelstein effect (i.e. S ∝ E) due to their hedgehog spin textures,
while more general anisotropic spin responses are achievable in twisted graphene-based
heterostructures (see Chap.6). Spin-charge conversion processes are said to be intrinsic
when they are driven by the k-space spin texture of eigenstates. However, disorder
corrections can generate important corrections to "intrinsic" spin responses. For ex-
ample, skew scattering from scalar impurities in ferromagnetic Rashba-coupled systems
activates collinear spin responses (Kxx(yy)) [20, 84]. As shown in Fig.(2.5c), electrons
with opposite spin can be scattered asymmetrically, resulting in an unbalance between
py and −py electrons in the Fermi rings and thus a CISP collinear to the electric cur-
rent ⟨Jx⟩. Finally, purely extrinsic CISP can be induced by heavy (spin-orbit-active)
impurities even in host materials with low SOC (see Chapter 5).
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z z

Figure 2.5: CISP driven by Rashba SOC (a-b) and Rashba SOC combined with mag-
netic exchange coupling (c-d). In momentum space, an applied electric field E distorts
the Fermi surface (a), establishing an out-of-equilibrium spin accumulation ⟨Sy⟩ perpen-
dicular to E (Edelstein effect). In (b), we show the real-space picture. In the presence
of an out-of-plane component to the spin texture (c), the skew scattering kicks in and
leads to an additional accumulation of spin collinear to the applied field–the resulting
nonequilibrium spin-density is non-coplanar (d) [20].

The body of theoretical work produced so far [17, 89, 90, 91, 92, 93, 94, 95, 37]
has supported experimental advances on several fronts, including spin-injectors, detec-
tors [22, 85], and non-volatile memories [75, 96]. For example, a novel experimental
setup, shown in Fig.(2.6), can detect the presence of macroscopic spin accumulations
in NiFe/LAO/STO by exploiting the Onsager reciprocal effect of the EE (i.e., inverse-
EE, or simply spin-to-charge conversion) [86]. Spin currents are injected via ferro-
magnetic resonance from the FM (NiFe) and then converted into electric current in a
two-dimensional electronic system formed at the LAO interface. The spin-to-charge
conversion can be controlled by an applied gate voltage, which modulates the strength
of the RSOC.
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Figure 2.6: Setup (a) and measurement results (b) for detection and characterization of
spin-to-charge conversions via ferromagnetic resonance in NiFe/LAO/STO samples [85]
(see also [86, 87, 88]). A spin-accumulation is produced in the two-dimensional electron
system. along with a spin-current js, pumped in from a ferromagnet (NiFe). These
two effects are measured via inverse-SHE (ISHE) and inverse-EE (IEE) by detecting
the electric voltage V as a function of the applied magnetic field Hd.c.. The asymmetric
component results mainly from ISHE, while the symmetric part comes from IEE.

2.2.5 Spin relaxation

Spin-relaxation, i.e., the disappearance of an initial non-equilibrium spin accumulation
over time, is another interesting aspect when considering the ramifications of SOC. It
results from fluctuating effective magnetic fields experienced by charge carriers, which
receive important contributions from uniform and random spin-orbit interactions [21].

The control over spin relaxation mechanisms is crucial for applications because it ul-
timately sets the spin-transfer capabilities of a spintronic device. For example, graphene
allows spin transmission over micrometer lengths [97, 98, 99, 100, 101], making it an
ideal spin channel [102, 103, 104], and high-fidelity spin propagation is crucial to develop
spin-logic devices, like spin field-effect transistors [105, 106, 107]. Such apparatuses have
the same general structure of modern MOSFETs, i.e. a source and drain contacts, a gate
designed for electrical control of the signal, and a transport channel. The information
is carried by a spin current, injected into the system from the ferromagnetic source,
then travelling along the channel, where the electrons are subject to a gate-tunable
spin-orbit interaction. Large SOC induced by the gate potential favours rotations of
spins of electrons allowing for the electrical control of the information. The presence of
spin-relaxation mechanisms is therefore detrimental, limiting the range of operation of
such devices randomizing the electrons spin [108].

The effective fluctuating magnetic fields, at the origin of spin relaxation of the con-
duction electron’s spin, can be qualitatively described in terms of two parameters: the
correlation time τc,i.e., the time in which the magnetic field is considered to be constant,
and the characteristic spin precession frequency ω. A spin of a travelling electron starts
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precessing with frequency ω around the direction of the effective field during a time τc.
After this time, the effective field direction changes, in a random fashion, and the spin
starts its precession along a new direction. After enough time steps, the initial spin
information is lost. How fast this happens depends on the dimensionless parameter ωτc,
which is the precession angle during the correlation time, and we can distinguish two
extreme cases: ωτc ≪ 1 and ωτc ≫ 1.

In the first limit, the precession angle is very small during each correlation time.
Like the one-dimensional symmetric random walk, with a variance ⟨x2⟩ = L2N with L
being the step (average) length and N the number of steps [109], the spin precession
variance is ⟨ϕ2⟩ = (ωτc)

2 1/τc t, where t/τc is the number of uncorrelated random steps.
The spin relaxation time τs is defined as the characteristic time in which this angle
becomes ∼ 1, obtaining

1

τs
= ω2τc, (2.11)

where we notice that τs ≫ τc. In the opposite limit, the spin precesses many times
during the correlation time. During a time ∼ 1/ω, the original spin projection trans-
verse to the random field is completely destroyed while its projection along the field is
conserved. After a further time ∼ τc passes, the direction of the field changes and the
initial spin configuration disappears, obtaining

τs ∼ τc. (2.12)

The considerations made above are general and we can now relate the quantities ω and
τc to microscopic scattering processes in disordered systems induced by the SOC.

The case of a weak uniform spin-orbit interaction, originating from the lack of an
inversion centre in the system, induces the so-called Dyakonov-Perel (DP) relaxation
mechanism in systems with randomly distributed impurities [7] and follows Eq.(2.11).
In this scenario, the electrons are subject to a Zeeman field of the general form

HSOC =
ℏ
2
s ·Ωp, (2.13)

where Ωp is the precession frequency of the momentum-space effective magnetic field.
The direction of the precession axis is determined both the type of inversion asymmetry
and the electrons’ momentum. This means that a scattering event with an impurity
induces a change in the direction of the effective magnetic field, leading to spin dephas-
ing after enough collisions. The correlation time is then of the order of the scattering
time τp, and we finally get

1

τs
∼ Ω2 τp, (2.14)

with Ω = (⟨Ω2
p⟩)1/2 the characteristic precession frequency averaged over the Fermi

surface. Since in the dilute regime τp is inversely proportional to the concentration of
impurities ni, we find τs ∼ ni. The strength of the constant Ω depends on the type of
broken inversion symmetry. A structure inversion asymmetry (SIA) generates a Rashba
type interaction and ΩSIA = α(py,−px), while bulk inversion asymmetry (BIA) induces
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a Dresselhaus coupling. For example, in (001)-grown A3B5 2D semiconductors, we find
ΩBIA = β(py, px) in the coordinate system of x ∥ [1 1̄ 0], y ∥ [1 1 0], obtaining Ω2 =
⟨|p|⟩2 (α2 + β2 − 2αβ cos 2θ), where θ is the angle between p and the direction [1 1̄ 0].
Eq.(2.14) is only valid for weak Ω, while the opposite limit, expressed by Eq.(2.11) is
valid for Ωτp ≫ 1, and τs ∼ 1/ni (Fig.(2.7)).

Figure 2.7: Spin-relaxation mechanisms in systems with symmetry-breaking SOC [51].
In (a) the SOC is weak, Ωτp ≪ 1, and the spin precesses slowly between collisions,
while (b) illustrates the opposite limit with Ωτp ≫ 1.

The second type of spin dephasing mechanism, called Elliott-Yafet (EY) spin-
relaxation [6], is mediated by local SOC due to lattice vibrations, charged impurities,
and pinpointed inversion symmetry breaking [110]. It results from local spin-flips upon
interaction with local spin-orbit fields. The spin rotates of a small angle φ in each
scattering event. Following the angle-random walk argument developed before, we find

1

τs
∼ ⟨φ

2⟩
τp

. (2.15)

The equation above is a linear relation between the spin relaxation time and the mo-
mentum scattering time, i.e, the rate 1/τs ∼ ni, and we can interpret the term ⟨φ2⟩ as
the spin-flip probability during a momentum relaxation event [111]. Graphene provides
an excellent example for materials with spin relaxation induced by extrinsic sources,
according to the EY mechanism [112], while DP relaxation can be induced by substrates
or periodic adatom insertion [35]. Besides, as shall be discussed in detail in Chap.(5),
randomly distributed impurities produce spin-dependent self energies that activate a
DP-like spin relaxation mechanism on top of the usual EY-relaxation contribution [38].

2.2.6 Current-induced spin-current

As the transport of information is carried by the electric current in charge-based de-
vices, spin currents, i.e., flow of spin densities [21], play a crucial role in spintronics
[107, 113, 114]. Three major approaches are currently adopted for practical spin injec-
tion in nonmagnetic materials. The first method induces the alignment of the electrons’
spin orientation from a charge current flowing through a magnetic medium [115]. Nev-
ertheless, it requires large magnetic fields in paramagnetic II-VI semiconductor spin
aligners [116] and may result in low injection efficiency, e.g. due to a dead layer at the
FM/semiconductor interface [117]. The second method exploits the diffusion of a spin
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density generated by a circularly polarized light beam [118], which, however, can be
cumbersome in everyday spin-related nano-technologies. The third option consists in
a purely electrically-generated spin current, via spin-Hall effect (SHE) in nommagnetic
conductors or anomalous Hall effect (AHE) in ferromagnets. The SHE is a central focus
of investigation in this thesis as a charge-spin conversion effect.

The first experimental studies of SHE in semiconductors and metals [119, 15, 120,
121] sparked interest in this phenomenon, which currently represents an evolving front
in spintronics research due to its ability to convert charge currents directly into a
transverse spin current via spin-orbit interaction (Fig.(2.8a)). We also note that the
Onsager reciprocity [122] guarantees the existence of the reversed effect, called inverse
SHE (ISHE), that enables the transformation of pure spin currents into electric currents
[123]. Different experimental works proposed various set-ups to capture both phenom-
ena experimentally. A common approach is currently used to observe the ISHE [124]
and consists of the injection of a spin current through an adjacent ferromagnet and the
detection of the spin Hall-induced electric potential difference V between the electrodes
attached to the nonmagnetic layer (Figs.(2.8b)). First observations of direct SHE [119],
which induces the spin accumulation at the sample, are based on detection and imaging
using Kerr rotation microscopy, as shown in Fig.(2.8c). Finally, a significant advance-
ment in generating and detecting spin-to-charge intercorversion effects is represented
by the recent fabrication of lateral (cross-shaped) spin valve devices made from 2D
materials [125] (Fig.(2.8d)) which require the only use of purely electric currents.

The charge-spin current intercorversion at the heart of all these experiments can be
described by the simple phenomenological equations

ji(γ) = ji(0) + γϵilkj
k
l (0), (2.16a)

jli(γ) = jli(0)− γϵilkjk(0), (2.16b)

where ji(γ) and jil(γ) (ji(0) and jil(0)) are charge and spin currents respectively, the
index i is the direction of the flow and l is the component of the spin that is flowing.
The change in sign between Eqs.(2.16a) and (b) is due to the Onsager relations. The
spin-Hall conversion is expressed by γ, while ϵilk is the unit antisymmetric tensor.
SOC dictates the spin-charge conversion parameter γ and receives contributions from
intrinsic and extrinsic mechanisms.

The intrinsic mechanism is driven by the band structure, does not require local
sources of SOC, such as heavy impurities [126] , and is rooted in the topological nature of
the system, manifesting itself in a nonzero momentum-space Berry phase [127]. In very
simple terms, we can imagine that the electrons with opposite-oriented spins interact
with the uniform SOC, resulting in spin-dependent forces that separate the spin carriers.
To better understand the physical intuition behind the system’s intrinsic response, we
consider the AHE, where the unbalance between particles with opposite-oriented spin
induces a net voltage at the edge of the sample. In this case, the Berry phase adjusts the
semiclassical theory of wavepackets dynamics by establishing an "anomalous velocity"
[128, 129]. The equation of motion for the centroid of the wavepacket rc then becomes

∂rc/∂t = ∂En(k)/ℏ∂k− (E/ℏ)× bn(k), (2.17)
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Figure 2.8: Spin Hall effect and related experiments. A charge current, initially unpo-
larized, is disentangled into its spin components, leading to a bulid-up of spin accumula-
tion at the boundaries of the sample (a). The inverse effect, i.e., ISHE, can be detected
by the apparatus in (b), where the spin current pumped from the ferromagnetic film
is converted into an electrical signal [124]. The traditional observation of CISC uses
optical detection techniques, including Kerr-microscopy (c) [119]. In particular, A and
B show two-dimensional images of spin density and reflectivity for the GaAs sample.
(d) presents a schematic illustration of a graphene Hall cross-device able to inject and
detect the (I)SHE [125]. An electric field E produces an electric current I, which is then
converted into a spin current by the SOC, enhanced in the transition metal dichalco-
genide (TMDC) stripe. The ferromagnet F1 than detects the spin current via non-local
electric-potential measurement (V +

nl −V −
nl ). The reciprocal effect is realized by injecting

a spin current polarized by the ferromagnet and then exploiting the ISHE to measure
the ensuing charge current.
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with bn(k) = i∇k×⟨n,k|∇k|n,k⟩ being the Berry curvature, and n is the band index.
The additional term in Eq.(2.17), linear in the electric field, produces an Hall current
contribution coming from the Fermi sea, jint ∼

∑
n,k bn(k).

The purely extrinsic mechanisms contributing to the SHE, on the other hand, rely
entirely on random fluctuations of spin-orbit fields and on the presence of randomly
distributed impurities. These are the skew scattering, described in details in Sec.(2.2.3),
and the side jump. The former intuitively gives rise to a spin current, deviating spin
up and down electrons in opposite directions, while the latter builds up the effect
by inducing a displacement of the incident wavepacket transverse to its momentum
[130, 131]. In the clean limit (ετc ≫ 1), where ε is the Fermi energy, mainly under
investigation in this thesis, the skew scattering dominates over quantum side jump and
intrinsic response. In this limit, the response functions are proportional to the transport
lifetime τ ∼ 1/ni, while the other two effects are independent on the concentration of
impurities. In the way of conclusion, hybrid intrinsic–extrinsic SHE mechanisms are
also operative in nonmagnetic materials with non-coplanar k-space spin textures. An
elegant example is the universal skew scattering mechanism supported by proximitised
graphene, first predicted in Ref. [36], and explored in detail in Chap. 6. This spin-orbit
scattering mechanism is activated by the out-of-plane tilting of Rashba spin textures
induced by spin-valley coupling, and does not require a specific type of impurity (hence,
’universal’).

2.2.7 Spin-orbit torque

One of the most promising applications of CISP and CISC is the possibility of manip-
ulating the magnetization dynamics of ferromagnets, antiferromagnets, and interfaces
of magnetic insulating materials [132, 133]. This offers the prospect of replacing mag-
netic fields with current-induced spin torques to control bit states in nanomagnets and
write/store information. In fact, the magnetization direction can represent a bit of
information in binary language (for example, magnetization up = 1 and down = 0)
[134], and the application of an electric current controls such orientation by inducing
magnetization switching [135, 136]. Since the origin of this type of torque is traced
back to the spin-orbit interaction, it is called spin-orbit torque (SOT). It represents a
novel, efficient, and versatile way to control the magnetization states and dynamics in
different classes of materials.

Compared to the spin-transfer torque (STT) [137], already exploited in MRAM
devices, the SOT paves the way toward faster, more reliable, and less energy-consuming
storage devices. It enables [138] room temperature magnetization switching with two
orders of magnitude smaller current densities[137], reducing the size of current driving
transistor and achieves high-density of SOT-MRAM. Also, the switching time is an
order of magnitude smaller in the case of SOT when compared to STT; read and
write current paths are orthogonal to each other and can be independently optimized
[139, 140] without the presence of the tunnel barrier in the write path; SOT-MRAM
requires much smaller total number of layers than complicated stacks in STT-MRAM
maintaining noncollinearity of two FM layers [2]; and SOT-MRAM evades asymmetric
magnetization switching issue with STT-MRAM [139].
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The primary picture describing the SOT, at the origin of more sophisticated devices,
involves nonmagnetic materials coupled with (anti)ferromagnets (Fig.(2.9a,b,c)). Two
main microscopic mechanisms, that can act in parallel, play an active role. In one
scenario (Fig.(2.9a)), the electric current flowing through a nonmagnetic bulk generates
a spin current via SHE, which induces an accumulation of spin at the interface next
to the FM partner, then absorbed as a magnetization torque [132]. In the second
picture (Fig.(2.9b)), the unpolarized charge current travels parallel to an interface with
broken inversion symmetry in FM/nonmagnetic bilayers yielding a spin density S and
the corresponding torque T.

A commonly employed SOT decomposition in the unit magnetization is

T = τFLm× ξ + τDLm× (m× ξ), (2.18)

where m is the magnetization unit vector and τFL,DL are coefficients that can be func-
tions of the magnetization angle [142]. The unit vector ξ depends on the mechanism
at the origin of the torque, the CISC or CISP. For example, two-dimensional interfaces
lacking inversion symmetry develop a macroscopic spin accumulation via Edelstein ef-
fect, leading to a torque of the form T ∼ ∆xc(K̂ ·E)×m, with ∆xc being the exchange
coupling between the classical magnetic moments in the ferromagnet and the spin of
the conduction electrons in the nonmagnetic material.

To better understand the physics behind Eq.(2.18), we put it in the more general
context of the Landau-Lifshits-Gilbert (LLG) equation

∂m

∂t
= −γm×Heff + αGm×

∂m

∂t
+T, (2.19)

which controls the magnetization dynamics of the magnetic layer. The first term on the
right-hand side describes the precession of m around the effective magnetic field Heff ,
created by localized moments in the ferromagnet [75]. This contribution is renormalized
by the first torque factor τFLm×ξ, which for this reason, is traditionally called field-like
torque (FLT). The second term in the LLG equation accounts for the relaxation of the
magnetization toward its equilibrium state, mediated by the Gilbert damping parameter
αG. This contribution is renormalized by the second term in Eq.(2.18), τDLm×(m×ξ),
that is known as damping-like torque (DLT) (Fig.(2.10)). The magnetization switch-
ing is enabled by the DLT, which in ferromagnet/heavy-metal (FM/HM) bilayers is
attributed to the spin Hall current flowing in the bulk of the HM layer [136, 143]. Con-
versely, the FLT triggers the precession of m around a current-induced effective field.
This contribution is attributed to the Edelstein Effect produced at the surface of the
HM and is usually considered detrimental [144].

The traditional link between torque components and bulk/surface effect has been
questioned by replacing the HM with topological insulators in FM/TI bilayers. In fact,
efficient SOT was achieved in the regime where the charge current flows only on the
TI surface [145, 138]. As we will show in Chaps.(7), our studies try to understand this
phenomenon by accounting for purely interfacial effects, as discussed in Sec.(2.2.4).
We find that a giant damping-like torque can indeed be generated at the surface of
topological insulators (via skew scattering), leading to a fast magnetization switching.
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Figure 2.9: Spin-orbit torque. In three-dimensional systems (a), an electric current J
generates a CISC J y

z that propagates toward the surface. The accumulated spin density
exerts a torque on the ferromagnet magnetization. This type of SOT is traditionally
identified as damping-like and is responsible for the switching of m. On the other
hand, the SOT in two-dimensional interfaces (b) is driven by the CISP originating
in the Rashba SOC. It is usually identified as field-like, leading to the precession of
m. (c) Three-terminal SOT device proposed as building-block for SOT-MRAMs [141].
The spin density established at the surface of the nonmagnetic material (writing line)
controls the magnetization in the magnetic layer (storage) that favors or suppresses the
flowing of charge current through the magnetic tunnel junction (MTJ,reading channel),
via giant magnetoresistance (GMR). If the magnetization of the storage and reference
layers is parallel (P) or atiparallel (AP), the resistance of the MTJ is low or high. These
two configurations can be used two identify two logic states, 0 and 1 (d).
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Figure 2.10: Vector decomposition of the SOT acting on the magnetization m. In the
present example ξ = y [142].

2.3 Summary and outline

This thesis aims to expand the current theoretical knowledge of coupled spin-charge
transport phenomena at interfaces. As representative model systems in this respect, we
focus on 2DEGs, surface states of topological insulators, adatom-decorated graphene
and proximitised graphene systems. As we navigate through these systems, we consider
the effects of SOC and impurity scattering non-perturbatively. That is, we make no
expansions in the spin-orbit coupling constants or the impurity potentials at the level
of the propagators’ self-energy and response functions. Such a tour de force will be
required for self-consistency,i.e., the achievement of results that are internally consistent
and coherent based on the principles of the theory itself, and that don’t rely on external
assumptions [19], and to be able to probe new spin-orbit scattering mechanisms. This
thesis is organized as follows.

• Chapter 3 presents the low-energy models that will provide the foundation for
addressing the spin transport physics. We first briefly present the general features
of 2DEGs and, in particular, the impact of the SOC on the band structure. We
then analyze the 2D Dirac model for surface states of 3D topological insulators
in FM/TI bilayers. Finally, we review the low-energy properties of graphene
materials, focusing on the effect of twisting and adatoms.

• Chapter 4 outlines the techniques used to tackle the non-equilibrium properties,
essential for the structure of Chaps.(5), (6), and (7). Firstly, we present the ki-
netic theory. It includes the semiclassical Boltzmann equation, designed to handle
single impurity scattering events at all orders in perturbation theory, and then
its quantum extension, i.e., the quantum Boltzmann equation (QBE), able to in-
clude conduction-valence band transitions. Finally, we present our fully quantum
mechanically self-consistent formalism based on the Kubo-Streda formula in the
linear response theory. It enables the evaluation of the system’s response to ex-
ternal perturbations by employing Feynman diagrammatics and can treat the
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intrinsic and extrinsic contributions to transport coefficients on equal footing, en-
compassing the skew scattering mechanism. Moreover, based on this method, we
develop a formalism to derive a set of spin drift-diffusion equations that provide a
complete description of the system dynamics the Diffuson Hamiltonian method.

• In chapter 5, our focus is on monolayer graphene with random and local sources of
SOC. This scenario includes adatom absorption in the hollow honeycomb lattice
position and random fluctuation of uniform spin-orbit fields, both cases relevant
in realistic systems [53, 146, 54]. Using the QBE and the extended Kubo formal-
ism, we unveil a direct coupling between charge and spin currents, activated by
the quantum interference between distintic random-SOC-field components, which
competes with skew scattering-induced spin-Hall effect. This new type of extrinsic
SHE is mediated by an anomalous interband spin-orbit scattering mechanism in-
volving virtual transitions between conduction and valence electrons. It is robust
in the weak impurity potential regime and is already present in FBA. We include
this new effect in a more general landscape by deriving a set of equations that
explains charge-spin drift-diffusive transport in a wide range of relevant exper-
imental situations, including scenarios where spin-polarized carriers are created
optically [147, 148, 149] and injected from other systems [117, 150].

• Chapter 6 examines coupled spin-charge transport phenomena in graphene-based
twisted van der Waals heterostructures. These systems experience sizable and
tuneable spin-orbit fields, leading to an unique phenomenology [8, 151, 152].
In particular, we inspect the impact of off-setting proximity-coupled vdW lay-
ers by some (non trivial) twist angle θ. Drawing inspiration from recent works
that have unveiled enhanced proximity-induced SOC in these systems [153, 154],
we develop a microscopic theory of CISP and CISC that is valid for arbitrary
twist angle in graphene/TMD heterostructures and fully captures the interplay
of symmetry-breaking SOC and impurity scattering. Our findings predict that
twisted vdW heterostructures exhibit highly anisotropic spin-density-current re-
sponses, in which the orientation of non-equilibrium electron spins is extremely
sensitive to the twist angle. At critical twist angles, the non-equilibrium spin
density is parallel to the applied current, i.e. a collinear Edelstein effect (CEE) is
realized. Finally, we present an exhaustive theoretical description of the emerging
intrinsic and extrinsic SHE.

• Chapter 7 discusses the appearance of purely interfacial giant antidamping SOTs
in FM/TI(HM) bilayers induced by skew scattering. Employing the generalized
Kubo-Streda formalism, we can treat disorder and band structure effects on equal
footing. This level of theory allows us to include skew scattering at all orders in
perturbation theory (ideal for considering strong impurities) as well as to analyze
the effect of generic magnetization direction in the magnetic layer (inaccessible to
previous treatments of disordered normal-metal/ferromagnetic-metal heterostruc-
tures). Furthermore, we deepen our analysis of SOTs induced by TIs, which are
of great importance for technological applications, by extending the formalism to
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magnetic disorder [155, 156]. Here, we consider both the clean limit and in the
dirty regime, where the concentration of impurities is relatively high.
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Chapter 3

Two-dimensional materials-based spin-
tronics

3.1 Overview

This chapter examines the main spin-related properties of various two-dimensional sys-
tems investigated in this thesis and central in spintronics. We will establish the theoret-
ical foundations required to develop effective spin-charge transport theories, including
the Hamiltonian and the quantum observable operators.

We first present the honeycomb crystal structure of bare graphene, which gives rise
to its unusual linear dispersion relation in the low-energy theory, at the origin of the
high mobility of the charge carriers. The result is an electron gas of massless relativistic-
like (Dirac) particles, characterized by the spin degree of freedom and the pseudospin,
both 2× 2 representations of the SU(2) Lie algebra. Next, we thoroughly examine the
symmetries of honeycomb lattice materials, highlighting the connection between broken
symmetries and the emergence of spin-orbit interactions, such as Rashba, Kane-Mele
and spin-valley SOC. This analysis is crucial for describing Van der Waals graphene-
based heterostructures (also applicable to adatom-decorated graphene, as we will see),
where the combination of different two-dimensional systems lowers graphene’s original
C6h point group symmetry. We also briefly discuss the emergence of local spin-orbit
interactions originating in physisorbed atomic species on graphene.

We conclude the chapter by discussing the electronic properties of 3D topological
insulators. These materials have a distinct property where the bulk is insulating, while
the surface is conducting, resulting in purely two-dimensional particles’ transport at the
surface. The corresponding time-reversal invariant low-energy Hamiltonian is linear in
momentum and takes the form of the standard Rashba interaction. Consequently,
the kinetic term presents a robust spin-orbital coupling with unprecedented strength,
yielding sizable charge-spin interrelated effects.
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Figure 3.1: Graphene’s honeycomb lattice (left panel) described by the primitive trans-
lational vector, t1,2 = a

(
±1/2,

√
3/2
)
, where a = 2.46Å is the lattice constant. The

two inequivalent sublattices, A and B (both carbon atoms), are portrayed with different
colours. They are translated into two inequivalent high symmetry points K and K ′ in
the hexagonal first Brillouin zone (right panel).

3.2 Graphene

3.2.1 Crystal structure, electronic bands and Hamiltonian

We commented in the Introduction on the reasons behind the growing interest in con-
densed matter, and charge-spin transport in particular, for graphene. Here we can
understand more in detail some of its basic electronic properties by employing a simple
tight-binding model [157]. To start, the monolayer structure of graphene has an honey-
comb shape shown in Fig.(3.1) (left panel), consequence of the sp2 hybridization of the
2s, 2px, and 2py carbon orbitals. Being the primitive unit cell composed of two carbon
atoms, we expect eight bands when excluding the 1s core atomic orbitals, strongly lo-
calized near the nuclei. The bonding and anti-bonding σ-bands, six in total, built from
the s, px, and py orbitals, are separated by a large energy gap of ∼ 5.6 eV and are inert
in terms of charge transport. To our ends, the π-bands originating in the pz orbitals
are the most relevant. In fact, they give rise to the highest (completely filled) valance
band and lowest (completely empty) conduction band, degenerate at the corner of the
Brillouin zone, called Dirac points (see Fig.(3.2)). This semimetal behaviour occurs in
correspondence of the high symmetry point K and K ′, called inequivalent valleys, be-
cause not connected by a reciprocal lattice vector g1,2. Notably, the dispersion relation
turns out to be linear in the proximity of the two valleys. This "regime" is the most
significant since the Fermi energy lies precisely at Dirac points in bare graphene. There-
fore, we briefly derive the tight-binding Hamiltonian near these regions, the low-energy
theory.

The usual form of the second quantized Hamiltonian, excluding any spin-orbital
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interaction, is
H = −t

∑

⟨i,j⟩

(
a†ibj + h.c.

)
, (3.1)

where we restricted our discussion to nearest-neighbour electrons hopping. The oper-
ators a[b](†)i annihilates (creates) a pz-electron on site i belonging to the sublattice A
[B] and t ∼ 3 eV is the hopping parameter. The translation of Eq.(3.1) from real to
momentum space is readily performed by defining the unitary transformation, i.e., the
discrete Fourier transform,

a(b)i =
1√
NA(B)

∑

k

e−ik·ria(b)k, (3.2)

with NA+NB = N being to total number of carbon atoms in the lattice. Inserting this
relation inside the tight-binding Hamiltonian, we obtain terms ∼ k · (ri − rj), which
become ∼ k · δi in the nearest-neighbour approximation, being δ1(2) = a/2

(
±
√
3, 1
)

and δ3 = a (0,−1) the three nearest-neighbour vectors (see Fig.(3.1)). The resulting
momentum-space Hamiltonian has the form

H =
∑

k

(
a†k b†k

)( 0 ϕ∗(k)
ϕ(k) 0

)(
ak
bk,

)
, (3.3)

where the function ϕ(k) = −t∑a=1,2,3 e
ik·δa contains all the information about the

crystal geometry. This Hamiltonian reproduces the complete pz-dispersion relation in
Fig.(3.2) (dotted line).

We now expand Eq.(3.3) around two inequivalent valleysK andK ′ = −K by setting
k = ±K + q and choosing, for instance, K = (4π/3a

√
e)x̂. Retaining only the linear

terms in momentum, the final result is the 8× 8 Dirac Hamiltonian

H = ℏvτzσ · q, (3.4)

describing six Dirac cones grouped into two valleys (see Fig.(3.3)). v = 3at/2ℏ ∼
106 is the Fermi velocity of electronic excitations around the Dirac valleys and we
wrote Eq.(3.4) in the magic basis, i.e., swapping the K ′ components of the relative
spinorial Bloch wavefunction, Ψq =

(
ΨK
A ,Ψ

K
B ,Ψ

K′
B ,Ψ

K′
A

)
. The transformation from the

standard basis to the magic basic and vice-versa is readily performed by the unitary
transformation UM = 1

2
τ0(σ0s0+σxs0)+

1
2
τz(σ0s0−σxs0), with UMU

†
M = 1 and UM = U †

M.
The vector of Pauli matrices σ acts in the pseudospin space, stemming from the presence
of the two graphene’s sublattices. Similarly, the Pauli matrix τz is defined in the valley
space, where the relative factor (τz)11(22) = 1(−1) describes the valley K(K ′). The four
eigenfunctions of Eq.(3.4) can be written as

Ψτ=1
q,s = 1/

√
2
(
1, s eiϕq , 0, 0

)
, (3.5)

Ψτ=−1
q,s = 1/

√
2
(
0, 0, 1,−s eiϕq

)
, (3.6)

where the band index s = ±1 refers to the pseudospin space, τ = ± is the valley index,
and ϕq = arctan (qy/qx).
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Figure 3.2: Band structure of graphene emerging from the s, px,y,z carbon orbitals with
the tight-binding model [157]. The solid lines represent the bonding and anti-bonding
σ-bands, while the dashed lines show the π-band, relevant for transport. The dispersion
relation is divergent at the corner of the Brillouin zone, realizing the Dirac cones and
becoming linear in the proximity of the K high symmetry point.

3.2.2 Properties of the linear graphene’s Hamiltonian

In this chapter we have seen that the low-energy Hamiltonian of graphene is linear in mo-
mentum and, as we stated in the Introduction, possesses many noteworthy properties.
To begin with, graphene’s relativistic carriers have a definite chirality (or helicity for
massless particles): they are "right(left)-handed" if their pseudospin is (anti)collinear
to their momentum. In fact, the chirality operator is defined as

h(q) =
σ · q
|q| , (3.7)

that is the usual definition employed in QED where the spin is substituted with the
pseudospin. The corresponding eigenvalues are ±1 (right-left handed) and h(q) com-
mutes with H, so the helicity is conserved.

This feature of graphene has two significant consequences. In the first place, it
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implies that each cone of the graphene dispersion relation has a definite chirality, as
shown in Fig.(3.3). Second, it prevents graphene backscattering associated with the
antilocalization of electrons in this material [158]. To show that, we notice that the
diffusion of particles in the system includes closed-path trajectories, which become
relevant when two particles counter-propagate and yield an interference between the
wavefunctions of the electrons. Since the pseudospin always follows the direction of
the particles’ momentum, the two carriers will possess a phase difference of π, which
is a destructive interference, suppressing backscattering. This property of graphene
contributes to the ultra-high mobility of chiral carriers, making graphene an excellent
candidate for transport of information.

Chirality manifests in a large number of quantum electrodynamics effects, from the
Klein tunnelling to the chiral quantum Hall effect [159, 160, 161], and has consequences
on the topological properties of graphene. In fact, the adiabatic evolution of the wave-
function around a closed loop C produces a nonzero Berry-phase (see Fig.(3.3))

γ =

∮

C

An,kdl = π, (3.8)

where An,k = ⟨n,k|∇k|n,k⟩ is the Berry curvature. Because of this property, breaking
the chiral symmetry, i.e., the inclusion of a mass term, means driving graphene into
topological insulating phases, like the quantum Hall one [162].

Figure 3.3: Bipartite low-energy dispersion of graphene: the K and K ′ Dirac cones.
The red (blue) color indicates positive (negative) chirality, opposite in the two valleys.

Another crucial product of Eq.(3.4), more related to transport problems, is the
favoured appearance of strong short-range scattering centers [80]. In graphene, in fact,
the resonant effect, represented by an effective scattering potential Veff , takes the form
Veff = V 2

ad/(E − ϵad), where E is the energy, Vad is the hopping parameter between a
carbon site and the impurity, and ϵad is the onsite adatom energy (relative to carbon).
Using typical values of ϵad ∼ −0.2 eV and Vad ∼ 5 eV, we find Veff ∼ 100 eV at the
Dirac point (E = 0), which is a resonant impurity potential. For this reason, the skew
scattering plays a major role graphene and cannot be ignored in transport problems in
general.
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In conclusion, graphene’s Hamiltonian has consequences on the observable of interest
in spin-transport problems. To show that and align with the literature, we introduce
the SO(5) Clifford algebra of the spin and pseudospin space and focus on one valley
only. Hence the full Hamiltonian becomes ∼ vγi0pi, and we consider local observable
operators that admit the decomposition O =

∑
αβ Oαβγαβ, where γij = σi ⊗ sj are

Dirac matrices defined on spin and pseudospin space. The density and charge- (spin-)
current operators are

γ̂µν = ψ†(x) γµν ψ(x) (3.9)

Ĵ ν
µ = ψ†(x)

1

2
{Jµ, γ0ν}ψ(x) (3.10)

where Jµ = e∂H/∂pµ is the first-quantized charge-current operator, {·, ·} denotes the
anticommutator, and e < 0 is the electron’s charge. In Dirac systems, Jµ = evγµ0,
implying that the charge (spin) current operator is related to the density one as Ĵ ν

µ =
ℏvγ̂µ0. This means that the current observables averaged over the system’s statistics,
i.e., the current-response to external perturbations, are automatically evaluated once
the density-response is known, in particular




Sa
N
J a
i

Ji


 =




ℏ
2
⟨γ0a⟩

e ⟨γ00⟩
vℏ
2
⟨γia⟩

ev ⟨γi0⟩


 , (3.11)

where ⟨...⟩ stands for the statistical average; see Chap.(4) for further details.

3.2.3 The intrinsic spin-orbit interaction

Settled the basics of the Dirac minimal model of graphene, we can now deepen our anal-
ysis by including spin-orbital effects. The most direct way to derive the corresponding
Hamiltonian is to encompass symmetry arguments. The most general interaction in
graphene has the form

Hint =
3∑

α,β,γ=0

λαβγτασβsγ, (3.12)

where λαβγ are coupling constants. The spin-orbit coupling ignores intervalley processes,
usually allowed by electrons’ scattering with small impurities [163]. As a result, the
terms proportional to τx and τy can be omitted because connecting the two valleys. Also,
we clearly look for spin-active interactions, thus for terms in the SOC Hamiltonian ∼ sx,
sy, and sz.

To begin with, the SOC preserves the time-reversal symmetry, where the corre-
sponding operator, in the normal basis, has the form

T = iτxσ0syΘ, (3.13)

with Θ being the usual complex-conjugate operator. The term σ0 reflects the con-
servation of the sublattice structure: operators ∼ σx,y transform Eq.(3.3) such that
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ϕ↔ ϕ∗, obtainable from the tight-binding theory by replacing A↔ B. The term ∼ sy
represents the spin-inversion under time-reversal and τx the momentum-inversion, i.e.,
K↔ K′.

Together with time-reversal symmetry, the ideal honeycomb lattice structure con-
tains 24 group symmetry elements of the D6h point group, that can be expressed in
terms of the identity E and the three generators

Σxy
h = σ0τ0sz, (3.14)

Σyz
v = σ0τxsx, (3.15)

Σxz
d = σxτ0sy, (3.16)

namely the horizontal reflections on the xy plane, the vertical on the yz plane, and
the dihedral on the rotated xz plane [41], all depicted in Fig.(3.5). The remaining
elements of the D6h symmetry (such as the space inversion, sixfold, threefold, and
twofold rotations) are combinations of those four operators. By applying them to
Eq.(3.12), we obtain

HKM = λIτ0σzsz, (3.17)

traditionally called Kane-Mele SOC [45], presented now in the magic basis for con-
venience. As shown in Ref.[47], it is mediated by two consecutive electron’s nearest
neighbour’s hopping between carbon atoms, as well as the atomic spin-valley coupling,
as already described in the Introduction. However, this term is usually neglected in
bare graphene because it solely contributes to opening a gap as small as tens of µeV
[71], i.e., λI ∼ 4.6 eV. As a consequence, spin relaxation is marginal, making graphene
an ideal channel for transporting spin information. However, we emphasize that the
strength of the Kane-Mele interaction can be modulated by coupling graphene with
other crystals in Van der Waals heterostructures or by adatom decoration, as we will
discuss in the following sections.

3.3 Graphene-based heterostructures
This thesis’ Introduction revealed that graphene’s potential in spintronics goes far be-
yond its topological properties and the singular high mobility of the spin carriers. In
particular, the vertical stacking with other 2D materials, the already mentioned Van der
Waals heterostructures (see Fig.(3.4)), can enhance and induce spin-orbital interactions
in graphene, resulting in unusual, mineable charge-spin coupled dynamics. This field of
research has been initiated by combining graphene with hexagonal boron nitride (hBN)
[165], presenting the fundamental technique for vdW reassembly and showing the ex-
ceptional advance in the resulting electronic quality. Inspired by these early works,
further developments in vdW heterostructures shifted the attention to transition metal
dichalcogenides (TMD) monolayers, recognized as ideal substrates for graphene [164]
and capable to induce sizable spin-orbit interactions.

To fully understand that and derive the effective Hamiltonians, we present a symme-
try analysis of graphene/TMD heterostructures initiated in the former section, showing
that the proximity-induced SOC results from breaking symmetries in graphene-based
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Figure 3.4: Illustration of multilayered Van der Waals heterostructures Lego-like ap-
proach [164]. Ideal partner materials belong to the graphene family (hBN, fluoro-
graphene, etc.) and 2D dichalcogenides (MoS2, WSe2, etc.).

systems. To begin with, the effect of the graphene’s deposition on a substrate or the
presence of a transverse electric field is to break the inversion symmetry along the ẑ
direction, hence reducing the system’s symmetry from D6h → C6v. Eq.(3.12) is no
longer invariant under reflection about the xy plane, Σxy

h , and the resulting interaction
is the Rashba-Bychkov SOC (in magic basis),

HR = λRτz (σ × s) · ẑ. (3.18)

We notice that the momentum operator, present in 2DEGs, Eq.(2.7), is replaced by
the pseudospin Pauli matrix, leaving the velocity operator unperturbed. The energy
dispersion relation of a single valley is represented in Fig.(3.6b) (green line). It displays
the spin splitting of the conduction and valance bands that, even though it differs
from the standard 2DEG picture, leads to the same spin-momentum locking. However,
unlike 2DEGs, we can identify two different regions depending on the position of the
Fermi energy ϵ. For ϵ > 2λR, graphene’s nonchiral quasiparticles are in region II, and
two counter-rotating Fermi rings are present, similar to the 2DEG case (Fig.(3.6a),
top panel) [37]. However, with ϵ < 2λR, the Fermi energy intersects only one band,
resulting in a single Fermi ring (Fig.(3.6a), bottom panel). In this case, graphene’s
carriers have a well-defined helicity and resemble the surface states of 3D topological
insulators. The result is an unusually strong charge-current to spin-density conversion,
being absent the opposite contribution from two counter-rotating Fermi rings.

TMD substrates are also responsible for breaking the sublattice symmetry, hence
the two atomic sites A and B become inequivalent. Under this condition, the reflection
about the xz plane and the sixfold rotation symmetries are absent, and the system is
described by the C6v → C3v point group. The Hamiltonian is supplemented with an
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Figure 3.5: Point group selected symmetries of graphene and graphene with substrate.
The operator shown are the reflections Σx̂,ŷ,ẑ

h,v,d, the n-fold rotations C x̂,ŷ,ẑ
n , the space

inversion I, and the improper rotations S ẑn. The time-reversal symmetry is always
included. Panel (a) shows the D6h symmetry of monolayer graphene. The resulting
Hamiltonian is the Dirac minimal model with Kane-Mele SOC. Panel (b) shows the
broken inversion symmetry along the stacking direction ẑ, i.e., D6h → C6v, resulting in
the Rashba-Bychkov SOC. Panel (c) presents the broken sixfold rotation symmetry, due
to the nonequivalent A and B sublattices. The system’s symmetry is further lowered,
C6v → C3v, resulting in a mass term and inducing the spin-valley coupling. Figure
adapted from Ref.[41].

orbital mass term ∆ and the spin-valley spin-orbit coupling. The full graphene/TMD
Hamiltonian reads

H =

∫
dxψ†(x)τz(vσ · p+ λR(σ × s) · ẑ +∆σz + λsvsz)ψ(x), (3.19)

where we neglect the intrinsic-like SOC ∼ σzsz, typically tiny in graphene based het-
erostructures [33]. The spectrum associated to Eq.(3.19) is represented in Fig.(3.6).
The rich structure of the graphene/TMD Hamiltonian dramatically impacts the spin-
texture, which possesses an in-plane spin winding generated by the RSOC and an
out-of-plane tilting controlled by the spin-valley coupling. It acts as a Zeeman interac-
tion with an effective magnetic field ∼ λsv. However, the time-reversal symmetry, still
preserved, forces the spin splitting to be opposite in the two valleys.

In Chap.(6), we will adapt Eq.(3.19) for describing twisted graphene/TMD bilayers.
While most terms remain unchanged, even though their magnitude depends on the
twist angle, the resulting RSOC is altered, with consequences in the related charge-
spin conversion effects.

3.4 Spin-orbit active adatoms on graphene
An exciting feature of two-dimensional materials, and graphene in particular, is the
possibility to vary the spatial extent of the induced symmetry-dependent spin-orbit in-
teractions. Beyond the uniform SOC generated by suitable substrates, as discussed in
the former section, it is possible to access the subnanometer range using adatoms. The
impurity configuration can be periodic, affecting the band structure like substrates, or
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Figure 3.6: Effects of broken symmetries on the electronic band structure of graphene-
based vdW heterostructures. Panel (a) shows the spin-momentum locking in the pres-
ence of Bychkov-Rashba SOC. On top, the two Fermi rings wind in opposite directions,
similar to the 2DEG case (regime II), while on the bottom, a single Fermi ring is present
(regime I). This figure is adapted from Ref.[37]. Panel (b) presents the dispersion re-
lation in the presence of spin-orbit interactions. The RSOC spin-splits the valance
and conduction bands (green line). The spin-valley coupling produces the Mexican-
hat shaped bands, and the mass term rigidly shifts the electrons (holes) bands upward
(downward).

random, yielding a broadening of the spectral lines. The idea behind adatom-engineered
graphene is rather simple: graphene’s carriers tunnel onto an impurity, experience a
robust spin-orbit interaction, and then return to the graphene sheet [53]. Depend-
ing on the high-symmetry position of the adatom, the "bridge", "hollow", or "top",
schematically represented in Fig.(3.7), the effective SOCs generated take many exotic
and nontrivial forms [110]. However, this thesis will mainly focus on chemically modified
graphene with adatoms in the hollow position, because of particular interest in spin-
tronics. In fact, they most effectively mediate the electrons’ next-nearest neighbour
hopping, hence the intrinsic-like Kane-Mele SOC ∼ σzsz, as discussed previously.

The combination of scalar electrostatic and Kane-Mele impurities is responsible
for a rich phenomenology that includes the extrinsic SHE [19]. It is enabled by the
skew scattering mechanism, particularly efficient because of the impurity resonances
favoured in graphene. Moreover, the local break of the mirror symmetry also generates
local Rashba-like "anomalous" coupling that competes with the intrinsic-like. Recent
works developed related theories, discovering the novel semiclassical "anisotropic spin
precession" (ASP) mechanism [38, 166]. It is responsible for a substantial enrichment of
the phenomenology, which includes and expands the graphene-based heterostructures
predictions [35, 19, 31].
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Figure 3.7: Schematics of adatom-decorated graphene with impurities absorbed in the
bridge (B), hollow (H), and top (T) position [53]

For instance, the ASP contributes to the production of the CISP in the diffusive
regime [38]. While the traditional Edelstein effect is a two-step process governed by
the spin-Hall angle and the Rashba scattering rate [17, 167], this new mechanism cou-
ples directly spin densities and charge currents, resulting in a sizable CISP. It also
renormalises the standard SHE and the spin relaxation processes.

The adatom-decorated graphene Hamiltonian has the form

H =

∫
dxψ†(x) [H0 + V (x)]ψ(x), (3.20)

where H0 is the Dirac minimal model + possible uniform interactions expressed by
Eq.(3.19). V (x) denotes the disorder potential,

V (x) =
N∑

i=1

MR2δ(x− xi) =
N∑

i=1

W (x− xi), (3.21)

where R is the radius of the scatterer, and R ≫ a. The intervalley scattering is
therefore neglected, allowing us to focus on a single valley. M is a 4× 4 matrix acting
on the sublattice and spin degrees of freedom and it has information about the adatoms
potentials, M = HR +HKM +HV , with

HR = uR(γ12 ∓ γ21),

HKM = uKMγ33,

HV = u0γ00.

(3.22)

Λi is the impurity coupling and the sign ∓ considers both the standard and anoma-
lous Rashba SOC. While the latter describes the hollow impurity insertion, the former
accounts for random fluctuations of the uniform Rashba field, always present in realis-
tic settings. We remark that next-order terms in the momentum, which the adatoms
produce, can be neglected in the vicinity of the Dirac points [110].
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Figure 3.8: Crystal structure of Bi2Se3 (a) and corresponding first Brillouin zone (b).
In the proximity of the high-symmetry point Γ the dispersion relation becomes linear,
and the Fermi surface, initially described by hexagonal warping effects (c), becomes
isotropic for k → 0 (d). Figure adapted from Ref.[168].

3.5 Surface states of topological insulators

It is well-known that some phases of matter can be described by topological invariants,
similar to the geometrical Gauss-Bonnet theorem [61]. In fact, this theorem states that
the surface integral of the Gaussian curvature of an object, which defines the geomet-
rical properties of that object, is quantized, and is a topological invariant. Such states
of matter are called topological phases. They are traditionally identified by a nontrivial
Berry curvature, representing the type of topological order, i.e., the "Gaussian cur-
vature" of the "surface", that is the first Brillouin zone [16]. Historically, topological
order was observed and theorized in materials with broken time-reversal symmetry, like
2DEGs with strong magnetic fields and low temperatures, and honeycomb lattice ma-
terials within the Haldane model [162], leading to the discovery of the integer quantum
Hall effect in terms of the invariant Chern numbers.

A great deal of excitement accompanied the advent of topological Z2 time-reversal
phases in 2D materials, such as graphene, and the focus of this section, 3D solids. In
fact, in these media, the topological order is already present with zero magnetic fields,
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stemming from the spin-orbit coupling [60], thus leaving the time-reversal symmetry
unbroken. While in regular topological systems the topology manifests in the quantized
Hall conductivity, in time-reversal topological insulators it generates a quantized spin
Hall conductivity, enabling the possibility to generate current-induced spin currents.
Here we briefly introduce 3D time-reversal topological insulators, with particular fo-
cus on the Bi2Se3 family of materials, efficient in terms of charge-spin interconversion
mechanisms [169].

The related crystal structure is shown in Fig.(3.8a), and the D5
3d point group sym-

metry identifies it. In particular, it is invariant under time-reversal symmetry, threefold
rotations along the ẑ-direction, twofold rotations along the x̂ direction, and inversion
(Se2→ Se2, Bi1→ Bi1′, Se1→ Se1′; (x, y, z)→ (−x,−y,−z)). Ref.[168] elegantly de-
rives the full Hamiltonian by using these symmetries similarly to our graphene section
and, most importantly, the corresponding surface states. The theoretical establish-
ment for such states has been motivated by angle-resolved photoemission spectroscopy
(ARPES) measurements, showing the presence of Dirac cones surface states around
the high-symmetry Γ-point [170]. This is, in fact, an important aspect of topological
phases; they are gapped in bulk but gapless at the edges, so the carriers mostly travel at
the TI surface. In the limit of k → 0, the resulting low-energy Hamiltonian is expressed
by the minimal Dirac model

HTI = v (p× s) · ẑ, (3.23)

resulting in a linear dispersion relation with helical spin-texture (see Fig.(3.8d)), coming
from the atomic SOC in these media. Alike graphene, the eigenstates are labeled by
helicity, reason why this systems are also called helical metals. In particular, in the
conduction band the helicity is left-handed, while for the valance band is right handed.

Eq.(3.23) has the same form as the standard Rashba SOC in two-dimensional gases,
with the difference that in topological insulators, it is promoted from weak perturbation
of the quadratic kinetic energy to the sole term. The main physical consequence is the
strong spin-momentum locking, yielding sizable charge-spin conversion phenomena, as
new magnetoresistance effects [62] and highly efficient SOTs (see Chap.(7)).

As a consequence of the form of the Hamiltonian, the observables of interest in
spintronics become directly related to the 2×2 Pauli algebra similarly to what happens
in graphene-based systems with the Clifford algebra,

ŝµ = ψ†(x) sµ ψ(x), (3.24)

Ĵ ν
µ = ψ†(x)

1

2
{Jµ, sν}ψ(x), (3.25)

where the current operator is proportional to the spin operator, Jµ = ev (µ̂× s).
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Chapter 4

The quantum theory of transport

4.1 Overview

This chapter presents the main methods used in the literature, and this thesis projects,
to study transport phenomena in solid-state media. To begin with, we derive the
kinetic theory of disordered Fermi systems based on the classical Boltzmann equation
(CBE) [171]. This method approximates the electrons’ dynamics as classical between
scattering events but treats the collisions quantum-mechanically through the Fermi
golden rule. For that reason, beyond the traditional disorder Gaussian approximation
describing weak uncorrelated impurities, this method effectively incorporates the role
of skew scattering and quantum side jump [172] at low impurity concentrations, being
able to identify, among other things, the spin Hall effect [19]. The advantage of this
formalism over other techniques is the more transparent interpretation of the studied
phenomenon, which can therefore be used to establish the mechanisms at the origin of
a given effect.

However, not surprisingly, the CBE fails to describe general scenarios in which
purely quantum effects play a significant role; a better description of the system’s
dynamical properties is therefore needed. To this end, we introduce the formalism
of the density matrix, which completely defines a many-particle quantum system and
replaces the role of the distribution function in classical statistical mechanics. Its first
application is the so-called Quantum Boltzmann Equation (QBE) [38] for disordered
graphene systems, able to capture quantum effects such as the interference between spin-
active impurities and conduction-valence band transitions. In addition, this method
offers easy interpretations of the investigated phenomenon and successfully uncovers
the ASP mechanism and the Interband Spin-Orbit Scattering, both missed by the
CBE. Unfortunately, this technique suffers from two critical downsides: it is based on
the projection of the system’s Hamiltonian to the conduction states, possibly missing
other quantum effects, and is generally not self-consistent, as solving the associated
integro-differential closure problem needs the formulation of an ansatz. While this
external assumption facilitates problem closure, it may inadvertently neglect crucial
contributions to the final result.

The density matrix-based linear response theory overcomes these drawbacks, offer-
ing a complete self-consistent, fully-quantum mechanical system description. In par-

51



Chapter 4, Section 4.2 Alessandro Veneri, PhD Thesis

ticular, this chapter derives the widely-used Kubo formula with an emphasis on the
diagrammatic handling of the theory and focusing on Feynman’s diagrams related to
non-interacting disordered fermionic systems. In this context, we present the nonper-
turbative treatment of stochastic disorder potentials referred to as T-matrix approxi-
mation, which requires the inclusion of a new class of diagrams previously neglected
in the traditional First Born Approximation [19, 51]. In conclusion, we rearrange the
Kubo formula in a way to find the kinetic equation of the system, able to derive the
spin-charge coupled dynamics, spin relaxation mechanisms, and drift-diffusion equa-
tions. This technique, commonly used in Gaussian approximation, is further developed
here. We call it Diffuson Hamiltonian formalism, fully self-consistent and able to treat
the disorder at the T-matrix level.

4.2 Kinetic theory
The foundation of the classical kinetic theory of gases, valid in quantum systems as
well with due differences, is the idea of relating macroscopic thermodynamic quantities
to the statistical average of microscopic observables O (p,q), defined as

⟨O⟩ (q, t) =
∫

p

O (p,q) f (p,q, t) , (4.1)

where f (p,q, t) is the distribution function, representing the probability of finding a
particle with momentum p and position q at a given time t. Among others, the equa-
tion above can be used to find the average velocity of a fluid, its density, pressure, and
temperature. In the most simple case of a dilute gas in the absence of external fields,
the distribution function becomes independent of the position q and, as an extraor-
dinary result of Boltzmann’s H theorem [171], is also constant in time. The resulting
equilibrium distribution function, f0 (p), corresponds to the Maxwell-Boltzmann dis-
tribution for non-interacting classical gases, and the Fermi-Dirac or the Bose-Einstein
statistics in quantum systems. On the other hand, in the presence of external per-
turbations, scattering effects, gradients of temperature, and particles’ concentration,
f (p,q, t) differs from the equilibrium distribution function and produces observables
otherwise equals to zero, like charge and spin currents [19] or nonequilibrium charge
and spin macroscopic accumulations [52].

In short, the knowledge of the distribution function provides a complete understand-
ing of the macroscopic properties of a many-body system based on the microscopic
interactions and dynamical properties of the particles that compose it. A general and
relatively simple way to derive the form of f (p,q, t) is to solve the so-called Boltzmann
equation, presented in the next section.

4.2.1 The Boltzmann equation

At a specific time t, the mechanical state of a dilute gas of N classical particles is
defined by the position q and the momentum p of all the particles. Their dynamics
are commonly represented in the so-called µ phase-space, where the six components of
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q and p play the role of coordinates. According to the definition of the distribution
function, the number of particles dN (q,p, t), contained in a volume element d3pd3q, is
determined by

dN (q,p, t) = f (q,p, t) d3pd3q, (4.2)

which relates the statistical properties of the system, represented by f , to the particles’
microscopic dynamics, included in dN . After a time interval dt the system evolved, and
the particles will be moved into another phase-space element d3p′d3q′ of same volume,
according to the Liouville theorem. Moreover, if we neglect the interactions among the
particles, their number dN is also preserved, thus the following relation must hold,

f (q′,p′, t+ dt) = f (q,p, t) , (4.3)

where q′ = q + q̇dt and p′ = p + ṗdt according to the classical equations of motions.
By expanding to linear order in dt, we obtain

dN

dt
=
∂f

∂t
+ v · ∂f

∂q
+ F · ∂f

∂p
= 0, (4.4)

where v = q̇ is the velocity of the particles and F = ṗ is the external force. Eq.(4.4)
must be integrated with the collision processes occurring during the motion of the parti-
cles, leading to a net rate of change in the number of elements inside the phase-space vol-
ume. We then introduce a function comprising these information, the collisional integral
I, defined as

dN

dt
= Id3pd3q, (4.5)

where dN/dt is the number of collisions inside the volume element. The particles that
enter (leave) the volume element as a result of particle-particle interactions, are de-
scribed by the scatter-in (out) component of the collisional integral, I = Iin − Iout.
Assuming binary collisions, valid for sufficiently high diluted systems, and molecular
chaos, in which two interacting particles are statistically independent [173], the colli-
sional integral becomes

I =

∫

p2

∫

p1′

∫

p2′

1

2m2

dσ

dΩ
[f(p′

1)f(p
′
2)− f(p1)f(p2)] δϵ δp, (4.6)

describing two particles entering in the volume element with initial momenta p′
1 and

p′
2, colliding, and leaving with new momenta p1 and p2. dσ

dΩ
is the classical differential

cross-section, m is the mass of the particles and δϵ(p) is the Dirac delta expressing
the conservation of the energy (momentum), i.e., δϵ = δ

(
ϵ
′
1 + ϵ

′
2 − ϵ1 − ϵ2

)
and δp =

δ
(
p

′
1 + p

′
2 − p1 − p2

)
. Putting together Eqs.(4.4) and (4.5), we finally obtain a closed

relation for the distribution function,

∂f

∂t
+ v · ∂f

∂q
+ F · ∂f

∂p
= I, (4.7)
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that is the Classical Boltzmann Equation (CBE). The system is driven out of equi-
librium by the joint effects of external fields (F) and collisions (I) and the resulting
statistics can be derived from Eq.(4.7).

Clearly, this formalism is strictly valid only for classical systems since the distri-
bution function requires simultaneous knowledge of the position and momentum ar-
guments, contradicting Heisenberg’s uncertainty principle. Moreover, the derivation
of the Boltzmann equation avails particles’ classical trajectories within Newtonian dy-
namics, again far from the quantum mechanical picture. Nevertheless, Eq.(4.7) can be
extended to study non-classical gases, in which quantum mechanical effects become rele-
vant when particles collide and their wave functions overlap. This semiclassical picture
encapsulates all the quantum information inside the collisional integral and approxi-
mates the particles’ motions as classical between scattering events, allowing the usage
of momentum-distribution functions at each point in space. To ascertain the validity
of such approximation, the average distance between particles d, defined as the ratio
between the number of particles and the volume, is compared with the thermal wave-
length, λT = h/

√
2πmkBT, which estimates the size of the particles’ wave functions. If

d≫ λT, the particles are non-interacting, and the fluid can be treated as semiclassical.

4.2.2 The semiclassical

Boltzmann equation
Being interested in electronic transport processes in solids, here we examine how the

CBE formalism can be applied to solid-state non-interacting (or weakly-interacting)
systems, primarily defined by the relative electronic band structures and the single-
particle Hamiltonian. At thermodynamic equilibrium, the probability of occupation of
an electronic energy band ϵχ(k), is given by the Fermi-Dirac distribution function

g0χ (k) =
1

e(ϵχ(k)−ε)/kBT + 1
, (4.8)

where k = p/ℏ is the wave vector, χ is the band index distinguishing between different
branches of the dispersion relation, and ε is the Fermi energy. When external pertur-
bations are applied to the system, the disturbed distribution function gχ (k) follows
Eq.(4.7), assuming semiclassical dynamics of the electrons between two collisions. We
adapt the left-hand side of the Boltzmann equation by replacing the particles’ velocity
with the electrons’ group velocity

vk,χ =
1

ℏ
∂ϵχ(k)

∂k
, (4.9)

while the collisional integral takes the form

I[gχ] = −
∑

χ′

∫

k′
[gχ (k) (1− gχ′ (k′))Wkχ,k′χ′ − gχ′ (k′) (1− gχ (k))Wk′,χ′kχ], (4.10)

with Wkχ,k′χ′ being the probability per unit time that an electron, defined by the
quantum numbers k and χ, is scattered into a state |k′, χ′⟩. The terms of the form

Page 54



Chapter 4, Section 4.2 Alessandro Veneri, PhD Thesis

gχ (k) (1− gχ′ (k′)) take into account the Pauli exclusion principle, allowing transitions
from occupied initial states to non-occupied final states. At equilibrium, the collisional
integral must vanish and, for elastic interactions (ϵχ(k) = ϵχ′(k′)), a scattering event
is balanced by its reverse process, implying Wkχ,k′χ′ = Wk′χ′,kχ. From Eq.(4.10), we
extract the condition

log (gχ (k)) = log(gχ′ (k′)), (4.11)

that is satisfied by the Fermi-Dirac statistics, i.e: I[g0χ] = 0. To make the quantum ver-
sion of Eq.(4.7) more treatable, we assume small deviations of the distribution function
from its equilibrium state due to weak perturbations [157], defining

gχ (k) = g0χ (k) + δgχ (k) , (4.12)

where δgχ (k) linearly depends on the applied perturbation. Focusing our interest on
the response of homogeneous systems to an external electric field E, we can write a
linearized Boltzmann equation in the first order in the perturbation as

∂δgχ (k)

∂t
−eλk,χE·vk,χ

∂g0χ (k)

∂ϵχ(k)
= −

∑

χ′

∫

k′
[δgχ (k)Wkχ,k′χ′−δgχ′ (k′)Wk′,χ′kχ], (4.13)

where λk,χ ≡ sign(ϵχ(k)).
Eq.(4.13) is the main result of this section and the first tool we developed to study

semiclassical transport effects in solids. We term this generalization of the CBE, which
encompasses quantum effects during particle collisions semiclassical Boltzmann equa-
tion [174, 175]. It can be solved by formulating a suitable ansatz for the distribution
function in terms of the scattering times

∑
i{τi}, which in the best-case scenario closes

the equation, but in general provides non-self-consistent solutions for τi. Moreover,
the CBE requires the microscopic description of the scattering processes encoded in
Wkχ,k′χ′ , which, in our case, includes only the effect of randomly distributed impurities,
regarded here as the only scatterers, neglecting electron-electron and electron-phonon
interactions. The physics of scattering processes is then described by the Lippmann-
Schwinger equation, yielding a generalized Fermi golden rule for the transition rates
Wkχ,k′χ′ .

4.2.3 The Golden Rule

To evaluate the scattering probabilityWkχ,k′χ′ in disordered systems we use the so-called
golden rule [176], defined as

Wkχ,k′χ′ =
2π

ℏ
|Tkχ,k′χ′ |2 δ(ϵkχ − ϵk′χ′), (4.14)

where

Tk′χ′,kχ = ⟨k′, χ′|Û |ψk,χ⟩ (4.15)
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is the T -matrix operator and Û is the impurity potential. |k′, χ′⟩ is an eigenstate of the
system’s Hamiltonian Ĥ0, while |ψk,χ⟩ is solution of the Lippmann-Schwinger equation

|ψk,χ⟩ = |k, χ⟩+
Û

ϵχ(k)− Ĥ0 + iη
|ψk,χ⟩, (4.16)

and eigenstate of the full Hamiltonian Ĥ = Ĥ0 + Û . For weak impurity interactions,
one can truncate the series in Eq.(4.16) in powers of Û . The first order expansion,
|ψk,χ⟩ = |k, χ⟩, is called First Born approximation (FBA) and Eq.(4.17) becomes the
conventional Fermi golden rule

WBorn
kχ,k′χ′ =

2π

ℏ

∣∣∣⟨k′, χ′|Û |k, χ⟩
∣∣∣
2

δ(ϵχ(k)− ϵχ′(k′)), (4.17)

that is traditionally implemented in the semiclassical Boltzmann formalism. A further
assumption, which we refer to as the Gaussian approximation (GA) in this thesis,
disregards the matrix structure of |Û |2 as well as the interaction between different types
of SOC-active disorder, including only the scalar component of the impurity potential.

Must be noticed that the weak FBA and GA miss next order effects triggered by
the spin-orbit interaction. To show that in a general way, we notice that the scattering
amplitude, proportional to the second term on the right-hand side of Eq.(4.16), takes
the general form

f(ϑ) = A(ϑ) +B(ϑ) s · n, (4.18)

where ϑ is the scattering angle and n = p′×p/ |p′ × p| is the unit vector normal to the
scattering plane [18, 7, 21]. In general, four cross-sections describe the depolarization
of an electron beam in a scattering event,

σ1 = |A|2 + |B|2, (4.19)
σ2 = 2Re(AB∗), (4.20)
σ3 = 2Im(AB∗), (4.21)
σ4 = 2|B|4, (4.22)

related, respectively, to the transport cross-section, skew scattering, spin-current swap-
ping, and Elliot-Yafet spin-relaxation. In FBA, the scattering amplitude becomes

f ∼ ⟨p′|V0(x) +HSOC(x)|p⟩, (4.23)

where V0 is a scalar impurity potential and HSOC = λSOC s×∇(V (x))(−i∇) the spin-
orbit interaction. In FBA we obtain

⟨p′|HSOC(x)|p⟩ =
∫
dxe−ip′·xHSOCe

ip·x = −iλSOCV (p− p′)p× p′ · s, (4.24)

meaning that A = V (q) and B = −iλSOC|p|2A for elastic scattering. As a consequence,
σ2 = 0, and no skew scattering contribution is established.

Shifting our attention to a more specific example of relevance for this thesis, we
examine pristine graphene with scalar and intrinsic-like impurities. The scattering

Page 56



Chapter 4, Section 4.2 Alessandro Veneri, PhD Thesis

potential is expressed by Û =
∑N

i=0 V δ(x − xi), where V = u0 γ00 + uKM γ33 and
u0(KM) is the impurity potential strength. The spin-orbit interaction ∼ uKM preserves
the spin of the scattered electrons and provides a way to activate skew scattering
[19, 177]. Since the impurities are randomly distributed in the system, we define a
distribution for Û such that the disorder average ⟨Uk′χ′,kχUkχ,k′χ′⟩dis = niV

2 (or equiv-
alently ⟨Uχ′,χ(x)Uχ,χ′(x′)⟩dis = niV

2δ(x − x′)) and the next moments are zero, where
Ui,j = ⟨i|Û |j⟩ and ni is the impurity concentration. This ansatz assumes a Gaussian
or box distribution of the stochastic impurity potential. More in general, it adopts a
symmetric distribution, where the odd irreducible cumulants of Û are absent, and also
disregards higher even orders of Û , assuming their irrelevance in the renormalization
group sense [178]. In Born approximation we finally find

WBorn
kχ,k′χ ∼ cos (θ − ϕ) = cosφ, (4.25)

where θ (ϕ) is the angle associated to the momentum k (k′). Eq.(4.25) is symmetrical in
φ, meaning that the electrons are scattered with same probability in opposite directions.

To capture skew scattering we need to include at minimum order U3 terms [19, 176]
by expanding Eq.(4.16) up to the second order

|ψk,χ⟩ ≈ |k, χ⟩+
∑

k′′,χ′′

Uk′′χ′′,kχ

ϵχ(k)− ϵχ′′(k′′) + iη
|k′′, χ′′⟩, (4.26)

and allow a "non-Gaussian" disorder average of the form ⟨Uk′χ′,kχUk′χ′,k′′χ′′Uk′′χ′′,kχ⟩dis =
niV

3. In this case, we are adopting an asymmetric distribution of the impurity potential
that allows a third order moment called, not by chance, "skewness". The scattering
rate up to the third order becomes

W Skew
kχ,k′χ′ =

2π

ℏ

(∑

k′′,χ′′

⟨Uk′χ′,kχUk′χ′,k′′χ′′Uk′′χ′′,kχ⟩dis
ϵχ(k)− ϵχ′′(k′′)− iη

+ c.c.

)
δ(ϵkχ − ϵk′χ′), (4.27)

that in our example translates to

W Skew
kχ,k′χ ∼ Aχ +Bχ cosφ+ Cχ sinφ+Dχ cosφ

2, (4.28)

where Aχ, Bχ, Cχ, and Dχ are functions of the microscopic parameters. This solution
is asymmetric in φ, inducing spin up and down electrons to be preferably scattered in
opposite directions.

The formalism of the golden rule, based on the Lippmann-Schwinger equation, is
particularly beneficial to understand the physics behind collisions and the statistical
treatment of the scattering probabilities. However, it turns out to be cumbersome at
higher orders in perturbation theory, and it is incapable of describing the disorder’s
nonperturbative approach. Therefore, Sec. (4.4) offers a convenient solution, where the
scattering rates are formulated in terms of Feynman propagators in the context of the
Kubo formula and adopted in the semiclassical Boltzmann formalism.
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4.2.4 Exact solution of linearized Bolzmann equation for isotropic
Fermi surfaces

We now briefly discuss how the linearized Boltzmann equation can be employed in
systems with isotropic Fermi surfaces in the presence of intrinsic and extrinsic SOC, of-
fering a valuable example of this method’s application. The outcome is a simple relation
connecting the out-of-equilibrium distribution function gχ (k) to the probability rates
Wkχ,k′χ′ , and this result has proven relevant in graphene with intrinsic-like impurities
[36] and graphene-based heterostructure with uniform Rashba spin-orbit interaction [8].
In our projects, it is successfully applied in twisted graphene/TMD (Chap.(6)), where
we account for the effect of the spin-valley coupling, and adapted with extra care in
graphene with scalar and Rashba-like impurities (Chap.(5)).

Our interest lies on the stationary state of the system, which implies ∂δgχ(k)

∂t
= 0,

and, without loss of generality, we consider an electric field oriented along the x-axis.
We implement the following ansatz,

δgχ(k) = Aχ(k)vk,χ cos βk +Bχ(k)vk,χ sin βk, (4.29)

where A(B)χ are called transport coefficients. For isotropic Fermi surfaces, Eq.(4.29)
closes the linearized Boltzmann equation, meaning that Eq.(4.13) can be solved to find
the transport coefficients and the final form of the distribution function. Feeding the
LBE with our ansatz for the distribution function we find a set of N = 2χ transport
equations

eE δ(ϵχ(k)− ε) =
∑

χ′

{
vk′,χ′

vk,χ
Aχ′(k′)Γ[χ′,χ]

cos +
vk′,χ′

vk,χ
Bχ′(k′)Γ

[χ′,χ]
sin − Aχ(k)Γ[χ,χ′]

iden

}
,

(4.30)

0 =
∑

χ′

{
vk′,χ′

vk,χ
Bχ′(k′)Γ[χ′,χ]

cos −
vk′,χ′

vk,χ
Aχ′(k′)Γ

[χ′,χ]
sin −Bχ(k)Γ

[χ,χ′]
iden

}
,

(4.31)

where we defined the quantities
∫

k′
cos(ϕk′k)Wk′χ′,kχ = Γ[χ′,χ]

cos , (4.32)
∫

k′
Wk′χ′,kχ = Γ

[χ′,χ]
iden , (4.33)

∫

k′
sin(ϕk′k)Wk′χ′,kχ = Γ

[χ′,χ]
sin , (4.34)

and ϕk′k = βk′−βk. Eq.(4.30–4.34) are simple ready-to-use relations linking the micro-
scopic scattering processes described by the collisional golden rule and the macroscopic
deviation of the system from its equilibrium state, resulting in an out-of-equilibrium
response expressed by Eq.(4.1).

We now take a step forward and leverage this method further by reducing the prob-
lem’s generality and focusing on the particular case of graphene with uniform Rashba

Page 58



Chapter 4, Section 4.2 Alessandro Veneri, PhD Thesis

χ = −1

χ = 1
χ = 1

χ = 1

χ = −1

regime I regime II regime III

inter-ring transitions

intra-ring transitions

Figure 4.1: Graphical visualization of the impurity scattering processes in the 2D Dirac
model with intrinsic SOC. In regime II the electrons are confined in a single Fermi ring,
and consequently, only intra-ring transitions occur. Regime I and III describe the two
Fermi ring-case, and inter-ring transitions are also allowed.

and interface-induced magnetic exchange coupling (MEC) or spin-valley SOC. More-
over, we consider only the electrons’ conduction (valance) states for positive (nega-
tive) Fermi energy, ε ≷ 0, implying that the band index χ = ± defines the upper
(lower) energy band. The related band structure describes electronic states lying on
a single band or two bands depending on the value of the Fermi energy [8]. In the
first case, the quasi-particles can only undergo intra-ring scattering transitions, while
inter-ring and intra-ring transitions are allowed in the latter (see Fig.(4.1)). This in-
formation is entirely encoded in the scattering golden rule that involves overlapping
states belonging to the same energy band (Wk+,k′+,Wk−,k′−) or two different bands
(Wk+,k′−,Wk−,k′+). Having this in mind, we can now solve the system of four equations
defined by Eqs.(4.30) and (4.31) with no need for explicit expressions for the probability
rates Wkχ,k′χ′ . Moreover, the scattering coefficients {A+(k), A−(k), B+(k), B−(k)} are
related to the so-called scattering rates {τ∥, τ ∗∥ , τ⊥, τ ∗⊥} so that the charge conductivity
and the spin-Hall conductivity admit an exact closed-form

σxx =
gve

2v2ρ(ϵF)

2π

τ∥

1 +
τ∥τ

∗
∥

τ⊥τ
∗
⊥

, (4.35)

σzxy =
gve

2v2ρ(ϵF)

2π

τ⊥

1 +
τ⊥τ

∗
⊥

τ∥τ
∗
∥

, (4.36)

where v is the Fermi velocity, gv = 2 is the valley degeneracy, and ρ(ϵF) is the density
of states of graphene. We have defined the scattering rates as
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1

τ∥
= Γiden − Γcos + Γflip

iden −
v±
v∓

Γflip
cos, (4.37)

1

τ ∗∥
= Γiden − Γcos + Γflip

iden +
v±
v∓

Γflip
cos, (4.38)

1

τ⊥
= Γsin +

v±
v∓

Γflip
sin , (4.39)

1

τ ∗⊥
= Γsin −

v±
v∓

Γflip
sin , (4.40)

(4.41)

where v± is the electrons’ group velocity at the Fermi level in the outer (inner) Fermi
ring. τ∥ is the standard longitudinal transport time responsible for the emergence of
the charge conductivity (Eq.(4.35)), while τ⊥ is the skew scattering antisymmetric term
at the origin of a net transverse spin current (Eq.(4.36)). Eqs.(4.35–4.40) are the main
result of this section, relating directly the observable of interest to us to the microscopic
processes involved in the system. This method can also be easily applied to systems
described by a single band, identical to the regime II case in the presence of SOC, in
which v+ = v− and τ∥(⊥) = τ ∗∥(⊥).

In Ref.[19], the spin-Hall conductivity in pristine graphene with intrinsic-like SOC
and scalar impurities is successfully evaluated with this method. The result of Milletari
and Ferreira [19] is virtually indistinguishable from the outcome of a more sophisticated
self-consistent diagrammatic approach. However, this work points out that the two
analytic expressions for the response do not coincide for strong impurity potential due
to the semiclassical approximation required in the Boltzmann approach, as we also
stressed in Sec.(4.2.1). Mathematically, this is realized by the sole implication of the
clean system’s eigenstates in the golden rule (Eq.(4.17)), which disregards the effect of
the background disorder field in the electrons’ trajectory [179]. Therefore, this method
is no longer valid when the propagators cannot be treated as classical objects and
Eq.(4.17) breaks down, as we will show in Chap.(5). Another limitation is represented
by non-isotropic band structures, realized, for example, by the presence of in-plane
MEC (see Chaps.(7) or the retention of higher order terms in the Hamiltonian of TIs
[180], in which Eq.(4.29) fails to close the system of equations and a more general ansatz
is needed.

4.3 The Liouville equation

The extension of the Boltzmann equation to quantum gases, derived in the former
section and widely used to study weakly disordered systems [31, 8, 181], is an incomplete
description of the quantum particles’ dynamics. The reason lies in the semiclassical
nature of the Boltzmann formalism, in which the quantum mechanical cross-section is
employed to describe scattering events, but the particles are treated as classical objects
between collisions [179].
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Even though this formalism has been successfully extended to include single-impurity
semiclassical skew-scattering [19, 176] and the side jump [182, 172], it fails to predict
other quantum effects, such as the contribution of randomly distributed extrinsic SOC
[166]. For that reason, this section presents a fully quantum approach to evaluate the
observable of interest to us, in particular spin-currents and densities . We introduce the
density matrix formalism and the Liouville equation, in the context of the Boltzmann-
Gibbs theory. In this context, we offer an intelligible and tractable equation to derive
the out-of-equilibrium distribution function in bare graphene with general SOC impu-
rities: the quantum Boltzmann equation, first formulated in Ref.[38] to uncover the
ASP mechanism and capable to predict other exotic spin-conversion effects such as the
interband skew-scattering. The theoretical framework introduced here will serve as the
foundation for introducing the Kubo-Streda formula in the upcoming chapter

4.3.1 The Boltzmann-Gibbs theory

Alternatively to Eq.(4.1), the connection between a thermodynamic macroscopic ob-
servable OTH and its microscopic counterpart O({q(t)} , {p(t)}) is defined as

OTH(t) = ⟨O⟩ (t) =
1

t

∫ t

0

dt′O({q(t′)} , {p(t′)}), (4.42)

where {q(t)} and {p(t)} are sets of time-evolving particle positions and momenta in the
6N-dimensional phase space Γq,p = {p} {q}. Eq.(4.42) represents the temporal average
of O along the trajectory in Γq,p outlined by the Hamiltonian H, called energy surface.
Even though this description is relatively intuitive, it is not ideal for operative purposes.
J.W. Gibbs overcame this difficulty by replacing Eq.(4.42) with an average over many
virtual microscopic copies of the system (micro-states) at t = 0, called an ensemble
(ergodic hypothesis) [171]. The idea behind that is to translate the time spent by the
system’s particles in the phase space into a density of virtual copies of the system,
represented by the distribution function ρ({q} , {p} , t). Using this picture, we may
write Eq.(4.42) as

⟨O⟩ (t) =
∫
dΓq,p ρ({q} , {p} , t)O({q} , {p}), (4.43)

where the distribution function ρ({q} , {p} , t) in general evolves over time according to
the Liouville theorem

∂tρ = −{ρ,H} , (4.44)

where {...} are the Poisson brackets. The Gibbs postulate [171] asserts that for an
isolated macro-system (microcanonical ensemble) the micro-states on the energy surface
are all equally accessible or probable, implying an uniform distribution

ρ =
δ (H − E)∫

dΓq,p δ (H − E)
, (4.45)

where E is the energy of the system. The resulting thermodynamics is at macroscopic
equilibrium. In fact, this state of the system corresponds to the largest region in the
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phase space Σeq and, during the evolution of the system, the time spent in Σeq is
proportional to its measure. Thus, the non-equilibrium states, represented by regions
Σneq ≪ Σeq, are only small deviations due to fluctuations. Eqs.(4.43), (4.44), and (4.45)
form the foundations of classical statistical mechanics and are the main tools to predict
the behavior systems in the thermodynamic limit.

We conclude the presentation of classical gases by indicating that, in the rest of
this thesis, we will work with open systems exchanging energy and particles with a
reservoir or thermostat (grand canonical ensemble). In this case, the thermodynamic
variables are temperature T and chemical potential µ. The distribution function takes
the form

ρgc =
e−β(H−µN)

h3N N !Z (4.46)

where

Z =
∞∑

N=0

∫
dΓq,p

e−β(H−µN)

h3N N !
(4.47)

is the partition function, h the Planck’s constant, β−1 = kBT , and N is the num-
ber of particles. In quantum mechanics, the formalism of the distribution function
ρ({q} , {p} , t) and what follows is preserved with due differences.

4.3.2 Quantum statistical mechanics

A many-particle quantum system described by a single wave function ψ = ⟨{x}| ψ⟩,
called pure ensemble, can also be completely represented by the density matrix (or
density operator) ρ̂, defined as the outer product between the “pure” state of the system
|ψ⟩ and the corresponding bra

ρ̂ = |ψ⟩ ⟨ψ| (4.48)

where |{x}⟩ is the set of coordinates of the particles. ρ̂ can be used to evaluate the
average of an observable O over the ensemble according to

⟨O⟩ = tr {ρ̂ O} , (4.49)

where we used that ⟨ψ|O |ψ⟩ =
∫ ∫

d {x} d {x′} ⟨{x′}| ψ⟩ ⟨ψ| {x}⟩ ⟨{x}|O |{x}⟩, prov-
ing Eq.(4.49). We notice from Eq.(4.48) that the density matrix is Hermitian

ρij = ρ∗ji (4.50)

and normalized

tr {ρ̂} = 1. (4.51)

At this stage, the density matrix and wavefunction description of the quantum system
are equivalent, which only occurs in pure ensembles. We notice that in this particular
case, governed by Eq.(4.48), the density operator is idempotent, i.e: ρ̂2 = ρ̂.
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The relevance of the density matrix formalism kicks in when we examine mixtures
of pure states {|ψi⟩}, where a state |ψi⟩ occurs with probability pi. In this case, the
traditional wavefunction analysis of the system is insufficient to make statistical predic-
tions about an ensemble. We then introduce the more general definition of the density
matrix

ρ̂ =
N∑

i=1

pi |ψi⟩ ⟨ψi| (4.52)

where 0 < pi ≤ 1 and
∑N

i=1 pi = 1, and Eqs.(4.50) and (4.51) are preserved. The
idempotence of the density matrix fails in a mixed ensemble, in particular

{
Tr {ρ̂2} = 1 pure state

Tr {ρ̂2} < 1 mixed state
, (4.53)

where the last expression reflects the fact that diagonal terms in a pure state are either
0 or 1, but lie between these two numbers in a mixed state.

The states involved in Eq.(4.52) naturally evolve according to the Schrodinger equa-
tion, while the probabilities pi don’t change if the mixed ensemble in unperturbed.
Consequently, the time-evolution of Eq.(4.52) is

∂tρ̂ = −i
[
ρ̂, Ĥ

]
, (4.54)

that is called “Liouville equation”. We considered ℏ = 1 to lighten the derivations. Alike
Eq.(4.46), the equilibrium condition implies, in a grand canonical ensemble,

ρ̂Eq =
e−β(Ĥ−µN̂)

Z (4.55)

where Ĥ and N̂ are the Hamiltonian and number operator and Z = tr{e−β(Ĥ−µN̂)}
is the quantum partition function. Eqs.(4.49), (4.54), and (4.55) are the quantum
translation of Eqs.(4.43), (4.44), and (4.46), where tr {...} →

∫
dΓq,p and {...} → [., .].

The formalism of the density matrix is widely used in physics and can be applied
to a plethora of problems in many different ways, like in quantum information theory,
quantum decoherence, and statistical mechanics. In this particular work, we implement
it to study transport problems, where the Liouville equation becomes a generalization
of the Boltzmann equation. To see that, rather than using the density matrix, we avail
the occupation number operator for fermions, which is the quantum analogous to the
Boltzmann distribution function (BDF). In this case, we neglect any electron-electron
interactions and, therefore, we specialize in single-particle states that can eventually
be described by the Fermi-Dirac distribution. The first step is to derive the averaged
number of particles at equilibrium, given by

N = tr
{
ρ̂EqN̂

}
=

∑
n1,..,nN

e−β(ϵ1−µ)n1 ...e−β(ϵN−µ)nN (n1 + ...+ nN)∏N
i=1(1 + e−β(ϵi−µ))

(4.56)

where we used that ⟨ψi| Ĥ |ψi⟩ = Ei = niϵi, valid in non-interacting systems, and
⟨ψi| N̂ |ψi⟩ = ni where ni is the number of particles in that state (for fermions it is
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either 0 or 1) and ϵi the energy of a single particle in the state |ψi⟩. The jth term of
Eq.(4.56) can be rewritten as

e−β(ϵj−µ)
∏N

i=1..j−1,j+1(1 + e−β(ϵi−µ))
∏N

i=1(1 + e−β(ϵi−µ))
=

e−β(ϵj−µ)

(1 + e−β(ϵj−µ))
=

1

eβ(ϵj−µ) + 1

that survives only if nj = 1. We finally have

N =
∑

i

1

eβ(ϵi−µ) + 1
(4.57)

and we can define the occupation number operator as

ρ̃Eq =
1

N
ρ̂ · N̂ =

1

N

1

eβ(Ĥ−µ) + 1
=

1

N

N∑

i=1

1

eβ(ϵi−µ) + 1
|ψi⟩ ⟨ψi| , (4.58)

where in the last passage we wrote ρ̃Eq in terms of the eigenstates of the Hamiltonian.
The probability

Pi =
1

eβ(ϵi−µ) + 1
, (4.59)

which represents the averaged occupation number, is the Fermi-Dirac distribution.
Eq.(4.58) trivially respects Eqs.(4.51) and (4.54) (the number operator and the Hamil-
tonian commute) and

⟨O⟩ = tr {ρ̃ O} , (4.60)

which means that we can use ρ̃ to evaluate averages of observables over the ensemble.

4.3.3 The projected Liouville equation in graphene: the quan-
tum Boltzmann equation

This paragraph is devoted to deriving an operative form of the Liouville equation suit-
able for extracting the spin-electronic transport properties in disordered graphene.

The outcome of this derivation yields a comprehensive extension of the semiclassical
Boltzmann equation presented in this chapter, and we call it quantum Boltzmann equa-
tion (QBE), following the nomenclature used in the literature [38]. This generalized
equation takes into account quantum effects more accurately, making it particularly
relevant for investigating extrinsic spin-dependent scattering potentials.

We focus on the case of a weak external perturbation of the system that deviates
linearly the quantum distribution function from its equilibrium state, thus writing

ρ̃ = ρ̃Eq + δρ̃, (4.61)

where
δρ̃ =

∑

kk′

pkk′ |ψk⟩ ⟨ψk′ | ∼ E (4.62)
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and E is the electric field. The modified ρ̃ is then employed to evaluate observable
otherwise equal to zero at equilibrium, in particular

⟨γij⟩ = tr {ρ̃ γij} = tr {δρ̃ γij} ∼ E (4.63)

where γij = σi ⊗ sj are Dirac matrices defined on pseudo-spin space. They are related
to the observables of interest to us as




Sa
N
J a
i

Ji


 =




1
2
⟨γ0a⟩
− ⟨γ00⟩
v
2
⟨γia⟩

−v ⟨γi0⟩


 , (4.64)

where N is the charge density, Sa is the spin density, Ji is the charge current and J a
i

is the spin current, as shown in Chap.(3), and made use of natural units. The index
i = (x, y) and a = (x, y, z).

The full Hamiltonian H describing our system is made up of three terms,

Ĥ = Ĥ + ĤE + Û (4.65)

where Ĥ is the pristine graphene Hamiltonian, Û is the impurity potential of the
adatoms shown earlier in this chapter, and ĤE = ieE · r is the coupling with the con-
stant electric field. The relation that correlates the Hamiltonian and the distribution
function is Eq.(4.54), so the time evolution of ρ̃ is described by

∂ρ̃

∂t
+ i[Ĥ + ĤE + Û , ρ̃] = 0 (4.66)

that we use to find the out-of-equilibrium distribution function. We now project
Eq.(4.66) in momentum space [183] by using a complete set of states {|kσ⟩} with
definite momentum k and pseudo-spin σ, defining the matrix elements of the distri-
bution function as ⟨kσ| ρ̃ |k′σ′⟩ = ρσσ

′

kk′ , thus writing its matrix form in pseudo-spin
space as ρkk′ . The states introduced are not eigenstates of the Hamiltonian Ĥ(E),
which becomes diagonal in momentum space but keeps its (pseudo-)spin matrix form;
Ĥ(E) → H

(E)
kk′ = H

(E)
k δk,k′ . We can identify diagonal and off-diagonal components of the

operators involved in Eq.(4.66), in particular, the density operator and the impurity
potential become

ρkk′ = fkδk,k′ + gkk′(1− δk,k′) (4.67)

and

Ukk′ = Ukk + Uk−k′ = V δk,k′ + V
∑

i

ei(k−k′)·xi(1− δk,k′), (4.68)

where xi is the position of the impurities. The advantage of the projection in the
momentum space is to break down Eq.(4.66) into two interrelated relations for gkk′

and fk, which can be reduced to a single equation for the diagonal component of the
distribution function in the momentum [183].
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After performing the disorder average in momentum space, i.e: ⟨Uq + UqOUq′⟩dis =
niV + ni(V OV )δq+q′,0

1, we obtain

∂fk
∂t

+ i[(Hk + niV ) +HE
k , fk] = Iout[fk] + Iin[fk] (4.69)

where

Iout[fk] = −ni
∫

p

∫ ∞

0

dτe−ητ [V e−iHpτV fke
iHkτ + e−iHkτfkV e

iHpτV ] (4.70)

and

Iin[fk] = ni

∫

p

∫ ∞

0

dτe−ητ [V e−iHpτfpV e
iHkτ + e−iHkτV fpe

iHpτV ] (4.71)

identify the scatter-out and scatter-in processes and ni is the impurity concentration.
Eq.(4.69) is the generalization of the Boltzmann equation that envisages quantum
effects, where fk is identified as the out-of-equilibrium quantum BDF and I[fk] =
Iout[fk] + Iin[fk] is the quantum collisional integral.

For a linear displacement of the distribution function from its equilibrium state,
described in Eq.(4.61), the coupling with the electric field in Eq.(4.69) becomes also
linear in the external perturbation. The commutator between the the distribution
function and the electric Hamiltonian is then approximated as

ie[HE
k , fk] ∼ ie[HE

k , f
Eq
k ] = ieE·[r, fEq

k ] = eE
∂fEq

k

∂k
, (4.72)

where fEq
k (Ĥ) =

∑
λ f

Eq
k (ϵλ) |k, λ⟩⟨k, λ| is the equilibrium distribution function, that

at zero temperature becomes [183]

fEq
k =

Θ(ε− ϵ+) + Θ(ε− ϵ−)
2

γ00 +
Θ(ε− ϵ+)−Θ(ε− ϵ−)

2
(γ10kx + γ20ky), (4.73)

Θ(x) is the Heaviside step function, ϵ± = ±vk is the conduction (valance) dispersion
relation and v is the Fermi velocity. We target our interest in the response of the con-
duction electrons of our system for positive Fermi energy, which justifies the projection
of fk in the Bloch eigenstates chiral basis of graphene. In particular, the average value
of an observable after the projection becomes

⟨Occ⟩ =
∑

k

tr{f cck Occ} (4.74)

where
(
f
cc(vv)
k , Occ(vv)

)
= ⟨kσ, c(v)| (fk, Ok) |kσ, c(v)⟩ and |kσ, c(v)⟩ is the conduc-

tion(valence) graphene’s eigenstate with spin σ. Our aim is now to project Eq.(4.69)
in graphene’s eigenstates, that becomes a relation for the time-evolution of f cck .

1It is the Fourier transform of the standard expression ⟨V (x)V (x′)⟩dis = V 2δ(x − x′) →
⟨V (q)V (q′)⟩dis = V 2

∫
dxdx′e−iq·xe−iq′·x′

δ(x− x′).
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We first examine the form of the projected collisional integral (I [fk])cc = I [f cck ].
For illustrative purposes we start considering the first term in Iout: we project it in
the conduction band and we insert the resolution of identity between each operator 2,
where χ is the spin. We find

V e−iHpτV f cck e
iHkτ → V cc

kpe
−iϵpτV cc

pkf
cc
k e

iϵkτ + V cv
kpe

iϵpτV vc
pkf

cc
k e

iϵkτ + V cv
kpe

iϵpτV vv
pkf

vc
k e

iϵkτ

where Vkp = ⟨k|V |p⟩. The first and second terms describe the electrons’ dynamics
in the conduction band, while the third piece determines the statistical behavior of
electron-hole pairs. Being interested in the conduction dynamics, we consider only
the first two terms, i.e: f vck → 0, where, importantly, the cross-terms V vc(cv) are still
preserved. They represent the amplitude of probability of electrons to jump from the
conduction to the valence band and vice-versa after a scattering event. Their meaning
becomes clearer by looking at the collisional integral in its entirety; the scatter-out
component becomes

Iout =− ni
∫

p

(
i

ϵk − ϵp + iη
)(V cc

kpV
cc
pkf

cc
k ) + (f cck V

cc
kpV

cc
pk)(

−i
ϵk − ϵp − iη

)−

ni

∫

p

(
i

ϵk + ϵp + iη
)(V cv

kpV
vc
pkf

cc
k ) + (f cck V

cv
kpV

vc
pk)(

−i
ϵk + ϵp − iη

), (4.75)

and following the same procedure

Iin = ni

∫

p

(
i

ϵk − ϵp + iη
)(V cc

kpf
cc
p V

cc
pk) + (

−i
ϵk − ϵp − iη

)(V cc
kpf

cc
p V

cc
pk) (4.76)

where in the last expression all the crossed terms V vc(cv) disappear under the approxi-
mation of f cvp → 0. The terms ∼ V cc

kpV
cc
pk+V cv

kpV
vc
pk in Eq.(4.75) can be then understood

as a generalization of the standard Fermi golden rule traditionally used in the Boltz-
mann theory, where only conduction states are involved, and quantum transition effects
are entirely disregarded.

The projected collisional integral can be further manipulated to obtain a more op-
erative form. According to the Sokhotski–Plemelj theorem,

lim
η→0

i

ϵk ∓ ϵp − iη
= iP (

1

ϵk ∓ ϵp
) + πδ(ϵk ∓ ϵp) (4.77)

which helps us to decompose the scatter-in and scatter-out components of the collisional
integral into the real and imaginary part

Iin = 2πni

∫

p

δ(ϵk − ϵp)V cc
kpf

cc
p V

cc
pk (4.78)

Iout = niiP

∫

p

[f cck , V
cc
kpV

cc
pk

1

ϵk − ϵp
]− niπ

∫

p

δ(ϵk − ϵp){f cck , V cc
kpV

cc
pk}

niiP

∫

p

[f cck , V
cv
kpV

vc
pk

1

ϵk + ϵp
]− niπ

∫

p

δ(ϵk + ϵp){f cck , V cv
kpV

vc
pk}. (4.79)

2i.e.,
∑

i=c,v

∑
χ |p(k)χ, i⟩ ⟨p(k)χ, i| = 1
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The principal value contribution of Eq.(4.79) is related to the hermitian part of the
second order electrons’ self-energy as

P [Iout] = ini ⟨kσ, c| [f cck , P
∫

p

V
1

ϵ−Hp + iη
V ] |kσ, c⟩ = i

[
f cck ,

(
Σ

′(2)
R

)
cc

]
, (4.80)

readily proven by noticing that

∑

i,j=c,v

∑

χρ

∫

p

⟨kσ, c|V |pχ, i⟩ ⟨pχ, i| 1

ϵ−Hp + iη
|pρ, j⟩ ⟨pρ, j|V |kσ, c⟩

=

∫

p

V cc
kp

1

ϵk − ϵp + iη
V cc
pk +

∫

p

V cv
kp

1

ϵk + ϵp + iη
V vc
pk,

where we specified the (anti-)hermitian component of ΣR as i
(
Σ

′(′′)
R

)
cc . Analogously,

the imaginary part of Iout becomes

I
′′

out = ni ⟨kσ, c| {f cck , (limη→0

∫

p

V
1

ϵ−Hp + iη
V )′′} |kσ, c⟩ =

(
Σ

′′

R

)
cc. (4.81)

Putting the term i[niV, fk] on the right-hand side of Eq.(4.69), the collisional integral
takes the final form

I [f cck ] = −i[
(
Σ

′

R

)
cc
, f cck ] + {

(
Σ

′′

R

)
cc
, f cck }+ 2πni

∫

p

δ(ϵk − ϵp)Vkpf ccp Vpk, (4.82)

where (ΣR) cc = niV +
(
Σ

(2)
R

)
cc is identified as the electrons’ self-energy in first Born

approximation (FBA).

We complete the analysis of the projected Liouville equation by looking at the
coupling with the electric field. For ε > 0, Eq.(4.72) becomes

i[HE
k , fk] = −

ev

2
E · k̂δ(ε− ϵk)(γ00 cos θk + γ10 cos

2 θk + γ20 cos θk sin θk),

3 where we neglected Fermi sea contributions proportional to Θ(ε− ϵk) . By projecting
it in the chiral basis states of graphene, it reads

i[Hcc
E , f

cc
k ] = −evE · k̂ δ(ε− ϵk), (4.83)

that is the traditional driving term appearing in the calssical Boltzmann equation
(CBE).

3We used that ∂k = k̂x∂kx + k̂y∂ky = k̂∂k + θ̂k

k ∂θk , with θ̂k = (− sin θk, cos θk)
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Putting together Eq.(4.82) and Eq.(4.83), we finally write the projected Liouville
equation, or quantum Boltzmann equation, as

∂t δfk−evE·k̂ δ(ϵ−ϵk) = −i[Σ
′

R, δfk]+{Σ
′′

R, δfk}+2πni

∫

p

δ(ϵk−ϵp)VkpδfpVpk, (4.84)

where we dropped the “cc” subscript and used that only δfk contributes. A compari-
son between the classical and quantum Boltzmann equations can shed light upon the
importance of the new terms derived in in Eq.(4.84). The classical collisional integral
of the CBL reads

Iclassical [δfk] = 2πni

∫

p

δ(ϵk − ϵp)(δfp − δfk) |Vkp|2 (4.85)

that matches the right-hand side of the QBE only by considering scalar impurities
(Vpk,ΣR) ∼ γ00, and no conduction-valance crossed terms. In fact, we emphasis that
the impurity potential Vpk and the distribution function fk are matrices in the spin
space, so [Σ

′
R, δfk] ̸= 0 and the order of factors in the collisional integral cannot be

altered in general. This means that the CBE cannot tackle disordered systems with
spin-dependent impurities, like extrinsic spin-orbit interactions or magnetic moments,
but a full quantum Liouville equation approach is required. In addiction, Eq.(4.85) has
no information about the Hermitian part of the self-energy, which behaves as an effective
magnetic field [38]. In fact, by writing δfk = δf 0

ks0 +mk · s and Σ
′
R = Σ

′
R,0s0 +Bk · s,

we find a QBE for mk of the form

∂tmk ∼ Bk ×mk (4.86)

the information of which is lost in the classical Boltzmann formalism. As we show
in pristine graphene with spatially inhomogeneous Rashba-type SOC, Bk generates
a robust spin Hall current in the weak impurity potential regime. This new effect is
unrelated to the traditional spin Hall effect, which requires skew scattering activated by
strong impurities. The Hermitian part of the self-energy then manifests the presence of
a novel semiclassical mechanism, the interband spin-orbit scattering mechanism, which
stems from conduction-valance virtual band transitions, specified by the cross-scattering
amplitude probabilities V vc

pk.

4.4 Fully quantum mechanical response theory
In the previous sections, we introduced the Boltzmann technique for the evaluation of
out-of-equilibrium responses of the system, pointing out its limitations due to simple
quantum adjustments to classical statistical mechanics. We showed that an accurate
quantum mechanical description is rather offered by quantum statistical mechanics,
where observables are evaluated with the assistance of the density matrix through
Eq.(4.49). Thanks to this formalism, and in particular the quantum version of the
Liouville equation, we developed an extension of the semiclassical method, the quantum
Boltzmann equation. However, even though it can capture quantum effects disregarded
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by the classical counterpart, this method offers only a partial description of the system
due to the projection of the Liouville equation in the conduction (or valance) states of
the Hamiltonian. The Kubo formula solves all the shortcomings of the semiclassical and
quantum Boltzmann equation, providing a fully quantum mechanical evaluation of the
observables. This section aims to present a short derivation for clean and disordered
systems, where we also illustrate the related diagrammatic technique for evaluation
in momentum and frequency space. In particular, we show the diagrams of interest
for including the skew scattering mechanism in the strong impurity potential regime
and their exact re-summation, the T-matrix approximation. In this context, we also
develop a technique based on the Kubo formula for deriving drift-diffusion spin-charge
equations, called Diffuson Hamiltonian method.

4.4.1 Linear response theory

Let us consider a generic fermionic system described by the bare Hamiltonian H0 and
perturbed by an external field F (r, t). The full Hamiltonian reads

H = H0 +Hext, (4.87)
with Hext =

∫
drB(r)F (r, t) and B(r) being the physical observable coupled to the

external field. From Eq.(4.49), the average of an observable A(r) in the grand canonical
ensemble is

⟨A(r)⟩(t) = tr{ρ̂Eq(t)A(r)}, (4.88)
where the time dependency of ρ̂Eq comes from Hext. Sufficiently weak external fields
allow an expansion of the density matrix in the perturbation strength, that we carry out
with the assistance of the Liouville equation (Eq.(4.54)). Particularly, the first order
expansion of ρ̂Eq(t) is of interest in experimental setups, and establishes the so-called
linear response theory (to point out its importance, we notice that the renowned Ohm’s
law, at the basis of modern electronics, is valid within the linear response theory). The
density matrix translates into

ρ̂Eq(t) ∼ ρ̂
(0)
Eq + ρ̂

(1)
Eq(t), (4.89)

where the first order contribution is described by

i ∂tρ
(1)
Eq(t) =

[
H0, ρ

(1)
Eq

]
+
[
Hext, ρ

(0)
Eq

]
, (4.90)

and the solution is [171]

ρ
(1)
Eq(t) = −i

∫ t

−∞
dt′ e−iH0(t−t′)

[
Hext(t

′), ρ
(0)
Eq

]
eiH0(t−t′), (4.91)

valid under the assumption of no external fields at t = −∞. We finally obtain an
expression for the linear deviation of the observable A(r) from its equilibrium average
δ⟨A(r)⟩(t) = ⟨A(r)⟩(1)(t)− ⟨A(r)⟩0,

δ⟨A(r)⟩(t) = −i
∫ t

−∞
dt′
∫
dr′ tr{ρ(0)Eq [A(r, t), B(r′, t′)]}F (r′, t′), (4.92)
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where ⟨...⟩0(1) = tr{ρ0(1)Eq ...}. The operators A and B are written in the Interaction
picture, i.e., O(t) = eiH0tOe−iH0t, and have been obtained using the cyclicality of the
trace. The core of Eq.(7.25) is the trace piece, usually called response function, which
expression is

RAB(r, r′; t, t′) = −iθ(t− t′)tr{ρ(0)Eq [A(r, t), B(r′, t′)]}. (4.93)

Notably, RAB(r, r′; t, t′) depends on the properties of the unperturbed system only. Ac-
cordingly, if the unperturbed system is translational invariant in space, the response
function depends only on the difference of the space arguments, RAB(r−r′; t− t′). This
allows a rewriting of Eq.(7.25) in Fourier space, acquiring a frequency-momentum de-
scription of the perturbed system, i.e., RAB(q, ω). Eq.(4.93) allows us to write Eq.(7.25)
in a more compact way,

δ⟨A(r)⟩(t) =
∫ ∞

−∞
dt′
∫
dr′RAB(r− r′; t− t′)F (r′, t′), (4.94)

that has now a more explicit physical interpretation: the variation of an observable at
a given space-time point (r, t) is the result of counting all the system’s configurations
in time and space transmitted via the response function, which controls causality [171].

A more operative form of Eq.(4.93) is realized by writing explicitly the trace in terms
of eigenstates {|m⟩} ofH0 and performing a Fourier transformation F =

∫∞
−∞ dtei(ω+i0+)t,

the so-called Lehmann representation [171],

RAB(r, r′;ω) =
1

Z
∑

n,m

⟨n|A(r)|m⟩⟨m|B(r′)|n⟩
ω + En − Em + i0+

(e−βEn − e−βEm), (4.95)

that is the main result presented in this section. We remind that RAB(r, r′;ω) is a
property of the system at equilibrium without the effect of any external perturbation.

The relation above offers a general procedure to evaluate the variation of an observ-
able A to an external field F coupled to B. For example, it can be used to evaluate
the spin susceptibility for a magnetic field, the electrical conductivity for an applied
electric potential (Ohm’s law), the specific heat for a temperature gradient, and much
more. In this thesis, we will apply the linear response formalism to charge-spin conver-
sion phenomena, thus mostly caring about spin-charge responses of crystals to electric
fields. Some algebraic simplifications make the problem more tractable and lead to the
Kubo formula. In the next section, we show its original form [184] and a more trans-
parent formulation involving single-particle Green’s function, commonly referred to as
the Kubo-Streda formula [185].

4.4.2 The Kubo formula

We now focus on the perturbation originating from an applied electric field, E = −∂tF ,
which can be inserted in Eq.(7.25) by using the identity

∫ t

−∞
dt′A(t′)eia(t−t

′) =
i

a

∫ t

−∞
dt′
[
1− eia(t−t′)

]
∂t′A(t

′), (4.96)
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where a ̸= 0. After simple algebraic manipulations, we finally obtain a new form of the
linear response in terms of E,

δ⟨A(r)⟩(t) =
∫ ∞

−∞
dt′
∫
dr′R̃AB(r, r′; t− t′)E(r′, t′), (4.97)

where

R̃AB(r, r′;ω) =
1

Z
∑

n,m

⟨n|A(r)|m⟩⟨m|B(r′)|n⟩
En − Em

i(e−βEn − e−βEm)

ω + En − Em + i0+
(4.98)

is the celebrated Kubo formula. We neglected a similar contribution ∼ 1/(En−Em)(ω+
i0+) divergent in the DC limit, i.e., ω → 0. In fact, in the cases of interest to us,
it is equal to zero on general grounds. For example, the calculation for longitudinal
electrical conductivity involves A(r)→ j̃ and B(r)→ j, where the latter is the standard
current operator coupled to the external vector potential, j = ep/m, and the former is
the total current operator comprising the diamagnetic term, j̃ = e(p + eF)/m which
cancels against the divergent contribution. The same result holds for the (spin) Hall
conductivity and spin density-current response by expanding the divergent contribution
and using that A→ vi = i [xi, H] and [xi, vj ̸=i] = 0 in the former case, {si, sj ̸=i} = 0 in
the latter [19, 52].

In the single-electron picture, the density matrix is replaced by the occupation
number operator at the first step of our derivation, and the Kubo formula is readily
seen to be

R̃AB(r, r′;ω) = i
∑

n,m

⟨n|A(r)|m⟩⟨m|B(r′)|n⟩
En − Em

f(Em)− f(En)
ω + En − Em + i0+

, (4.99)

where f(E) =
(
e(E−ε)/kBT + 1

)−1 is the Fermi-Dirac distribution, and the states |n⟩ are
single-particle states. The advantage of this recasting is the possibility to introduce the
single-particle propagators or Green’s functions (GF)

GR(A)(ϵ+ ω) =
1

ϵ+ ω −H0 ± i0+
=
∑

n

|n⟩⟨n|
ϵ+ ω − En ± i0+

, (4.100)

which, in a continuous model, is interpreted as the amplitude of probability of a particle
to move from a space-time point (x, t) to (x′, t′). GR(A) are referred to as retarded
(advanced) GF, depending on the position of the corresponding energy poles in the
complex plane. The response function, that we now show in momentum-frequency
space, is then split into two halves,

R̃I
AB =

1

4π

∫
dk

∫
dϵ
df(ϵ)

dϵ
tr{A(k)GRB(k) (GR −GA)

− A(k) (GR −GA)B(k)GA)}, (4.101)

and

R̃II
AB =

1

4π

∫
dk

∫
dϵf(ϵ)tr{A(k)GRB(k)

dGR(ϵ)

dϵ
+ A(k)

dGA(ϵ)

dϵ
B(k)GA

− dGR(ϵ)

dϵ
B(k)GR − A(k)GAB(k)

dGA(ϵ)

dϵ
}, (4.102)
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Figure 4.2: This schematic shows the diagrammatic representation of the Kubo formula,
Eq.(4.103). The vertices are the observables connected by the retarded GR (in red) and
the advanced GF (in blue). The wavy lines correspond to external perturbation carrying
the momentum and frequency q and ω.

called type-I and type-II responses respectively, where for simplicity we presented the
case with zero external frequency and momentum, i.e., ω = 0 and q = 0. The first term,
which includes the derivative of the distribution function, is interpreted as a surface
contribution to the response, meaning that only the states close to the Fermi energy
are counted. On the contrary, the second term describes the effect of the Fermi sea,
being proportional to f(ϵ) [186].

As anticipated in the introduction, this thesis’ goal is to study disordered systems
in the clean limit, i.e., low concentration of impurities ni. In this regime, R̃I

AB ∼ 1/ni,
while the type-II response contributes to the next order and can therefore be disregarded
for our porpoises. The type-I response can be further simplified by realizing that the
product of GF of the same sector contributes only at order ∼ ni and then can be safely
neglected [19]. The final elegant expression, relevant in disordered systems, is

R(ω,k) =
1

2π

∫
dk tr{A(k)GR(ϵ+ ω,k+ q)B(k)GA(ϵ,k)B(k)}, (4.103)

where we assumed the zero temperature limit T = 0 and restored finite external fre-
quency and momentum. The presence of disorder renormalizes this expression and
requires some extra care to write an explicit form readable for calculation.

4.4.3 The diagrammatic treatment of the Kubo Formula

The presence of interactions in the system makes the task of solving Eq.(4.103) far from
trivial, and a more explicit representation of the Kubo formula is therefore desirable.
The diagrammatic technique can fulfil this task by reinterpreting the GFs, interactions,
and response functions as Feynman’s diagrams (the connection between the Kubo for-
mula and the diagrammatic technique is more formally shown in App.(A)). In this
language, Eq.(4.103) is depicted as an empty "bubble" in the absence of interactions,
as shown in Fig.(4.2). In our case, the full equilibrium Hamiltonian is the sum of a bare
term and a disorder contribution,

H =
∑

σ,σ′

∫
drψ+

σ (r)(H
0
σσ′ + Uσσ′(r))ψσ′(r), (4.104)
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where H0 =
∑

σ,σ′ H0
σσ′ describes the clean crystal, ψ(+)

σ is the annihilation (creation)
operator with defined spin σ, and Uσσ′(r) =

∑N
i=0 Vσσ′δ(x − xi) the stochastic field

coming from defects in the system. The form of Uσσ′(r) is generally unknown; therefore,
a statistical average over disorder that considers all possible configurations is commonly
adopted in momentum-space LRT [178]. It is worth anticipating that this procedure
has the same meaning of the Lippmann-Schwinger expansion shown in Sec. 4.2.2, as we
will shortly discuss.

One effect of including disorder is the renormalization of the propagators [178].
Diagrammatically, it is represented by the insertion, in the GF, of an arbitrary number
of interaction vertices averaged over the disorder statistics, as shown in Fig.(4.3d).
The first diagram is the mean value of the impurity potential, ⟨Uσσ′⟩dis = niVσσ′ , the
second one is the variance, ⟨Uσσ′Uσ′σ⟩dis = niVσσ′Vσ′σ, and the third contribution is the
skewness, ⟨Uσσ′Uσ′σ′′Uσ′′σ⟩dis = niVσσ′Vσ′σ′′Vσ′′σ. The sum of all the scattering diagrams
of this type, with a single density dot, is called T −matrix,

T R(A) ≡ ⟨TR(A)⟩dis = V + V gR(A) V + ... =
V

1− gR(A) V
, (4.105)

where gR(A) =
∫
dpGR(A)(ϵ,p) is the momentum-integrated GF. T describes the scat-

tering off a single impurity at all orders in perturbation theory and is proportional to the
concentration of impurities. We neglected irreducible multi-dot diagrams proportional
to powers of the impurity concentrations. These terms are next-order quantum correc-
tions that, with our current knowledge, cannot be re-summed exactly. The renormalized
GF, GR(A) ≡ ⟨GR(A)⟩dis, is a Dyson series involving the T-matrix, that mathematically
has the form

GR(A) = GR(A) +GR(A)ΣR(A)G
R(A) + ... = GR(A) ΣR(A) GR(A), (4.106)

which leads to
GR(A) =

1

ϵ−H0 − ΣR(A)
, (4.107)

with ΣR(A) = niT R(A) being the propagator’s self-energy. The real (hermitian) part of
the self-energy, Σ′

R(A), renormalizes the particle’s Hamiltonian H0, meaning that now
ϵ − H0 − Σ

′

R(A) = 0 solves the dispersion relation. On the other hand, the imaginary
(anti-hermitian) component Σ′′

R(A) is interpreted as the inverse of the lifetime a particle
spends in a renormalized state k [178], leading to a broadening of spectral lines.

Interestingly, the self-energy is directly connected to the collisional integral of the
kinetic theory. This is shown in Refs.[178] and [179], and in the previously presented
quantum Boltzmann equation. The T-matrix treatment of the disorder is then under-
stood as the Lippmann-Schwinger expansion in scattering theory. The truncation of
the T-matrix series at the second order, T ∼ ni V

2, is, therefore, the standard FBA,
and the third order starts capturing the skew scattering mechanism.

The disorder average also renormalizes the bubble through a procedure called vertex
renormalization. The role of T-matrix is now to connect the retarded and the advanced
sectors of the response function as shown in Fig.(4.3a) and (4.3b). The mathematical
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Figure 4.3: Here we present the diagrammatic representations of the disordered aver-
aged response function (a), the renormalized vertex (b), the disorder-averaged Green’s
function (c), and the T-matrix (d). (a): The red/blue solid lines denote GR/A, and
the orange shaded region represents the renormalized density vertex. (b): The green
dashed lines indicate scatting events with the impurity represented by the black dot.
The red/blue dashed lines signify the retarded/advanced T-matrix associated to the the
impurity at the black dot. (c): Orange lines denote a Green’s function that is retarded
or advanced. The thin lines in this case denote GR/A, whilst the thick line represents
GR/A. (d): Here solid lines correspond to GR/A, the green dashed lines have the same
meaning as in panel (b), and the orange dashed line represents T R/A.

translation for the vertex renormalization procedure, depicted in Fig.((4.3b)), is the
Bethe-Salpeter equation [52]

Ã = A+ ni
∑

k

T A GAk ÃGRk T R, (4.108)

that is a self-consistent equation to find the renormalized vertex Ã. A traditional way
to solve it requires formulating an ansatz for Ã, which validity is checked a posteriori
[19]. A second route, relevant in spin-current responses, rewrites Eq.(4.108) in terms
of the Diffuson operator and finds the renormalized vertex with no need for ansatzes.
This procedure will be presented in detail in the next section.

Restoring ℏ, we finally obtain the disorder-averaged Kubo formula

R(ω,q) = ⟨R(ω,q)⟩dis =
ℏ
2π

∫
dk tr{Ã(k)GR(ϵ+ ω,k+ q)B(k)GA(ϵ,k)), (4.109)

which is the primary tool we use in this thesis’ projects to evaluate the spin-current and
current-current response of various disordered systems, like bare graphene, graphene
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heterostructures, topological insulators, and two-dimensional gases. Beyond its use as
a method to find the responses to an electrical field, a manipulation of Eq.(4.109) leads
to a technique to derive the drift-diffusion equations controlling the system’s spin and
charge dynamics [187, 35]. We dub it the Diffuson Hamiltonian method.

4.4.4 Vertex renormalization

We first consider the case of a density vertex on the left of the bubble, renormalized
by random disorder. This example has the advantage of working with an observable
independent from the momentum, which leads to significant simplification. The den-
sity vertex generally has a matrix structure and is represented by a generator of the
considered algebra, A → γi. For instance, γi is SU(2) if describing the spin or SO(5)
if the graphene’s pseudospin is included. For convenience we consider again ℏ = 1. To
begin with, we project Eq.(4.108) onto the corresponding algebra, obtaining

γ̃(i)µ = δiµ +
ni
D

∑

k

tr{T RGRγ̃iGAT Aγµ}, (4.110)

where γ̃(i)µ = 1
D
tr{γ̃iγµ} and D is the dimension of the algebra. We now notice that

the trace piece of Eq.(4.110) can be split into two contributions,

1

D
tr{T RGRγ̃iGAT Aγµ} =

1

D
tr{T RGRγνGAT Aγµ}

1

D
tr{γ̃iγν} = Iµν γ̃(i)ν , (4.111)

where we adopted the Einstein summation and used that (γν)ij(γν)lm = δimδjl. By
decomposing Iµν in a similar way, we obtain the compact relation

γ̃(i)µ = δiµ +ΥµξNξν γ̃(i)ν ←→ γ̃i = γi +ΥN γ̃i, (4.112)

that can now be rearranged to attain an open equation for the renormalized vertex,

γ̃(i)ν = Dνµγ(i)µ = Dνi ←→ γ̃i =
∑

ν

Dνi, (4.113)

that is the main result of this section. The operator D−1
µν = δµν − ΥµξNξν is called

"Diffuson" [187], where

Υij =
1

D
tr[γiT RγjT A],

Nij =
ni
D

∑

k

tr[γiGRγjGA],
(4.114)

where the momentum integration has been absorbed by the N matrix, exploiting the
independence of the density vertex from the momentum. This operator encodes in-
formation about the disorder-averaged Green’s functions forming a response bubble in
the absence of interference, whilst the Υ matrix describes the insertion of impurities
connecting the two sides of the response bubble. The density-current response function
in the static limit, Kαβ, finally becomes

Kαβ =
1

2π

∑

ν

∫
dk tr{Dνα GR(ϵ+ ω,k+ q)Jβ(k)GA(ϵ,k)), (4.115)
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with Jβ = e∂H/∂pβ being the electrical current operator [188] (e < 0). The technique
shown here offers a general and transparent algorithm to evaluate the density-current
response with no needs for ansatzes. However, further simplifications can be adopted
if the current vertex is independent on the momentum as well, that is the case of
Dirac systems. Before delving into that, we question how to apply a similar method
to momentum-dependent vertices, relevant in current-current response function, the
conductivity.

Self-consistent vertex renormalization in current-current responses

The inversion of the Diffuson operator that we used between Eqs.(4.112) and (4.113)
is the critical passage to derive a transparent formula for the renormalized density vertex
γ̃i. Such operation is, however, forbidden if the renormalized vertex is momentum-
dependent, since it would be impossible to dissociate the N matrix from the vertex
operator. Nevertheless, we can overcome this obstacle in non-interacting systems. To
show that, we consider the current operator J̃β (right vertex), where the related Bethe-
Salpeter equation is

J̃β = Jβ + ni
∑

k

tr[TAGAJ̃βGRTR]. (4.116)

We can understand it as the sum of two components, the bare current operator and the
renormalized counterpart, J̃β = Jβ + δJβ. While Jβ and J̃β are momentum-dependent,
the last term is an integration over the renormalized vertex, and is therefore independent
on the momentum. Moreover, it follows in turn another Bethe-Salpeter equation,

δJβ = δJ̄β + ni
∑

k

tr[TAGAδJβGRTR], (4.117)

where
δJ̄β = ni

∑

k

tr[TAGAJβGRTR], (4.118)

meaning that we can follow the same passages presented in the former section, and
obtain an open equation for δJβ. We derive an analogous formula to Eq.(4.113), where
the Kronecker delta γ(i)ν is replaced by the projection of the first-order renormalized
vertex in the algebra, δJ̄(i)ν . We finally reach

δJβ = D̃βνδJ̄ν , (4.119)

and the diffuson operator becomes

D̃−1 = 1−NTΥT, (4.120)

where the transpose of the N and Υ matrices is due to the different position of the
renormalized vertex. The current-current response tensor is thus given by

σαβ =
1

2π

∑

p

tr[JαGRp
(
Jν + D̃βνδJ̄ν

)
GAp ]. (4.121)
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Response function in Dirac systems

In this particular case, relevant in graphene and surface states of 3D topological
insulators, the current operator is proportional to the density vertex, i.e., Jβ ∼ γβ. The
density-current, density-density, and current-current responses have therefore all the
same form. Excluding prefactors, the response function becomes

Rµν ∼
∑

k

tr{GAγµGRγ̃ν}, (4.122)

that is similar to the Bethe-Salpeter equation and can therefore be treated in an anal-
ogous way. We can split the expression above as

Rµν ∼
∑

k

tr{GAγµGRγα}γ̃(ν)α =
D

ni
Nµαγ̃(ν)α, (4.123)

which using Eq.(4.112) and (4.113), takes the form

Rµν = cµν
D

ni
Υ−1
µα(Dαν − γ(ν)α), (4.124)

elegantly introduced in Ref. [52]. The coefficient cµν comprises the factors identify-
ing the type of response desired. Beyond the Dirac system case, this approach can be
adopted in the density-density response of generic systems, included 2DEGs. Its sig-
nificant advantage is the possibility to avoid the momentum integration in Eq.(4.115),
which is computationally convenient and allows the formulation of the "Diffusion Hamil-
tonian", presented in the next chapter.

It can be helpful to clarify the notation we adopt with the SO(5) Clifford algebra,
used to describe graphene and graphene-based heterostructures. As shown in Chap.(3),
the generator of the algebra, hence the density/current operator, is γij = σi⊗ sj, which
implies a response function of the form

Rαβρσ =
1

2π
tr
{
γαβGRγ̃ρσGA

}
−→ 2

πn
Υ−1
µαab(Dabσβ − γσβab), (4.125)

where we neglected the prefactors coming from the observable operators for simplicity.
We also used

γ̃αβ = γαβ + ni
∑

k

T AGAγ̃αβGRT R, (4.126)

directly obtained from Eq.(4.110), the projection of the generator on the algebra,
γ̃αβab =

1
4
tr{γ̃αβγab}, and γ̃αβab = Dabcdγαβcd = Dabαβ.
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4.4.5 The Diffuson method

The Diffuson method, widely used in the condensed matter literature [187, 62, 35], is
a way to derive the spin and charge-coupled dynamics under very general space-time
perturbations. It can treat the effect of electric and magnetic fields and provides a
detailed description of diffusion effects arising from initial non-equilibrium charge and
spin density accumulations. The resulting equations can also describe a number of
interrelated effects such as the SHE, EE and much more. The idea behind this method
is particularly simple.

For a start, the density-density linear response theory in frequency-momentum
space, which extends to density-current and current-current responses in Dirac sys-
tems, is adopted (see Eq.(4.94) and (4.115)),

δA(ω,q) = K(ω,q) · F(ω,q), (4.127)

where we dropped the average symbol ⟨...⟩ to lighten the notation. In this form,
δA(ω,q) is a vector of perturbed observable of interest to us (densities in 2DEGs,
also currents in 3D-TI and graphene-based systems) and F(ω,q) is a vector listing all
the relevant external fields coupled to the system. Consequently, K(ω,q) is a matrix
describing all the possible couplings between F and δA. For example, systems charac-
terized by the SU(2) algebra have δA = (N,S) and F = (V,Av), where V is the scalar
potential and Av is the vector potential. Clearly, the inversion of Eq.(4.127) generates
a set of coupled-observables equations connected to the external fields

K−1(ω,q) · δA(ω,q) = F(ω,q). (4.128)

The next step [35] is to compute a series expansion in q and ω and perform an inverse
Fourier transform, i.e., −iω → ∂t and iqi → ∇i. The result is a partial differential set
of kinetic equations

(−Q∂t − Yi∇2
i − Pi∇i + L) · δA(t, r) = F (t, r), (4.129)

where Q = −i(∂ωK−1)ω=0, (P,Y) = i(∂
(2)
q K−1)q=0, and L = K−1)ω=0,q=0. The evalua-

tion of Eq.(4.129) is, however, computationally costly and cannot be applied in general.
Our aim is then to write a more explicit form.

Gaussian approximation

For illustrative porpoises, we first present the standard expression for Eq.(4.128)
in Gaussian approximation, wherein Υ → u and u is the diagonal component of the
impurity potential. From Eq.(4.123), the density-density linear response can be written
as

δA(ω,q) =
D

2π ni
N · D · F(ω,q), (4.130)

where D−1 = 1 − u−1N . Once we invert the relation above to obtain Eq.(4.128), we
realize that the most relevant modes of the inverse Diffuson operator D are identified by
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the condition N ∼ u. If we apply it, Eq.(4.130) can then be redesigned in the simplified
form

D−1 · δA(ω,q) = 0. (4.131)

The inverse density fluctuation propagator D−1 becomes the kernel of the kinetic equa-
tions and we set the external fields to zero. This formulation of the Diffuson method has
been successfully applied to two-dimensional gases and topological insulators with scalar
impurities [187, 62], where the coefficient linear in the momentum i(∂qD−1)q=0 = 0, and
the kinetic equation take the form of diffusion relations. Nevertheless, Eq.(4.131) leads,
in general, to wrong results due to assumption on the N -matrix used above and the
resulting loss of information, crucial in other systems such as graphene. Moreover, it
has no access to a self-consistent treatment of the external potentials, which are usually
added by hand.

Self-consistent treatment and the Diffuson Hamiltonian

A general self-consistent procedure to find the kinetic equations is desirable to tackle
a wider variety of systems, like Dirac materials and solids with some generic disorder.
The expression for the generalized kernel of the kinetic equations is surprisingly sim-
ple and significantly impactful to finding the related equation and is called Diffuson
Hamiltonian, HD. To find its expression, we start by combining Eq.(4.124) and (4.128),
finding

(
Υ−1(D − 1)

)−1 · δA(ω,q) =
D

ni
ĉ · F(ω,q), (4.132)

where (ĉ)µν = cµν . We now use the matrix identity (A − B)−1 = A−1 + A−1(B−1 −
A−1)−1A−1, and identifying A = −1 and B = −D, we easily obtain

HD · δA(ω,q) =
D

ni
ĉ · F(ω,q), (4.133)

where
HD = −Υ+N−1. (4.134)

This expression elegantly simplifies the difficult task of inverting the response function
by disentangling different disorder contributions. In fact, the Diffuson Hamiltonian
separates the vertex renormalization in the bubble (Υ) from the propagators (N ). In
contrast to the approximated Eq.(4.131), the Diffuson Hamiltonian is an exact inversion
of the response function, encapsulating all the information it encodes. Firstly, it does
not approximate the contribution of the N matrix for the identification of the most
relevant modes. Secondly, it can effectively deal with the T-matrix treatment of the
disorder. Lastly it self-consistently incorporates the external fields.

The Diffuson Hamiltonian method is accurately applied in Ref. [35] and in Chap.(5),
where it results to be particularly convenient due to the large Clifford space of Dirac
materials. In these cases, HD is linear in q and the resulting transport relations incor-
porate continuity-like and Fick-like equations.
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Chapter 5

Anomalous Spin-Charge Conversion
in Graphene with Random Spin-Orbit
Coupling

5.1 Overview

This chapter starts our analysis of coupled spin and charge dynamics in graphene with
random sources of spin-orbit interactions. These may stem from adatom decoration
of graphene sheets or from fluctuations of uniform spin-orbit fields. Our interest in
these systems is fueled by the recent attention on their transport properties, since
the current experimental and theoretical viewpoint [110, 53, 189, 190] emphasizes the
crucial role of such impurities on spin-transport phenomena, being able to generate
a sizable spin Hall [31] and current-induced spin-accumulation effect [38]. Previous
theoretical works attempted to study the resulting transport properties by employing
both the semiclassical [31] and quantum Boltzmann equations [38]. The value of these
early works was to unveil the crucial importance of the skew scattering mechanism to
producing current-induced spin-currents [19] and the unconventional anisotropic spin-
precession to inducing nonequilibrium spin densities [191].

The goal of this project is to extend the current understanding of the system by
fully characterizing its transport properties using our established Diffusion Hamilto-
nian formalism. In this context, we derive a complete set of space and time-dependent
charge-spin transport relations, divided into continuity-like equations for charge/spin
densities and drift-diffusion equations for charge/spin currents. This unified theory
can model a large number of transport experiments that include electric and opti-
cal charge/spin injection and detection. It captures rich opto-spintronic phenomena,
such as the spin galvanic-effect, Dyakonov-Perel and Elliott-Yafet spin-relaxations, the
spin-Hall effect, and the ASP. In particular, we will demonstrate that the interference
between scalar and SOC parts of the scattering potentials gives rise to an unusual
interband spin-orbit scattering (ISOS) mechanism that has not been reported to date.
The result is a robust extrinsic spin current that dominates over the semiclassical skew-
scattering-induced spin Hall effect at low electronic density in and weak impurity po-
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tential regime. In order to better interpret the results, we also implement the QBE
with an extended ansatz, enabling it to better describe the system and reproduce the
ISOS results.

5.2 The Diffuson approach

The minimal model for adatom-decorated graphene is captured by the low-energy Dirac
Hamiltonian and a short-range disorder potential V (x) including Rashba-type, Kane-
Mele and scalar impurity interactions (Eq.(3.22)). Our theory neglects the uniform
intrinsic SOC and intervalley scattering, which requires a tiny impurity range of the
order of the lattice constant. As a consequence, we can restrict our analysis to the
Hamiltonian of a single Dirac cone

H =

∫
dxψ†(x) [vγi0pi − γ00ϵ+ V (x)]ψ(x), (5.1)

where we make use of natural units ℏ ≡ 1 and e ≡ 1, and ϵ is the Fermi energy. The
matrix structure of the disorder potential is the most unusual attribute of Eq.(5.1) and
the crucial feature that enables the emergence of the rich phenomenology distinguishing
this system from other 2D materials. To show that, we investigate the linear response
to a weak external space and time-dependent perturbation A(x, t), and we limit our
examination to diffusive disordered systems, where kf l ≪ 1, with kf and l being the
Fermi momentum and mean free path respectively, and coherent multiple scattering
corrections can be neglected [51]. Furthermore, we focus on the dilute limit, where the
renormalized response function becomes inversely proportional to the concentration of
impurities, i.e., Rαβρσ(q, ω) ∼ 1/ni. The linear response takes the form

⟨γαβ⟩ (q, ω) = −iωRαβρσ(q, ω)Aρσ(q, ω), (5.2)

where the external field Aρσ(q, ω) spans the whole Clifford algebra; it describes spin and
charge densities and vector fields. We recall that Eq.(7.25) underlies any type of linear
response up to additive constants, being all the macroscopic observables expressed in
terms of γ-matrices (see Eq.(4.64)). Following the diagrammatic Kubo-Streda formu-
lation of the linear response theory, the disorder averaged response can be expressed
as

Rαβρσ(q, ω) =
1

4π

∫
dktr

{
γαβGRϵ+ω(k+ q)γ̃ρσ(q, ω)GAϵ (k)

}
, (5.3)

where
GR(A) =

1

(GR(A))−1 − ΣR(A)
(5.4)

is the renormalized retarded (advanced) Green’s function (GF), ΣR,A = ⟨V +V GR,AV +
...⟩dis the self-energy, and

γ̃αβ(q, ω) = γαβ + ni
∑

k

T AGAϵ (k)γ̃αβ(q, ω)GRϵ+ω(k+ q)T R, (5.5)
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the dressed density vertex (see Eq.(4.110)). The form of the disorder potential implies
a non-trivial matrix structure of the self-energy, which also involves mixed products
of impurity couplings. This suggests, and will be shown along the chapter, that some
phenomenological effects are direct consequence of the interplay between different types
of extrinsic couplings. Clearly, the commonly used Gaussian approximation (GA), i.e:
⟨V (x)V (x′)⟩dis ∼

∑
i=R,KM,V u

2
l δ(x − x′)γ00, loses this information, producing solely

an imaginary scalar self-energy. Our disordered system provides an example of such
mixture, where the evaluation of low-order diagrams in the weak impurity potential
regime, the first Born approximation (FBA), produces a self-energy of the form

Σ = Σ0 + Σ12 + Σ33 ∼ γ00
∑

i=R,KM,V

u2i

+ uR(γ12 − γ21)(u0 − uKM) + γ33(u
2
R − uKMu0) (5.6)

where we showed only the second order expression in the impurity coupling (the first
order is trivially the impurity potential itself).

The intricated coupled dynamics of spin and charge, enclosed in Eq.(5.3), can be
displayed by evaluating the inverse of R(q, ω), the Diffuson Hamiltonian HD. The
corresponding inverse Fourier transform in real space and time leads to a system of 12
coupled kinetic equations, one for each observable of interest to us. At first, we simplify
the problem by evaluating HD, i.e., Eq.(4.134), in FBA, thus focusing our interest on
quantum interference effects between the different impurities and excluding the role of
skew scattering. Our findings are summarized by the following three compact relations:

∂tSµ + T 0µSµ − (Ψµ ×J )z +Hµa · J a =
ν0
4
(1− δu0)Bµ (5.7)

∂tJ ν
l + T lν(J ν

l + ϵzljΛ
νa
l J a

j +Dlν∂lSν +Dνlj
A ϵzik∂iJ k

j +Dνli
B ∂jJ j

i

− ϵzljIνl Sj + δνzαxyRSl) = ν0DT lνδν0El (5.8)

∂tJm
l + T lm(Jm

l + ϵzljΛ
mk
l J k

j +Dlm∂lSm +Dmlai
C ϵzij∂iJ a

j

+Dmlai
D ∂iJ a

i − δlmαzRSz) = 0 (5.9)

where ν0 = ϵ/πv2 is the density of states, Eµ = −∂tAµ0(x, t) is the external electric
field, and Bµ = 1

v
∂tA0µ(x, t) is the Zeeman field. The coefficients DA,B,C,D repre-

sent the spin and charge density transfer via diffusion mechanisms and the T s are
relaxation times. Hµν = δµν∇ + Rµν , with R describing the spin density precession
mediated by the Rashba impurities [192], and Λνσ = Γνσ +Ωνσ∂t expresses the time-
dependent spin current swapping and the spin-charge current conversion. The index
µ = (0, x, y, z), ν = (0, z), (m, l, a, i, j, k) = (x, y), and all the coefficients are listed
in Appendix B. Eq.(5.7) encompasses the continuity equation for the charge density
N and three continuity-like equations for Sx,y,z. Eqs.(5.8) and (5.9) are generalized
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drift-diffusion relations for charge and spin currents, where the former addresses the
charge-spin current conversions, i.e., the (inverse) spin Hall effect, and the latter cap-
tures spin-current swappings.

We can notice how the phenomenology described by the transport equations shown
above strongly resembles the spin-charge dynamics in graphene monolayers with uni-
form Rashba SOC as shown in Ref. [35]. As we will better discuss in the chapter, such
similarity is a consequence of the effective homogeneous spin-orbit field produced by the
Rashba-type disorder, where the product between the impurity concentration and the
local SOC strength plays the role of the uniform Rashba coupling acting on the band
structure. For this reason, the system of equations derived for our system more gen-
erally describes, phenomenologically, disordered graphene with intrinsic and extrinsic
Rashba and Kane-Mele SOC, where all the coefficients must be adapted accordingly.

A more transparent interpretation of the spin-charge drift-diffusion equations is
attainable by neglecting diffusion processes in the limit of q→ 0, i.e., no gradients, and
showing all the coupling constants in the weak SOC regime, defined as uKM < uR <
u0 < 1 [31]. Within these approximations, we first present the simplified version of
Eq.(5.7)





∂tSx(y) +
1
τ∥
Sx(y) ∓ [−]αASPJy(x) − [∓]αRJ z

x(y) =
ν0
2
Bx(y)

∂tSz +
1
τ⊥
Sz + αR(J x

x + [−]J y
y ) =

ν0
2
Bz

, (5.10)

where the sign change inside the squared brackets refers to the anomalous Rashba case.
We omitted the ubiquitous continuity equation for the charge density, which guarantees
the conservation of mass. On the contrary, Sx(y) and Sz are not conserved quantities,
dephasing with characteristic relaxation times proportional to τ∥ and τ⊥ respectively.

The Rashba constant αR mediates the interplay between spin densities and currents,
also displaying the first similarity between graphene with active adatoms and graphene
with uniform Rashba SOC; such coupling is, in fact, present in both systems. In par-
ticular, our theory finds αR = 2niuR/v, which also describes the homogeneous scenario
by mapping

niuR ←→ λ, (5.11)

with λ being the Rashba interaction in the band structure [35]. Eq.(5.11) shows that
the Rashba impurities also play the role of an uniform interaction in our system which
strength is proportional to the impurity potential uR and concentration ni.

Finally, the coupling constant αASP = niuKMuRϵ/v
3, which entangles the spin den-

sity with the charge current, entirely arises from the ASP mechanism, requiring the
presence of both uKM and uR.

The spin-flip scattering off nonmagnetic impurities in the presence of local spin-orbit
interaction leads to the Elliott-Yafet (EY) type spin relaxation mechanism [193], where
the spin relaxation is proportional to the scattering time τ = 2v2/nϵu20, i.e. τs ∼ τ .
This term is encoded in τ∥ and τ⊥ that take the form τ∥ = 2τ⊥ = v2/2niu

2
Rϵ in the

weak SOC limit. On the other hand, the homogeneous behaviour of the Rashba-type
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impurities, identified by Eq.(5.11), would suggest the contribution of the D’yakonov-
Perel’ (DP) spin relaxation mechanism τs ∼ τ−1. Indeed, solving Eqs.(5.7) and (5.8)
self-consistently, we find a closed form for the relaxation times

{
1

τsx(sy)
= 1

τ∥
+Dzα

2
R − 4Dα2

ASP

1
τsz

= 1
τ⊥

+ 2Dxxα
2
R

(5.12)

where Dxx is the diffusion constant related to Jx(y)x(y) (Dxx = D in the weak SOC limit).
The purely Rashba-type contribution to the relaxation times, 2Dxxα

2
R = 2Dzα

2
R =

4vτ(nuR)
2, is the DP mechanism, also present in graphene heterostructures, and me-

diated by the coupling constant λ2τ [51]. Once again, this result is contained in our
theory and displayed by Eq.(5.11).

We can now proceed with the analysis of charge-spin current conversion mechanisms
by unfolding Eq.(5.8). This is the main result of the chapter, revealing the presence of
the ISOS-induced spin Hall effect that the theory uncovers:





Jx(y) + τJ∥∂tJx(y) ± [−]αIASPSy(x) ± [∓]βISOS
IsH J z

y(x) = ν0DEx

J z
x(y) + τJ⊥∂tJ z

x(y) + [±]αxyRSx(y) ± [∓]βISOS
sH Jy(x) = 0

, (5.13)

where D = v2τ is the diffusion constant. The time evolution of the currents is controlled
by the relaxation times τJ∥ and τJ⊥ , that in the weak SOC limit become proportional
to the scattering time, τJ∥ = τJ⊥ = 2τ . The inverse coupling between the charge-
current and the spin-density, absent in the uniform Rashba case, is allowed by the ASP
mechanism via αIASP = 8uKMuRv/u

2
0, while Jzx(y) and the in-plane spin-densities are

paired via αxyR, where αxyR/τJ⊥ = vnuR → vλ.
The leading contribution in the impurity potential strength to the (inverse) spin

Hall effect is determined by the coupling constant βISOS
(I)sH = (4×)4u2Rv2/u30ϵ, which en-

tirely originates from the ISOS mechanism. Surprisingly, this term is still present in
the absence of skew scattering, currently considered the crucial ingredient to generate
current-induced spin-currents in the dilute (weak disorder) regime [19, 8]. Similar to
the ASP mechanism, which results from the interference between Rashba and Kane-
Mele impurities, the ISOS emerges from the simultaneous presence of scalar and Rashba
potentials. This term is obtained by an accurate renormalization of the particles’ prop-
agators, where the hermitian part of the self-energy, usually irrelevant in transport
problems, plays a crucial role. As such, its omission would lead to the absence of
the ISOS mechanism. Even though this coupling is present in graphene with uniform
Rashba SOC, the resulting constitutive relations, obtained by solving the system of
drift-diffusion equations exhibit zero spin Hall effect in FBA [35].

To better understand the role of this novel mechanism, we now include strong impu-
rities, which presence requires the truncation of the T -matrix series at the third order
in the impurity potential strength. This procedure activates the skew scattering mech-
anism, which contributes to generating current-induced spin currents. As a result, the
total coupling becomes βsH ≃ βISOS

sH − βskew
sH , where βskew

sH = uKMϵ/4v
2 is the classic
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result in the weak SOC limit and defines the conventional spin Hall angle. Moreover,
we notice that the two terms have opposite signs, reducing the magnitude of the spin-
current response for weak impurities, as identified in previous works [38, 31]. Restoring
ℏ, we plot βsH in Fig(5.1) at T-matrix approximation as a function of the Fermi energy
(left panel) and the impurity potential strength (right panel). The total coupling has
been decomposed into two terms,

βsH = βISOS
sH − βskew

sH , (5.14)

where both contributions on the right-hand side depend on the two mechanisms, but
βISOS
sH disappears in the absence of ISOS and βskew

sH returns a null result in FBA. Fig(5.1)

Total
ISOS
sk
Sk
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Figure 5.1: Spin Hall angle plotted versus the Fermi energy (a) and the scaling factor
F (impurity strength) (b), defined as unew0,KM,R = F × uold0,KM,R. The total response
(Total) is the sum of the skew scattering contribution (sk) and ISOS one. The results
are compared with a strong skew scattering contribution (Sk) induced by large Kane-
Mele impurities, uR < uKM < u0, where the ISOS mechanism becomes negligible.
Parameters: u0 = 100 × FmeV, uKM = 3 × FmeV, uR = 10 × FmeV, and uKM =
50× FmeV for the black curve. F = 10 on the left panel.

reveals that the ISOS mechanism is dominant for low Fermi energy and weak impurity
potential, and rapidly decreases, βISOS

sH → 0 for (ϵ, u0,KM,R) → ∞. The opposite holds
for the skew scattering contribution.

The complete expression for the current-induced spin current,i.e., the spin Hall
conductivity σsH, is finally derived by solving Eq.(5.10) and (5.13), where this time we
can compare the contributions from the ISOS and the ASP mechanism in the absence of
skew scattering. Fig.(5.2a) plots the figure of merit for the spin Hall effect, expressed as
the adimensional ratio 2e

ℏ σsH/σD, where σD is the charge conductivity. This is plotted
against the Fermi energy in the context of the weak SOC limit. In this regime, we
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observe a similar contribution coming from the ASP and ISOS mechanism, and together
they give rise to a sizable charge-to-spin conversion even in first Born approximation.
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Figure 5.2: Adimensional ratio of the spin Hall (a) and current-induced spin polarization
(b) conductivities to the charge conductivity, plotted against the Fermi energy. These
quantities are evaluated using the first Born approximation in the absence of skew
scattering and under the weak SOC limit, i.e., uKM < uR < u0. In this regime, the
two dominant mechanisms, ASP and ISOS, contribute equally, leading to a significant
current-induced spin-current and polarization.

An expansion of the spin Hall conductivity for small αASP and βISOS
sH allows us to

write a simple expression for σsH,

σsH =
ν0([−]βISOS

sH +DαASPαRτ∥)

α2
Rτ∥

, (5.15)

where we used αIASP = 4αASPD, βISOS
IsH = 4βISOS

sH , and αxyR = αRD. The first dominant
contribution is the direct ISOS-induced spin Hall coupling, while the second term is a
two-step process allowed by the ASP mechanism, controlled by the interference between
Kane-Mele and Rashba-type impurities, and evaluating to zero for uKM → 0. This
second component can also generate CISC without skew scattering and has already
been identified in the literature [38]. In the absence of Kane-Mele and scalar impurities,
both contributions vanish and σsH = 0.

Following the same procedure, the expression for the current-induced spin-polarization
is

σCISP =
ν0(−[+]αASP + αRβ

ISOS
sH )

α2
R

, (5.16)

where the role of βISOS
sH and αASP is now inverted. The ASP is the dominant direct

mechanism, while the second order contribution is a two-step process that requires
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a conversion from charge to spin current, via βISOS
sH , and a second conversion from

spin current to spin density through αR. This chain of couplings identifies the typical
Edelstein effect [194], with the difference that the impurities entirely produce it in our
system. Fig.(5.2b) shows vσCISP/σD against the Fermi energy. Interestingly, we observe
that the competition between the ASP and the ISOS mechanisms, which are equal in
magnitude but opposite in sign, yields an interpolation between the two contributions
resulting in a change of the CISP’s sign dependent on the Fermi energy’s position.

Our transport analysis of the perturbed system, relying on the self-consistent Kubo-
Streda formalism, offers an extensive insight into the spin-related effects in play but fails
to provide a semiclassical intuition of the ISOS mechanism. For this reason, we aim to
complement our findings by implementing the quantum Boltzmann equation technique
developed in Sec.(4.3.3). The advantage of this method over the Kubo-Streda approach
is the direct evaluation of the scattering processes (the golden rule), providing a clearer
understanding of the underlying mechanisms [19].

5.3 The QBE approach to graphene with random SOC

The former section revealed how the ISOS mechanism contributes to the spin Hall effect
in FBA, and this section aims to recover the same results by employing the quantum
extension of the Boltzmann equation formalism, the QBE. This technique considers
the response of conduction electrons for positive Fermi energy, thus disregarding Fermi
sea contributions and projecting the operators on the conduction band. However, it
preserves knowledge of purely quantum conduction-valence band transitions, which are
crucial in our model, as we will shortly see. For a start, we define the spin Hall current
as

J z
y =

∑

k

tr{(v
2
γcc23)δfk}, (5.17)

where v
2
γcc23 is spin-current operator projected in the conduction Bloch eigenstates of

pristine graphene, and δfk is the deviation from the equilibrium Fermi-Dirac distribu-
tion function. As the most general ansatz for δfk we avail the Fourier series

δfk = E
∑

j

∞∑

n=−∞

(τj,ne
inθksj), (5.18)

where τj,n are coefficients that we identify as transport times and E = (E, 0) is the
electric field in the x-direction. The equation above captures the right ISOS physics if it
can reproduce the same results as the previous section when combined with Eq.(5.17).
Since we need to employ a closed solution for δf , we need to single out a subsets
of harmonics from Eq.(5.18). The commonly adopted [8] first order expansion in n
produces a zero spin Hall current; thus an unusual second-order is needed,

δfk = vE
3∑

i=0

(τ
(1)
∥,i cos θk + τ

(1)
⊥,i sin θk + τ

(2)
∥,i cos 2θk + τ

(2)
⊥,i sin 2θk)si, (5.19)
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where we excluded θ-independent terms, responsible for the nonequilibrium density
responses of the system. For simplicity, we also neglect the local Kane-Mele contribution
to the disorder and, in the limit of weak extrinsic Rashba coupling, uR < u0 < 1, the
scattering times read

τ
(1)
∥,0 =

4ev2

niu20ϵ
, (5.20)

τ
(1)
⊥,3 = τ

(2)
∥,2 = −τ (2)⊥,1 = −

4euRv
2

niu30ϵ
, (5.21)

which are solutions of the steady-state version of Eq.(4.84). Alike the Kubo formalism,
these results depend on the hermitian part of the electrons’ self-energy, and τ

(1)
⊥,3 eval-

uates to zero for
(
Σ

′
R

)
cc = 0. Eq.(5.20) is the standard longitudinal transport time at

the origin of charge conductivity

Jx =
∑

k

tr{(evγcc10)δfk} = −
2v2e2

niπu20
E, (5.22)

while τ (1)⊥,3 establishes a net transverse spin current

J z
y = − eu2Rϵ

niπu30
E, (5.23)

which is the main result of this section. Counting for the graphene’s valley degeneracy
gv = 2, it matches Eq.(5.15) in the absence of ASP, i.e., uKM = 0. The relation above
shows that, in the weak impurity potential limit, the extrinsic spin Hall effect appears at
leading order in the impurity concentration ni, increases linearly with the Fermi energy
ϵ, and is inversely proportional to the impurity potential, mimicking the leading-order
skew scattering scaling ∼ 1/u0.

From a technical perspective, we emphasize that even though the scattering times
τ
(2)
∥,2 and τ

(2)
⊥,1 are absent in the expression for the spin current response, the crucial

role of the second-order expansion of the general ansatz is to renormalize the first
order antisymmetric term τ

(1)
⊥,3, otherwise equals to zero. Ultimately, we point out that

the antisymmetric contribution τ
(1)
⊥,0 ∼ sin(θk), that traditionally generates the skew

scattering-activated SHE, is missing here, thus not contributing to Eq.(5.23).

For completeness, we also investigate the effect of Gaussian disorder, which is more
frequently used in the literature to study disordered systems [187]. This model better
describes uncorrelated weak impurities, which do not possess a collective preferred
intensity of the potential. As a consequence, the random impurity field follows a white-
noise distribution, implying that the first-order disorder average is equal to zero, i.e.,
⟨V ⟩dis = 0. The Gaussian statistics modifies the hermitian part of the self-energy, where
only the second order contribution in the impurity potential is retained,

(
Σ

′
R

)
cc →(

Σ
′(2)
R

)
cc. A nonzero SHE of the form

J z
y =

4u2Rv
2 ln(Λ

2

ϵ2
)e

niu40(π
2 + 2 ln(Λ

2

ϵ2
)2)
E (5.24)
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is still produced, where Λ is the momentum cutoff. The interplay between spin-
transparent and spin-flipping impurities is still at the foundation of the spin Hall effect,
except that the scaling of the local electrostatic potential is now inversely proportional
to its squared value. In addition, the Spin Hall current becomes less sensitive to the
variation of Fermi energy with Gaussian impurities than the FBA counterpart.

5.3.1 Discussion

The cross-scattering amplitude probabilities V vc
pk, embedded in the hermitian part of

the self-energy (see Eq.(4.84)), are the main ingredients yielding to the result shown in
Eqs.(5.23) and (5.24). Their importance suggests that the SHE is activated by a mech-
anism that involves virtual conduction-valence band transitions and can distinguish
between the spin up and down electrons; for this reason the effect is called interband
spin-orbit scattering.

In order to build up a better intuition for the ISOS mechanism, we simplify the QBE
using the relaxation time approximation, where the imaginary part of the collisional
integral (Eq.(4.82)) is replaced by a matrix in the SO(5) Clifford space, 1/τ̂∥,k. Any
projection in graphene’s conduction states is avoided here and the random distributed
impurity potential is treated with the Gaussian white-noise statistics. The simplified
Boltzmann equation reads

i[Σ
′

R, δfk]−
v

2
E(cos θkγ00 + cos2 θkγ10 + cos θk sin θkγ20) δ(ϵ− ϵk) =

1

τ̂∥,k
δfk, (5.25)

where the contribution i[Σ
′
R, δfk] is treated as a small perturbation of the semiclassical

description of the system without which no spin Hall effect is produced. This term is the
one making the quantum Liouville approach indispensable in capturing more physics
in play, as against the classical Boltzmann technique. Expanding Eq.(5.25) in Σ

′
R, the

displacement of the distribution function from its equilibrium form becomes

δfk ≈ δfBoltzk + iτ̂∥,k · [Σ
′

R, δf
Boltz
k ], (5.26)

where

δfBoltzk = −v

2
E τ̂∥,k · (cos θkγ00 + cos2 θkγ10 + cos θk sin θkγ20) δ(ϵ− ϵk) (5.27)

must match the standard solution from the classical Boltzmann equation [31] for a
given choice of τ̂∥,k. In particular, we impose that the projection of Eq.(5.27) onto the
conduction band must return the same values for the transport times produced in the
QBE without Σ

′
R,

δfQBE
k ∼ τ cc0 s0 cos θk + τ cc1 s1 sin 2θk + τ cc2 s2 cos 2θk, (5.28)

which is the solution presented in Eqs.(5.19) and (5.21) with τ
(1)
⊥,3 = 0. The relax-

ation time τ̂∥,k cannot be uniquely determined by equating δfQBE
k and δfBoltzk , since,

in general, it is a function of the momentum angle θk. We therefore assume τ̂∥,k to be
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independent on the angle to close the system of equations and establish the structure
of the transport times, finally obtaining

τ̂∥,k → τ̂∥ = τ00γ00 + τ12γ12 + τ12γ21. (5.29)

This assumption leads to a potential loss of information about the scattering processes,
enclosed in τ̂∥, and its relevance can be checked a posteriori by comparing the resulting
expression for the spin Hall current with the rigorous result obtained with the QBE
formalisms. The adopted decomposition for the relaxation time allows a simplified
recast of Eq.(5.26) since τ̂∥ and Σ

′
R now commute, having the same matrix structure.

As a result, the distribution function can be rearranged as

δfk ≈ δfBoltzk + δf II
k , (5.30)

where

δf II
k = −iv

2
E[Σ

′

R,
(
cos θkτ̂∥ · τ̂∥ · γ00 + cos2 θkτ̂∥ · τ̂∥ · γ10 + cos θk sin θkτ̂∥ · τ̂∥ · γ20

)
] δ(ϵ−ϵk)
(5.31)

is the contribution to the distribution function that generates the SHE. The nonequi-
librium spin Hall current is then expressed by

J z
y (τ̂∥) =

∑

k

tr[δf II
k · γ23] ∼ −i

v

2
E

∫

k

cos2 θktr
{
[γ12 − γ21, τ̂∥ · τ̂∥ · γ10] · γ23

}
, (5.32)

where the terms proportional to cos θk sin θk and cos θk disappear upon angular inte-
gration. Only the first two terms in Eq.(5.29) survive after the trace operation, and
simple manipulations yield

J z
y =

e

π
ϵΣ12τ00τ12E =

4u2Rv
2 ln(Λ

2

ϵ2
)e

niu40π
2

E (5.33)

where Σ12 = −ni
u0uR ln(Λ

2

ϵ2
)ϵ

2πv2
and we used τ00 = 4v2

niu20ϵ
, τ12 = −2uRv2

niu30ϵ
. This expression,

produced by a simplified quantum Liouville equation, agrees with the rigorous results
presented previously in the chapter, where a linear expansion in the hermitian part of
the self-energy must be employed, according to our assumptions.

Eq.(5.33) benchmarks the validity of the relaxation time approximation, which can
now be used to understand the physics behind the ISOS. To begin with, the simplified
treatment of the Boltzmann equation clarifies the role of the unusual second-order har-
monic expansion employed in the former section. In fact, Eq.(5.32) requires relaxation
times proportional to γ12 to produce a non-zero spin Hall current. The relative effect
on the conduction band is found by projecting such contribution onto the appropriate
states, obtaining

(
δfBoltzk

)
cc
∼ (τ12)cc ∼ cos2 θks2, which is the term appearing in the

ansatz for the QBE. Therefore, the inclusion of second harmonics is an artefact of the
projection procedure that keeps track of the non-diagonal Rashba-like contribution of
the relaxation time.
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Figure 5.3: ISOS mechanism at the single-impurity level. a) A conduction quasiparticle
with spin up (down) undergoes a virtual transition to a combination of valence states,
mediated by the interference between scalar and Rashba-type impurities. After the
collision, the particle returns to its initial state, likely deviated to the left (right). b)
Impurity self-energy in the presence of ISOS mechanism.

Moreover, the complete decomposition of the distribution function in the Clifford
algebra explicitly shows the role of the conduction-valence band transitions in generat-
ing spin-currents. To see that, we first note that Eq.(5.26) can be understood as the
linear expansion of an unitary transformation of δfBoltzk ,

δfk = UδfBoltzk U−1, (5.34)

where U = eiτ̂∥·Σ
′
R . Since the linear displacement of the distribution function is defined

as the outer product of the Hamiltonian’s eigenstates, Eq.(5.34) can be translated into
an unitary transformation of such states

|kσ, i⟩ → U |kσ, i⟩ , (5.35)

that is the effect of the ISOS mechanism on an electron after a scattering event: a single
conduction state is transformed into a linear combination of conduction–valence spin
up–down states as

|k′σ′, c(v)⟩ → u0 |k′σ′, c(v)⟩+ u1 |k′σ′, v(c)⟩+ u2 |k′σ, c(v)⟩+ u3 |k′σ, v(c)⟩ ,

where u0, u1, u2, u3 are coefficients that depend on Σ
′
R and τ̂∥. This idea is illus-

trated in the scattering diagram of Fig.(5.3), where a conduction state with spin "up"
undergoes an impurity-induced transition to the valence band and then again to the
conduction band. This intuitive argument is converted into a generalized Fermi golden
rule

Wk→k′ = 2πni
∣∣⟨k′σ′, c(v)|U−1V |kσ, c(v)⟩

∣∣2 δ(ϵk − ϵk′), (5.36)

that expands the standard description widely used in the semiclassical Boltzmann equa-
tion approach. Notably, the impurity potential is substituted by an effective interaction
∼ U−1V which acquires a complex part, mimicking the effect of higher order corrections
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to the FBA in Eq.(4.105). In other words, the inclusion of the phase factor generates a
spin-active scattering amplitude with real coefficients, allowing for spin asymmetry in
scattering processes [18]. In first approximation,

U−1V ∼ ũ0γ00 + ũR(γ12 − γ21) + ũKMγ33, (5.37)

where we considered V ∼ u0. We are now able to include the information carried by
Σ

′
R in the classical collisional integral via the generalized Fermi golden rule, and use

the traditional Boltzmann transport equations to evaluate the spin Hall current [8] (see
Sec.(4.2.4)). We find

J z
y =

4u2Rv
2 ln(Λ

2

ϵ2
)e

niu40π
2

E, (5.38)

which matches the expressions derived in Eqs.(5.24) and (5.33). This result only de-
pends on coefficients u21 and u23, confirming the origin of the ISOS mechanism in the
purely quantum conduction-valence band transitions.

5.4 Conclusions
In conclusion, this chapter unveils a novel purely quantum mechanism in graphene with
random fluctuations of the spin-orbit field, called interband spin-orbit scattering (ISOS).
It can asymmetrically deviate particles possessing opposite spin moments, resulting in
a robust extrinsic spin Hall effect that dominates over the conventional skew scattering
contribution at low electronic density. This result has been obtained by employing the
self-consistent Diffuson Hamiltonian formalism based on the diagrammatic elaboration
of the Kubo-Streda formula, whereby we also derive space-time dependent generalized
drift-diffusion equations. Such an extensive description of the system models many
possible experimental setups and presents several charge-spin conversion mechanisms
along with drift, diffusion and spin-precession processes.

An accurate application of the quantum Boltzmann equation technique offers better
intuition about the ISOS mechanism. In detail, we propose an adequate ansatz for the
distribution function that quantitatively describes the system and predicts the correct
ISOS-induced spin Hall effect. Even though the method is limited to account only for
the conduction band dynamics, it preserves information about the virtual conduction-
valence band transitions, neglected in previous semiclassical frameworks and revealed
to be critical to induce the ISOS mechanism. In particular, the hermitian part of
the quasiparticles’ self-energy mediates such transitions, and the quantum interference
between scalar and spin-flip Rashba-type induces its relevant attributes.

Beyond the graphene context, the ISOS mechanism might be present in any dis-
ordered system described by the conduction-valence band duality with locally broken
inversion symmetry, like, most notably, Weyl semimetals. The last requirement is es-
sential to produce SOC disorder and can occur in coupled systems with interfacial
roughness or randomly distributed spin-active impurities.
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Chapter 6

Twist-Angle Controlled Collinear Edel-
stein Effect and spin Hall effect in van
der Waals Heterostructures

6.1 Overview

In this chapter, we shift our attention to graphene/TMD Van der Waals (vdW) het-
erostructures, paradigmatic in spintronics due to their distinctive suitability to engender
charge-spin coupled effects. In fact, these media host enhanced spin-orbit and exchange
interactions induced by proximity effects (see Chap.(3)), yielding robust current-driven
spin polarization and spin-relaxation processes. Going beyond this framework, the cur-
rent possibility to offset vdW layers by some twist angle θ gave birth to moiré systems
and the field of twistronics [195], which studies the electrical properties of models with
band structure tuned on demand through an interlayer angle rotation. Such tailoring of
the system’s electronic structure also affects the spin texture, as demonstrated in recent
theoretical works [154], making twisted-vdW of great interest in spintronics. Specifi-
cally, these systems host a twist-enhanced Rashba and spin-valley coupling, wherein the
in-plane Rashba spin-momentum locking evolves by varying the angle θ and acquires
a hedgehog component (see Fig.(6.1)). This peculiarity of twist-controlled spin tex-
tures motivates our interest in the possible consequences on the related spin-dependent
phenomena.

For this reason, here we develop a microscopic theory of coupled spin-charge trans-
port in twisted graphene/TMD bilayers that is valid for arbitrary twist angle and
captures the interplay of symmetry-breaking SOC effects in the band structure and
impurity scattering.

We first focus our interest in current-induced spin-accumulations, i.e., the generation
of macroscopic spin densities upon application of a charge current. In particular, we pre-
dict that twisted vdW heterostructures support highly anisotropic spin-density-current
responses that allow full control over the in-plane orientation of non-equilibrium electron
spins. At critical twist angles, the non-equilibrium spin density is parallel to the applied
current, i.e., a collinear Edelstein effect (CEE) is realized. Importantly, the anisotropic
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Figure 6.1: (a): Black spheres denote carbon atoms, faded red and yellow spheres
represent metal and chalcogen atoms. The x axis belongs to graphene, whilst the x′
axis is associated to the TMD. Top: Aligned bilayer. Bottom: Twisted bilayer, with
twist angle θ. (b)-(d): Spin texture evolution with twist angle. Below each spin-texture
is a visulatization of the non-equilibrium spin-polarization (orange arrow) induced by
an applied electrical current (black arrow) through graphene/TMD (blue box).

inverse spin galvanic effect unveiled in this work is robust against twist-disorder and can
be detected seamlessly via Hanle-type spin precession measurements [196]. To better
understand the emergence of this generalized current-induced spin density, we employ
simple symmetry arguments, inspired by Ref. [75]. The presence of inversion sym-
metries along the perpendicular mirror planes in conventional Rashba-coupled systems
(which includes untwisted vdW heterostructures), enforces diagonal components of the
spin-current response tensor K (Eq.(4.109), with Ã = Si and B = Ji) , to be vanishing.
In fact, the charge current and spin polarization, Jx(y) and Sx(y), transform differently
under x(y) → −x(y) reflection, i.e., Jx(y) → −Jx(y) and Sx(y) → Sx(y). As a result,
K = −K under reflections, which implies K = 0. Only the off-diagonal components
survive, and the spin polarization is locked to be perpendicular to the applied elec-
tric current, which is the Edelstein effect. The twist of the two layers by non-trivial
angles, breaks all σv mirror symmetries possessed by aligned bilayers, opening up the
possibility for more exotic types of spin-charge conversion phenomena without the need
for magnetic impurities, skew scattering, and proximity-induced exchange interactions
[20].

We then continue our analysis of bilayer heterostructure by focusing on another
crucial phenomenon in spintronics, the spin Hall effect. Traditionally, it has been
studied in graphene-TMD bilayers in several limits, including within the Rashba spin
gap, without disorder and in the absence of spin-valley coupling [36, 8, 197]. However,
the regime of the diffusive limit with a Fermi energy located well above the Rashba
spin gap is the most relevant to spin valve experiments [198, 125] and will be explored
in this chapter. In particular, we present analytic results within the Kubo-Streda
formalism at any twist angle in both the clean and diffusive limit. In the last case,
the SHE requires the presence of skew scattering activated by the spin-valley coupling
since the sole Rashba SOC is unable to generate spin Hall currents in the diffusive
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limit [199], in contrast to the (collinear) Edelstein effect, already present in the first
Born approximation for the disorder average. The skew scattering mechanism will
be captured by performing a non-Gaussian disorder average to the third order in the
impurity potential, the Y-diagram approximation, a subclass of the T-matrix expansion.

6.2 Model

Being interested in the spin-electronic properties of the graphene sheet, we use its
reference frame to define the axes, as shown in Fig.(6.1a). Thus, our starting point is
the low-energy Hamiltonian for graphene/TMD bilayers (Eq.(3.19)), wherein the mass
term is negligible and the coupling constants λR and λsv become θ-dependent,

Hk = v (τzkxγ10 + kyγ20) + λsv(θ)τzγ03 +HR. (6.1)

More interestingly, according to Ref. [77], the Rashba SOC, HR, is rotated by a Rashba
phase αR(θ) in spin-space, obtaining

HR = λR(θ)e
isz

αR(θ)

2 (τzσxsy − σysx)e−isz
αR(θ)

2 . (6.2)

The corresponding in-plane spin texture is illustrated in Fig.(6.1b), and displays the
standard spin winding for θ = 0 and a complete hedgehog configuration at the critical
twist-angle. The functions αR(θ), λR(θ), and λsv(θ) are given in Ref. [77] and shown in
Fig.(6.2), plotted versus the twist angle in WSe2/graphene bilayers. It reveals that the
Rashba term possesses 6-fold twist symmetry [154, 77] whilst the spin valley interaction
possesses the same 3-fold symmetry as the bilayer system. This is in agreement with
previous theoretical studies on graphene with transition metal adatoms above the A
and B sublattices [200, 110], which qualitatively describe the same system. The results
of Ref. [200] show that the Rashba coupling is unaffected by the exchanging of the
metal atom positions, and hence predicts a twist periodicity of π/3 for HR. This is
in contrast to the spin-valley coupling, where the swapping of metal atom positions
introduces a minus sign and thus implies anti-periodicity for Hsv upon a π/3 twist.

Before we investigate coupled spin-charge transport phenomena in the presence of
impurity scattering, it is instructive to consider the spin texture of clean eigenstates
at different twist angles. Specifically, we use parameters based on DFT simulations of
graphene/WSe2 [77] in conjunction with the TMD tight-binding model of Ref. [201].
For ease of visualization, we neglect the spin-valley coupling in Fig.(6.1) as it mainly
acts to tilt the spin texture out-of-plane. For no twist, θ = 0, the spin polariza-
tion of eigenstates is locked in-plane and perpendicular to the momentum as shown in
Fig.(6.1b). Thus, the untwisted system supports a conventional ISGE (S ⊥ J). As the
system is twisted, the spin begins to rotate clockwise, remaining in-plane but no longer
perpendicular to the momentum, see Fig.(6.1c). At a critical twist angle of θ ≃ 14◦,
the system exhibits a hedgehog (Weyl-type) spin texture, Fig.(6.1d). Intuitively, this
spin helicity of eigenstates at the critical twist angle should allow a purely collinear
spin–current response (S ∥ J) with efficiency akin to the ISGE. Motivated by this, in
what follows we investigate the spin–current response evolution with the twist angle.
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Figure 6.2: Numerical data from Ref. [77] for the spin-valley, Rashba angle, and Rashba
coupling. The original data for λsv (blue curve, top panel) suffers spurious discontinu-
ities at θ = ±9.6◦,±13.4◦, which is an artifact of the applied model [196]. We smoothly
interpolated the data over the affected regions by applying a Gaussian average with a
standard deviation of σ = 0.5◦, obtaining a smoother plot (yellow curve). No signifi-
cant changes can be seen in the Rashba SOC and angle upon the application of this
smoothing process. Hence we do not present the data for λR and αR before and after
smoothing here.

6.3 Current-induced spin-densities
The collinear (j = x) and perpendicular (j = y) spin response functions to an electric
field applied along the x-axis (Ex) are given by Eq.(4.109), particularly

Kjx =
1

4π

∫
dk tr{sj

〈
GRJxG

A
〉
dis
}, (6.3)

where Ji = evγi0 is the charge current operator and we set ℏ ≡ 1. The effect of the
Rashba angle on Eq.(6.3), at the origin of the novel charge-to-spin density conversion,
can be easily understood by noting that the Hamiltonian of the twisted bilayer system
can be obtained by applying the rotation U = e−iszαR(θ)/2 on the 2D Dirac Hamiltonian,

Hk = U−1 (H0k +HR(θ, αR = 0) +Hsv)U = H0k +HR(θ) +Hsv. (6.4)

This operation allows us to rewrite the Green’s functions in terms of the rotation
operator,

GR(A)(αR) = U−1GR(A)(0)U, (6.5)
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Figure 6.3: Diagrammatic technique – Green (black) solid line with an arrow denotes
the free (disorder-averaged) Green’s function. Dashed lines depict scattering potential
insertions (u0) and the cross represents the impurity density (n).

where we note that the coupling coefficients λR and λsv appearing in GR(A)(0) still
have a remaining θ dependence. Substituting Eq.(6.5) into the Kubo-Streda formula
we obtain

Kjx ∼ tr{(UsjU−1)GR(0)JxG
A(0)}, (6.6)

which implies a simple recasting in relation to the response function of the untwisted
system

Kxx(θ) = cosαR(θ)Kxx(θ;αR = 0) + sinαR(θ)Kyx(θ;αR = 0) , (6.7a)

Kyx(θ) = cosαR(θ)Kyx(θ;αR = 0)− sinαR(θ)Kxx(θ;αR = 0) . (6.7b)

Owing to the C3v point-group symmetry of the regular 2D Dirac Hamiltonian,Kxx(θ;αR =
0) = 0, and thus the calculation of Kjx(θ) boils down to evaluating the yx-response
function for an untwisted system with θ-dependent Rashba-type and spin-valley cou-
plings.

Our next step is to implement the disorder-averaging procedure, where we employ
the first Born approximation for weak, short-range impurities to rule out the skew
scattering mechanism and focus only on the contribution coming from the band struc-
ture. In this work, we avoid including random fluctuations of the spin-orbit field and
consider only electrostatic scalar impurities, u0. Nevertheless, the anti-hermitian part
of self-energy acquires a matrix structure induced by the uniform spin valley SOC,
Σ

′′ ∼ ϵγ00 + λsvγ03, that must be included in the Kubo-Streda formula for consistency.
According to Eq.(4.124), the expression for the leading order disorder-averaged

density-current response function is

Kjx =
2ev

πniu20
D0jx0 =

ev

2πniu20
tr{γ̃x0γ0y}, (6.8)

evaluated diagrammatically as schematically shown in Fig.(6.3)
For typical charge carrier density with both spin-split subbands occupied at the

Fermi level (i.e., |ϵ| >
√

4λ2R + λsv, traditionally called "Regime II" [37]) Eq.(6.8) eval-
uates to

Kxx(θ) = f(θ) sin(αR), (6.9a)

Kyx(θ) = f(θ) cos(αR), (6.9b)
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where

f(θ) = − 4evϵ

πniu20

λ3R(ϵ
2 + λ2sv)

ϵ4(λ2R + λ2sv)− ϵ2λ4sv + 3λ2Rλ
4
sv
, (6.10)

and we have suppressed the θ arguments of λR, αR, and λsv for notational convenience.
The charge-to-spin conversion is entirely driven by the Rashba SOC, the only interaction
responsible for our model’s nontrivial in-plane spin texture, unbalanced by the applied
electric field. The contribution of the spin helicities controls the magnitude of the CISP;
it is maximized for Fermi energies close to the spin gap, encouraged by strong spin-
valley coupling, and decays for large Fermi energies, most likely for |λsv| ≪ |λR| [37].
The role of λsv in FBA is then to tune the strength of the conversion mechanism. On
the other hand, the interplay between skew scattering and the spin-valley interaction
leads to a particularly efficient spin Hall effect [36], concurrent with the CEE predicted
in this work. We also remark that in the limit of αR = λsv = 0, we recover the spin-
charge susceptibility of the minimal Dirac-Rashba model for 2D vdW heterostructures
with intact C3v symmetry i.e., Kxx = 0 and Kyx ∝ λ/ϵ [37]. The most crucial feature of
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Figure 6.4: Collinear spin-charge response of graphene/WSe2 for various degrees of
twist-angle disorder, represented by different standard deviations at 0K. Inset (a):
Conventional (ISGE) spin–current response for ϵ = 0.1 eV. Inset (b): Temperature
dependence of Kxx for critical twist angle and σ = 0 at selected chemical potentials
(25meV, 50meV, 75meV, and 0.1 eV from top to bottom). DFT-parameterized SOCs
vary in the range |λsv| < 1meV and 0.3meV ≲ λR ≲ 0.7meV [77]. Other parameters:
ni = 5× 10−16m−2 and u0 = 10−19 eV m2.

Eq.(6.9) is the possibility of realizing the CEE, where the nonequilibrium spin density
is pinned parallel to the applied electric field. The Rashba angle controls the effect,
occurring for αR(θc) = π/2 (modulo π) at critical twist angles θc, which value depends
on the examined system.
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Fig.(6.4) provides us with a better insight into the behaviour of the collinear and
regular EE as a function of the twist angle. In particular, we study graphene/WSe2
bilayers, where the values of the spin-orbit coupling coefficients are based on Ref. [77]
and shown in Fig.(6.2). The plot exhibits a sizeable charge-spin conversion robust
against twist-angle disorder, ubiquitous in realistic smearing up to room temperature
(inset (b)), where the finite-temperature result is simply obtained from Eq.(6.3) by
computing

Kjx(µ, T ) =

∫
dε
df(ε− µ, T )

dε
Kjx(ε, 0), (6.11)

according to Eq.(4.101). It also reveals that in this particular system, a pure collinear
Edelstein response is achieved for |θc| ≃ 14◦ (modulo π/3). The large related efficiency,
defined as ϱ = 2ve(Kxx/σxx)θ=θc is evaluated to be in the range of 0.23–0.03 and
0.01–0.004 at zero and room temperature, depending on the charge carrier density,
i.e. 3 < ϵ < 25meV. We used the analytic expression for the leading-order charge
conductivity

σxx =
2e2(8λ4Rλ

2
sv + 3λ2Rλ

4
sv + ϵ4(λ2R + λ2sv)− ϵ2(4λ2Rλ2sv + λ4sv))

niu20π(ϵ
4(λ2R + λ2sv)− ϵ2λ4sv + 3λ2Rλ

4
sv)

, (6.12)

which, we note, is independent from the Rashba angle αR.
Finally, we qualitatively assess the CEE’s robustness against twist-angle disorder

[202]. Our idea is to model the effect of the twist-inhomogeneity as a Gaussian average
of the response function over the full range of twist angles, i.e.,

⟨Kjx(θ)⟩σ =

∫ θ+π
6

θ−π
6

dϕ fσ(ϕ− θ)Kjx(ϕ), (6.13)

where
fσ(ϕ− θ) =

1

N e−
(ϕ−θ)2

2σ2 (6.14)

is the normal distribution with standard deviation σ. As a result, the value of Kxx at a
given θ will be affected by its value at other twist angles, depending on σ. The results
are summarized in Fig.(6.4). For small twist disorder, where the standard deviation
σ ≲ 1◦, the linear response of the system is virtually indistinguishable from its well-
aligned counterpart. Continuing to increase the twist disorder into the strong limit, up
to σ = 10◦, we see that the CEE remains significant at twists away from θ = mπ/6
(m ∈ Z), and hence proves to be extremely robust against twist disorder. We note that
the mean value of twist angle θc at which the pure CEE is realized depends upon the
twist disorder present within the system, as can be seen by the moving zeros of Kyx

in inset (a) of Fig.(6.4). At θ = mπ/6, x → −x symmetry is restored and hence Kxx

must vanish at these points. Thus, the results shown in Fig.(6.4) are consistent with
the symmetries of a twisted graphene/TMD bilayer.

6.4 The spin Hall effect
Our starting point is again the Kubo formula, where, now, the observable of interest to
us is the z-spin current operator in the y-direction, Ĵ z

y = (v/2)γ23, in response to an
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Figure 6.5: (a): Y -type diagrams encoding skew-scattering mechanisms that generate
the SHE. The red/blue lines denote retarded/advanced disorder-averaged Green’s func-
tion, orange dashed lines represent scattering events, the cross equates to an insertion
of the impurity density, the black circles on either side denote the spin current and
current vertices, and the orange shaded regions indicate vertex renormalization. (b):
Vertex renormalization within the Born approximation.

electric field along the x-axis,

σzyx =
e2v2

4π

∫
dk tr

[
γ23G

R
kγ10G

A
k

]
, (6.15)

which describes the clean system, i.e., without disorder. In principle, the extrinsic
contribution to the spin Hall effect requires the renormalization of the vertices and
propagators, as shown in the former section, with the extra difficulty of considering
contributions beyond the FBA. However, the self-consistent treatment of the disorder
yields too cumbersome analytic results. For that reason, we only investigate the leading
order to the extrinsic response in the weak scattering limit obtained by handling the
disorder-averaged Green’s functions and vertices with the assumption that the scatter-
ing events obey a Gaussian white-noise distribution. Then, the renormalized bubble
diagram includes the non-Gaussian average prescription ⟨U(r)U(r′)U(r′′)⟩dis = niu

3
0, as

shown in Fig.(7.5), and the Kubo formula becomes

σ̃zyx =
v2e2

2π

∫
dk dpRe

{
tr
[
GAk γ̃23GRk Y RGRp γ̃10GAp

]}
. (6.16)

Here, Y R = niu
3
0

∫
dqGR

q is the retarded skew-scattering insertion that allows for the
manifestation of the extrinsic SHE, γ̃23 and γ̃10 are the disorder-renormalized spin cur-
rent and charge current vertices respectively (see Fig.(7.5b)).

The evaluation of Eqs.(6.15) and (6.16) for a Fermi energy above the spin gap, i.e.,
ε >

√
4λ2R + λ2sv, leads to the results
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Figure 6.6: Twist angle dependence for the extrinsic and intrinsic spin Hall conductivi-
ties for a graphene/WSe2 bilayer. The extrinsic response vanishes at θ ≃ π/12, π/6, π/4
(dashed lines), which coincides with λsv(θ) = 0. We use the data of Ref. [77]
for the twist dependence of the SOCs. Furthermore, we have taken ε = 0.1 eV,
u0 = 10−19 eVm2, and ni = 5 × 1015 m−2. Inset: Spin-valley coupling twist angle
dependence data for a WSe2 TMD partner from Ref. [77].

σzyx =
e

4π

λ2R(ε
2 + λ2sv)

ε2(λ2R + λ2sv)− 3λ2Rλ
2
sv − λ4R − λ4sv

, (6.17a)

σ̃zyx =
8eε

niπu0

λ4Rλ
2
sv(ε

2 − λ2sv)(ε2 + λ2sv)
2

(ε4(λ2R + λ2sv) + 3λ2Rλ
4
sv − ε2λ4sv)2

, (6.17b)

where, in the limit λsv → 0, we recover the results of Ref. [36]. We notice that the
spin Hall conductivity is independent on the Rashba phase, simply because the current
operators commute with the rotation operator U . However, it still varies by modulating
theta, as shown in Fig.(6.6), because of the coupling coefficients’ dependence on the
twist angle. We also notice that the behaviour of the clean and extrinsic contributions
differs significantly; while σ̃zyx vanishes at θ = π/6, concurrently with a zero spin-valley
coupling, guaranteed by symmetries, the intrinsic contribution reaches its maximum.
Similarly, in the case of WSe2, λsv can be seen to vanish at θ ≃ π/12, π/4 and hence
the same behavior can be seen at these angles as is observed at θ = π/6. However,
these additional angles of vanishing σ̃zyx are extremely sensitive to the TMD considered
and the material parameters associated to them [154, 77]. Hence, there is no guarantee
that λsv, and thus the extrinsic response, will vanish at any twist angle other than π/6.

In the way of conclusion, we stress that the clean and extrinsic spin Hall responses
do not contribute simultaneously. As explicitly shown by Ref. [199], as soon as the
system becomes disordered, the clean contribution is cancelled by the renormalized
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spin Hall conductivity in FBA. More generally, the evolution of the spin operator is
ṡµ = i[H, sµ] ∼ J z

µ , and since a static spin accumulation is generated by an electric
field, i.e. the Edelstein effect, the spin Hall conductivity must be zero. However, in the
presence of inelastic scattering mediated by lattice vibrations, the Hamiltonian acquires
additional terms coupling the sublattice and the spin degree of freedom, ∼ σµσν . The
evolution of the spin operator then becomes∼ J z

µ+new terms: the cancellation reported
in Ref. [199] is not guaranteed by general principles, and the intrinsic contribution may
indeed manifest in disordered systems and also dominate. In fact, the associated spin-
lattice relaxation rate is expected to be of the order 1 neV in freestanding graphene
[203, 204] which is much smaller than any other energy scale appearing in these systems.
Consequently, by treating the effects of inelastic scattering as a simple broadening in
the density of states – this is equivalent to replacing δ with some finite, albeit small,
value – as a naive first approximation, σzyx will remain largely unchanged from Eq. 6.17a
due to the small characteristic energy scale of this scattering channel, but survives the
effect of weak disorder.

6.5 Conclusion

In this Chapter, we investigated charge-spin conversion phenomena in graphene/TMD
bilayers, where the proximity-induced spin-orbit interactions can be tuned on demand
by interlayer twisting. In particular, we studied current-induced spin accumulations
and the spin Hall effect.

In the former case, we found that an anomalous twist-angle-dependent Rashba-type
SOC in the band structure allows for an anisotropic spin-density accumulation whose
orientation depends on the twisting. Furthermore, at a critical twist angle, whose
value depends on the examined system, the bilayer’s spin texture acquires a hedgehog
configuration, which generates a purely collinear Edelstein effect parallel to the applied
electric current. Such response is robust again twist angle disorder and temperature
fluctuations and is independent of skew scattering, thus already appearing in the weak
impurity potential regime, the Gaussian approximation particularly.

However, the skew scattering mechanism can play a significant role in the presence of
resonances, allowed by the linearly vanishing density of states of graphene. As a result,
different charge-spin conversion effects are concurrent in these systems; the collinear
Edelstein effect, the regular spin-galvanic effect and the spin Hall effect. The isolation
of each component is allowed by a recently developed detection scheme called X-protocol
[196], where the manipulation of an external magnetic field’s direction filters out the
individual contributions.

For that reason, we obtain analytic results for the spin Hall effect in both the intrinsic
and extrinsic case, which magnitude depends on the twist angle, i.e., the strength of
the Rashba and spin-valley coupling terms. While the first scenario is relevant in clean
systems and reaches its maximum at zero spin-valley interaction, the second manifests
in disordered systems. It relies entirely on the skew scattering mechanism, allowing for
the asymmetric scattering of the quasi-particles, which in turn needs the spin-valley
coupling to be activated and distinguishes between up and down electrons’ spin. Then,
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for zero spin-valley coupling, realized at specific twist angles, the spin Hall conductivity
evaluates to zero.
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Chapter 7

Nonperturbative approach to interfa-
cial spin-orbit torques induced by Rashba
effect: from normal metals to topolog-
ical insulator surface states

7.1 Overview

In this chapter, we study the spin-orbit torque, a critical application of current-induced
spin observables to next-generation technologies. This phenomenon describes the inter-
action between a macroscopic spin density S, traditionally induced at the surface of a
normal metal (NM) or a 3D topological insulator (TI), and the magnetization M of a
ferromagnet (FM) in FM/NM(TI) bilayer systems. Such spin density can be generated
by applying an external electric field, which allows total electrical control of the magne-
tization dynamics. Specifically, the field-like (FL) SOT is responsible for the precession
of the magnetization, while the damping-like (DL) torque induces the magnetization
switching.

There is currently a debate about the physical origin of the SOT because of the
discrepancy between experiments and theoretical models. According to the latter, two
main mechanisms drive SOTs at FM/NM(TI) bilayers: the spin Hall effect (SHE) ap-
pearing in the bulk of the NM(TI), inducing a spin accumulation at the edge of the
NM(TI), and the Rashba-Edelstein effect (EE) at the interface. [205], The correspond-
ing results are summarized in Fig.(7.1). Firstly, it shows that the contribution of the
SHE to the DL and FL torques goes to zero as the system thickness w decreases,
concurrently with a spin diffusion length much larger than the NM(TI) thickness,
µ↑ − µ↓ ∼ Jxw, with u↑(↓) being the spin-dependent chemical potential at the edges
of the sample [13, 206]. Secondly, it evidences that interfacial scattering, allowing ver-
tical transport of surface-SOC-induced spin currents which applies a DL torque to the
magnetic layer via the spin-transfer process [207], becomes negligible in the ultra-thin
limit. Meanwhile, the EE’s FL torque remains approximately constant.

However, these microscopic theories [181, 75, 208] have failed to capture DL torques
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large enough to explain experimental observation [209], as well as the anisotropy of
the DL torque [210]. Furthermore, these theories predict the complete absence of DL
torques in the two-dimensional Rashba-coupled ferromagnet model, inconsistently with
an experimental study on ultra-thin metallic bilayers which reported non-negligible DL
torques responsible for the magnetic switching of the FM whose origin must be the
interface [209].

Figure 7.1: Contributions of the spin Hall effect and Rashba effect to the DL, τ totd and
FL, τ totf spin-orbit torque. The SHE, stemming from the bulk, is mostly responsible for
the magnetization switching, while the opposite holds for the purely interfacial Rashba
effect. This model predicts a vanishingly small DL torque with decreasing the system
thickness. Figure taken from Ref. [207]
.

We believe that such an incomplete description of the problem derives from a pertur-
bative treatment of the disorder scattering potential within the Gaussian (white-noise)
approximation and similar handling of the magnetic exchange interaction. In fact, the
use of perturbative methods has been questioned in a recent study [20], where strong
impurity scattering and the rich evolution of equilibrium spin textures with the Fermi
level were seen to play a crucial role in the build up of nonequilibrium spin polar-
ization and associated SOTs in van der Waals heterostructures. Motivated by these
questions in the field and developments in the theory, this chapter aims to shed light on
surface-generated spin densities’ contribution to the spin-orbit torques’ damping-like
component. To this end, we formulate a microscopic theory based on the Kubo-Streda
formalism able to treat nonperturbatively both the impurity scattering strength and
spin interactions (magnetic exchange and Rashba SOC) to calculate the current-induced
spin polarization in the system. In particular, we employ a generalized self-consistent
diagrammatic technique that handles disorder at the complete T -matrix level to cal-
culate the spin-density-charge-current response functions, whilst allowing for the FM’s
magnetization to lie at an arbitrary angle.

The method is applied to two paradigmatic systems in the literature. First, we tackle
the standard FM/NM problem, where the normal metal is modelled as a conventional
two-dimensional electron gas (2DEG). Then, we analyze the SOT in FM/TI systems,
which drew much attention recently due to their unprecedented SOT efficiency, meeting
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the demand to optimize the effect [138]. In both cases, we demonstrate that DL torques
with nontrivial angular dependence can be generated purely at the interface due to
the interplay of Rashba SOC, magnetic proximity effect and impurity scattering. In
practice, the anisotropic spin texture of 2DEG and TI’s Fermi rings can be seen to
enrich the possible current-induced spin polarizations and hence we predict new types
of interfacial SOT with extrinsic origin.

In two-dimensional gases, the skew scattering mechanism activated by a scalar
electrostatic impurity potential and uniform exchange interaction, generates macro-
scopic spin accumulations with non-zero components pointing at any direction in three-
dimensional space, resulting in rich SOT dynamics. On the contrary, the spin-texture
of TIs in the low-energy theory forbids out-of-plane components of the susceptibility
tensor. To overcome this limitation, we explore the effect of magnetic adatoms, proven
to retain their magnetic moment when absorbed by surface layers of 3D topological
insulators [211, 212]. In particular, they are usually polarized along the out-of-plane di-
rection [155], strongly enhancing skew scattering, but a strong in-plane anisotropy can
also characterize them [156]. This rich impurity landscape leads to a fully-populated
spin susceptibility tensor, and out-of-plane spin accumulations are now allowed. In this
context, aiming at improving the SOT efficiency, we go beyond the traditional diffusive
regime, where the concentration of impurities is sufficiently low, and investigate the
effect of the quantum side-jump mechanism, relevant in the so-called dirty regime.

We present analytical results in the weak impurity potential regime (incorporating
skew scattering) for both 2DEGs and TIs, and in the resonant regime for TI bilay-
ers. Also, we use a numerical procedure to extract the full angular dependence of the
SOTs and present the spin susceptibility tensor elements as a function of the impurity
concentration.

7.2 Models and methods

7.2.1 SOT components and notation

The spin-orbit torque’s dynamics enters in the Landau-Lifshits-Gilbert equation, pre-
sented in the Introduction, via the additive term

T =
γ

dMs

HSOT ×m, (7.1)

where d is the FM’s thickness, m = M
|M| , γ is the gyromagnetic ratio, Ms the saturation

magnetization of the magnetic layer, and HSOT is the effective magnetic field generated
by the nonequilibrium spin polarization of conduction electrons. The analysis of the
SOT then boils down to determine the charge to spin conversion taking place in the
NM(TI) layer via the symmetry-breaking SOC (RSOC). We then relate HSOT to the
density-current linear response as

HSOT = ∆xcK̂ E, (7.2)

where ∆xc is the interfacial exchange coupling, K̂ is the spin susceptibility tensor,
and E is the external electric field. It is convenient to establish some basic properties
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of the response function based on symmetry transformations, in order to simplify the
separation between DL and FL torques. Following Ref. [75], the K̂-tensor’s components
are established to be even or odd in the magnetization vector,

K̂ =



mzκxx κxy
κyx mzκyy

mxκzx mxmzκzy


 , (7.3)

where we chose for convenience a reference frame where m lies on the zx-plane. From
Eqs.(7.1), (7.2), and (7.3), we obtain a simple decomposition of the SOT into damping-
like (even in m) and field-like (odd in m) parts, Te and To respectively, which derivation
is presented in Appendix C,

Te =
∆xcγ

dMs

(te1m× (m× (ẑ × E)) + te2m× ẑ(m · E)), (7.4a)

To =
∆xcγ

dMs

(to1m× (ẑ × E) + to2m× (m× ẑ)(m · E)), (7.4b)

which assumes an interface with continuous rotational symmetry about the z-axis
[213, 214, 215, 216]. The torque coefficients, tji , are the controlling parameters of the
SOT and hence are the primary focus of our work. They may be written in terms of
the magnetization and spin susceptibility tensor components as

te1 =
Kyy

mz

= κyy, (7.5a)

te2 =
Kxx −Kyy

m2
xmz

− Kxx

mz

− Kzx

mx

=
κxx − κyy

m2
x

− κzx − κxx, (7.5b)

to1 = Kxy −
mx

mz

Kzy = κxy −m2
xκzy, (7.5c)

to2 =
1

mx

(
Kxy +Kyx

mx

− Kzy

mz

)
=
κxy + κyx

m2
x

− κzy. (7.5d)

From these expressions, we clearly see that Kxx, Kyy, and Kzx contribute solely to the
damping-like torque, whilst Kxy, Kyx, and Kzy generate the field-like torque.

7.3 The Hamiltonian

Being interested in the charge-spin conversion phenomena of the FM partner, we only
consider its Hamiltonian, which comprises a term describing the clean isolated 2DEG
or TI, H0, the proximity effects due to the interaction with the FM, HPE, and the
impurity landscape, Hdis,

H = H0 +HPE +Hdis. (7.6)

The breaking of the inversion symmetry along the stacking direction ẑ yields the ubiq-
uitous Rashba spin-orbit coupling (RSOC), HBR, which guarantees the generation of
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current-induced spin-accumulations. On the other hand, localized electrons in the ferro-
magnet provide their spins, which interact with the conduction electrons of the HM/TI
layer. The model Hamiltonian is borrowed from the s-d(f) model [217, 218], emerging
from the exchange interaction of anti-symmetrized many-body electronic states, and
takes the Zeeman-like form

Hxc = ∆xc m · s, (7.7)

with s being the vector of Pauli matrices acting in spin space. The interplay between
the exchange and Rashba interactions enriches the structure of the spin texture, which,
in general, acquires an out-of-plane and x̂-in-plane ingredient on top of the helical
component. Intuitively, this leads to a current-induced spin density that generalises
the Edelstein spin accumulation, pointing in any direction of the 3D space. The full
proximity-induced Hamiltonian may be written as the sum of the two terms, HPE =
HBR + Hxc, which can be added to H0 by introducing the non-Abelian SU(2) gauge
field [219]

Aµ = Aµi si, (i = 0, x, y, z) (7.8)

where the exact expressions for the Aµi elements are system dependent, and so we later
provide the non-zero elements for the HM and TI cases. This field is then inserted into
the bare Hamiltonian in an analogous manner to minimal coupling as a generalized
vector potential. In the absence of disorder, the Hamiltonians describing the HM and
TI systems may be written, respectively, as

H2DEG =

∫
dxψ†(x)

[
(p+A)2 −A2

2m∗ − ε−A0

]
ψ(x), (7.9a)

HDirac =

∫
dxψ†(x) [v Σµ(p

µ +Aµ)]ψ(x). (7.9b)

Here m∗ is the effective electron mass, ε is the Fermi energy, and pµ = (−ε/v,p) is the
3-momentum operator. In the 2DEG, v is simply the Fermi velocity of the electrons,
whilst in Dirac materials it is the Fermi velocity of the massless Dirac fermions. Finally,
Σµ is an operator comprised of Pauli matrices acting in spin space, or, in the case of
van der Waals hetetrostructures such as graphene and transition metal dichalogenides,
pseudospin space. We account for disorder via the Hdis term in the Hamiltonian, which
has the form

Hdis =

∫
dxψ†(x)V (x)ψ(x), (7.10a)

V (x) =
∑

i

W (x− xi), (7.10b)

where V (x) is the total impurity potential, and W (x − xi) is the potential of a single
impurity located at xi. As we have seen in Chap.(5), V (x) generally has a matrix
structure and can include effects such as local SOC and magnetic impurities [38]. In
2DEGs, however, these are not necessary for generating FL and DL SOTs, as we shall
see later and for that reason, we first focus on short-range scalar impurities of form
W0(r) = u0R

2δ(r). On the contrary, the SOT is greatly enriched by strong corre-
lated in-plane magnetic disorder in topological insulators [156], which we will model
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as Wmag(r) = (u0 + uxsx + uysy)R
2δ(r). To recover macroscopic results, we average

over all possible impurity distributions beyond the first Born approximation, in order
to include skew scattering and activate different type of spin-orbit torques previously
neglected in traditional microscopic theories. To this end, we apply the self-consistent
T-matrix formalism in the dilute regime presented in Chap.(4).

Having set up the Hamiltonian describing the partner materials, our focus now
turns to calculating the generalized spin-density–charge-current response tensor. The
following sections detail our results in 2DEGs and TIs, including the K̂-tensor in the
weak and resonant impurity potential regime, the corresponding torque coefficients, and
the fully-numerical evaluation of the response for arbitrary magnetization angle.

7.4 2D electron gas
We begin our analysis by applying the Kubo-Streda formalism, developed in Chap.(4),
to the FM/HM bilayer system, wherein we may treat the HM as a 2DEG described by
the Hamiltonian in Eq.(7.9a) in the presence of scalar impurities, W0(r). The gauge
field has the following non-zero components,

Ayx = −Axy = αm∗, A0 = −∆xcm · s ≡ −∆ · s, (7.11)

where the first two components describe the Rashba SOC (α is the coupling strength),
and the final term accounts for the exchange interaction. Starting from the free electron
picture of a 2DEG, the Rashba SOC causes spin-splitting of the parabolic dispersion into
two bands, with the spin being locked in-plane and perpendicular to the momentum.
The upper band spins wind in an clockwise manner around their Fermi ring, whilst the
lower band spins wind anti-clockwise around their Fermi ring. We label these bands
by the index ν. Next, the out-of-plane exchange interaction due to mz opens up a gap
between the two bands, and leads to an out-of-plane tilting in each band’s spin texture:
the upper band spins rotate to align with mz ẑ, and the lower band spins rotate to align
with −mz ẑ. Finally, the in-plane magnetization deforms the shape of the bands, whilst
also shifting them in opposite directions along the axis perpendicular to the in-plane
component. This generates a highly anisotropic dispersion relation

ϵk↑↓ =
k2

2m∗ −
√
m2
x − 2αmxk sin(ϕ) +m2

z + α2k2, (7.12)

see Fig.(7.2), where py = 0, and so requires expansion inmx andmy to allow for analytic
evaluation. For ease of analysis, we write the magnetization as

m = sin θ x̂+ cos θ ẑ, (7.13)

where we have assumed my = 0 and θ is the magnetization angle, defined with respect
to the z-axis in the x-z plane.

7.4.1 Semiclassical approach

Before delving into the fully quantum-mechanical results, it is convenient to frame the
problem from a semiclassical perspective via the Boltzmann formalism elaborated in
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Figure 7.2: Band structure of a 2DEG with Rashba SOC and an exchange interaction,
where we have assumed my = 0 without loss of generality, which shifts the Fermi rings
along the y-axis by the mx component. Parameters: α = 1.7 × 10−11 eVm, ∆xc = 5.5
meV, v = 105 ms−1, θ = π/4, and py = 0. The green line represents the Fermi energy
ε = 0.01 eV. Inset: NM/FM bilayer schematic, with electric current, j, aligned with the
x-axis, and FM magnetization at angle θ to the z-axis.

Chap.(4). As we previously discussed, applying an electric field, E, to the system shifts
the Fermi rings in the direction of −E, leading to a non-zero centre-of-mass momentum
and hence an electrical current. In other words, the distribution function of the electrons
undergoes a small perturbation due to the electric field, fkν + δfkν , where fkν is the
Fermi function for the band ν, and the electronic states with momentum antiparallel
to E are occupied more likely than parallel ones. Thus, the statistical-averaged electric
current reads

J =
∑

k,ν

vkν δfkν , (7.14)

where vkν is the expectation value of the velocity operator with respect to states with
momentum k and band index ν. Analogously, the spin response is the statistical average
of the spin texture, given by

S =
∑

k,ν

skν δfkν , (7.15)

where the momentum-dependence of skν is a fundamental ingredient in generating a
nonzero out-of-equilibrium spin density. Varying the occupation probability of a con-
stant spin texture fails to produce a change in the density response relative to the
equilibrium case, yielding S = 0. However, in our system the spin texture depends on
the azimuthal angle of the momentum, ϕ, and for a small in-plane magnetization the
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2DEG’s spin texture may be written as

skν = ν(s0k +mx δsk), (7.16a)

s0k = ρ∥k̂× ẑ + ρ⊥ẑ, (7.16b)

δsk = [ω∥ + ξ∥ cos(2ϕ)]x̂

+ ξ∥ sin(2ϕ) ŷ − ω⊥mz sinϕẑ,
(7.16c)

where ω(ρ)∥, ω(ρ)⊥, and ξ∥ are also functions of α, m2
z, and |k|. The structure of

Eq.(7.16) is preserved at zero temperature,

sϕν = s0ϕν +mx δsϕν , (7.17a)

s0ϕν = ν ρ̃∥k̂f × ẑ + ρ̃⊥ν ẑ, (7.17b)

δsϕν = [ω̃∥ν + ξ̃∥ν cos(2ϕ)]x̂

+ ξ̃∥ν sin(2ϕ) ŷ + ν ω̃⊥mz sinϕẑ,
(7.17c)

where the momentum is substituted by the Fermi momentum due to the form of the
perturbed distribution function, δfkν ∼ θ(ε− ϵkν). As we will show in the next section,
this is not the case of surface states of TI systems, where the angular dependence of
the out-of-plane component of the spin texture disappears at the Fermi level. The s0kν
term is responsible for the spin-helical part of skν , and therefore produces an imbalance
in oppositely aligned spins that is transverse to the applied electric field. Clearly, this
term is the origin of the familiar Edelstein effect, depending entirely on Rashba SOC,
and generates non-zero contributions to Kxy and Kyx. These components survive the
restrictions enforced by the FBA, where they appear independent of the magnetiza-
tion. We can easily see from Eqs.(7.16) and (7.17) that the presence of an in-plane
magnetization allows for an angle-dependent out-of-plane spin accumulation. Hence,
this correction contributes to the Kzx and Kzy elements. However, under the FBA we
find that no such response is seen in the out-of-plane polarization, Sz, when ε > ∆xc,
suggesting that the physics governing out-of-plane polarization is more sensitive to the
scattering strength than Edelstein effect. It turns out that the non-zero spin polariza-
tions of the individual bands cancel out perfectly within the FBA, which explains the
vanishing of Kzy reported in Ref. [75]. Overall, there are 4 vanishing responses within
the FBA, namely, Kzx = Kzy = Kxx = Kyy = 0.

To see that, we briefly present a Boltzmann treatment of the Sz density-response to
an external electric field. The starting point is the Boltzmann equation, Eq.(4.7),

−sgn[v]Evkν cosϕ
(
∂f 0

kν

∂ϵkν

)
= I[δfkν ], (7.18)

where vkν =
√
(∂ϵkν/∂kx)2 + (∂ϵkν/∂ky)2 is the absolute value of the group velocity

with band index ν. The collisional integral is the sum of an inter and intra-ring com-
ponent, I[δfkν ] = I intra[δfkν ] + I inter[δfkν ], and

I[δfkν ]
intra = −

∫
dk′(δfkνWkν,k′ν − δfk′νWk′ν,kν) (7.19a)

I[δfkν ]
inter = −

∫
dk′(δfkνWkν,k′ν̄ − δfk′ν̄Wk′ν̄kν), (7.19b)
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where the transition probabilities W in FBA take the form

Wkν,k′ν = Wk′ν,kν = 2πniδ(ϵkν − εk′ν)u
2
0|⟨k′ν |kν⟩|2 (7.20a)

Wkν,k′ν̄ = Wk′ν̄,kν = 2πniδ(ϵkν − ϵk′ν̄)u
2
0|⟨k′ν̄ |kν⟩|2 . (7.20b)

The dispersion relation’s anisotropy requires an extended ansatz similar to the one
employed in Chap.(5). However, in the present case, we need a minimum of three
harmonics, obtaining

δfkν = −sgn[v]E(
∂f 0

kν

∂ϵkν
)vkν

3∑

n=1

(
τ ∥nν cos(nϕ) + τ⊥nν sin(nϕk)

)
, (7.21)

that we insert into Eq.(7.18). After simple algebraic manipulations, we achieve an
operative form for the collisional integral at zero temperature

I[δfkν ]
intra = 2πnisgn[v]E

(
∂f 0

k

∂ϵkν

)∑

n

∫
dϕ′

(2π)2
Tνν(ϕ, ϕ

′)

|∂ϵkν/∂k|
k′fν ×

{
vfν(ϕ)(τ

∥
nν cos(nϕ) + τ⊥nν sin(nϕ))− vfν(ϕ′)(τ ∥nν cos(nϕ

′) + τ⊥nν sin(nϕ
′))
}
,

(7.22a)

I[δfkν ]
inter = 2πnisgn[v]E

(
∂f 0

k

∂ϵkν

)∑

n,ν̄

∫
dϕ′

(2π)2
Tνν̄(ϕ, ϕ

′)

|∂ϵkν̄/∂k|
k′f ν̄ ×

{
vfν(ϕ)(τ

∥
nν cos(nϕ) + τ⊥nν sin(nϕ))− vf ν̄(ϕ′)(τ

∥
nν̄ cos(nϕ

′) + τ⊥nν̄ sin(nϕ
′))
}
,

(7.22b)

where k′fν is the Fermi momentum of band ν, vfν the related group velocity, and
Tνν̄(ϕ, ϕ

′) = |⟨k′
f ν̄ ν̄ |kfνν⟩|2 is the transition probability. The integrals in Eq.(7.22)

produce, for each harmonic, the former and next-order element, meaning, in particular,
that the third harmonic generates the fourth term and renormalizes the second. The
former prevents a self-consistent evaluation of the scattering times τ ∥(⊥)

nν , so we cut it
out and close the system of equations. On the other hand, the third harmonic is renor-
malized by the fourth one, which is absent in our approximation; thus, the third order
will also be omitted. As a result, the final system of equations finds eight scattering
times. The meaning of the approximations shown above is the perturbative treatment
of the system’s anisotropy; the inclusion of additional harmonics would fine-tune the ef-
fect of such deformation. In the limit of large Fermi energy and expanding the in-plane
magnetization to the first we find four nonzero transport times

τ
∥
1↑ = τ

∥
1↓ ∼ 1/niu

2
0 (7.23a)

τ⊥1↑ = τ⊥1↓ ∼ −αmx/niu
2
0ε

3/2, (7.23b)

leading to a density-current response from each band equals to

Sz↑ = −Sz↓ ∼
mxmz

niu20α
2
√
ε
Ey. (7.24)

Clearly, Eq.(7.24) tells us that the two bands contribute equally with an opposite sign,
and therefore no out-of-plane response is allowed in FBA.

Page 115



Chapter 7, Section 7.4 Alessandro Veneri, PhD Thesis

7.4.2 Kubo-Streda approach

Our investigation of the system’s response away from equilibrium continues using the
Kubo-Streda approach within the linear response theory. In particular, we assume that
M and E vary slowly in both position and time (i.e. on scales larger than the mean
free path and τ), and hence neglect their spatial and temporal dependence. The spin
density is then directly related to the electric field via

Sα = KαβEβ, (7.25)

where Kαβ (α = x, y, z and β = x, y) is the spin susceptibility response tensor with a
3 × 2 matrix structure in our case (c.f. Eq. (7.2)). Therefore, the effect of SOT upon
the FM is contained entirely within the object Kαβ. As explained in Chap.(4), the
spin-current response function can be separated into two contributions,

Kαβ = R0
αβ +Rε

αβ, (7.26)

where R0
αβ is the system’s Fermi sea (type II) response, and Rε

αβ is the Fermi surface
(type I) contribution to the total response. By working in the dilute limit (i.e. low
impurity concentration) we may neglect the Fermi sea contribution, and ignore terms
containing products of the same Green’s function,

Kαβ ≃
1

2π

∫
dp tr[⟨sαGRjβG

A⟩dis]. (7.27)

Applying the disorder average we get

Kαβ =
1

2π

∫
dp tr[s̃αGRp jβGAp ], (7.28)

where s̃α is the renormalized vertex operator defined by the Bethe-Salpeter equation,
Eq.(4.108), and GR(A) is the dressed Green’s function defined by the self-energy ΣR(A),
Eq.(4.107). We perform our calculations using the standard rules of diagrammatics and
assume the non-crossing approximation. Again, we see that the FBA fails to produce
any out-of-plane spin accumulation, in agreement with the Boltzmann-semiclassical
argument discussed before. We overcome the symmetric cancellation between the two
bands by including the skew scattering mechanism, well defined by the presence of the
out-of-plane magnetization. To this end, we perform a complete T-matrix treatment of
the response, where the electrons’ self-energy becomes

ΣR(A) = niT
R(A) = ni

u0

1− u0gR(A)
0

, (7.29a)

g
R(A)
0 =

∫
d2p

(2π)2
G
R(A)
0,p , (7.29b)

where gR(A)
0 is the momentum integrated clean Green’s function, and we omitted the

length scale R to lighten the notation. In particular, we obtain

ΣR(A) =
3∑

α=0

ni[gα(ε, α,m)± iΓα(ε, α,m)]sα, (7.30)
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where we note that the self-energy has now acquired a matrix structure (unlike in the
Gaussian approximation), gα and Γα are real functions, and g2 = Γ2 = 0. Now that we
have all the elements required, the response function is ready for evaluation.

We begin by presenting the numerical results for the efficiency and the torque effi-
ciencies, which can be defined as θαβ = −2evKαβ/σxx and τ e/o

i = t
e/o
i /σxx respectively,

where σxx is the longitudinal DC conductivity. Fig.(7.3) plots the efficiency at fixed
magnetization angle against the Fermi energy, and Fig.(7.4) shows the behaviour of
the torque efficiencies as a function of θ. Panel (a) of the first figure shows a strong
damping-like SOT originating from the diagonal terms of the K̂-tensor, θxx(yy), with
zero in-plane magnetization. Here we see a discontinuity in θxx(yy), which can be at-
tributed to breaching the upper limit of the spin gap, where-after the magnitude of
the current-induced spin-polarization efficiency decreases monotonically and smoothly
with increasing ε. This efficiency reduction is explained by noting that the difference
in occupation numbers of the two Fermi rings becomes less significant by increasing the
Fermi energy. In the limit of ε→∞, there is a total overlap of the two Fermi rings that
provide opposing contributions to Sx(y); the result is a zero diagonal response. For com-
parison, we present the Edelstein contribution to the field-like SOT, θxy,yx, dominant
in this system. However, we find that the damping-like contribution becomes gigantic
inside the spin-gap, approaching a relative magnitude of 7%. Moving away from the

−0.8
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−0.4

−0.2

0

4 6 8 10
−0.014

−0.012

−0.01

−8×10−3

6 8 10

Figure 7.3: Current-induced torque efficiencies as functions of the Fermi energy in the
strong scattering limit, with magnetization a): θ = 0 and b): θ = π/4. In the former
case, the range of Fermi energies covered spans both inside and outside the spin gap,
whose upper limit is 4.8 meV, while in the latter only the regime outside the spin gap
is resolved. The blue lines portrays the damping-like torque efficiency, while the red
and green curves represent the field-like torque efficiencies. Parameters: m∗ = 0.8me

α = 1.7× 10−11 ms−1, ∆xcmz = 4.8 meV, ni = 5× 1014 m−2.

in-plane configuration, we find vertical spin accumulations. While the DL component
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coming from θzx remains negligible, θzy produces small corrections to the FL torque
(right panel (b)). It reaches its maximum value of 2% with respect to the EE-FL SOT
for θ = π/4.

The nonperturbative treatment of the response function in the magnetization angle
allows an in-depth analysis of the torque coefficients against θ in the strong disorder
regime, illustrated in Fig.(7.4). In particular, we find three nonzero terms, τ o1 and τ e1,2.
The left panel (Fig.(7.4a)) considers a Fermi energy inside the spin gap for an initial
out-of-plane configuration of the magnetization. This is the strong damping regime,
where the ratio between the DL and FL torques is maximized (see Fig.(7.3)). As the
FM’s magnetization is shifted from purely out-of-plane to in-plane, the spin gap be-
tween the bands, originating in the vertical component of the exchange interaction,
begins to shrink and vanishes when θ = π/2. Consequently, the fixed Fermi energy will
only intersect a single band for smaller angles, before then intersecting both bands at
some critical angle, θc(ε) (∼ π/4 in this case), where the spin gap has shrunk sufficiently
to allow this, and hence a discontinuity is observed at this θc(ε). This corresponds to
moving from the strong damping regime to the weak damping regime. The angular
dependence of the SOT coefficients is clearly symmetric about θ = π/2. On the other
hand, the right panel (Fig.(7.4b)) illustrates the angular behaviour of the torque coef-
ficients if the Fermi energy is situated outside the spin gap at θ = 0. In this regime,
there are no discontinuities since ε always intersects the two bands simultaneously. As
a consequence, the torque coefficients will be smooth continuous functions of θ.

In conclusion, we present analytic expressions of the response tensor to relate the
microscopic quantities more clearly to macroscopic accumulations. To do that, we need
ad-hoc expansion to simplify the term as much as possible. We first consider the regime
∆x ≪ ∆z ≪ α≪ ε, and denote the K̂-tensor by using a tilde. In this case, we expand
the spin susceptibility to first order in mx to yield

K̃ = − e

2πni




− (m∗)2∆zα
2πε

α
u20

− α
u20

− (m∗)2∆zα
2πε

m∗∆x∆2
z

4παε2
− ∆x∆z

2πu0αε


 , (7.31)

where we kept the first nonzero elements in the impurity potential expansion. We note
that σxx(yy) = e2ε/(πnim

∗u20) in the weak scattering limit for a large Fermi energy. The
diagonal terms of Eq.(7.31) ,i.e., K̃xx and K̃yy, define the Edelstein effect, and appear in
FBA being inversely proportional to u20. The next order in the impurity potential, u−1

0 ,
generates another field-like component, K̃zy. It requires the prescription of the non-
Gaussian average of the form ⟨V (x)V (x′)V (x′′)⟩ = niR

6u30δ(x−x′)δ(x′−x′′) [19]. The
physics of this triple-scattering within the response function is captured by truncating
the T -matrix series at the third order in Fig.(7.5b) [19]. Finally, the damping-like
elements, O(u0), can be found by calculating fourth-order scattering diagrams. Eq.(7.5)
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Figure 7.4: Torque efficiencies as a function of magnetization angle, with periodicity π.
The field-like torque efficiency τ o

1 is denoted by the red line, whilst the damping-like
efficiencies are equal in module, |τ e

1 | = |τ e
2 |, and represented by the blue line. In a) the

Fermi energy is inside the spin gap for θ = 0, i.e., ε = 4.5meV. The discontinuous
behaviour reflects the transition in the electronic band structure from inside to outside
the spin gap. In b), the Fermi energy is above the spin gap, ε = 5.5meV, and the
torque coefficients are smooth functions of θ. Parameters m∗ = 0.8me (Tantalum),
v = 5× 104 m/s, ∆xc = 5 meV, and ni = 0.5× 1015 m−1.

translates the response tensor to spin-orbit torque coefficients,

τ̃ o
1 = −m

∗

2eε

(
α +

∆2
xu0

2παε

)
,

τ̃ o
2 = −m

∗∆2
xcu

4πeαε
,

τ̃ e
1 =

(m∗)3∆xcαu
2
0

4πeε2
,

τ̃ e
2 = −(m∗)2∆xcu

2
0

4πeε2

(
m∗α− ∆2

z

2αε

)
.

(7.32)

Alternatively, we can consider a different regime in which the strengths of the Rashba
SOC and out-of-plane magnetization are now swapped, ∆x ≪ α ≪ ∆z ≪ ε. An

Page 119



Chapter 7, Section 7.5 Alessandro Veneri, PhD Thesis

+

= +

=

+

Figure 7.5: Diagrammatic expansion of the zero temperature spin-density–charge-
current response function: (a) the disorder-renormalized spin density vertex function
and (b) the T -matrix skeleton expansion. Solid lines with arrows denote disorder av-
eraged Green’s functions, while green dashed lines represent single impurity potential
insertions. Red/blue indicate advanced/retarded sectors.

overline denotes the resulting response in this case. We find

K̄ = − e

2πni




− (m∗)3α3

2π∆z

α
u20

− α
u20

− (m∗)3α3

2π∆z

(m∗)2α∆x

4πε
−m∗α∆x

2πu0∆z
,


 (7.33)

which yields

τ̄ o
1 = −m

∗α

2eε

(
1 +

m∗∆2
xu0

2π∆2
z

)
,

τ̄ o
2 = −(m∗)2α∆2

xcu

4πe∆2
zε

,

τ̄ e
1 =

(m∗)4α3∆xcu
2
0

4πe∆2
zε

,

τ̄ e
2 = −α(m

∗)3u20∆xc

4πeε

(
m∗α2

∆2
z

− 1

2ε

)
.

(7.34)

7.5 Three-dimensional topological insulators
Given the interesting results of the last section, we apply the same methodology to
surface states of 3D topological insulators, possessing a much stronger SOC than the
2DEG counterpart. For low energy excitations, the TI’s dispersion relation, ignoring
bulk states, is well described by Dirac cones shifted and gapped by the magnetic in-
teraction. We therefore use the Hamiltonian in Eq.(7.9b) to describe the TI, in which
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we add a scalar impurity potential. Since the system does not possess a pseudospin
structure, we use

Σµ = ξ(s0,−sy, sx, sz) (7.35)

alongside an SU(2) gauge field whose non-zero elements are

Ax0 = ς
∆xcmx

v
, Ay0 = ς

∆xcmy

v
, Az0 = ς

∆xcmz

v
, (7.36)

where ξ = ± describes the top (bottom) TI surface ((A)FM/TI – TI/(A)FM configura-
tions) and ς = ± specifies the ferromagnetic (antiferromagnetic) state of the magnetic
layer. The dispersion relation for this model is shown in Fig.(7.6). As in 2DEG/FM

−0.04

−0.02

0

0.02

0.04

−0.04 −0.02 0 0.02 0.04

Figure 7.6: Dispersion relation for the linear Dirac Hamiltonian model for a top TI
surface with an s-d model exchange interaction with an antiferromagnet and Rashba
SOC. Parameters: ∆xc = 5meV and v = 4.3× 105 ms−1 (Bi2Te3 [208]).

bilayers, the out-of-plane magnetization opens a gap proportional to ∆xc in the TI’s
band structure, hence we focus on the metallic regime where ε lies above the spin gap.
In addition to this, the in-plane magnetization (my = 0) distorts the spin-texture of
the Fermi ring according to

sϕ = (s0ϕ +mx δsϕ), (7.37a)

s0ϕ = ρ̃∥k̂f × ẑ + ρ̃⊥ẑ, (7.37b)

δsϕ = [ω̃∥ + ξ∥ cos(2θ)]x̂+ ξ∥ sin(2θ) ŷ, (7.37c)

where, ω(ρ)∥, ρ⊥, and ξ∥ are functions of m2
z and the Fermi momentum kf , and ϕ is

the momentum angle. The in-plane magnetization at the Fermi level does not affect
the z-component of the spin texture, meaning that the out-of-plane component of sϕ is
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independent from the momentum. As a result, no out-of-plane polarization response is
observed. The torque coefficients then take the simpler form

τ e
1 = κyy, (7.38a)

τ e
2 =

κxx − κyy
m2
x

− κxx, (7.38b)

τ o
1 = κxy, (7.38c)

τ o
2 =

κxy + κyx
m2
x

. (7.38d)

In the absence of skew-scattering, the observed spin accumulation is produced solely
by Edelstein spin accumulation, meaning that only Kxy and Kyx are the only non-zero
elements of the spin susceptibility tensor. Reintroducing skew-scattering generates an
imbalance in the number of electrons situated in opposite momentum states and leads
to a spin current perpendicular to the electrical current due to mz ̸= 0. However, the
electron’s in-plane spin component is constrained to wind clockwise around the Fermi
ring, and so the application of an electric field gives rise to a spin accumulation (anti-
)parallel to the field, Sx,y ∼ Ex,y. Therefore, we expect the only vanishing elements of
Kαβ to be Kzx and Kzy for this model.

We present the field and damping-like torque efficiencies’ dependence on the mag-
netization angle in Fig.(7.7) in the strong scattering limit (i.e. u0 is significant but not
infinite), treating band structure and scattering strength on the same level. Specifically,
the results are valid for the top TI surface configuration and antiferromagnetic state of
the magnetic layer. However, we can extend the results for more system configurations.
Noting that κyx(xy) ∝ ξv, we realize that τ o1,2 changes the sign by changing the TI sur-
face while remaining unaffected by replacing the antiferromagnet with a ferromagnet.
On the other hand, κxx(yy) ∝ (ξv)× (ς∆xc), so τ e1,2 changes the sign by changing the TI
surface and the magnetization state of the magnetic layer. Here we see that τ o

1 domi-
nates the field-like torque, with a near constant value ∼ 0.5 and varying slowly with ϕ,
analogous to the 2DEG case. In comparison, τ o

2 experiences notable fluctuations, due to
depending on the sum of Kxy and Kyx, leading to significant corrections as large as 3%
of τ o

1 . Meanwhile, the damping-like torque coefficients are equal, τ e
1 = τ e

2 , in agreement
with Eq.(7.38b) for κxx ∼ κyy, and depend strongly upon then magnetization angle.
These torques reach up to 9% of their field-like Edelstein counterparts. Let us now
analyze the spin susceptibility tensor in the weak scattering and resonant limits. In
both cases we may expand in powers of mx up to first order to obtain

KDirac
Weak =

eΓ1

2πni




∆zΓ1

2u0v
− v
u20

v
u20

∆zΓ1

2u0v

0 0


 , (7.39a)

KDirac
Res =

e

2πniv




∆z

u0
− (∆2

z−ε2)(π2+2Γ2)
8π2v2

(∆2
z−ε2)(π2+2Γ2)

8π2v2
∆z

u0

0 0


 , (7.39b)
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Figure 7.7: Torque efficiencies as a function of magnetization angle. (a): Field-like
efficiencies with the blue line denoting τ o

1 and the red line representing τ o
2 . (b):

Damping-like efficiencies, where τ e
1 = τ e

2 . Parameters: ∆xc = 0.1 eV, ε = 0.11 eV,
ni = 5× 1012m−2.

for the weak and resonant limits respectively, where we have defined Γ1 = (∆2
z −

ε2)/(3∆2
z + ε2) and Γ2 = ln −∆2

z+ε
2

Λ2 , and Λ is the ultra-violet energy cut-off. In both
limits we see that the ESA elements dominate over the damping-like terms; in the
resonant limit, Kxy(yx) = O(u0) and Kxx(yy) = O(u0), whilst in the weak scattering
limit, Kxy(yx) = O(u−2) and Kxx(yy) = O(u−1). In the limit ϕ → 0, the damping-like
efficiencies approach

τ e
1,2 = ∓

∆xc∆zu0Γ1

4ev3
, and τ e

1,2 = ∓
4π2v∆z

eu0(∆2
z − ε2)Γ2

,

in the weak and resonant limits respectively. A different way to look at the results,
which is widely used in the experimental literature of the spin-transfer torque [220],
involves the definition of the torque conductivity

σsα,β =
Tβ
αMsd

γJ
, (7.40)

where α = (1, 2) and β = (o, e). The advantage of Eq.(7.40) is to disentangle the
efficiency of the SOT from other microscopic characteristic quantities of the system,
such as the thickness and the saturation magnetization of the magnetic layer. This
facilitates the comparison between the different systems’ torque magnitudes and the
efficiency of spin-orbit and spin-transfer torque.
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Figure 7.8: Torque conductivity against the magnetization angle. Parameters: ∆xc =
0.2 eV, ε = 0.21 eV.

7.5.1 Magnetic disorder

According to our previous findings, only in-plane spin accumulations are generated at
the interface of 3D topological insulators, and the field-like torque dominates over the
damping-like counterpart, opposite to what generally happens with the spin-transfer
torque mechanism [221]. For that reason, even though magnetization switching is still
allowed, it is a relatively weak effect. So then, a natural question arises: how can
we obtain a more general spin-current response and increase the magnitude of the DL
torque? We try to find a solution by considering, along with the scalar electrostatic
impurity potential, randomly distributed magnetic defects, modelled as local sources of
in-plane exchange interactions. Under this model, the single impurity potential is then
represented as Wmag(r) = (u0 + uxsx + uysy)R

2δ(r). This type of local interactions,
intuitively, enhance the effect of skew scattering and break the constraints on the spin
response due to the form of the spin texture.

To show that, Fig.(7.9) plots the elements of the K̂-tensor against the concentra-
tion of impurities with only scalar defects (left panel) and magnetic disorder (right
panel). In the former case, only the in-plane components of the spin-current response
are generated, while in the latter, magnetic impurities entirely populate the K̂-tensor.
The increasing ni smoothly shifts the system from the dilute regime, most commonly
adopted in semiclassical theories, to a moderately dirty regime, where the side-jump
mechanism kicks in, resulting in a stronger damping-like component to the SOT. For
purely out-of-plane magnetization and in the presence of scalar impurities, the analyt-
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Figure 7.9: Spin susceptibility as a function of the impurity concentration. The graph on
the left presents the results for disordered TI with scalar impurities, where only in-plane
spin accumulations are generated. On the right, we include strong correlated magnetic
disorder, yielding to out-of-plane macroscopic spin densities. The magnetization of
the magnetic layer is strictly out-of-plane, whereby Kxx = Kyy and Kxy = −Kyx.
Parameters: v = 6 × 105m/s, R = 10−9m, u0 = 10 eV, ux = 20 eV, ∆xc = 0.1 eV,
ε = 0.11 eV.

ical expression of the quantum side-jump contribution to Eq.(7.39b) is,

κxy = −κyx = −
e(∆2

z + ε2)2

2π2v(3∆2
z + ε2)2

, (7.41a)

κxx = κyy =
eε∆z(∆

2
z + ε2)

πv(3∆2
z + ε2)2

, (7.41b)

obtained by keeping the terms in the Kubo formula which are independent of the
concentration of impurities [208], and reproducing the result in Fig.(7.9a).

While with only scalar disorder, the ratio between DL and FL in-plane components
reaches the maximum of Kyy/Kxy ∼ 0.15, the presence of magnetic impurities leads
to Kyy/Kxy ∼ 0.85, in addition to obtaining a sizable renormalization to the FL-term,
Kzy/Kxy ∼ 0.18, and a solid contribution to the DL-term coming from out-of-plane
spin accumulations, Kzx/Kxy ∼ 1.65, aligning with the efficiency of the STT.

7.6 Conclusions
This chapter provides a better understanding of the interfacial spin-orbit torques by
treating the exchange-driven band structure-anisotropy nonperturbatively and includ-

Page 125



Chapter 7, Section 7.6 Alessandro Veneri, PhD Thesis

ing the effect of the skew scattering mechanism. Specifically, we find that an efficient
damping-like spin-orbit torque can be induced at the interface of normal metal and
topological insulator-based bilayer systems, able to induce the magnetization switch-
ing in the coupled magnetic layer. These results show that the bulk contribution to
the damping-like SOT, driven by the spin Hall effect, is unnecessary, which may shed
light on the current unexplained experimental evidence [209]. Furthermore, our exact
treatment of the in-plane magnetization reveals a non-trivial angular dependence of the
torque coefficients, which shows the limitations in assuming the Zeeman-like coupling in
normal metals and topological insulators as purely out-of-plane or mildly tilted toward
the horizontal plane. In particular, a strongly angled magnetization in NM/FM bilay-
ers triggers a transition from the strong damping regime, originating from a chemical
potential inside the spin gap to the weak counterpart, portrayed by a sharp discon-
tinuity in the system’s response. To make magnetization switching more relevant in
TI/FM bilayers, we include the effect of randomly distributed magnetic impurities in
the system, which turn out to be highly beneficial to enhance the damping-like torque
and enrich SOT dynamics, especially in the dirty regime, where the quantum side-jump
mechanism plays a significant role.

A careful study of the magnetization dynamics of the magnetic layer, governed by
the Landau-Lifshitz-Gilbert equation, would be of crucial interest to understanding the
impact of purely-interfacial spin-orbit torques. What remains to be established is, in
fact, the efficiency of the SOT-induced damping-like torque in switching the magne-
tization compared to the bulk companion and the problematic spin-transfer torque.
Moreover, other exotic systems can be investigated, like Weyl semimetals or materi-
als decorated with magnetic impurities. These media are promising candidates to find
strong out-of-plane spin accumulations due to their strong proximity-induced interac-
tions and can enrich the phenomenology of the SOT.
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Conclusions

Two-dimensional systems are nowadays heavily studied in solid-state physics due to
their unique transport properties exploitable in spin-based next-generation devices.
Low dimensionality is, in fact, key to acquire optimal control over the strength and
symmetry of spin-orbit coupling, and tailor coupled spin-charge phenomena for a spe-
cific end. While two-dimensional electron gases have a long history of experimental and
theoretical research, there is currently an increased focus on more exotic model systems.
The family of three-dimensional topological insulators display metallic surface states
that function as 2D systems, with unparalleled strong spin-orbit interaction ideal for
exploiting charge-spin conversion phenomena. On the other hand, graphene has gained
attention as a high-performance spin channel due to its weak spin-orbit and hyperfine
interactions. Moreover, very recent advances in nanofabrication of van der Waals het-
erostructures have revolutionized the field of graphene spintronics. Specifically, vertical
stacks of graphene and atomically thin semiconductors have opened up the possibility
of introducing rich symmetry-breaking spin-orbit fields in graphene, opening doors to
a myriad of coupled spin-charge transport phenomena.

This thesis aimed to present a unified theoretical framework for analyzing and
predicting coupled spin-charge phenomena in two-dimensional systems, including two-
dimensional electron gases, surface states of topological insulators (TI) and proximitised
graphene. We focused on the effect of proximity-induced spin-dependent interactions
and the interplay of scalar (spin-transparent) and spin-orbit-active impurities. A uni-
fied treatment of these aspects has allowed us to investigate interesting SOC-related
transport phenomena. In the first part, we provided a bird’s eye-view of the electronic
properties of graphene, engineered graphene, and TI surface states. A detailed study
of specific broken symmetries allowed for an extensive understanding of the emergent
spin-orbit couplings. For instance, the absence of inversion symmetry along a specific
direction leads to the Rashba interaction, central for spin-charge conversion effects and
relevant in all model systems studied. Additionally, the breaking of sublattice symmetry
in graphene/transition metal dichalcogenides (TMD) heterostructures supplements the
Rasbha effect with proximity-induced spin-valley coupling, resulting in a rich SOC phe-
nomenology. We also briefly discussed the topological properties of TI systems yielding
to the strong spin-momentum locking present in these materials.
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We then introduced the main theoretical techniques used to study spin-charge trans-
port problems in this thesis. To begin, we introduced the semiclassical Boltzmann
equation, the simplest quantum extension of the classical kinetic theory. This ap-
proach, widely used in the field, treats the electrons as classical objects as they travel
through the medium but accounts for quantum effects during collision events using the
Fermi golden rule. While simple, this method can predict several effects and offers an
excellent understanding of the underlying mechanisms. However, its limitations in han-
dling spin-dependent impurities required the development of a more advanced theory,
namely, the quantum Boltzmann equation, able to capture a wider range of quantum
effects, like interband spin-orbit transitions. Finally, we extended the fully quantum-
mechanical Kubo-Streda approach to the linear response theory to the T-matrix level,
able to capture SOC in the band structure and spin-orbit scattering events in a non-
perturbative fashion. We formulated the Diffuson Hamiltonian formalism, which allows
for the derivation of complete sets of time and space-dependent drift-diffusion equa-
tions, spin-charge conversion mechanisms, and relaxation times, providing a unified
understanding of the transport properties of the system.

The methods above were first applied to monolayer graphene with randomly-distributed
spin-active adatoms and fluctuations of the spin-orbit fields, known to be important in
this system. Our findings revealed that the breaking of specific spatial symmetries
allows for the interference between different local sources of spin-orbit interactions, re-
sulting in virtual conduction-valence band transitions during scattering events. Such
transitions are then able to scatter asymmetrically particles with opposite out-of-plane
spin moments and, for this reason, we call the effect interband spin-orbit scattering.
This mechanism generates a sizable current-induced spin current, which dominates over
the traditional skew scattering-driven spin Hall current in the weak impurity potential
regime. This new effect is then integrated into a unified theory of space and time-
dependent charge-spin coupled dynamics, providing a comprehensive understanding of
various opto-spintronic phenomena, including the Edelstein Effect, spin Hall effect, and
the anisotropic spin precession.

Next, our focus is shifted to van der Waals heterostructures, specifically graphene/TMD
bilayers. These systems show great promise for spintronics due to their enhanced uni-
form spin-orbit interactions, coupled with the high electronic mobility inherited from
graphene. Additionally, the recent ability to offset the two layers by some twist angle
adds interesting features to their potential. In fact, the momentum-space spin textures
can be tuned by a judicious choice of twist angle, opening doors to a higher level of
control over in-plane current-induced spin densities. In this context, we obtained a
simple, closed-form expression for the density-current response function in terms of the
twist angle. This result reveals a spin accumulation parallel to the applied current at a
critical (material-specific) twist angle, which we dubbed collinear Edelstein effect.

One of the key areas of pratical application is the spin-orbit torque (SOT), where
a macroscopic spin accumulation generated in a non-magnetic layer and induced by
an external electric field controls the magnetization of a magnetic material in bilayer
systems. The magnetization switching is eventually exploited in storage devices to
read/write information. While traditionally such switching is attributed to the spin Hall
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effect in a bulk system, our research finds a significant contribution of pure interfacial
origin and induced by a skew scattering mechanism. To show this, we calculated the
density-current response tensor by treating the Zeeman interaction and other effects
non-perturbatively, allowing us to resolve the full angular dependence of SOTs. We
have specifically focused on two paradigmatic models: two-dimensional electrons gases
formed at the interface between metallic layers and TI surface states, which have the
potential to generate giant SOT due to their strong spin-momentum locking.

These discoveries, although small, represent an advance in a field that is far from
being exhaustively investigated, and is not yet mature. In fact, there is much room
for theoretical understanding to interpret and propose new experiments. For exam-
ple, we presented a possible theoretical explanation for the appearance of damping-like
spin-orbit torques at surfaces of ferromagnetic bilayers, which represents a better un-
derstanding of the phenomenon and can lead to improvements in the fabrication of
related devices. "In adatom-decorated graphene, the identification of interband spin-
orbit scattering and its significance in generating current-induced spin currents can help
differentiate between various sources of the same phenomenon - the spin Hall effect -
and allow for improved control over it. Furthermore, the discovery of the collinear
Edelstein effect and the ability to manipulate current-induced spin densities in twisted
heterostructures opens up opportunities for new experiments. These experiments could
confirm the phenomenon and apply it to innovative technologies.
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Appendix A

Functional approach to the Green’s func-
tions method

In this appendix, we briefly present the main principles of the functional Green’s func-
tions method to derive some properties of many-particle systems, like the quasi-particle
propagators and the response function [178]. We avoid derivations here, aiming for an
"hands-on" approach to the technique. We start introducing the Grassmann algebra,
which defines special numbers representing fermionic fields in the path integral formu-
lation of quantum mechanics. This procedure allows for a representation of quantum
mechanics in terms of partition functions by which we can evaluate observables. The
advantage of this method is the involvement of Gaussian integrals over the Grassmann
numbers, which naturally yields the Wick theorem and the diagrammatic representa-
tion of the observables’ calculation. We then focus on the effect of external potentials,
leading to the Kubo-Streda formula in the specific case of linear response, and impurity
interactions, renormalizing the bubble diagrams and the Green’s functions.

Grassmann algebra

The main reason for introducing the special Grassmann number is to work with fermionic
coherent states, that is, eigenfunctions of the annihilation operators. This way, the sec-
ond quantized system’s Hamiltonian can be written in terms of such numbers.

To start with, let us consider a single energy level occupied by spinless fermionic
particles. Due to the Pauli exclusion principle, either zero or one particle occupies such
state, i.e.,

ĉ|0⟩ = 0, ĉ|1⟩ = |0⟩, ĉ†|0⟩ = |1⟩, ĉ†|1⟩ = |0⟩, (A.1)

where ĉ(†) is the annihilation (creation) fermionic operator. We notice that no linear
combination of states in the Hilbert algebra involving ordinary numbers can be an
eigenstate of the annihilation operator, since ĉ(x|0⟩ + y|1⟩) = y|0⟩ ≠ λ(x|0⟩ + y|1⟩),
unless y = 0 or λ = 0. For that reason, we introduce the Grassmann numbers, denoted
by ψ, ψ′, ψ′′ etc, satisfying

ψψ′ = −ψ′ψ; ψ2 = 0; f(ψ) = f0 + f1ψ, {ψ, ĉ} = {ψ, ĉ†} = 0 (A.2)
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where f(ψ) is an arbitrary function of the Grassman variable ψ which is defined by its
first two Taylor expansion coefficients, i.e.,

f(ψ, ψ′) = f00 + f10ψ + f01ψ
′ + f11ψψ

′. (A.3)

We now have all we need define the fermionic coherent state,

|ψ⟩ = |0⟩ − ψ|1⟩ = (1− ψĉ†)|0⟩ = e−ψĉ
†|0⟩, (A.4)

which satisfies the desired relation ĉ|ψ⟩ = ψ|ψ⟩ and, analogously, ⟨ψ|ĉ† = ⟨ψ|ψ̄, where
we stress that the numbers ψ and ψ̄ are completely unrelated.

Lastly, the algebra has special definitions for derivation and integration. In the first
case

∂ψ

∂ψ
= 1,

∂f(ψ)

∂ψ
= f1, (A.5)

where double derivatives over two different Grassmann numbers anti-commute,

∂ψ∂ψ′f(ψ, ψ′) = ∂ψ(f01 − f11ψ) = −f11 = −∂ψ′∂ψf(ψ, ψ
′). (A.6)

In addition, the integration over Grassmann variables is defined as
∫
dψ1 = 0;

∫
dψψ = 1, (A.7)

which implies the resolution of identity

1̂ =

∫
dψ̄

∫
dψe−ψ̄ψ|ψ⟩⟨ψ|. (A.8)

We have now set up the necessary basic operations to deal with the path integral
partition function and averages over microscopic quantum operators, which we will
present in the next section. The general idea is that a statistical average is defined in
terms of Gaussian integrals over the Grassmann numbers, which are well-defined in the
present algebra. Such integrals have the general form

Z [χ̄, χ] =

∫ N∏

j=1

[
dψ̄jdψj

]
e−ψ̄iÂijψj+ψ̄jχj+χ̄jψj = detÂ eχ̄i(Â

−1)ijχj , (A.9)

where the sum is implied for any repeated indices, χ(χ̄) is another Grassmann number,
and Â in any invertible complex matrix. This formula conveniently defines the well-
known Wick theorem. In fact, we determine some special averages in the following way,

⟨ψaψ̄b⟩ =
1

Z [0, 0]

δ2Z [χ̄, χ]

δχbδχ̄a

/

χ=0

= A−1
ab (A.10a)

⟨ψaψbψ̄cψ̄d⟩ =
1

Z [0, 0]

δ4Z [χ̄, χ]

δχdδχcδχ̄bδχ̄a

/

χ=0

= −A−1
ac A

−1
bd + A−1

adA
−1
bc , (A.10b)

which is obtained by the anti-commutativity of the Grassmann numbers, derivation,
and integration rules. In particular, we used that, for spinless particles, a ̸= b ̸= c ̸=
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d, otherwise the related expectation value evaluates to zero, according to the second
relation in Eq.(A.2). In general, the Pauli exclusion principle forbids the simultaneous
presence of two Grassmann numbers describing the same electron state. As we will
see in the next section, the first term defines the propagator, i.e., the Green’s function,
while next-order terms describe more advanced diagrammatic calculations.

As a rule of thumb, the expectation value obtained through the Wick’s theorem
is obtained by considering all the permutations of the so-called contractions in the
following way [222]:

⟨ψaψbψ̄cψ̄d⟩ = ⟨ψaψbψ̄cψ̄d⟩+ ⟨ψaψbψ̄cψ̄d⟩, (A.11)

then, we move closer each couple, implying the change of sign due to the Grassmann
algebra, and obtaining Eq.(A.10b).

The partition function

As we have shown in this thesis, the objective of any technique in statistical mechanics is
to evaluate observables, which can be done by employing the density matrix operator,
i.e., Eq.(4.49), and its time evolution is controlled by the Von Neumann equation,
Eq.(4.54). As a result, the time-dependent density matrix can be expressed as

ρ̂(t) = Ût,−∞ρ̂(−∞)Û−∞,t, (A.12)

where Ût,t′ is the time-evolution operator which obeys the following relations,

∂tÛt,t′ = −iĤ(t)Ût,t′ , ∂t′ Ût,t′ = iÛt,t′ Ĥ(t
′
), (A.13)

leading to the well-known relation

Ût,t′ = T exp(−i
∫ t

t′
Ĥ(t)dt), (A.14)

where T is the time-ordered product. The idea is now to rewrite Eq.(4.49) in terms of
the time-evolution operator. In this way, the evaluation of an observable is conceptually
carried out by letting the system evolve from a time t = −∞, when the system is non-
interacting and the density matrix is well-defined, to the time t, when the observable
is evaluated, and then back again to t = −∞. Simple manipulations yields

⟨Ô⟩(t) = tr{Û−∞,+∞Û+∞,tÔÛt,−∞ρ̂(−∞)}. (A.15)

The advantage of this rewriting is the possibility to define the partition function, a con-
venient object for the functional evaluation of the properties of many-particles systems,
and describing the complete evolution in the so-called closed time contour C, depicted
in Fig.(A.1). The partition function is defined as

Z = Tr{ÛC ρ̂(−∞)}, (A.16)
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Figure A.1: Graphical visualization of the closed time contour, shown in Ref. [178].
The many-body system evolves from a non-interacting state at t = −∞ to a time t,
where the observable O is evaluated, to t =∞ and then back again.

where ÛC = Û−∞,+∞Û+∞,−∞ is the closed time contour operator. We notice that if the
Hamiltonian, embedded in ρ̂(−∞), is the same in the two branches of the C-path, then
Z evaluates to one.

The observable is then inserted in the forward (or backward) branch by including
an additional term in the Hamiltonian, i.e., the external field in Eq.(4.87),

Ĥ±
V (t) ≡ Ĥ(t)± ÔV (t), (A.17)

where +(−) refers to forward (backward) branch. Eq.(A.15) is then re-obtained by
performing the functional derivative

⟨Ô⟩(t) = i

2

δZ[V ]

δV (t)

/

V=0

. (A.18)

The general procedure to follow in order to evaluate observable is now much clearer and
obeys the following steps. In principle, we know the functional form of the partition
function in terms of a generic Hamiltonian, the Green’s function particularly, as we will
see in the next section. Such form is, remarkably, a Gaussian integral. The observable is
then included in the Hamiltonian by coupling it with a source term (e.g. density–scalar
potential, current–vector potential). The statistical average of the observable is then
simply obtained by performing functional derivatives of Gaussian integrals, shown in
Eqs.(A.9) and (A.10).

The action

Our next big jump is the presentation of the many-body partition function in the
continuum limit, defined as

Z =

∫
D[ψ̄ψ]eiS(H), (A.19)

where

D[ψ̄ψ] = lim
N→∞

2N∏

j=1

[dψ̄jdψj] (A.20)

denotes the integration over all paths and S(H) is the action, the core of the functional
method. For our porpoises, we can write the action as a sum of four terms,

S = S0 + SA + SV + Sdis, (A.21)
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where the first element encodes the bare Hamiltonian, the second and third describe the
coupling with a vector and scalar potential, and the fourth includes random distributed
impurities.

We begin by showing the procedure for deriving SA, because of its relative generality
and simplicity. The vector potential is coupled to the electric current as [171]

SA = −
∫
dr

∫

C
dtA(r, t) · j(r, t), (A.22)

where j = ψ̄(r, t)Jψ(r, t) and J = e∂H/∂p is the current operator in first quantization.
We now rewrite the integral in such a way as to consider the extremes only belonging
to the forward branch,

SA ∼
∫ +∞

−∞
dt
(
A+ · ψ̄+ Jψ+ +A− · ψ̄− Jψ−) , (A.23)

where ψ+(−) is the Grassmann number in the forward (backward) branch, and, in
general, it is a spinor. We now define the so-called Keldysh rotation,

{
ψ1 =

1√
2
(ψ+ + ψ−)

ψ2 =
1√
2
(ψ+ − ψ−)

, (A.24a)

{
ψ̄1 =

1√
2
(ψ̄+ − ψ̄−)

ψ̄2 =
1√
2
(ψ̄+ + ψ̄−)

, (A.24b)

which finally leads to

SA = −1

2

∫
dt dr

[
Acl ·

(
ψ̄1Jψ1 + ψ̄2Jψ2

)
+Aq ·

(
ψ̄1Jψ2 + ψ̄2Jψ1

)]
, (A.25)

where Acl(q) = 1
2
(A+ ±A−) is called classical (quantum) vector field; while a classical

field has the same form in both C-branches, the same does not hold for the quan-
tum version. Also, the field operators are now 2D vectors in the Keldysh space, i.e.,
Ψ = (ψ1, ψ2). The fields coupled to the quantum vector potential are proportional to
∼ ψ̄+ψ+ + ψ̄−ψ−, which therefore is the physical current density. On the contrary,
the classical vector potential is coupled to the quantum current density, which has no
physical meaning [178]. As a small remark, in the absence of external fields, nonequi-
librium currents can still be present due, for example, to gradients of temperature and
carriers’ concentrations. In this case, the physical current operator is still coupled to
the quantum vector potential, while the classical counterpart is equal to zero.

The scalar action has an identical form,

SV = −1

2

∫
dt dr

[
V cl
(
ψ̄1Pψ1 + ψ̄2Pψ2

)
+ V q

(
ψ̄1Pψ2 + ψ̄2Pψ1

)]
. (A.26)

On the other hand, the disorder action does not describe the coupling between an
observable and an external field and it is therefore purely classical,

Sdis =

∫
dt drVdis(r)ψ̄a(r, t)ψa(r, t), (A.27)
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where Vdis is the disorder potential.
Finally, we are ready to present S0, describing the clean system,

S0 =

∫
dt dr dt′ dr′ ψ̄a(r, t)[Ĝ

−1]ab(r− r′, t− t′)ψb(r′, t′), (A.28)

where

Ĝ =

(
GR GK

0 GA

)
, (A.29a)

Ĝ−1 =

(
(GR)−1 (GK)−1

0 (GA)−1

)
, (A.29b)

are Green’s function in the 2× 2 Keldysh space, in particular

(GR(A))−1(r, r′; t, t′) =
(
i∂t −H(r)± i0+

)
δ(r− r′, t− t′) (A.30)

is the retarded (advanced) Green’s function, and

GK = (1− 2f(ϵ))(GR −GA), (A.31)

is the Keldysh propagator, with f(ϵ) being the Fermi-Dirac distribution function at
equilibrium. To conclude, we write the bare action S0 in reciprocal space, defining the
Green’s functions in terms of energy and momentum. The real-space field operators, in
the standard basis [223], are defined as ψ(ψ̄)(r, t) =

∫
dk e±ikr e∓iϵtψ(ψ̄)(p, ϵ), therefore

Eq.(A.28) can be rewritten as

S0 =

∫
dtdt′drdr′

∫
dp1dp2dϵ1dϵ2 (A.32)

ψ̄a(p1, ϵ1)e
−ik1reiϵ1t[Ĝ−1]ab(r− r′, t− t′)eik2r′eiϵ2t

′
ψb(p2, ϵ2).

Applying the Green’s function operator and evaluating the integrals, we finally obtain

S0 =

∫
dϵ dp ψ̄a(p, ϵ)[Ĝ

−1]ab(p, ϵ)ψb(p, ϵ), (A.33)

where
(GR(A))−1(p, ϵ) =

(
ϵ−H(p)± i0+

)
. (A.34)

Now that we have delineated the partition function’s structure in the presence of disor-
der, vector, and scalar fields, we can evaluate statistical averages of observables under
the effect of such interactions. In particular, as we will show in the following sections,
we can derive the diagrammatic expansion of dressed Green’s functions, which are
renormalized by the disorder potential and the charge/spin density/current response to
external perturbations, the Kubo formula.
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Dressed Green’s function

We now explain the procedure to find renormalized propagators in the presence of
disorder, resulting in the diagrammatic expansion presented in Chap.(4). The form
of the statistical average of two field operators is controlled by the Gaussian integral,
Eq.(A.10), where the generic invertible matrix Âij is replaced by the action iS(H),
Eq.(A.21). Particularly, in the obsence of any interaction, we have that

⟨ψa(x)ψ̄b(x′)⟩S0 = iGab(x− x′), (A.35)

where x = (r, t), ab = 11(22) returns the retarded (advanced) clean Green’s func-
tion, and ab = 12 produces the Keldysh component of the propagator. The bracket
⟨...⟩S denotes the type of action included in the partition function. The correspond-
ing operator in momentum space is obtained by performing a Fourier transform, e.g.,∫
d(x− x′)ei(x−x′)g(−i)⟨ψa(x)ψ̄b(x′)⟩, with g being the four-momentum. Writing the

field operators in momentum representation, and using the Gaussian integrals with
respect to the reciprocal bare action, Eq.(A.33), we obtain,

⟨ψa(g)ψ̄b(g)⟩S0 = iGab(g), (A.36)

where Gab(g) is the inverse of Eq.(A.34).
The disorder is included by considering the interaction Sdis, which, for simplicity, we

expand up to the second order in the weak impurity potential regime and consider to
be scalar. Also, we examine, without loss of generality, the retarded dressed propagator
G(x− x′). Under these assumption, the average of two field operators becomes

⟨ψ1(x)ψ̄1(x
′)⟩S0+Sdis

∼ ⟨ψ1(x)ψ̄1(x
′)⟩S0 +

∫
dx′′Vdis(r

′′)⟨ψ1(x)ψa(x
′′)ψ̄1(x

′)ψ̄a(x
′′)⟩S0

− 1

2

∫
dx′′dx′′′Vdis(r

′′)Vdis(r
′′′)⟨ψb(x′′′)ψa(x

′′)ψ1(x)ψ̄b(x
′′′)ψ̄a(x

′′)ψ̄1(x
′)⟩S0 ,

(A.37)

which can be decomposed in terms of propagators using the Wick’s theorem, taking
also into account the average

⟨ψaψbψcψ̄dψ̄eψ̄f⟩ = A−1
af A

−1
be A

−1
cd − A−1

ae A
−1
bf A

−1
cd − A−1

af A
−1
bd A

−1
ce

+ A−1
ae A

−1
bd A

−1
cf + A−1

adA
−1
bf A

−1
ce − A−1

adA
−1
be A

−1
cf . (A.38)

The second term in Eq.(A.37), that we call G(1), becomes

G(1)(x− x′) = niV

∫
dx′′GR(x′ − x′′)GR(x′′ − x), (A.39)

where we performed the disorder average ⟨V (x′′)⟩dis = niV and, in momentum space,
we finally obtain

G(1)(p, ϵ) = niV G
R(p, ϵ)GR(p, ϵ). (A.40)
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We stress that the disorder average must be performed after the Wick’s decomposition
of the statistical average [222, 171, 178]. The third term requires some more work, but
eventually can be rewritten as

G(2)(x− x′) = −
∫
dx′′dx′′′

GR(x′ − x′′)V (r′′)GR(x′′ − x′′′)V (r′′′)GR(x′′′ − x), (A.41)

describing the double insertion of an impurity potential in a single propagator. We now
use the single scattering impurity potential distribution, ⟨V (r′′)V (r′′′)⟩ = niV

2δ(x′′ − x′′′),
and perform the Fourier transform in momentum and energy space, finding

G(2)(q, ϵ) = GR(q, ϵ)

(
niV

2

∫
dpGR(p, ϵ)

)
GR(q, ϵ), (A.42)

which represents the leading order rainbow diagram in first Born approximation. The
mathematical object inside brackets, which contains information about the disordered
averaged impurity potential, is an irreducible diagram because it cannot be split into
two disconnected diagrams when a line is cut. This means that all the diagrams with
several impurity insertions of the same form can be rearranged into a Dyson equation.
The special object above takes the name of self-energy [178], in which we can sum the
first-order contribution in Eq.(A.40). The renormalized Green’s function becomes

GR(A)
FBA (q, ϵ) =

1

(GR(A))−1 − Σ
R(A)
FBA

, (A.43)

where Σ
R(A)
FBA = niV + niV

2
∫
dpGR(A)(p, ϵ). Following the same idea but with dif-

ferent single-scattering statistics, i.e., non-Gaussian, we would recover the T-matrix
approximation, which simply generates a different self-energy.

This section showed how to renormalize the free propagator in the presence of dis-
order by using simple expansions of the coupling action and Wick’s theorem. The
following section applies the same technique to find the system’s response function to
external perturbations, in which the disorder average dresses both the propagators and
the vertices.

The Kubo-Streda formula

In this section, we derive the Kubo-Streda formula in disordered systems using the func-
tional approach. For simplicity, we specialize in the current-current response function,
i.e., the conductivity, also considering a diagonal current operator.

From the definition of partition function, including the vector potential action sA,
we see that the i-th component of the statistically-averaged current is the functional
derivative with respect to Aq

i

⟨J⟩ = δZ

δAqi

/

Aq
i=0

=

∫
D[ψψ̄]ei(S0+Sdis)eiSAcl (ψ̄1(x)Ji(x)ψ2(x) + ψ̄2(x)Ji(x)ψ1(x)),

(A.44)
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where iSAcl is the vector potential action including only the classical field.
In the linear response theory, Acl is considered to be weak, thus the exponential can

be expanded linearly in the classical field,

⟨J⟩ = i

∫
dx′
∫
D[ψψ̄]ei(S0+Sdis)(ψ̄1(x)Ji(x)ψ2(x) + ψ̄2(x)Ji(x)ψ1(x)) (A.45)

× (ψ̄1(x
′)Jj(x

′)ψ1(x
′) + ψ̄2(x

′)Jj(x
′)ψ2(x

′))Acl
j (x

′), (A.46)

where we assumed that the current is zero at equilibrium. The object inside the func-
tional integral, containing the field operators, is therefore the response function Rij,
as shown in Eq.(4.94). The conductivity and the response function are related as
σij(ω,q) = Rij(ω,q)/iω, thus the current-current Kubo formula can be defined as

σij =
1

iω

1

2πi

δZ[Acl, Aq]

δAclj δA
q
i

/

A=0

, (A.47)

and our aim is now to find its explicit expression.
The functional derivative in the clean system, i.e., zeroth order of the disorder action,

produces only two terms different from zero,

Rij(x
′ − x) = − e2

2iπ
vi(x)vj(x

′) (A.48)

×
[
⟨ψ1(x)ψ1(x

′)ψ̄2(x)ψ̄1(x
′)⟩+ ⟨ψ1(x)ψ2(x

′)ψ̄2(x)ψ̄2(x
′)⟩
]
,

where v(x) = − i
m
∇ acts only on the annihilation fields. Using the the Wick’s contrac-

tion theorem and considering only connected diagrams, we find

Rij(x
′ − x) =

e2

2m2i

[
∂xiG

R(x′ − x)∂x′jG
K(x− x′) + ∂xiG

K(x′ − x)∂x′jG
A(x− x′)

]
.

(A.49)
As shown in this thesis, it is more convenient to work in the reciprocal space; we thus
perform a Fourier transformation of the response function and then looking for the
dynamic limit, i.e., q → 0, where q is the external momentum. Also, we neglect con-
tributions from products of Green’s functions of the same sector since they contribute
at the next order in the presence of disorder. We finally find

σij(q, ω) =
−e2

2πm2ω

∫
dω1dp1 p1i p1j (A.50)

[
F (ω1 − ω)GR(p1, ω1)G

A(p1, ω1 − ω)− F (ω1)G
R(p1, ω1)G

A(p1, ω1 − ω)
]
.

Assuming small external frequencies, we can expand each term inside the squared brack-
ets linearly in ω. The zeroth order, which results in a divergent conductivity ∼ 1/ω,
cancels out with the diamagnetic term [171], and the remaining contribution is therefore
constant in the frequency,

σij =
e2

2πm2

∫
dϵ dp pi pj ∂ϵF (ϵ)G

R(p, ϵ)GA(p, ϵ), (A.51)

Page 139



ChapterA, Section A.0 Alessandro Veneri, PhD Thesis

which is the surface contribution response shown in Eq.(4.109), i.e., the bubble diagram.
We follow the same procedure to find the conductivity in the presence of random

impurities, after expanding the disorder action up to the desired order. For simplicity,
we show only the second order, where we get

R
(2)
ij (x

′ − x) =

∫
dx′′dx′′′⟨Vdis(r′′)Vdis(r′′′)ψ̄a(x′′)ψa(x

′′)ψ̄b(x
′′′)ψb(x

′′′)
(
ψ̄1(x)Ji(x)ψ2(x) + ψ̄2(x)Ji(x)ψ1(x)

)
(
ψ̄1(x

′)Jj(x
′)ψ1(x

′) + ψ̄2(x
′)Jj(x

′)ψ2(x
′)
)
⟩. (A.52)

We continue following the same procedure applied in the former section which is, es-
sentially, the implementation of the Wick’s theorem. Already at this initial stage, we
already obtain many diagrams with different impurity insertions. Neglecting crossed
diagrams, which provide small quantum corrections to the leading order of the semi-
classical response [51], we obtain

σ
(2)
ij =

e2

2πm2

∫
dϵ dp∂ϵF (ϵ)

(
piG

R(p, ϵ)pjG
A(p, ϵ) + pi (GR)(2)(p, ϵ)pjGA(p, ϵ)+

piG
R(p, ϵ)pj(GA)(2)(p, ϵ) + p̃

(2)
i GR(p, ϵ)pjG

A(p, ϵ)
)
,

(A.53)

where the first terms is the bare response, the second and third contributions are
the second-order dressed Green’s functions in the retarded and advanced sector, and
the fourth is the first impurity contribution to the Bethe-Salpeter equation, p̃(2)i =
niV

2GRpiG
A. Next-order impurity insertions, that is further expansions of the disorder

action, construct the complete Bethe-Salpeter for the vertex-renormalization equation,
Eq.(4.108), and the dressed conductivity becomes

σij =
e2

2πm2

∫
dϵ dp p̃i pj ∂ϵF (ϵ)GR(p, ϵ)GA(p, ϵ), (A.54)

which is a particular case of Eq.(4.109).
This appendix concisely presented the functional Green’s function method technol-

ogy to evaluate the response of a generic perturbed system, narrowing down on the
effect of external electric fields. However, far from being exhaustive, our analysis ig-
nored the breadth of possibilities that such methodology can offer but provides the
basic technique that can be applied to any generic problem. The knowledge of the
possible interactions in play, and therefore the form of the action, is everything we
need to construct the related diagrammatics, thus the response function. It is possible,
for example, to derive extensions of the Landauer formula in quantum point contacts,
study superconductivity, include weak localization effects, or decorate the conductiv-
ity tensor derived above with electron-phonon, electron-electron, and electron-photon
interactions.
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Graphene extrinsic SOC diffusion co-
efficients

The coefficients in Eq.(5.7, 5.8 and 5.9), that we used to write explicitly Eq.(5.10 and
5.13) for the standard Rashba case, are shown in the following table:

(inverse) ASP conversion Ψµ Ψx
x = Ψy

y = αASP

Iν I0x(y) = −αIASP

Spin density precession Rµν R
x(y)z
x(y) = −Rzx(y)

x(y) = −αR

Γνσ Γxyx(y) = −β
xx(y)
SW , Γyxx(y) = +β

xy(x)
SW ,

Spin current Γ0z
x(y) = βIsH, Γz0x(y) = βAASP

sH

swapping and spin Hall Ωνσ Ωxy
x(y) = βxxωSW, Ωyx

x(y) = −βxxωSW,
Ω0z
x(y) = −βωIsH, Ωz0

x(y) = −βωsH
Dνµσ
A(B) D0xx

A = D0yy
A = D1, Dzyx

A = −Dzxy
A = Dz

1,
D0yx
B = −D0xy

B = −D2, Dzxx
B = Dzyy

B = −Dz
2

Dνµσi
C Dxx0x

C = Dyy0y
C = −D4, Dxx0y

C = Dyy0x
C = +D3,

(Spin) current transfer −Dyxzx
C = Dxyzy

C = D6, Dyxzy
C = −Dxyzx

C = −D5

Dνµσi
D Dxxzx

D = Dyyzy
D = D5, Dxxzy

D = Dyyzx
D = D6,

−Dyx0x
D = Dxy0y

D = −D3, Dyx0y
D = −Dxy0x

D = −D4

Dµν Dx(y)0 = D, Dx(y)z = Dz, Dxy = Dyx, Dxx = Dyy

Relaxation times T µν T 00 = 0, T 0x(y) = 1/τ∥, T 0z = 1/τ⊥, T x(y)0 = 1/τJ∥,
T x(y)z = 1/τJ⊥, T xy(yx) = 1/τJxy, T xx(yy) = 1/τJxx

where we only listed the nonzero components, and we droped the superscript "ISOS"
in the related coupling constant. The change of signs in the Rashba extrinsic SOC for
hollow impurities, yields the following changes:
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(inverse) ASP conversion Ψµ Ψx
x = −Ψy

y = αASP

Iν −I0x = I0y = −αIASP
Spin density precession Rµν Rxz

x = −Ryz
y = −Rzx

x = Rzy
y = −αR

Γνσ Γxyx(y) = β
xx(y)
SW , Γyxx(y) = −β

xy(x)
SW ,

(Time dependent) Spin current Γ0z
x(y) = −βISh, Γz0x(y) = −βSh

swapping and spin Hall Ωνσ Ωxy
x(y) = −βxxωSW , Ωyx

x(y) = βxxωSW ,
Ω0z
x(y) = βωISh, Ωz0

x(y) = βωSh

Dνµσ
A(B) D0xx

A = D0yy
A = D1, Dzyx

A = −Dzxy
A = Dz

1,
D0yx
B = −D0xy

B = −D2, Dzxx
B = Dzyy

B = −Dz
2

Dνµσi
C −Dxx0x

C = Dyy0y
C = −D4, −Dxx0y

C = Dyy0x
C = +D3,

(Spin) Current stransfer Dyxzx
C = Dxyzy

C = D6, −Dyxzy
C = −Dxyzx

C = −D5

Dνµσi
D Dxxzx

D = −Dyyzy
D = D5, Dxxzy

D = −Dyyzx
D = D6,

−Dyx0x
D = −Dxy0y

D = −D3, Dyx0y
D = Dxy0x

D = −D4

Dµν Dx(y)0 = D, Dx(y)z = Dz, Dxy = Dyx, Dxx = Dyy

Relaxation times T µν T 00 = 0, T 0x(y) = 1/τ∥, T 0z = 1/τ⊥, T x(y)0 = 1/τJ∥,
T x(y)z = 1/τJ⊥, T xy(yx) = 1/τJxy, T xx(yy) = 1/τJxx

Here we provide some results in two key scenarios: for uKM < uR < u0 < 1 (limit
I) and u0 = uKM = 0,uR < 1 (limit II). In limit I we find

Relaxation times 1/τ =
nϵu20
2v2

, 1/τ∥ =
nϵu2R
v2

, 1/τ⊥ =
2nu2Rϵ

v2
, 1
τJ∥

= 1
2τ

,
1
τJ⊥

= 1
τJ∥

, 1
τJxx

= 1
τJ∥

, 1
τJxy

= 1
τJ∥

D = Dz = Dxx = Dxy = v2τ , D1 =
8uRv3

nu30ϵ
, D2 =

64u3Rv7

nu70ϵ
3

(Spin) Current stransfer Dz
1 =

64u3Rv9

nu80ϵ
4 , Dz

2 =
8uRv5

nu40ϵ
2 , D3 =

2uRv3

nu30ϵ
, D4 =

16u3Rv7

nu70ϵ
3 ,

D5 =
8uRv5

nu40ϵ
2 , D6 =

64u3Rv9

nu80ϵ
4

αR = 2nuR
v

, αASP = nuKMuRϵ
v3

, αIASP = 8uKMuRv
u20

,

(Time dependent) Spin current swapping βωIsH = 4βωsH =
32u2Rv4

nu50ϵ
2 ,

and spin Hall βIsH = 4βsH = βωIsH
1
τ
, αzR = 4uRv3

u20ϵ
, βxxωSW =

16u2Rv6

nu60ϵ
3 ,

βxxSW = βxySW = βxxωSW
1
τ
, αxyR = 4v3uR

ϵu20

In this limit, some terms match, including βsH and βIsH. In limit II we get
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Relaxation times 1/τ =
nϵu2R
v2

, 1/τ∥ =
nϵu2R
v2

, 1/τ⊥ =
2nu2Rϵ

v2
, 1
τJ∥

= 1
τ
,

1
τJ⊥

= − 1
τJx

, 1
τJxx

= 2
3τ

D = 1
2
v2τ , Dxx =

1
4
v2τ , Dxy =

1
2
v2τ ,

(Spin) Current stransfer Dz =
ϵ
4n
D1 = 0, D2 = 0

Dz
2 = 2Dz

1 =
uRϵ

2

8nv3
, D3 = 0, D4 = 0,

D5 = − v
4nuR

, D6 =
v5

2nu3Rϵ
2

Spin current αR = 2nuR
v

, αASP = 0, αIASP = 0, βωsH = βωIsH = 0,
swapping and spin Hall βsH = −βIsH = 0, αzR = v3

uRϵ
, βxyωSW = 2βxxωSW = v2

4nu2Rϵ
,

βxxSW =
u2Rϵ

2

8v4
, βxySW = 1, αxyR = ϵuR

2v

.

The Diffuson Hamiltonian (Eq.(??)) describing our system in FBA and expressed
in an implicit form in Eq.(5.7, 5.8 and 5.9), reads (here we only show the standard
Rashba case):

HD =



HD

11 HD
12 HD

13

HD
21 HD

22 HD
23

HD
31 HD

32 HD
33


 (B.1)

where

HD
11 = ∂tI +




0 0 0 0
0 1

τ∥
0 0

0 0 1
τ∥

0

0 0 0 1
τ⊥


 , HD

12 = ∂xI +




0 0 0 0
0 0 0 −αR

αASP 0 0 0
0 αR 0 0


 , (B.2)

HD
13 = ∂yI +




0 0 0 0
−αASP 0 0 0

0 0 0 −αR

0 0 αR 0


 , HD

21 =




D∂x 0 αIASP 0
0 Dxx∂x 0 −αzR

0 0 Dxy∂x 0
0 αxyR 0 Dz∂x


 ,

(B.3)

HD
22 =




τJ∥∂t + 1 −D1∂y D1∂x 0

−D3∂y τJxx∂t + 1 0 D5∂x
D3∂x 0 τJxy∂t + 1 D5∂y
0 −Dz

2∂x −Dz
2∂y τJ⊥∂t + 1


 , (B.4)

HD
23 =




0 D2∂x D2∂y −βωIsH∂t + βIsH
−D4∂x 0 βxxωSW∂t − βxxSW D6∂y
−D4∂y −βxxωSW∂t + βxySW 0 −D6∂x

−βωsH∂t + βsH Dz
1∂y −Dz

1∂x 0


 , (B.5)

Page 143



ChapterB, Section B.0 Alessandro Veneri, PhD Thesis

HD
13 =




D∂y −αIASP 0 0
0 Dxy∂y 0 0
0 0 Dxx∂y −αzR

0 0 αxyR Dz∂y


 (B.6)

HD
32 =




0 −D2∂x −D2∂y βωIsH∂t − βIsH
D4∂x 0 −βxxωSW∂t + βxySW −D6∂y
D4∂y βxxωSW∂t − βxxSW 0 D6∂x

βωsH∂t − βSh −Dz
1∂x Dz

1∂x 0


 , (B.7)

HD
33 =




τJ∥∂t + 1 −D1∂y D1∂x 0

−D3∂y τJxy∂t + 1 0 D5∂x
D3∂x 0 τJxx∂t + 1 D5∂y
0 −Dz

2∂x −Dz
2∂y τJ⊥∂t + 1


 , (B.8)

where I denotes the 4× 4 idensity matrix.
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Spin-orbit torque decomposition in 2DEGs
and TIs

This section provides a simple derivation for the SOT decomposition in two-dimensional
gases and topological insulators, i.e., Eqs.(7.4) and (7.5). To begin with, we derive the
symmetry properties of the K̂-tensor, Eq.(7.3), following the procedure in Ref. [75].
The density-current response function has the form

Kij ∼
∫
dp tr{sαG[p]vj[p]G[p]}, (C.1)

where vj is the velocity operator. The GFs depend on the system’s Hamltonian, which
in the 2DEG(TI) case takes the form

H2DEG(TI) =

(
p2

2m

)

2DEG

+ α (pysx − pxsy) + ∆xc (mxsx +mzsz) , (C.2)

where the first term is present only in the 2DEG case but absent in TIs, and we chose
the reference frame’s x-axis as the projection of the magnetization on the 2D plane.
The corresponding velocity operator is

v =
( p
m

)
2DEG

+ α ez × s. (C.3)

The idea is now to find symmetry transformations able to convert K̂(m) → K̂(−m),
and deduct whether a given entry of the response function is even or odd in the mag-
netization. Since only the Hamiltonian, thus the GFs, depend on the magnetization,
the chosen transformations are

sxH2DEG(TI)[−px,mz]sx = H2DEG(TI)[px,−mz], (C.4a)
szH2DEG(TI)[−p,mx]sz = H2DEG(TI)[p,−mx]. (C.4b)

The next step is to change the momentum variable in the integral, Eq.(C.1), and insert
the symmetry operators:

Kij → Kij[−mz(x)] ∼∫
dp tr{sx(z)sαsx(z)G[−px(−p)]sx(z)vj[−px(−p)]sx(z)G[−px(−p)]sx(z)}, (C.5)
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where we used that
∫ B
A
dp→

∫ A
B
d(−p) =

∫ B
A
dp. We than need to establish the trans-

formations for the velocity operator, which simply are

sxvx[−px]sx = −vx[px], (C.6a)
sxvy[−px]sx = −vy[px], (C.6b)
szv[−p]sz = −v[p]. (C.6c)

(C.6d)

For illustrative porpoises, we analyze the collinear component of the K̂-tensor, κxx. We
apply the transformation in Eq.(C.4a) to establish the parity of this term with respect
to the magnetization component mz. We obtain

Kxx[mz] =

∫
dp tr{sxG[−mz](−vx)G[−mz]} = −Kxx[−mz], (C.7)

where in the first passage we applied the transformation which leave the trace invariant.
This relation shows that by changing the sign of the out-of-plane magnetization, also
the response changes sign and thus it is odd in mz, i.e., Kxx = mzκxx. Applying
the same procedure to all the components of the density-current response function, we
obtain the result in Eq.(7.3)

We are now ready to derive the convenient decomposition of the SOT illustrated in
Eq.(7.4). From Eqs.(7.1), (7.2), and (7.3), the even (FL) components of the SOT are





T ox = ∆xcγ
tMs

mzκyxEx

T oy = ∆xcγ
tMs

(m2
xmzκzy − κxymz)Ey

T oz = −∆xcγ
tMs

mxκyxEx

, (C.8)

and the odd (DL) contribution is





T e
x = ∆xcγ

tMs
m2
zκyyEy

T e
y = ∆xcγ

tMs
(m2

x(κzx + κxx)− κxx)Ex
T e
z = −∆xcγ

tMs
mxmzκyyEy

. (C.9)

By focusing on Eq.(C.8) first, we notice that

m× (ez × E) =



−Exmz

−Eymz

Exmx


 , (C.10a)

m× (m× ez)(m · E) =



mxmz

0
−m2

x


mxEx, (C.10b)

leading to Eq.(7.4b). On the other hand, the damping-like contribution produces terms
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of the form

m× (m× (ez × E)) =




m2
zEy
−Ex

−mxmzEy


 (C.11a)

(m× ez)m · E =




0
−m2

x

0


Ex, (C.11b)

that simply yields Eq.(7.4a). We notice that the result shown in this section does not
agree with Ref. [75] even though their final result for the density-current response
remains unaffected since most entries are zero.
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