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Abstract 

Phenotyping approaches grounded in structural network science can offer insights into 

the neurobiological substrates of psychiatric diseases, but this remains to be clarified 

at the individual level in social anxiety disorder (SAD). Using a recently-developed 

approach combining probability density estimation and Kullback-Leibler divergence, 

we constructed single-subject structural covariance networks (SCNs) based on 

multivariate morphometry (cortical thickness, surface area, curvature, and volume), 

and quantified their global/nodal network properties using graph-theoretical analysis. 

We compared network metrics between SAD patients and healthy controls (HC) and 

analysed the relationship to clinical characteristics. We also used support vector 

machine analysis to explore the ability of graph-theoretical metrics to discriminate 

SAD patients from HC. Globally, SAD patients showed higher global efficiency, 

shorter characteristic path length, and stronger small-worldness. Locally, SAD 

patients showed abnormal nodal centrality mainly involving left superior frontal gyrus, 

right superior parietal lobe, left amygdala, right paracentral gyrus, right lingual, and 

right pericalcarine cortex. Altered topological metrics were associated with the 

symptom severity and duration. Graph-based metrics allowed single-subject 

classification of SAD versus HC with total accuracy of 78.7%. This finding, that the 

topological organization of SCN in SAD patients is altered towards more randomized 

configurations, adds to our understanding of network-level neuropathology in SAD. 
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1. Introduction 

Social anxiety disorder (SAD) is a disabling psychiatric condition characterized by 

disproportionate fear or anxiety about social situations in which the individual is 

exposed to possible scrutiny (Dai et al., 2017). It leads to various emotional, cognitive, 

and behavioural impairments (Ruscio et al., 2008). Its high lifetime prevalence 

(7-12%) (Stein and Stein, 2008), high comorbidity with psychopathology (Meier et al., 

2015), typically chronic course and suboptimal therapeutic options (Penninx et al., 

2021) have motivated research into its neurobiological substrates, for which the 

non-invasive methods of magnetic resonance imaging (MRI) are particularly useful 

(Bas-Hoogendam et al., 2022). The most consistent MRI findings in SAD are 

functional and/or structural abnormalities in cortical regions, notably prefrontal cortex 

(PFC), anterior cingulate cortex (ACC), insula, medial parietal and occipital regions, 

and in subcortical regions especially amygdala and putamen (the ‘fear circuitry) 

(Bas-Hoogendam and Westenberg, 2020, Bruhl et al., 2014a, Etkin and Wager, 2007, 

Groenewold et al., 2023, Mizzi et al., 2022, Zhang et al., 2022b). This extends the 

classical neurofunctional model of SAD, highlighting the crucial roles of both 

dysfunctional bottom-up response and top-down regulation in its emotional, cognitive, 

and behavioural disabilities (Bas-Hoogendam and Westenberg, 2020, Bruhl et al., 

2014a, Etkin, 2012, Gentili et al., 2016). 

To date, MRI-based studies seeking to identify neuroimaging biomarkers for 

SAD have mainly focused on regional brain abnormalities in e.g. gray matter volume 
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(GMV), cortical thickness (CT), and local brain activity. However, the brain is 

increasingly seen as a system of interacting information-sharing networks 

(Damoiseaux et al., 2006). Comprehensive characterization from a network 

perspective can deepen understanding of the structural and functional architecture of 

the whole brain (Sporns et al., 2005), and may offer further insights into the 

neuropathology of psychiatric disorders as network-level disruptions rather than 

abnormalities in isolated brain areas (Zugman et al., 2021). This analytical framework 

can be applied to several kinds of imaging data. Graph theoretical analyses based on 

gray matter (GM) functional connectivity and white matter (WM) structural 

connectivity have been widely used to characterize the abnormal brain connectome in 

psychiatric disorders (Crossley et al., 2017, Yang et al., 2021), but both approaches 

have some technical issues: functional connectivity measured using blood oxygen 

level-dependent (BOLD) MRI is vulnerable to the variability of brain states (Finn et 

al., 2017), and reconstruction of WM structural connectivity is restricted by 

tractography algorithms (Girard et al., 2014). A more recent third application, offering 

complementary insights, is to GM morphological covariance systems, which yield 

relatively stable neurobiological phenotypes based on the anatomical organization of 

large-scale brain networks (Alexander-Bloch et al., 2013a, Evans, 2013, He et al., 

2007, Liu et al., 2021, Seidlitz et al., 2018). To understand what GM covariance 

means, we must understand its origin and cause. At one level of explanation, 

morphological covariance arises from both GM functional connections and WM 

structural connectivities: synchronous activities and/or direct connections prompt 
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neuronal synaptogenesis that results in mutual neurotrophic reinforcement between 

brain regions, promoting coordinated regional development or maturation 

(Alexander-Bloch et al., 2013a, Alexander-Bloch et al., 2013b, Evans, 2013, Seidlitz 

et al., 2018). This anatomical/functional relationship is manifest in the substantial 

overlap between GM morphological covariance and GM functional or WM 

connections (Alexander-Bloch et al., 2013b, Gong et al., 2012). At another level of 

explanation, patterns of structural covariance reflect the influences of genetic 

pleiotropy, environmental influences, experience-related plasticity, neurodevelopment 

and ageing, and neuropathology (Alexander-Bloch et al., 2013a, Evans, 2013, He et 

al., 2007, Montembeault et al., 2012). In psychiatric disorders there is increasing 

evidence of abnormalities of large-scale structural covariance networks (SCNs), 

partially corresponding to GM functional or WM structural network disruptions 

(Bassett et al., 2008, Sharda et al., 2016, Yun et al., 2020). However, more work is 

needed to define the neurobiological significance of the SCNs. Here we attempt this 

for the GM morphological network in SAD. 

Notwithstanding their great potential, identifying SCN-based biomarkers poses 

technical problems. First, many studies have use seed-based (rather than whole-brain) 

analyses to characterize specific networks (Qiu et al., 2014). Second, SCNs are 

usually investigated by constructing a single brain network for each group, which 

makes it hard to characterise individual networks and relate them to clinical features 

(Alexander-Bloch et al., 2013a). These considerations prompted development of a 

method combining probability density estimation and Kullback–Leibler 
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divergence-based similarity (KLS) to capture whole-brain interregional covariance for 

single-subject-level networks (Kong et al., 2015, Kong et al., 2014, Wang et al., 

2016), and this is increasingly used in the search for neuroimaging biomarkers for 

psychiatric disorders (Homan et al., 2019, Lai et al., 2022, Lei et al., 2021). The third 

point concerns the choice of morphological metric. Many studies use regional GMV 

to construct SCNs; however GMV is a complex metric, mathematically the product of 

CT and cortical surface area (CSA), and with a complicated relationship to the 3D 

folding structure of the cortex. Another approach divides the GM into voxel cubes 

which reflects the local thickness and the 3D folding structure of the cortex (Tijms et 

al., 2012); however, these cubes do not necessarily correspond to functionally or 

anatomically homogeneous regions (Kong et al., 2014). Neither of these approaches 

takes full account of the complexity of cortical structure: the shape and size of a 

particular region often exhibits very high inter-person variability (Kong et al., 2014). 

Moreover, given the distinct developmental trajectories and cytological and genetic 

differences of independent cortical structural metrics such as CT, CSA, and curvature 

(Ducharme et al., 2015, Tamnes et al., 2017), valuable information may be lost if they 

are compounded into a complex metric like GMV. 

We therefore set out to use the KLS approach to characterize the topological 

organization of single-subject GM covariance networks in a relatively large and 

homogenous sample of SAD patients. We constructed networks based on four distinct 

morphological parameters: for cortical surface-based morphometry (SBM) we used 

two basic surface parameters, CT and CSA, to which we added a third metric 
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(curvature) representing the spatial complexity of cortex; for subcortical structures, 

known to be important in SAD (Bas-Hoogendam et al., 2017, Bas-Hoogendam and 

Westenberg, 2020, Groenewold et al., 2023, Zhang et al., 2022b), we used 

volume-based morphometry (VMB) based on GMV. In addition, exploration analyses 

were conducted to explore the correlations of SCN abnormalities to clinical 

characteristics. Lastly, we used machine learning to investigate their potential 

diagnostic efficacy. In view of the paucity of evidence on GM covariance network in 

SAD and the exploratory nature of the our analyses, we did not set out to test specific 

hypotheses. 

2. Materials and Methods 

2.1. Subjects 

In line with the ethical standards of the relevant national and institutional committees 

on human experimentation and with the Helsinki Declaration of 1975, as revised in 

2008, this study was approved by the Medical Research Ethics Committee of West 

China Hospital of Sichuan University. All participants gave prior written informed 

consent. For the SAD group, 49 right-handed adult patients with SAD were recruited 

at the Mental Health Center of the West China Hospital of Sichuan University. 

According to the Diagnostic and Statistical Manual of Mental Disorders, Fourth 

Edition (DSM-IV), two experienced clinical psychiatrists established the diagnosis of 

SAD using the Structured Clinical Interview for DSM Disorders (SCID). Power 
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analysis using G Power software (Faul et al., 2007) suggested that at least 102 

subjects were required to obtain a medium-sized effect with adequate statistical power 

(Cohen's d = 0.5, α = 0.05, 1-β = 0.8 for an independent-sample t-test). For the healthy 

controls (HC) group, we recruited 53 demographically matched (i.e. sex, age, and 

handedness) individuals from the local community, in whom the SCID-Non-Patient 

Version confirmed lifetime absence of neurological and psychiatric disorders. The 

following exclusion criteria applied to all subjects: comorbidity with other axis I 

psychiatric disorders, axis II antisocial, or borderline personality disorders; current 

psychopharmacological/psychological therapy; history of substance dependence or 

abuse; learning or developmental disorders; history of head injury; presence of major 

neurological or physical diseases; family history of mental disorders; and current 

pregnancy, claustrophobia, or other contraindications to MRI examination. 

Illness duration was defined as the period between the first reported or observed 

alterations in psychological or behaviour state and the moment of study participation 

(Singh et al., 2005), using information from patients, family members, and medical 

records. Symptom severity (i.e. social anxiety level) was assessed with the 

self-reported Liebowitz Social Anxiety Scale (LSAS) (Mennin et al., 2002); the 

24-item LSAS provides scores for fear factor (LSASF) and social avoidance factor 

(LSASA), their sum being the total score (LSAST). LSAS has shown good validity 

and reliability in Chinese populations (He and Zhang, 2004, Zhang et al., 2020, Zhang 

et al., 2022b). 
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2.2. Image acquisition and pre-processing 

Image acquisition. This study uses an SAD dataset in which we acquired, in a single 

session, whole-brain high-resolution three-dimensional T1-weighted images, 

resting-state functional MRI and diffusion tensor imaging data on a 3.0 T MR system 

(Siemens Trio, Erlangen, Germany) with a 12-channel head coil. During the scans 

subjects were asked to keep still, with closed eyes, relaxed but awake, and not think of 

anything deliberately. Earplugs were used to reduce scanner noise, and foam pads to 

minimize head motion. The high-resolution T1-weighted images used in this study 

were acquired using a spoiled gradient-recalled sequence with these parameters: 

inversion time 900 ms; repetition time 1900 ms; echo time 2.26 ms; flip angle 9°; 176 

sagittal slices; slice thickness 1 mm; field of view 256 × 256 mm2; data matrix 256 × 

256; voxel size 1 × 1 × 1 mm3. All scans were inspected by an experienced 

neuroradiologist to rule out visible artefacts and structural abnormalities. 

Image pre-processing. Cortical SBM reconstruction and estimation of CT, CSA, 

and curvature were performed using the FreeSurfer package 7.2 

(http://surfer.nmr.mgh.harvard.edu) with a ‘recon-all’ pipeline, described in detail 

elsewhere (Dale et al., 1999, Fischl and Dale, 2000b, Fischl et al., 1999). Briefly, the 

automatic process included motion correction, skull stripping using a deformable 

template model, automated registration to Talairach space, segmentation of 

subcortical WM and deep GM volumetric structures, intensity normalization, 

tessellation of GM and WM boundaries, automated topology correction and surface 

deformation following intensity gradients, surface inflation and registration to a 
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spherical atlas, and cortical parcellation (Desikan et al., 2006, Fischl et al., 2004). CT 

was defined as the average shortest distance between the WM/GM boundary and 

GM/cerebrospinal fluid boundary at each point (Fischl and Dale, 2000a), the CSA of 

each parcellation as the sum of the area of all tessellations on the surface 

(Palaniyappan et al., 2011), and the curvature as the reciprocal of the radius of an 

inscribed circle (Cole et al., 2014). For quality control, all reconstructed cortical 

surfaces were visually inspected by two experienced researchers blinded to participant 

information: when inaccuracies (e.g. skull strip failures, pial surface misplacement, 

segmentation errors, intensity normalization errors, topological defects) were 

identified, the images were manually edited (e.g. erasing/filling/cloning voxels, 

adding control points, etc) and re-analyzed (Fischl et al., 2002, Reuter et al., 2012); 8 

subjects (7 SAD, 1 HC) were excluded from subsequent analyses due to failure to fix 

inaccurate reconstruction.  

 VBM reconstruction and GMV estimation were conducted using Statistical 

Parametric Mapping software (SPM12; Welcome Department of Cognitive Neurology, 

London, UK; http://www.fil.ion.ucl.ac.uk/spm/) (Ashburner and Friston, 2005). After 

manual reorientation to the anterior commissure, images were segmented into GM, 

WM and cerebrospinal fluid with the new segmentation tool; the GM data were 

aligned, resampled to 2×2×2 mm3, and normalized to Montreal Neurological Institute 

(MNI) space using Diffeomorphic Anatomical Registration Through Exponential Lie 

Algebra (DARTEL), modulated for preservation of GMV (through multiplying by the 

Jacobian determinants derived from the normalization), then smoothed with an 8 mm 

http://www.fil.ion.ucl.ac.uk/spm/
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full-width at half-maximum Gaussian kernel (Ashburner, 2007). This yields the GMV 

maps with morphological intensity information of each voxel for each participant, of 

which two experienced researchers independently checked the quality. For 

comparability, the 8 subjects excluded from the SBM analyses were also excluded 

from further VBM analyses. 

2.3. Structural covariance network construction 

Network construction. We constructed single-subject SCNs using an approach that 

quantifies inter-regional relations by determining the similarity of estimated 

probability distributions of morphological metrics for pair-wise brain regions (Kong 

et al., 2015, Kong et al., 2014). We used the Desikan-Killiany atlas (Desikan et al., 

2006) for SBM and the Automated Anatomical Labeling (AAL) atlas 

(Tzourio-Mazoyer et al., 2002) for VBM to parcellate whole brain GM into 68 and 90 

regions of interest (ROIs), respectively: these are the network nodes (Figure 1A). For 

each subject, the probability density function (PDF) of the regional morphometry (i.e. 

CT, CSA, curvature, and GMV for each ROI) was calculated (Botev et al., 2010) 

using a kernel density estimator toolbox in MATLAB1 which employs a Gaussian 

kernel by default and automatically selects the optimal bandwidth (Botev et al., 2010). 

Next, Kullback–Leibler (KL) divergence was calculated between the PDFs of 

pair-wise ROIs as a measure of statistical similarity (Figure 1B) (Van Erven and 

Harrëmos, 2014): these are the network edges. KL divergence evaluates 

 
1 https://www.mathworks.com/matlabcentral/ fileexchange/14034-kernel-density-estimator 

https://www.mathworks.com/matlabcentral/%20fileexchange/14034-kernel-density-estimator
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similarity/dissimilarity of one probability distribution (say p) to another (q) (Van 

Erven and Harrëmos, 2014), which is calculated as follows:  

KL(𝑝‖𝑞) =∑(𝑝(𝑖) log
𝑝(𝑖)

𝑞(𝑖)
)

𝑛

𝑖=1

 

As the effect of n (the number of sample points) on PDF estimation is a decreasing 

function (Wang et al., 2016), we used a conservative value of n = 512 (Homan et al., 

2019). Because KL (p||q) does not equal KL (q||p), we assessed the similarity between 

the two PDFs using a symmetric KL divergence (KL(p, q)) (Homan et al., 2019, Kong 

et al., 2015, Kong et al., 2014, Wang et al., 2016),  calculated as: 

KL(𝑝, 𝑞) =∑(𝑝(𝑖) log
𝑝(𝑖)

𝑞(𝑖)
+ 𝑞(𝑖) log

𝑞(𝑖)

𝑝(𝑖)
)

𝑛

𝑖=1

 

Finally, the value of symmetric KL divergence was converted to a similarity 

measurement (range 0 [no similarity] to 1 [identical distributions]) for all pair-wise 

regions (Homan et al., 2019, Kong et al., 2015, Kong et al., 2014, Wang et al., 2016): 

KLS(𝑝, 𝑞) = 𝑒−𝐾𝐿(𝑝,𝑞) 

For each subject, this yields four KLS-based SCNs: three 68 × 68 matrixes based on 

CT, CSA, and curvature, and a 90 × 90 matrix based on GMV (Figure 1C). 
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Figure 1. The analysis of structural covariance networks. (A) Cortical 

reconstruction and estimation of CT, CSA, and curvature were performed using 

FreeSurfer, and GMV estimated using Statistical Parametric Mapping. Whole brain 

GM was parcellated using the Desikan-Killiany atlas for cortical morphometry (CT, 

CSA, curvature: 68 regions) and the AAL atlas for GMV (90 regions). (B) The PDF of 

each regional morphometry (CT, CSA, curvature, GMV) was calculated using kernel 

density estimation, and KL divergence measured statistical similarity between the 

PDFs of pair-wise regions. (C) For each subject, the structural covariance network is 

represented by the resulting cortical morphometry (68×68) and GMV (90×90) matrix. 

(D) These were binarized over a wide range of sparsity S thresholds. (E) For each 

subject, global and nodal metrics characterize the topological properties of these 

binarized structural covariance networks. (F) The network metrics were compared 

between SAD and HC using independent-sample t test, and those showing significant 

between-group differences were analysed by partial correlation to investigate the 

association with clinical features. Abbreviations: AAL, Automated Anatomical 

Labeling; Cp, clustering coefficient; Eglob, global efficiency; Eloc, local efficiency; HC, 

healthy controls; KL, Kullback-Leibler; Lp, characteristic path length; PDF, 

probability density function; SAD, social anxiety disorder. 
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Network binarization. Topological graph-theoretical analysis requires all the 

subjects’ networks to have the same number of nodes and edges, so we applied a wide 

range of sparsity S (i.e. the number of actual edges as a fraction of all possible edges) 

thresholds (0.05-0.30 with an interval of 0.01) to binarize the KLS-based matrices 

(Lai et al., 2022) (Figure 1D): in these binarized SCNs, 1 denotes significant 

covariation of pair-wise areas, while 0 represents none. All these procedures were 

completed in MATLAB R2014a (The MathWorks, Inc., MA, USA). 

2.4. Graph theoretical analysis 

Topological property calculation. We used the Brain Connectivity Toolbox 

(https://sites.google.com/site/bctnet/Home; (Rubinov and Sporns, 2010)) in MATLAB 

R2014a to quantify the topological properties of the binarized SCNs, calculating all 

parameters at each sparsity threshold (Figure 1E). Details of these topological 

parameters are given elsewhere (Rubinov and Sporns, 2010; Latora and Marchiori, 

2001, Watts and Strogatz, 1998); here we summarise the main points. Network 

parameters are quantified at both the global and nodal levels.  

The global-level parameters comprise the small-world metrics and the network 

efficiency parameters. First, the global small-world metrics: the clustering coefficient 

(Cp) reflects the local ‘cliquishness’ of a node in a network (i.e. the fraction of a 

node’s neighboring nodes which are interconnected) and the Cp of the network is the 

average of Cp over all nodes; the characteristic path length (Lp) is the mean shortest 

distance between pairs of nodes, calculated by averaging the smallest number of 

https://sites.google.com/site/bctnet/Home
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connections required to link any pair of nodes; and the small-worldness (σ) quantifies 

the small-world topology, calculated as normalized Cp divided by normalized Lp. To 

assess small-worldness, the Cp and Lp of the networks were compared with those 

(Cprandom and Lprandom) of random networks (n = 100) that preserved the same number 

of nodes and edges, and the same degree distribution, as the real brain networks 

(Maslov and Sneppen, 2002, Wang et al., 2015). Typically, a small-world network 

meets the conditions of normalized Cp = Cp/Cprandom > 1 and normalized Lp = 

Lp/Lprandom ≈ 1; thus the small-world scalar σ > 1 (Watts and Strogatz, 1998). Next, 

the global network efficiency metrics: the global efficiency (Eglob) measures the global 

efficiency of parallel information transfer; the local efficiency (Eloc) measures local 

connectedness (i.e. the communication efficiency among the immediate neighbors of 

a node when it is removed). In addition to these global parameters, there are three 

nodal-level centrality parameters: nodal degree is the number of nodes directly 

connected to a particular node; betweenness measures the number of shortest paths 

between all other pairs of nodes through this node; and nodal efficiency refers to the 

information transmission capability of each node in the network. 

Area under the curve computation. As sparsity threshold affects network 

small-worldness (He et al., 2008), we calculated the area under the curve (AUC) over 

a range of sparsity thresholds (0.05-0.30 with an interval of 0.01), as a comprehensive 

scalar measure of brain network topology, which avoids potential bias of any single 

threshold. 
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2.5. Network-based statistical analyses 

Group comparison of network metrics. The AUC of network metrics were compared 

between SAD and HC using independent-sample t test with age, sex, and total 

intracranial volume (TIV) as covariates of no interest. For any all SCNs, when 

comparing graph theoretical metrics between two groups we applied the 

Benjamin–Hochberg False Discovery Rate (FDR) to correct for multiple comparisons 

with a significance level of P < 0.05 (Genovese et al., 2002). 

Clinical relevance analyses. To identify relationships in the SAD cohort between 

the network properties with significant between-group differences and clinical 

characteristics (LSASA, LSASF, and disease duration), partial correlation analyses 

were conducted with age, sex, and TIV as covariates. FDR was used to control for 

multiple comparisons with P < 0.05. 

Machine learning analyses. Support vector machine (SVM) analyses (Cortes 

and Vapnik, 1995), using the LIBSVM toolbox (Chang and Lin, 2011), explored how 

well the graph-theoretical matrices could discriminate SAD versus HC at the 

individual level. In brief, we vectorised the graph-theoretical matrices showing 

significant between-group differences for each subject as features for subsequent 

analyses; leave-one-out cross-validation was used to separate training and testing sets; 

data normalization on the feature matrix and optimization of the SVM hyperparameter 

(the soft margin parameter C) on the training sets were performed in each iteration; 

the SVM classification algorithm with linear kernel was used to find the hyperplane 
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maximizing the separation margin between binary classes in the feature space within a 

training set; this classification strategy was then used to predict the class of the testing 

sets; classification performance of the model was evaluated on the testing sets through 

sensitivity, specificity, total accuracy, and the area under the receiver operating 

characteristic (ROC) curve (AUC); a nonparametric permutation test (5000 times) 

was conducted to estimate significance for the machine learning model. More details 

see Supplementary Materials. 

3. Results 

3.1. Demographic and clinical characteristics 

There were no significant differences between SAD and HC in sex composition and 

age; SAD patients scored significantly higher on LSAS (Table 1).  

Table 1. Demographic and clinical characteristics of participants 

Characteristics SAD (N = 42) HC (N = 52) P value 

Sex (Male/Female) 25/17 31/21 0.993a 

Age (years) 24.2 ± 5.5 23.4 ± 3.4 0.387b 

Illness duration (years) 6.9 ± 4.1 - - 

LSAST 64.3 ± 24.1 18.3 ± 8.3 < 0.001b 

LSASF 31.7 ± 11.8 10.1 ± 5.4 < 0.001b 

LSASA 32.6 ± 13.4 8.2 ± 6.0 < 0.001b 
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Note: Continuous variables are presented as the means ± standard deviations. a by 

chi-square test. b by independent-sample t test. Abbreviations: HC, healthy controls; 

LSAST, LSASF, and LSASA, total score and fear and avoidance factor scores on the 

Liebowitz Social Anxiety Scale (LSAS); SAD, social anxiety disorder. 

3.2. Group differences in topological metrics of SCNs 

Of the global topological characteristics, the curvature-based SCNs showed 

significant between-group differences: compared to HC, SAD patients showed 

significantly higher Eglob (t = 3.473, P < 0.001), shorter Lp (t = -3.576, P < 0.001), and 

stronger σ (t = 2.258, P = 0.026) (Figure 2). No significant global-level topological 

results were observed in the SCNs based on CT, CSA, or GMV.  

 

 

Figure 2. Intergroup comparisons between SAD patients and HC of global 

metrics for curvature-based structural covariance networks. Results for each 

metric are shown as a box plot with individual data points and a smoothed distribution; 

scores on the y-axis represent the standardized residuals of the graph-theoretical 

metrics after controlling for age, sex and total intracranial volume (*P < 0.05, 

***P < 0.001). Abbreviations: HC, healthy controls; SAD, social anxiety disorder. 

Of the nodal topological characteristics, in the SBM-based covariance network, 
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SAD patients showed increased nodal degree and efficiency in left superior frontal 

gyrus (SFG), right lingual gyrus (LG), and right superior parietal lobe (SPL), 

increased nodal efficiency in right pericalcarine cortex, and decreased nodal degree in 

right paracentral gyrus; in the VBM-based covariance network, SAD showed 

increased nodal degree in left amygdala (Figure 3 and Table S1). 
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Figure 3. Intergroup comparisons between SAD patients and HC of nodal 

centrality for structural covariance networks. Results for each metric are shown as 

a box plot with individual data points and a smoothed distribution; the y-axis 

represents the standardized residuals of the nodal centrality metrics after controlling 

for age, sex and total intracranial volume; the brain image shows the anatomical 

location. Abbreviations: GMV, gray matter volume; HC, healthy controls; L, left; LG, 

lingual gyrus; paraCG paracentral gyrus; R, right; SAD, social anxiety disorder; SFG, 

superior frontal gyrus; SPL, superior parietal lobe. 

3.3. Clinical correlates of network topological characteristics 

After controlling for the confounders of sex, age and TIV, at the global level of the 

curvature covariance network, Eglob (r = 0.424, P = 0.007) and σ (r = 0.480, P = 0.002) 

were positively correlated to illness duration, while Lp was negatively correlated with 

duration (r = -0.415, P = 0.009) (Figure 4). At the nodal level, there were significant 

positive correlations between curvature-based nodal degree of right LG and LSASA (r 

= 0.386, P = 0.015), between curvature-based nodal efficiency of right LG and 

LSASA (r = 0.342, P = 0.033); and between curvature-based nodal efficiency of right 

pericalcarine cortex and illness duration (r = 0.470, P = 0.003). Only the correlation 

between σ of curvature covariance network and duration survived correction for 

multiple tests at FDR-corrected P < 0.05. 
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Figure 4. Clinical correlates of global metrics for curvature-based structural 

covariance networks. Scatter plots depicting the relationship between illness 

duration and global-level graph-theoretical metrics with significant between-group 

differences in social anxiety disorder patients (**P < 0.01). The x-axis represents the 

standardized residuals of the illness duration, the y-axis the standardized residuals of 

the graph-theoretical metrics, after sex, age, and total intracranial volume were 

regressed out. Only for the small-worldness of the curvature covariance network 

(right-hand panel) did the correlation with duration survive correction for multiple 

tests at FDR-corrected P < 0.05. 

3.4. Single-subject classification of SAD patients versus HC 

The accuracy of SVM classification for SAD versus HC based on the 

significantly-different network topological characteristics were significantly above 

chance (P < 0.001), with total accuracy 78.7%, sensitivity 83.3%, specificity 80.8%, 

and AUC 86.8% (Figure 5). 
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Figure 5. Single-subject classification of SAD patients versus HC based on the 

significant network topological characteristics. Abbreviations: AUC, area under the 

receiver operating characteristic curve; HC, healthy controls; SAD, social anxiety 

disorder. 

4. Discussion 

We believe this is the first study to characterise brain single-subject GM connectome 

disorganization based on comprehensive structural metrics (CT, CSA, curvature, and 

GMV) in a relatively large and homogeneous sample of SAD patients. SAD patients 

showed greater network integration, reflected by higher Eglob, shorter Lp, and stronger 

σ of curvature-based SCNs, and altered nodal centralities in the 

cognitive-control/emotional regulation systems (SFG, SPL, amygdala) and 

sensorimotor/perceptual systems (paracentral gyrus, LG, pericalcarine cortex). Altered 
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global and nodal topological metrics correlated with symptom severity and illness 

duration, suggesting pathophysiological relevance. Further, graph-based metrics 

allowed single-subject classification of SAD versus HC with significant accuracy, 

suggesting potential diagnostic efficacy. These findings offer some insights into the 

neural substrates of SAD, as we now discuss. 

In formal terms, the normal human brain is configured as a small-world network 

that optimally balances local segregation (reflected by Cp and Eloc) and global 

integration (reflected by Lp and Eglob) to maximize efficient information processing at 

low wiring and energy costs (Bullmore and Sporns, 2012, Sporns and Zwi, 2004). In 

contrast, a regular network is characterized by high segregation and low integration, 

while a random network demonstrates high integration and low segregation (Suo et al., 

2018). Consequently, our findings in single-subject GM SCNs of higher structural 

network integration (i.e. higher Eglob, shorter Lp, and stronger σ) and relative 

preservation of segregation in SAD patients suggest a shift toward more randomized 

configurations. This is consistent with reports of globally disrupted topology in GM 

functional networks (SAD patients having shorter normalized Lp than HC) (Yang et 

al., 2019). Indeed, a shift toward more randomized global network topology is 

reported in many psychiatric disorders (Lei et al., 2022, Niu et al., 2018, Singh et al., 

2013). Compared with the small-world model, randomized networks show less 

modularized information processing and fault tolerance (Latora and Marchiori, 2001), 

as well as aberrant signal propagation speed and synchronizability (Strogatz, 2001). 

Although the neurobiological mechanisms remains to be established, a shift toward 
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randomization may underpin deficient transmission of information and thus contribute 

to cognitive, emotional, and behavioral impairments in SAD (Latora and Marchiori, 

2001). Such a pathophysiological link is supported by the correlation between relative 

randomized organization and SAD duration: the longer the disease, the more 

prominent the shift to a random pattern (Liao et al., 2017). 

At a regional level, higher nodal centralities, suggesting important roles in the 

network (Liao et al., 2017), were observed in left SFG, right SPL, and left amygdala, 

which are core regions involved in cognitive control and emotional regulation (Bruhl 

et al., 2014a). This is in line with reported regional structural and functional 

abnormalities in SAD (Bruhl et al., 2014a, Bruhl et al., 2014b, Mizzi et al., 2022, 

Zhang et al., 2020); a recent systematic review of SAD most consistently implicated 

resting-state dysconnectivity in PFC, parietal lobe, and amygdala (Mizzi et al., 2022). 

As a key node of the frontolimbic circuitry (fear circuitry), PFC plays a central role in 

cognitive control and emotional regulation such as appraisal and reappraisal, 

self-referential judgments, attentional allocation towards emotional stimuli, inhibition 

and memory extinction of fear and anxiety responses (Etkin et al., 2011, Hiser and 

Koenigs, 2018, Raichle, 2015, Zhang et al., 2022a); the amygdala is implicated in 

detecting and evaluating environmental cues, arousal and negative valence, 

acquisition, consolidation and retrieval of fear memory, as well as extinction of fear 

(Janak and Tye, 2015, Sergerie et al., 2008). It is accepted that inhibition by PFC of 

activity in limbic regions such as amygdala is vital for well-balanced fear responses, 

without which unchecked amygdala activity maintains the learned aversive response 
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in the presence of SAD-related stimuli (Davidson, 2002, Marek et al., 2013). 

Disturbed and dysregulated attentional networks in the frontoparietal circuits 

(dorsolateral PFC, SPL) are also thought to be associated with the abnormalities that 

characterize SAD in executive function, attentional allocation (top-down management 

of rules and goals during externally directed tasks (Turner and Spreng, 2012)), and 

emotional regulation (Ochsner et al., 2012, Sylvester et al., 2012). Our findings of 

abnormal nodal centralities in PFC, SPL, and amygdala may underlie these neural 

mechanisms of hypervigilance and persistent biased attentiveness to potential social 

threatening stimuli, deficient cognitive control, and dysfunctional emotional 

regulation (Bruhl et al., 2014a, Sylvester et al., 2012). 

We also observed altered nodal centralities in the right paracentral gyrus, LG, 

and pericalcarine cortex, which comprise the sensorimotor network (SMN) and visual 

network (VN) (Bruhl et al., 2014a), in both of which structural/functional 

abnormalities have been reported in SAD (Chavanne and Robinson, 2021, Dixon et 

al., 2020, Goldin et al., 2009, Talati et al., 2013). There is increasing evidence that the 

perceptual/sensorimotor system is involved in emotion perception and experience 

(Hardee et al., 2017), perception of social facial signals of fear (Pourtois et al., 2004), 

and emotion regulation in responses to SA-related cues (Kropf et al., 2019). Disrupted 

processing of sensorimotor/visual signals, perceptual impairments, and dysfunctional 

cognitive control in the high-order networks, may all contribute to inappropriate 

processing of external social signal, abnormal emotional arousal, and resultant 

cognitive bias and avoidance behaviour (Kreifelts et al., 2019, Kreifelts et al., 2020).  
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Intriguingly, the SCNs constructed from different morphological indices revealed 

different alterations of network topology. In a sense, those results were consistent with 

extant evidence of the metric specificity of the topological organization of 

morphological similarity networks in physiological and pathological conditions (He et 

al., 2008, Sanabria-Diaz et al., 2010). In technical terms, SCNs constructed by 

different surface morphological metrics have different interregional covariance and 

network topology (Li et al., 2021). Biologically, these likely reflect morphological 

architectures with different developmental trajectory, cytology, and genetics (Chen et 

al., 2013, Hogstrom et al., 2013, Rakic, 1988, Storsve et al., 2014, Tamnes et al., 

2017), whereas developmental, genetic pleiotropy, and environmental factors may 

influence the structural covariance among brain regions, thus producing unique 

structural covariance patterns of individuals (Alexander-Bloch et al., 2013a, Evans, 

2013, He et al., 2007). One plausible explanation, therefore, for the discrepancies 

between different morphological networks in SAD patients is that they reflect these 

differences in the particular developmental, genetic and environmental contexts (Li et 

al., 2021). Direct empirical studies (e.g., cytoarchitectonic) studies are warranted to 

investigate this further. 

We present here the first preliminary evidence that graph-theoretical topological 

matrices of SCNs allow individual classification of SAD versus HC. Neuroimaging 

analyses combined with machine learning offer the hope of developing objective 

biomarkers (Chen et al., 2020, Frick et al., 2014, Liu et al., 2015, Zhan et al., 2021) to 

guide early diagnosis and timely interventions in clinical practice (Bas-Hoogendam 
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and Westenberg, 2020, Etkin, 2019). It is however a long road to clinical application 

in psychiatry. Published machine learning pipelines differ in technical aspects (feature 

selection and extraction, classification models, validation methods, performance 

evaluations), and sample sizes in research studies are usually relatively small. 

Practical factors (e.g. clinical heterogeneity, availability and comparability of 

neuroimaging data acquisition, cost) have limited the application of neuroimaging 

metrics in classifying or stratifying individual patients (Bondi et al., 2023, Rashid and 

Calhoun, 2020). At this stage, machine learning analyses may be more informative in 

exploring the distinct patterns of SCNs constructed by different morphological indices 

in psychiatric disorders, with a view to gaining insights into their neurobiology. 

This study has limitations. First, no cross-sectional design can identify causal 

associations between SCNs abnormalities and disease: this will need longitudinal 

studies of subjects with high vulnerability to developing SAD (e.g. based on 

genotypes and endophenotypes (Bas-Hoogendam et al., 2016)), and interventional 

(therapeutic) trials. Second, it would have been desirable to match the two groups for 

general cognitive ability: however, there is no definite evidence that SAD patients 

suffer from intellectual impairment (Stein and Stein, 2008), so we do not consider 

general cognitive ability a significant confounder. Third, to explore the specific 

neurobiological substrates of SAD, we recruited adult patients without any comorbid 

disorders; however, to establish whether these neurostructural alterations are specific 

for SAD, rather than trans-diagnostic features of psychiatric disorders, will require 

further trans-diagnostic studies, of particular importance for SAD given the high 
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psychopathological comorbidity (Meier et al., 2015). Fourth, although we recruited 

enough participants to ensure adequate statistical power, the final sample size dropped 

due for image quality reasons, and is therefore not very large compared to recent 

studies exploring other psychiatric disorders. Fifth, there are no universally accepted 

methods to define network nodes and edges (de Reus and van den Heuvel, 2013). To 

facilitate comparison with the literature, we made the methodologically conservative 

choice of the most commonly-used surface atlas (Desikan-Killiany) and structural 

atlas in volume space (AAL) as parcellation schemes to define network nodes. 

Nevertheless, brain network properties are influenced by parcellation templates (Li et 

al., 2021, Ren et al., 2019, Wang et al., 2016, Zalesky et al., 2012), and no single 

method meets all the challenges (Arslan et al., 2018). Consequently, our observations 

need to be validated across different parcellation approaches. Additionally, we 

adopted the Kullback–Leibler divergence-based similarity approach to define the 

network edges. This methodological choice can influence network characteristics and 

reliability (Li et al., 2021, Sarwar et al., 2019, Zalesky et al., 2012), and so it would 

be useful to replicate our findings using other methods (e.g., Jensen-Shannon 

divergence-based similarity (Li et al., 2021)) to estimate interregional connectivities. 

Sixth, opinion is divided on whether to conduct smoothing before SCN construction, 

and what the optimal smoothing kernel size is for different morphological metrics; 

referring to previous studies (Homan et al., 2019, Lai et al., 2022), we made the 

conservative chose not to perform smoothing, but exploration of different choices 

would be useful (Li et al., 2021) . Seventh, machine learning in our study should be 
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seen as a validation of between-group differences of graph-theoretical matrices and a 

preliminary exploration of their potential diagnostic value: we could only use 

leave-one-out cross-validation due to limited sample size, and our classification 

accuracy estimates may be inflated because we selected the graph-theoretical matrices 

showing significant between-group differences as features for SVM analyses 

(Kriegeskorte et al., 2009). Larger and independent samples are needed in future 

studies. 

In conclusion, based on graph-theoretical analysis of the single-subject GM 

covariance connectome, this study identified in SAD patients a shift toward 

randomized configurations, a sub-optimal topological organization reflected by higher 

network integration, and aberrant nodal centralities involving cognitive-control and 

emotional-regulation networks and the sensorimotor/perceptual systems, some of 

which were correlated to symptom severity and disease duration. These aberrant GM 

topological metrics have some ability to discriminate SAD from HC at the individual 

level. This study extends previous understandings of the neuroanatomical substrates 

of SAD, and demonstrates the potential of graph-theoretical measures of the GM 

covariance connectome as imaging biomarkers for clinical diagnosis.  
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