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ABSTRACT High-frequency chest wall oscillation (HFCWO) therapy is one of the techniques to facilitate 

the draining of a patient’s lung secretion in pathological situations, and smart therapy with HFCWO devices 

equipped with multiple actuators can be achieved via locating nidi in the lung. In this paper, through 

developing a novel acoustic lung spatial model and utilizing acoustic imaging simulation, a new and effective 

method for assessing lung function with acoustic imaging is presented, which links acoustic lung images with 

pathologic changes. The structural similarity between the acoustic reference image based on actual lung 

sound and our model acoustic image based on the airway impedance was achieved by an index of 0.8987, 

with 1 as the exact score. Simulation studies based on the model are used to analyze the practicality and the 

extreme design of the acoustic imaging system on the resolution of the located nidus. For instance, a practical 

system design with sensor numbers between 4 and 35 may recognize a lower resolution nidus length of 73 

mm to a better resolution nidus length of 22 mm. On the other hand, an extreme system design with more 

than 1000 sensors can recognize greater nidus resolution at under 10 mm. Additionally, this research may be 

utilized to offer recommendations for acoustic imaging system design and assess the number of sensors and 

sensing diameter in current acoustic imaging systems. Furthermore, the geographic detection of nidus length 

allows for analyzing of HFCWO therapy results. 

INDEX TERMS Acoustic imaging, airway obstruction, airway remodeling, acoustic signal simulation 

sensor array design simulation. 

I. INTRODUCTION 

Chronic inflammation, cystic fibrosis, and some respiratory 

viral diseases cause mucous discharge to thicken. High-

Frequency Chest Wall Oscillation (HFCWO) therapy is a 

common airway clearance technique for patients with thick 

mucus and low mucociliary clearance (MCC) efficiency. 

HFCWO devices are defined as small oscillations of 

mechanical parts at relatively high frequencies (5–20 Hz) 

applied onto the patient’s thorax for respiratory therapy. 

Traditional HFCWO devices, such as the Vest 105 by Hillrom 

[1], use an air-filled garment enclosing the patient’s chest to 

generate motion similar to MCC. The parameter setting and 

operation are purely empirical according to user experience. 

Modern HFCWO devices such as the Monarch [2], the 

AffloVest [3], and the RespIn 11 [4] were equipped with 

multiple electromagnetic/pneumatic actuators that can be 

controlled individually, enabling a smart therapy that targets 

the nidus locations for an optimal therapeutic process. 

Therefore, knowledge of nidus location in the airway is 

critical. 

This study presents studies on acoustic imaging to locate 

nidi to allow inference on the efficiency of HFCWO 

physiotherapy by respiratory remodeling and acoustic imaging 

sensor array design simulations. To the best of our knowledge, 

locating nidi through the two-dimensional (2D) acoustic lung 

model and the resulting acoustic lung imaging have yet to be 

performed. Moreover, the acoustic imaging system setups are 

typically empirical, potentially leading to unoptimized nidus 
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detection. Hence, the key contributions are: 1) Proposing a 

realistic 2D acoustic lung model incorporating spatial location 

to simulate airway obstruction and to design and optimize 

acoustic sensor array measurements quantitatively [5]–[8]. 2) 

Applying the resulting acoustic image from the proposed 2D 

airway model to theoretical acoustic sensor array design by 

considering the sensor distribution, sensor sensitivity area, and 

the sensor number. 

First, by predetermining the acoustic sensor sensing area, 

this research illustrates the relationship between the severity 

of the airway obstruction and mean acoustic image intensity 

through the thickening of the airway wall thickness (AWT). A 

good agreement was found between a reference obstructed 

airway created from lung sound data and acoustic imaging 

from our model, with a structural similarity (SSIM) index of 

0.8987, with 1 denoting an identical image. Next, different 

sensor sensing areas are employed to correlate the observed 

nidus length with the sensor numbers. About 26,000 sensors 

are required to identify a resolution of 4.35 mm minimal nidus 

length with a 10 mm sensor sensing diameter. Comparatively, 

a 50 mm sensor sensing diameter may identify a roughly 73 

mm minimal nidus length resolution with only about 4 

sensors. The findings support the theory that better image 

resolution derives from increased sensor numbers. In addition, 

the required sensor numbers and sensing sensitivity can be 

used as a baseline consideration in the acoustic imaging 

system design. Additionally, a guideline for designing 

HFCWO devices and assessing the HFCWO therapy efficacy 

on the patient for a smarter process through therapy feedback 

from identified nidus length can potentially be provided by 

understanding how sensor array and sensing sensitivity affects 

lung health assessment with the resolution of detected nidus 

and optimizing the sensor array. 

This paper is organized as follows. An incisive review of 

the airway modeling and the acoustic sensor array design are 

presented in Section II. The modeling of airways and 

generation of the acoustic imaging are described in Section III. 

Model verification by comparing healthy lungs and the lungs 

with asthma and chronic obstructive pulmonary disease 

(COPD) symptoms are demonstrated in Section IV. The 

simulation studies on locating nidi, sensor distribution, and 

image resolution are presented in Section V, followed by 

general discussions in Section VI. Lastly, the conclusion and 

future work are given in Section VII. 

II. LITERATURE REVIEW 

To realize the HFCWO smart therapy, locating nidi is critical, 

while one of the direct ways to access nidus location is to 

present on an image. 

Chest X-rays, CT, and magnetic resonance imaging (MRI) 

are the usual imaging techniques to visualize the airways and 

lung pathology. However, these approaches are not ideal due 

to their ionizing radiation effects and the ‘patient-to-

equipment’ approach [9]. Unlike chest X-rays, CT, and MRI, 

electrical impedance tomography (EIT) [10] is an ‘equipment-

to-patient’ approach and uses nonionizing radiation 

technology that provides alternatives to monitor airways. 

However, EIT usually provides transverse plane images 

instead of the required frontal plane images (see Fig. 1(b)) for 

the actuator selection or adjustment (see Fig. 1(a)), making it 

challenging to apply to HFCWO therapy. 

In the quantitative forms of lung sound presentation, 

Kompis et al. [11] developed an acoustic imaging technique 

that uses simultaneous multimicrophone recordings to assess 

spatial information. Another technique for converting the 

acoustic signal to an image is Vibration Response Imaging 

(VRI) [5]. VRI reflects the dynamic changes in the lung by 

imaging that utilizes the vibration energy created during 

breathing. By presenting localized information on breath 

sounds between different lung sites, the visual representation 

improves the clinical value [5]. Acoustic imaging and lung 

disorders, such as smoking index and the accumulation of 

extra fluid between layers of the pleura outside the lungs, have 

a positive quantitative data correlation [5]. Computing from 

the impedance or the resistivity in the lung or the airway 

through respiratory remodeling as an indicator for lung 

function assessment is required as an initial step. 

Airway obstruction or the thickening of airway wall occur 

in chronic respiratory illness, alter the production and 

transmission of lung sound spectrally and regionally. Asthma 

and COPD patients with frequent mucus production in their 

airways tend to have thicker airway walls than those without, 

regardless of the severity of breathlessness, and have shown 

significantly different morphologic airway findings compared 

to healthy individuals [12]. The change can be measured 

quantitatively in the lung sound transmission and provide 

critical information on the disease severity and location of the 

airway obstruction [12]–[17]. Spatially distributed airway tree 

models have been developed to decipher the relationship 

between bronchi lengths, branching angles, and airway 

diameters [18]. In the development, Murray’s law [19] defined 

that the relationship between airway bifurcation is fixed, with 

branch lengths based on a length-to-diameter ratio. Weibel 

symmetric and Horsfield asymmetric models are the most 

used conducting airway models [18]. With the advancement 

of medical imaging techniques, deterministic parameterized 

 

FIGURE 1.  HFCWO device and imaging planes: (a) Typical modern 
HFCWO device with multiple actuators that can be activated 
individually for smart therapy, and (b) Anatomical imaging planes. 
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bronchial tree generation algorithms were extracted directly 

from computed tomography (CT), thus constituting the core of 

patient-specific modeling [18]. The recent works in this area 

are summarized in [20]. However, those models developed so 

far are typically simplified to a one-dimensional system of 

equations to investigate the relationships between healthy and 

unhealthy respiratory system cycles, such as frequency 

response, flow rate, resistance, volume, and diagnosis 

accuracy [13], [18], [21]. 

Although positive correlation can be identified through 

acoustic imaging and lung disorders, chronic respiratory 

diseases, such as asthma and COPD, have not been correlated 

positively [5], [22]. Moreover, the correlation between 

acoustic sensors placement and sensitivity were not 

investigated, and the position of the sensors was typically 

empirical [5], [11], [23]. The summary of the key points and 

the research gap identified from the concise literature review 

is presented in Table I. 

III. MODELING OF AIRWAYS AND ACOUSTIC IMAGING 

This paper developed a model for acoustic imaging with the 

following features to improve the investigation of locating 

airway obstruction, as each patient has a unique set of airway 

dimensions and structures: 

1) The ability to modify the airway input parameters 

that influence the model’s output, such as the wall 

thickness, length, and diameter, where the patient-

centric assessment technique is made possible. 

2) The airway model outputs intuitive spatial-based 2D 

imaging to show airway obstruction in the lung 

caused by respiratory conditions such as COPD and 

asthma (Section IV). 

3) The resolution of the lung image was intended 

mainly for the assessment and location of the 

obstruction in the airways due to the limited sensor 

numbers and HFCWO actuators that can fit onto the 

patient’s posterior chest area (Section V). 

Drawing inspiration from [11], [13], [15], [16], [20], [21], 

the respiratory system is represented as a bifurcating tree 

network with the linked node of the bifurcating segment and 

integrated spatial position (x, y) on the airway plane, where the 

airway plane refers to the three dimensional (3D) airway 

network space that is projected onto. After that, the network is 

converted into an electrical network with lumped 

characteristics and presented as an assessment of the acoustic 

lung image. In the model development, the following 

notations are used. ℝ denotes the set of all real numbers. ℝm×n 

is the set of all real (m  n) matrices. ℂ denotes the set of all 

complex numbers. ℂmn is the set of all complex (m  n) 

matrices. ℤ(ω) is the set of all sinusoidal variables with angular 

frequency ω. 

The construction of respiratory airway modeling on a single 

node of the bifurcating airway impedance and the respiratory 

airway modeling parameter is presented in Sections III-A and 

III-B, respectively. Next, the conversion of the airway 

impedance into acoustic imaging is presented in Sections III-

C. 

A. Modeling Respiratory Airway 

Each 3D network segment is initially projected toward a 2D 

plane and given a coordinate for its position (x, y). The 

respiratory system is thus depicted as a bifurcating tree 

network, with the joined node of the bifurcating segment at 

layer k and position (x, y) being indexed by (x, y, k) on the 

plane illustrated in Fig. 2(a). Through a recursion index of 

Δ(k), the k-th layer segment splits into asymmetrical airways 

of layers (k + 1) and (k + 1 + Δ(k)) [15]. The airway is then 

represented as a network of bifurcating cylinders which can be 

modelled as a transmission line with distributed parameters 

and further translated into an electrical  network with 

lumped parameters, as shown in Fig. 2(b). The airway network 

is then resolved by the acoustic pressure at each segment 

induced by the pressure distribution from bronchi breathing 

and the airway network [24], [25]. Merging the acoustic power 

over a predetermined period of time during each breathing 

cycle, a plane image is generated by the projected network as 

a subset of the acoustic lung image Q(x, y) ∈ ℝm×n (discussed 

in Section III-C). 

Since the longitudinal motion of the airway is typically 

negligible in comparison to the acoustic signal, the acoustical 

impedance Z(ω) and acoustical admittance Y(ω) averaged 

over the cross-section of the nonrigid airway segment of Fig. 

2(b) are satisfied by the volume flow rate F and pressure P in 

(1), 

( )

( )

dP
Z F

dl

dF
Y P

dl






=


 = −


 (1) 

where l is the axial coordinate. When the patient breathes 

periodically, the airway can be regarded as a steady-state 

TABLE I 

LITERATURE REVIEWS KEY POINTS 

Topic Key points 

Imaging techniques - Chest X-rays, CT, and MRI are 

standard tools but have limitations 

(radiation, patient positioning) 

- EIT is radiation-free but provides 

transverse instead of frontal plane 

images 

- Acoustic imaging (e.g., VRI) 

shows promise for visualizing lung 

issues 

- Changes in the acoustic signal can 

indicate airway obstruction 

Airway remodeling - Models help to relate healthy and 

unhealthy respiratory cycles 

- Models are typically simplified 1D 

systems to study relationships 

Correlation between 

acoustic signals and 

lung disorders 

- Link not established for asthma and 

COPD 

- Number of sensors and sensor 

placement typically empirical 
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system with each segment as a short nonrigid transmission line 

tube with unit-length parameters equivalent acoustic 

resistance R0, inductance L0, capacitance C0, and conductance 

G0 [12], described by (2), 

1 2

1 2

cosh( ) sinh( )

,1
sinh( ) cosh( )

c

c

l Z l
P P

l lF F
Z

 

 

 
    

=    
    

 

 (2) 

where P1 ∈ ℤ and F1 ∈ ℤ are the input pressure and input 

flowrate and P2 ∈ ℤ and F2 ∈ ℤ are the output pressure and 

output flowrate, respectively. The propagation coefficient γ ∈ 
ℂ and characteristic impedance Zc ∈ ℂ are given in (3), 

0 0 0 0

0 0 0 0

( )( )
.

( ) / ( )c

R j L G j C

Z R j L G j C

  

 

 = + +


= + +

 (3) 

The transmission line tube with distributed parameters can 

be equivalent to a  network in Fig. 2(b) with lumped 

parameters of segment impedance Zg ∈ ℂ and segment 

admittance Yg ∈ ℂ in (4), 

0 0

0 0

sinh ( )

.cosh 1 1
( )

sinh 2

g c

g

c

Z Z l R j L l

l
Y G j C l

Z l

 






=  +


−
=  +



 (4) 

Hence, the entire network of airways can be represented as 

an electrical network made up of a layered bifurcating tree of 

impedance connected to the ground through an admittance at 

each bifurcating node, as illustrated in Fig. 3(a). The air 

pressure and airflow rate are comparable to electrical potential 

and current, respectively, when the respiratory airways are 

analyzed as an electrical network [13], [21], [26]–[29]. The k-

th layer’s impedance and admittance can be presented in (5), 

( , )
, 0, .

( , ) 2 ( 1, )

k g

k g g

Z Z k
k n

Y Y k Y k



 

=
=

= + +
 (5) 

The network of airways is constructed with n nodes indexed 

with encircled numbers, b branches denoted with underlined 

numbers, the k-th layer as subscript, and a sinusoidal voltage 

source with amplitude Ps and angular frequency ω in series of 

a small impedance Zs0 applied at the input layer 0 to represent 

the fundamental component of the periodical patient breath, as 

presented in Fig. 3(a). An incidence matrix A will be used to 

evaluate and simulate an acoustic network encompassing 

(a)
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FIGURE 2.  Model of human respiratory airway system: (a) airway 
tree of bifurcating segments, (b) transmission line model of the 
segment and its equivalent circuit with lumped parameters. 
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FIGURE 3.  Model of respiratory airways by the equivalent circuit with 
lumped admittance parameters: (a) Node and branch indices, with 
encircled numbers representing the n number nodes in the branch 
order, and underlined numbers denoting the b branch order, and (b) 
standard branch. 
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resistive and capacitive elements scattered over multiple 

interacting layers and acquiring a descriptor representation of 

the network, as demonstrated in Fig. 2, Fig. 3, and (1)–(5). 

Thus, we have the following annotation shown in (6) from the 

theory of network topology [24], [25]. 
( 1) 1 1

1 1 1 1

, , ,
,

, , ,

n b b b b b

b n b b

−    

   

   

   

b s

n s

A Y Y V

V V I I
 (6) 

where A, Y, Yb, Vs, V, Vn, Is, and I, are reduced incidence 

matrix, branch admittance matrix, branch admittance vector, 

branch voltage source vector, branch voltage vector, node 

voltage vector, branch current source vector, and node current 

vector, respectively. A standard branch in a linear network is 

shown in Fig. 3(b), and the node analysis is given in (7), 

,

  =


 =
 =  + − 

T

n

s s

A V V

A I 0

I Y V I Y V

 (7) 

where Kirchhoff’s voltage law and Kirchhoff’s current law 

serve as the first and second requirements in (7), respectively, 

with the third requirement deriving from the standard branch 

law, and (8) can be obtained from the node analysis in (7). 

.   =   − T

n s s
A Y A V A Y V A I  (8) 

The node voltage Vn is the remaining unknown variable 

from (8). Assuming node admittance Yn ∈ ℂ(n−1)×(n−1) is a 

nonsingular and symmetric square matrix, and Js ∈ ℤ(n−1) is the 

node source-current vector as shown in (9), the node voltage 

Vn can be resolved in (10), 

 =  


=   − 

T

n

s s s

Y A Y A

J A Y V A I
 (9) 

.= -1

n n sV Y J  (10) 

From the graph in Fig. 3(a), assuming b = 3 × 2n, and Is = 0 

in (6)–(9), the reduced incidence matrix A and branch 

admittance matrix Y can be denoted as follows: 

 

11 12 1 ( 1)

21 22

1 ( 3) ( 2) 2

11 12 21

22 , 2, ,

3, ,

,  diag( ),  

1 1 ,  1 ,  ,  

1, if 3( 1) , 1, 2, 3

1, if floor( / 2) .

0, else

T
b

s

b n

i j i n

j b

A A
P

A A

A A A

j i k k

A a j i i

 −

 − − 

=

=

 
 = = =    

 

 = − = = 

− = − + =


 = = = + 



b sA Y Y V 0

0 0  
(11) 

Table II shows the incident matrix A, branch admittance 

vector Yb, and branch voltage source vector Vs of the first four 

network layers in Fig. 3. The reduced incidence matrix A is 

the resulting network matrix without the row of node G in 

Table II. 

Given that the patient’s breath pressure is sinusoidal, every 

joint pressure can be resolved by the network analysis method 

as long as parameters Zk and Yk are known. From (5), this 

needs to find the segment parameters Zg and Yg. 

B. PARAMETERS OF RESPIRATORY AIRWAY 
MODEL 

The airway wall was modeled using the complex Young’s 

modulus and material density to replicate the acoustic 

structural interaction accurately [13], [15], [21], [30], where 

the material parameters of the respiratory system are given in 

Table III. The airway segments’ thickness, cartilage, and soft 

tissue fractions were determined by referring to the data 

reported in [15] and identifying the closest Horsfield order 

segment. Thus, the segment in the k-th layer has the material 

parameters in (12), 

( ) ( )

0 0

0 0

2

( )
( , ) ( ( ) ( )) ( )

( )(1 ( , ))

1
( , ) ( ( ) ( )) ( )

2

( )
(1 0.402 ( , ))

2 2 ( , )

g

g

s v

g

s

t

g g w

j l k
Z k R k j L k l k

A k F k

Y k G k j C k l k

j A k l k l k
F k

v Z k


 



 




 


 + =

−


 +



= + +


      (12) 

TABLE II 
INCIDENCE MATRIX, BRANCH ADMITTANCE VECTOR, AND BRANCH VOLTAGE SOURCE VECTOR 
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where 

( )

( )

1

0

1
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( )2
( , ) , ( )

( )

( )2
, , ( )

( )

( )1 ( )

( , ) ( , ) ( , )

v

v v g g
v v

t
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Z k Z k Z k
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
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

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As(k) (k), g, g, Cg, Kg are denoted as the cross-sectional 

area of an airway segment, internal airway radius, air density, 

viscosity, air specific heat, and thermal conductivity, 

respectively [14], [27], [31]. Fv(k,) and Ft(k,) account for 

the sound attenuation by air viscosity and sound attenuation 

by thermal dissipation, computed with series expansion with 

J0(zv), J1(zv) and J0(zt), J1(zt) being Bessel functions of 0-th and 

1-st orders [31]. Zw(k,) represents the wall impedance, which 

is computed from a series of resistance Ri(k), inductance Li(k), 

and conductance Gi(k) of the acoustic transmission line and 

Young’s modulus Ei, where the subscript i is replaced by either 

c for the cartilage or by s for the soft tissue, respectively 

C. Acoustic Image Generation 

Most of the previous works investigate the variable physical 

frequency characteristics [13], [21], [26]–[29], and no spatial 

information is associated with the nodes. In this study, the 

spatial location (x, y) was integrated to each node to transform 

the airway network into a spatial network and generate the 

resulting acoustic image. The acoustic image can be initiated 

once the node voltage Vn, which is analogous to the acoustic 

pressure Pn distribution within the airways [13], [21], [26]–

[29] is obtained. The sound pressure in dB within the airways 

is computed as, 

 10 020log ( / )P=
n

P P , (13) 

where P0 = 20 µPa is the reference sound pressure. 

The sound pressure generated from the lumped electrical 

network resulting from the transformation of the respiratory 

modeling, as presented in Fig. 2 and Fig. 3 can be captured 

with an array of acoustic sensors (see Fig. 4), such as digital 

stethoscope or micro-electromechanical systems (MEMS) 

microphone [5], [11], [23]. An interpolation function can be 

utilized to compute the sound pressure between each sensor 

[23]. 

The airway pressure at each sensor location is computed by 

accumulating the captured signals over a given time interval t 

from t1 to tk and averaging the signals at all bifurcating airway 

nodes within the sensing area enclosed by the horizontal and 

vertical lines as the individual area boundary as shown in Fig. 

4, 

 ( )
1

2

1

1

1
, , , ( )

s kN t

k i

i t ts

P x y t t P t
N = =

=  , (14) 

where Ns is the total number of airway nodes within the 

sensing area. The network of the acoustic lung image Q(x, y, 

t1, tk) is then, 

 ( ) ( ) ( )1 1, , , , , , , .k kQ x y t t P x y t t h x y=  (15) 

The sound intensity outside of the sensor position in Fig. 4 

is estimated by interpolation. From the observation in (13)–

(15), the acoustic lung image Q(P̅, h) is defined as the 2D 

acoustic image which comprise acoustic signal P̅(x, y, t1, tk) in 

(13) and (14) with interpolation polynomial h(x, y). A high 

spatial resolution is required; hence, Hermite interpolation was 

applied to the acoustic signal P̅ for projecting acoustic lung 

imaging [23]. From the study in [23], Hermite interpolation 

has been proven to be a better performance in presenting 

TABLE III 

MATERIAL PARAMETERS OF THE AIRWAY GEOMETRY 

Variable Units Value 

Air density g (kg/m3) 1.14 

Airway wall viscosity vg (kg/(m∙s)) 1.82×10-5 

Air specific heat Cg (cal/kg/K) 240 

Air thermal conductivity Kg (cal/m/s/K) 6.5×10-5 

Speed of sound in air cg (m/s) 343 

Airway wall viscosity 

cartilage 
Vc (Pa∙s) 688 

Lung density c (kg/m3) 1140 

s (kg/m3) 1060 

Airway wall modulus soft 

tissue 

Es (Pa) 5.81×104 

Airway wall modulus 

cartilage 

Ec (Pa) 3.92×105 

Terminal tissue resistance Rt (cmH2O1-1s) 0.5 

Terminal tissue inertance It (cmH2O1-1s2) 0.005 

Terminal tissue compliance Ct (1cmH2O-1) 0.1 

 

 
FIGURE 4.  The vertical and horizontal lines separate the airway 
geometry with the multiple sensing areas, and the known position of the 
simulated acoustic sensor array design is denoted with circles. 

A
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accurate lung sound intensity as compared to other established 

interpolation functions, such as linear, cube spline, Lagrange 

and nearest neighbor method. Refer to [23] for the Hermite 

interpolation function in-depth analysis, computation and 

application on acoustic lung imaging. 

Each acoustic image pixel is normalized, and the output 

obtained from the pressure sound signal is then presented as 

an acoustic image with the highest, lowest, and in-between 

values are determined as maroon, white, and grey. 

IV. MODEL VERIFICATION BY PATHOLOGY EXAMPLES 

Model verification and the potential to assess the severity of 

airway obstruction through regional pathology with a 

predetermined sensor number and sensor sensing area are 

demonstrated in this section. Additionally, due to the vast 

range of lung sound frequencies documented in the literature, 

400 Hz was chosen as the frequency to convey the results in 

this paper for the relevancy to respiratory sounds and to keep 

it straightforward [21], [32]. 

A reference image was produced from a COPD patient’s 

lung sound signal that was selected from a respiratory database 

[33]. A four-by-six array of sensors, as illustrated in Fig. 4, 

where the sensors are considered to be equally dispersed 

within a 50 mm distance [5], [11], [23], and the acoustic 

response is the average intensity value within the sensing 

region. A 2D plane acoustic lung image can be produced with 

(13)–(15) and the known sensor and spatial position 

information (x- and y-axis) as shown in Fig. 2 and Fig. 4. The 

light-colored (white) area is the color for the minimal or no 

pressure data area, which represent the airway’s high airflow 

resistance, whereas dark-colored (maroon) area is used to 

indicate high data locations where the airflow resistance in the 

airway is the least. Additionally, the in-between data area, 

where the airway has airflow resistance, is represented by light 

gray colors. 

In the following, the assumption for the model simulation 

of pathology through AWT remodeling and the quantitative 

model performance are presented in Section IV-A and Section 

IV-B, respectively. The results and discussion are described in 

Section IV-C. 

A. PATHOLOGY SIMULATION 

Airway remodeling was performed by altering the AWT to 

simulate airway obstruction [34]–[39]. As shown in Fig. 2, the 

total wall thickness of each airway segment Hw = Do − Di, 

where Di and Do are the inner and outer diameters, 

respectively.  

The inner airway diameter Di and total wall thickness Hw 

were measured and compared from patients with illnesses, 

such as asthma and COPD, using computed tomography in 

relation to the severity (mild, moderate, severe) of the illness 

[34]–[36], [38], [40]. The studies in [34]–[36], [38], [40] have 

revealed a range for the mean airway wall area percentage 

(WA%) increment of 3%–40%, with 0%–3% for controls, 

4%–10% for mild conditions, 11%–30% for moderate 

conditions and more than 30% for severe conditions. The 

studies on airway wall thickness and the increment of the 

airway wall area are summarized and presented in Table IV. 

The airway wall area (WA) and WA% can be calculated as 

[35], 

 
WA

,
WA% WA 100

o l

o

A A

A

= −


= 
 (16) 

where A0 = π(Do /2)2 and Al = π(Di /2)2 can be computed as the 

airway area and the luminal area, respectively. 

B. PERFORMANCE ASSESSMENT 

The mean acoustic image intensity (dB) in (13)–(15) can be 

utilized as an indicator for the assessment outcome on the 

severity of airway obstructions [5]–[7]. The increment (factor) 

of AWT was implemented to standardize the findings in this 

study, as mixed airway obstruction results can be identified 

from the literature, such as the increment of WA% or values 

of AWT [34]–[36], [38], [40]. 

For instance, the AWT must increase by a mean factor of 

2.34, as shown in (16), for the mean WA% to increase by 

approximately 11%, from 67% healthy lung to 78% 

respiratory illness lung [34]–[36], [38], [40]. Finally, in terms 

of the severity of respiratory diseases, the internal airway area 

between asthma and COPD was essentially the same [34]. 

Therefore, no differentiation between COPD and asthma is 

made in this study. 

The pixels in natural image signals are heavily dependent 

on one another, especially when the pixels are close together. 

These dependencies include important details about how the 

elements in the visual scene are arranged. The SSIM index 

[41] is a straightforward approach for comparing the reference 

and distorted signal structures. Additionally, SSIM indexing 

provides quality assessment from the perspective of image 

generation, particularly for components of medical images in 

pixel intensities [42]. The SSIM quality assessment index is 

based on the computation of three terms, namely the 

brightness term, the contrast term, and the structure term, as 

illustrated in (17), 

TABLE IV 

SUMMARY OF KEY INFORMATION ABOUT AIRWAY REMODELING AND 

AIRWAY WALL THICKNESS 

Airway wall area increment Respiratory conditions 

0 – 3% Healthy, control 

4 – 10% Mild 

11 – 30% Moderate 

> 31% Severe 
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where μQr and μQ are the local means, σQr and σQ, are the 

standard deviations, σQrQ cross-covariance, and C1 and C2 are 

the constants for reference image Qr and captured image Q. 

For detailed derivation and computation, see [41]. 

C. MODEL VALIDATION 

The acoustic lung imaging Q projected from lung signals is 

computed from the lung signal intensity P̅ at each sensor 

location in a coordinate plane over a known time t interval, as 

shown in (14) and (15). The lung signal intensity is determined 

as highest (maroon), lowest (white) or in between values 

(grey). The acoustic signal is normalized, and the output 

obtained from the intensity of the sound signal is then 

displayed as an acoustic image. The overview for the model 

validation in this study is presented in Fig. 5, where the 

increment factor for the airway wall thickness has been 

discussed earlier in Section IV-B, the computation of the 

acoustic signal can be identified from (1)–(12), and the 

translation of the computed acoustic signal to acoustic image 

can be inferred from (13)–(15). An unaltered airway was 

utilized as a control in this model validation, where the airway 

material properties and parameters have been introduced 

earlier in Section III-B. 

The spatial resolution of the lung geometry in this model 

validation is 44 pixels for every 10 millimeters. Fig. 6 displays 

acoustic images of a healthy lung (control) and varying 

respiratory illness severity obtained by adjusting the AWT in 

Section III and (13)–(15). An outline is used in Fig. 6 to 

identify better the effect of AWT on the overall (global) lung 

image intensity. Additionally, Fig. 7 displays the relationship 

between the average image intensity and the global AWT 

increment. 

Fig. 6 and Fig. 7 demonstrated the relationship between 

acoustic lung images of healthy and ill conditions. In contrast 

to ill conditions, such as mild, moderate, and severe 

conditions, a healthy lung presents the darkest lung image 

(high acoustic intensity value) due to the lowest impedance – 

smallest resistance in the airway, from Fig. 6 and Fig. 7 and as 

observed from (2)–(13). Moreover, the airflow and the mean 

image intensity both reduced with the thickening of AWT can 

be observed in Fig. 6 and Fig. 7. Although observable 

qualitative changes can be seen with the AWT increasing by a 

factor of more than 1.70 in Fig. 6, the mean image intensity in 

Fig. 7 can reveal the state of the lungs’ condition. Furthermore, 

the positive correlation between the lung impedance from (2)–

(13) and the results in Fig. 6 and Fig. 7 presented a certain 

level of similarity compared to the literature [5]–[7], [15], 

[34], [35], [40], e.g., the global intensity distribution impacting 

the lung and the airway closer to the trachea (Fig. 2) is often 

larger and tends to be the last impacted region by the 

thickening in AWT. 

After the global thickening in AWT and the consequences 

(severity) on lung function have been demonstrated, the next 

validation task is the regional increase in AWT. Fig. 8 

contrasts our model acoustic image with the obstructed 

reference lung image, which was created using the lung sound 

signals extracted from a respiratory database [33], and 

converted into an acoustic image. The obstructed airways are 

situated along the posterior right middle scapular line (area 

B2), and the posterior right lower scapular line (area C3), as 

shown in Fig. 4. The region of the obstructed airway can be 

 
FIGURE 6.  Right lung acoustic images generated from (2)–(15) 
acoustic signals with various factor increment in AWT. (a) Healthy 
lung; AWT increasing by a factor of about 1.2, 1.5, 1.7, 2.48, 3.5, 4.97, 
and 6 in (b), (c), (d), (e), (f), (g), and (h) respectively. 
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FIGURE 7.  Quantitative lung function assessment through the mean 
image intensity and the thickening factor of AWT. 

 
FIGURE 5.  The model validation workflow. 
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located in our model’s acoustic image presented in Fig. 8. The 

similarity between the acoustic reference image and the model 

acoustic image is highly related given that a mean SSIM index 

of 0.8987 was obtained, with 1 being the same as the reference 

[41]. 

V. OPTIMAL ACOUSTIC SENSOR ARRAY DESIGN FOR 
AIRWAY OBSTRUCTION DETECTION 

Global and regional pathology with prearranged number of 

sensors, e.g., an array of 4-by-6 with 50 mm uniform spacing 

acoustic sensors, has been validated in Section IV. The 

remaining task in this study is how the design of the acoustic 

sensor array affects the minimal detectable nidus length, e.g., 

the expected minimal detectable nidus if the acoustic sensor 

array is known or the design of acoustic sensor array for an 

envisioned minimal detectable nidus length. To the best of the 

authors’ knowledge, no discussion was attempted relating to 

the distribution array of acoustic sensors for image assessment 

and the acoustic imaging resolution, as the array sensor design 

was typically empirical in the literature [5], [21], [23]. In line 

with the uniform distribution design of HFCWO 

electromagnetic/pneumatic actuators [2], [4], and the 

traditional acoustic imaging system in the literature [5], [21], 

[23], a uniform multimicrophone distribution, vertically and 

horizontally, is employed in this paper. In addition, the 

overlapping and nonoverlapping sensor sensing sensitivity can 

be computed due to the influence of the sensor uniformly 

distributed. Hence, the effect of sensor sensing sensitivity area 

and the sensor number on the detection of airway obstruction 

is presented in Section V-A, followed by analysis and 

discussion in Section V-B. 

By employing local first-order image statistics [43] around 

each pixel, the resulting obstructed airway acoustic image μ 

are converted into a binary image, as shown in Fig. 9. As 

shown in Fig. 9(c), areas with high-intensity data (healthy) are 

denoted by 1s, and areas with low-intensity data (obstruction) 

by 0s. Thus, by comparing the acoustic image pixel area η in 

Fig. 9(a) and the pixel area μ in Fig. 9(c), the obstruction in the 

airway acoustic images can be located, and the area of the 

missing pixel (η − μ) can then be used to calculate the 

obstructed area (nidus) length, 

 .nL
 



− 
=  

 
 (18) 

A. SENSOR SENSING SENSITIVITY AND SENSOR 
NUMBER 

To study the effect of sensor sensitivity on the smallest 

observable nidus length Ln, the number of sensors is initially 

fixed at 12, 16, 20, 25, 32, 40, 45, and 50 per lung side, 

comparable to the empirical acoustic image system [5], [21], 

[23]. The selection of the sensor sensing diameters, which 

ranged from 10 mm to 50 mm in 10 mm increments, was made 

in accordance with commercially available products and 

published research [5], [23]. Fig. 10 shows the relationship 

between sensor sensitivity with a predetermined number of 

sensors and the measured minimum nidus length.  

After the effect of the different sensor detecting area on the 

minimum detectable nidus length when used with a 

predetermined number of sensors, the next step is to evaluate 

how the number of sensors affects the minimal detectable 

nidus. Fig. 11 illustrates how the number of sensors affects the 

minimum observable nidus length for different sensor sensing 

sensitivities. 

B. ANALYSIS OF THE SENSOR ARRAY DESIGN 

A minimal detectable nidus length of about 68 mm is expected 

when using 12 sensors with a 10 mm sensor sensing diameter, 

as illustrated in Fig. 10. In contrast, a minimal detectable nidus 

length of about 20 mm is expected with 50 sensors, with 

sensor sensing diameter between 20 mm and 50 mm. Fig. 11 

demonstrates the number of sensors and the sensor sensing 

 
FIGURE 8.  Acoustic imaging of obstructed airway with AWT 
increased by about a factor of 1.7. (a), (c) Acoustic image produced 
from lung sound signal. (b), (d) Model acoustic image produced from 
airway pressure signal. 
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FIGURE 9.  Acoustic image and nidus generation. (a) Healthy 
acoustic image, (b) Obstructed acoustic image, and (c) Binarized 
obstructed acoustic image. 
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diameter required in the acoustic sensor array for envisioned 

minimal detectable nidus length. 

According to Fig. 10, a better resolution of the detectable 

minimal nidus length was obtained with the increase in sensor 

number, and the sensor sensitivity area overlaps more when 

compared to fewer sensor numbers and lesser overlapping of 

sensor sensitivity area. When compared across all sensor 

sensing diameters, the predefined sensor number showed 

various observed nidus lengths, as shown in Fig. 10. The 

results are in line with the number of sensors and the position, 

where higher image resolution can be identified with sensor 

sensing diameter (30 mm–50 mm) overlapping reducing the 

over-reliant on interpolation function, as compared to sensor 

sensing area that has lesser nonoverlapping sensor sensing 

diameter (10 mm–20 mm) [23]. 

From Fig. 11(a), a low resolution observed in the detected 

nidus length is about 73 mm, requiring about 4 sensors, with a 

50 mm sensor sensing diameter and a 0% sensor sensing 

overlapping area. In comparison, a high resolution identified 

in nidus length is about 4.35 mm, requiring about 26,000 

sensors, with a 10 mm sensor sensing diameter and a 95% 

sensor sensing overlapping area. The observations in Fig. 10 

and Fig. 11, where the resolution of nidus length detected 

increases with the increase in sensor numbers and 

corresponded with the understanding that image resolution 

increases with the number of sensors. The practicality in the 

designing of an acoustic imaging system for the location of 

nidus length, in terms of the number of sensors required, is 

demonstrated in Fig. 11(b). 

VI. GENERAL DISCUSSION 

The severity of respiratory diseases has been demonstrated 

with the mean image intensity and the thickening of AWT. 

The assessment of lung function through acoustic imaging, 

such as presenting global and regional obstructed airways, was 

demonstrated in Fig. 6–Fig. 8. The majority of earlier studies 

[13], [21], [26]–[29] focus on the changeable physical 

frequency features and no geographical information was 

correlated with nodes in the airway. Thus, the airway network 

in this study was converted into a spatial network by 

integrating the spatial position (x, y) to each node, which can 

produce the acoustic image for lung function assessment as 

shown in Fig. 4, Fig. 6, Fig. 8, and Fig. 9. All 35-airway 

segment layers, starting with the trachea at k = 1 and 

terminating at the terminal bronchiole with k = 35, were 

included in the calculation of the acoustical impedance. A 

similarity rating of about 89% was achieved between our 

model image and a reference image converted from lung 

sound signals. Minimal differences in Fig. 8 and the SSIM 

rating are expected as the acoustic images in Fig. 8 were 

generated from two different sources: our model computed 

acoustic impedance and the actual acoustic signal from a 

respiratory database [33]. Only large airways, e.g., airway 

segment length > 2 mm, were utilized in our acoustic imaging, 

 
FIGURE 10.  The relation between sensing sensitivity and the minimal 
nidus length that can be observed with a predetermined sensor 
number. 

 
 

 
FIGURE 11.  The relationship between sensor number and minimal 
nidus that can be observed on the right posterior of the chest wall. 
(a) The theoretical impact of sensor number required to identify the 
nidus length, and (b) The typical sensor numbers in a practical 
acoustic imaging system. 
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as small airways length ≤ 2 mm flow is laminar and silent, 

hence, do not produce an acoustic signal [32]. Bifurcate node 

angles of the airway system were assumed to be between 45 

and 60 degrees and were drawn ideally in Fig. 2(a) so that the 

airway system does not overlap [21]. The sound pressure 

computation is based on the mean sound pressure within the 

sensing region, as shown in Fig. 4 and (14). Hence, the SSIM 

rating can be improved with the additional weighted ratio 

between pressure in the individual airway segment and sensor 

sensing radius to (13)–(15), and an increase in the total number 

of airway segments in the model. 

In addition, this study’s objective demonstrated the 

respiratory model systems’ capability to pinpoint the source of 

airway obstruction through acoustic signals, in terms of the 

minimal nidus length identified through the location of 

obstructed airways to both the acoustic sensor sensitives and 

the number of acoustic sensors to improve HFCWO therapy 

in Fig. 6–Fig. 11. Although the findings in Fig. 6–Fig. 11 are 

based on a uniform distribution of sensor location, this paper 

can be used as a starting point to study nonuniform sensor 

distribution, which may potentially result in a reduction in the 

number of sensors needed to achieve the same performance. 

Additionally, this work uses respiratory remodeling and 

sensor array simulation to evaluate the sensor’s placement, 

sensitivity ranges, and the numbers for minimal nidus length 

detection, enabling deductions about the efficacy of HFCWO 

physiotherapy with the detected nidi. This paper can also be 

used to assess an existing acoustic array system and provide 

direction for the development of acoustic imaging systems, 

particularly in imaging systems that employ a multi-acoustic 

sensor array. Therefore, by comprehending how sensor array 

and sensing sensitivity affect lung health assessment with the 

resolution of detected nidus and optimizing the sensor array, a 

guideline for designing HFCWO devices and assessing the 

HFCWO therapy efficacy on the patient for a smarter process 

through therapy feedback from identified nidus length may be 

provided. A comparison to summarize the key advantages and 

limitations of the previous work and this study is presented in 

Table V. 

A. DESIGN CONSIDERATION OF IMAGING 
HARDWARE SYSTEM 

Two of the many deciding considerations in creating the 

acoustic imaging systems in this study can be sensor type and 

sensor costs. Different transduction techniques, such as 

condenser (MEMS microphones) and piezoelectric (digital 

stethoscope) transduction, can be used to record the acoustic 

images derived from acoustic lung signals. Piezoelectric 

sensors were often not mechanically durable and required 

hard, specialized contacts with the patient’s skin, such as gels 

and vacuum seals [5], [44]. Due to their repeatable frequency 

response and high SNR, MEMS microphones are frequently 

employed to acquire lung sound signals and indirectly provide 

excellent acoustic imaging [45]–[48]. Additionally, flexible 

multisensor arrays, such as MEMS microphone arrays, are 

perfect for delivering a 2D visualization assessment of the 

lungs in contrast to a single sensor, such as a digital 

stethoscope, which can only provide one region of data at a 

time [45]–[48]. 

MEMS microphones are also small, light, and inexpensive, 

costing only a few dollars, around USD 4, as opposed to a 

digital stethoscope, which may run between USD 300 and 

USD 500 [45]–[47]. In addition, MEMS microphones can be 

redesigned to accommodate various sensor sensings diameter 

requirements, such as 10 mm, 20 mm, or 50 mm, while the 

sensor sensing diameter is designed to partially integrate over 

the fixed surface area (50 mm) of the stethoscope head [48]. 

For the same detected minimal nidus length, several sensor 

numbers and sensitivity combinations can be perceived in Fig. 

11(a). A minimal nidus length of around 50 mm that can be 

detected, for instance, can be achieved using 6 pieces of 50 

mm sensor sensing diameter or 16 pieces of 10 mm sensor 

sensing diameter. Given that one MEMS microphone can 

cover a 10 mm sensing diameter and five MEMS microphones 

can cover a 50 mm sensing diameter [48], using a 10 mm 

sensor sensing diameter may cost the customer roughly USD 

64 as opposed to USD 120 with a 50 mm sensor sensing 

diameter. Similarly, a minimal nidus length of around 30 mm 

that can be detected, for instance, can be achieved using 20 

pieces of 50 mm sensor sensing diameter or 48 pieces of 10 

mm sensor sensing diameter. Using a 10 mm sensor sensing 

diameter may cost the customer roughly USD 192 as opposed 

to USD 400 with a 50 mm sensor sensing diameter [48]. In 

terms of the standard MEMS microphone physical size and the 

adult chest area, a maximum of roughly 1000 pieces of MEMS 

microphone with a 10 mm sensor sensing diameter can be 

fitted without physical devices overlapping onto the chest 

region [45]–[49]. We anticipate that as sensor technology 

advances in terms of the physical size, allowing the number of 

sensors to multiply, the resolution of the detectable nidus 

length can also be enhanced, as depicted in Fig. 11(a). Since 

the lung assessment imaging gold standard, such as chest X-

ray, has a high operational cost (> USD 5000) and radiation 

exposure (health hazard), which indirectly leads to the 

TABLE V 

SUMMARY OF KEY ADVANTAGES AND LIMITATIONS OF PREVIOUS 

WORK AND THIS STUDY 

 Previous work Current work 

Advantages - Developed airway 

models to study 

airway frequency 

features 

- Adds spatial data to 

airway model 

- Studies sensor 

placement/sensitivity, 

links acoustic signals 

to pathologic changes 

- Can assess imaging 

systems 

Limitations - No spatial data 

- No imaging was 

performed 

- Simplified airway 

models 

- Ideal/generic sensor 

characteristics 
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unsuitability in frequent assessment, the detection of 

obstructed airways by acoustic imaging represents a crucial 

clinical need [44]. In the literature [5], [17], [44], an array of 

microphones was employed to produce an acoustic image that 

was comparable to a chest X-ray in terms of sensitivity, 

specificity, and intra- and inter-rater agreement. Besides, the 

resolution of the acoustic lung image in our paper was 

primarily designed to enable frequent nidus detection by 

simple 2D image viewing and frequent evaluation of the 

efficacy of HFCWO therapy. 

The computerized respiratory sound analysis (CORSA) 

recommendations for sensor properties to detect human 

pulmonary sounds can be used to guide the choice of the 

MEMS specification [44], [50]. Other MEMS have been used 

to record breathing patterns and respiratory rate, a feature that 

can also offer a thorough analysis of lung signals. Examples 

of these MEMS include MEMS accelerometers [51], [52], 

MEMS piezoelectric resonant microphones [53], and MEMS 

strain gauges [54]. As this study focuses on proposing a 

realistic 2D acoustic lung model incorporating spatial location 

to simulate airway obstruction and to design and optimize 

acoustic sensor array measurements quantitatively by 

applying generic acoustic sensor array design by considering 

only the sensor distribution, sensor sensitivity area, and the 

sensor number, readers who are interested in the fabrication of 

the various state-of-the-art MEMS can refer to [51], [53], [54] 

and the references therein for in-depth details. 

B. LIMITATION 

With the current study, four critical points should be 

considered. First, this study focused on lung acoustic signals 

generated from the proposed model, while the separation of 

heart sound signals and lung sound signals was not considered. 

The signals obtained were assumed to be at the patient’s 

posterior, similar to how a doctor and clinicians perform 

auscultation, significantly minimizing the interference from 

heart signals. Likewise, the reference acoustic image 

translated from the actual lung signals from the respiratory 

database were recorded on the patient’s posterior to ensure that 

the heart sounds would be minimal and would not significantly 

interfere with the lung sounds. Additionally, the frequency 

range for heart signals is typically below 150 Hz, while the 

frequencies of interest for lung signals range from 250 Hz to 

1000 Hz [48], [55], [56], and 400 Hz was utilized in this work. 

Thus, a straightforward approach is to implement a high-pass 

filter to eliminate the lower heart signal frequency. Second, 

there will be variations in respiratory system model 

performance due to a range of factors such as the system 

network architecture: node position in the x- and y-axis 

location, and the physical airway model, e.g., Horsfield or 

Weibel airway model. The results presented in this paper are 

based on the respiratory model’s independent abilities to 

optimize both the number and position of acoustic sensors for 

obtaining useful acoustic information, and other 

unsupportable combinations of acoustic sensor’s position are 

not taken into account, such as imbalanced position, e.g., an 

offset position from adjacent sensors. Although breathing 

patterns and respiratory rate with respect to lung signals can 

be utilized for a more comprehensive lung function 

assessment other than acoustic lung sound signals, the 

frequency ranges for various breathing patterns and bodily 

movements overlap, significant techniques to signal 

processing are required to isolate the signal components while 

restoring the important data for assessment purposes [51], 

[52]. Third, the diameter of the obstructed lung region 

estimated from a circle’s surface area is used to establish the 

length of the obstructed airway reported in Fig. 10 and Fig. 11. 

The airway geometry was assumed to be translated from a 3D 

space to a 2D plane without any intersections. To prevent 

outliners from determining the nidus length, a carefully 

selected simulated obstructed area was used. The lung size 

[49] of the respiratory system model shown in Fig. 2 is 

maintained at roughly 240 mm (height) by 100 mm (width), 

which is within 90% of the actual lung size. Finally, it is 

possible to locate the obstructed area in the simulated lung 

model precisely due to 1) only sensor distribution and sensor 

sensitivity area were considered in the simulated acoustic 

imaging sensor array design, and the actual sensor 

characteristics were excluded; 2) The model is believed to be 

interference-free from body movement, body temperature, 

ambient, and the ideal sound pressure can be captured directly 

through typical acoustic sensors utilized for capturing lung 

sound signals [45]–[48]. 

VII. CONCLUSION AND FUTURE WORK 

A spatial network of the respiratory system modeling is 

proposed in this paper, and sensor array design studies through 

acoustic lung imaging based on the model are conducted. The 

study results in a framework for the optimization of the 

HFCWO therapeutic technique that has shown: 1) The 

acoustic relationships and imaging characteristics between the 

sensing system and the location of nidus; and 2) How the 

sensor numbers and sensor sensing sensitivity affect the image 

dynamics at various locations within the chest area. The 

potential of assessing lung function with acoustic imaging has 

been validated through respiratory remodeling and obtained a 

similarity of 89% as compared to the acoustic image initiated 

from actual lung sound signals. This study offered design 

guidelines for acoustic imaging systems, or served as a 

performance assessment of already-in-use multimicrophone 

array-based acoustic imaging systems. Although there have 

been experimental studies on the location of the nidus, these 

researches in [13] and [21] concentrated on acoustic sound 

detection rather than acoustic imaging and did not take into 

account the impact of sensor sensitivity or sensor number [8], 

[13], [21]. In order to support the conclusions in Sections III, 

IV, and V about respiratory system modeling and sensor array 

design, an experimental investigation on locating nidus using 

an acoustic imaging system can be carried out. Lastly, this 

work can be further used to compare the modeling and 
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simulation results with actual respiratory lung sound that 

contains noise interferences. Thus, as a long-term goal of this 

research, it is possible to investigate the impact of 

nonuniformly distributed sensor configuration on nidus 

detection and the addition of a denoising algorithm [56], [57] 

to the acoustic imaging system for a practical system to 

precisely identify the location of the pathology produced by 

the airways for targeted therapy. 
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