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A B S T R A C T   

Integration of extended reality (XR) in education is becoming popular to transform the traditional classroom with 
immersive learning environments. The adoption of immersive learning is accelerating as an innovative approach 
for science and engineering subjects. With new powerful interaction techniques in XR and the latest de-
velopments in artificial intelligence, interactive and self-directed learning are becoming important. However, 
there is a lack of research exploring these emerging technologies research with kinesthetic learning or “hands- 
one learning" as a pedagogical approach using real-time hand interaction and agent-guided learning in 
immersive environments. This paper proposes a novel approach that uses machine learning agents to facilitate 
interactive kinesthetic learning in science and engineering education through real-time hand interaction in the 
virtual world. To implement the following approach, this paper uses a chemistry-related case study and presents 
a usability evaluation conducted with 15 expert reviewers and 2 subject experts. NASA task load index is used for 
cognitive workload measurement, and the technology acceptance model is used for measuring perceived ease of 
use and perceived usefulness in the evaluations. The evaluation with expert reviewers proposed self-directed 
learning using trained agents can help in the end-user training in learning technical topics and controller-free 
hand interaction for kinesthetic tasks can improve hands-on learning motivation in virtual laboratories. This 
success points to a novel research area where agents embodied in an immersive environment using machine 
learning techniques can forge a new pedagogical approach where they can act as both teacher and assessor.   

1. Introduction 

Extended Reality (XR) is transforming learning technology by 
providing the ability to create more interactive learning content (Skult & 
Smed, 2020) and simulating immersive user experiences to understand 
complex technical concepts more practically (Dawley & Dede, 2014). 
The use of XR as learning technology, explained by Dengel (2022) as 
immersive learning, has increased quickly in the last couple of years due 
to the higher immersion capabilities. The adoption of Head-Mounted 
Displays (HMDs) and smart glasses is increasing with time due to 
improved interaction techniques, more accessibility, decreasing cost, 
and increasing portability. Following these developments in HMDs and 
computer graphics, immersive learning technology has gained enough 
potential to take technology-enhanced learning in resource-constrained 
environments closer to real-world settings (Gao et al., 2021). Among all 
other novel approaches in learning technologies, Immersive Learning 
Environments (ILE) are the most revolutionary interactive platforms 
(Freina & Ott, 2015), that can become more productive with self-guided 

learning and hands-on learning capabilities. Self-guided learning which 
also known as self-directed learning (Abdullah, 2001) helps learners to 
take initiative and responsibility for planning, organizing, and executing 
their learning plans (Sandars & Walsh, 2016). In this type of learning, 
learners are not depending on direct supervision or guidance, rather 
they have control over what, how and when they learn. Immersive 
learning applications depend on different factors, including rendering 
quality, responsiveness, interactiveness, and user interfaces (Vlahovic 
et al., 2022). The latest hand interaction technologies can help to 
incorporate kinesthetic learning in STEM (Science, Technology, Engi-
neering, and Mathematics) subjects because they provide hands-on 
experiential learning opportunities that complement the theoretical 
concepts taught in these disciplines (see Figs. 5 and 6). 

Furthermore, Banjar and Campbell (2022) introduced the gamifica-
tion approach in XR whichdemonstrated a motivation factor to enhance 
students’ performance and learning outcomes. With the exponential 
growth in computational power and recent technological advancements 
in artificial intelligence, intelligent agents are rapidly evolving. Stanney 
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et al. (2022) highlighted the growing use of AI agents to implement as 
intelligent tutors to provide personalized guidance in the learning pro-
cess. They can help in end-user training, analyzing learners’ behavior, 
assessing performance, and adapting the new learning materials ac-
cording to individual needs. Interestingly, concepts such as real-time 
hand interaction for hands-on kinesthetic learning and agent-oriented 
approaches to support self-guided learning are still not widely investi-
gated in immersive learning. This research has proposed higher user 
interaction with the latest real-time hand-interaction technologies and 
incorporating intelligent agents in immersive learning to make it more 
user-centered and self-guided. The principal contribution of this 
research is to implement the AGILEST AGents to facilitate Interactive 
kinesthetic LEarning in STEM education using a Touchless interaction 
approach with HMDs, using touchless hand interaction and machine 
learning agents. 

2. Related work 

From simply overlaying digital content on top of real environments 
to a completely virtual environment, XR has been successfully imple-
mented and adopted at different levels (Papanastasiou et al., 2019). 
Recent advances in machine vision have taken hand tracking to a very 
advanced level which is like a realistic hand interaction (Hameed et al., 
2021; Kang et al., 2020). Examples include GesturAR presented by Wang 
et al. (2021), which uses freehand gestures within its augmented reality 
(AR) authoring tool, allows end-users to use customized freehand out-
puts for creating AR applications. Birt, James et al. (2018) used mixed 
reality (MR) on smartphones for experiential learning with a hybrid 
self-directed approach to successfully enhance engagement in medicine 
and health sciences. Similarly, Iqbal and Campbell (2021a, 2021b) re-
ported a case study with leapmotion hand interaction and agents for 
learning PC assembly. Some post-COVID recommendations for using 
immersive learning environments suggested adoption for such modern 
approaches that create productivity in the learning process (Wang et al., 
2022). XR in its different forms has been explored in healthcare and 
medical training as a virtual reality (VR) simulator (Dyulicheva et al., 
2021), collaborative training for better visualization (Chheang et al., 
2019) and interaction in anatomy learning (Zorzal et al., 2019), which 
shows the capabilities of this technology at a broader scope. Hu-Au and 
Okita (2021) reported a comparison of a VR chemistry laboratory and a 
traditional chemistry laboratory concluded participants in the VR lab 
have higher learning gain than the traditional. 

MagicChem developed by Pan et al. (2022), is a MR system designed 
to conduct chemistry experiments where users can learn with hand 
interaction-based basic chemical experiments presented higher user 
satisfaction and interaction compared to the traditional chemistry lab. 
Ramírez, J. Á., & Bueno, A. M. V. (2020) conducted a fully Immersive VR 
(IVR) experiment with Oculus Rift for learning organic chemistry, 
proved its capability of emotionally involving students with higher 
motivation and making the learning process more engaging for peda-
gogical objectives. Based on the IVR practical experiments for chemistry 
learning, Miller et al. (2021) suggested that IVR can effectively reinforce 
learning and increase student success in formal classroom settings. Ac-
cording to Araiza-Alba et al. (2021), using IVR to learn and practice 
problem-solving skills proved that immersive technology could engage 
interest, motivate the users and assist in cognitive processing. The 
exploration of using immersive technology for nursing students by Kim 
and Ahn (2021) found learning satisfaction as one of the most significant 
factors for adopting immersive technology. Lowe and Liu (2017) re-
ported use of AR with see-through head-mounted displays (HMDs) for 
conventional experimental approach as a worthy tool for increasing 
learning gain in the chemistry experiments with illustrative scenarios. 
Another approach by Fujiwara et al. (2021), for collaborative chemistry 
learning using VR technology supported the evidence for distance 
learning approach with remote collaboration in VR spaces. 

There are many research studies that have reported successful 

hypotheses testing with different settings of immersive learning with 
different display and tracking devices (Beck, 2019; Hurrell & Baker, 
2021; Jantakoon et al., 2019; Ummihusna & Zairul, 2022). An immer-
sive learning approach adopted by Edwards et al. (2019) with haptic 
technology for learning chemistry called VR Multi-sensory Classroom 
(VRMC) achieved a higher engagement, motivation, and interest in a 
controlled learning environment. Furthermore, using machine learning 
in immersive learning environments for confidence estimation found 
that Long Short Term Memory (LSTM) model can help to understand 
trainee’s learning status and increase learning performance (Tao et al., 
2020). A recent study by Elme et al. (2022) presented evidence that 
immersive VR is an effective learning technology for acquiring complex 
scientific concepts where formal learning approaches are not producing 
sufficient results. The use of immersive learning in environmental and 
sustainability education has found XR as affordable solution for 
enhancing the understanding of complex topics related to environment 
(Aguayo & Eames, 2023; MacDowell, 2023). 

By incorporating artificial intelligence agents in immersive learning 
environments, Sharma et al. (2019) tested an emergency response sys-
tem. By creating an experimental setup, this research proposed the use of 
immersive learning environment for training security agents for emer-
gency response. Elor and Kurniawan (2020) used deep reinforcement 
learning in immersive VR and presented a novel game mechanic for 
exercise games that suggested human-level performance is possible with 
agents in immersive environment if we use right parameters. Jacobson 
et al. (2008) proposed the implementation of multi-user immersive 
learning experiences with intelligent agents to support the learning gain 
and engagements. 

These approaches of using immersive technology in different display 
devices and diverse learning environments are gaining popularity in 
STEM education. It offers unique opportunities for learners to experi-
ence real-world phenomena in safe and controlled environment. 
Although XR is well investigated in learning but not in the context of its 
future use in resource-constrained and remote environments, where 
there may be limitations in funding, access to physical resources, or 
qualified instructors. Secondly, new horizons in the intelligent agents 
are not well explored in the domain of XR for learning to make the 
immersive learning more independent and supportive for personal 
learning environments where students can learn without the support of 
an instructor. Considering exciting studies, current challenges and 
future emerging opportunities presented by Iqbal et al. (2022)., this 
research focuses on investigating the research gap of exploring real-time 
hand interaction for kinesthetic learning pedagogy and self-directed 
learning in immersive environment. 

3. Research questions  

• RQ1: Can we use real-time hand interaction with virtual objects in 
immersive environments to help learners in kinesthetic learning for 
STEM subjects? This aims hands-on experiments in the resource- 
constrained environment where provision of physical material is 
not possible.  

• RQ2: How self-guided learning approach with intelligent agents can 
help in user training and independent learning in immersive learning 
environments? The aim is to incorporate agents which can help the 
learners in the independent environment where instructor is not 
available. 

4. Immersive learning Environment with hand interaction & 
ML- agents 

The methodology plays a vital role in developing an innovative so-
lution by providing a structured and systematic approach for designing, 
implementation, and evaluation. There are two major components of 
our proposed solution; real-time hand interaction in virtual environment 
and agent guided learning. The aim of using hand interaction in the 
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immersive environment is to facilitate the kinesthetic learning approach 
for science subjects in resource-constrained scenarios. The integration of 
machine learning agents aims to enhance the user training process and 
facilitate assessment process. 

To test proposed with HMDs, a case study is developed for Oculus 
Quest 21 using controller-free hand interaction. The reason for prefer-
ring Oculus Quest over other VR handsets was the standalone feature of 
Oculus (Hillmann & Hillmann, 2019), and hand tracking functionality 
(Buń et al., 2022) as a major requirement. This case study uses chemistry 
learning experiments with a resource-constrained learning scenario 
following the concept of virtual laboratories. Fig. 1 has explained the 
system architecture diagram which is providing an overview of learning 
flow. 

Following the virtual chemistry lab concept by Qin et al. (2020), this 
study provides an immersive learning experience using touchless hand 
interaction technique (Iqbal & Campbell, 2021a, 2021b) and AI-guided 
approach to support learners. The learning flow adopted in the appli-
cation (Fig. 1), consists of three different modules LEARN, TEST, and 
QUIZ. The first module uses machine learning agents to guide the user in 
learning chemical reaction with previous trained agent and gain 
knowledge to practice in the TEST module. After getting training with 
the LEARN module, the user moves to TEST module, where actual 
hands-on learning allows the user to perform hands-on or kinesthetic 
tasks for creating chemical reactions with virtual hand interaction. 
Finally, the last module is QUIZ, which is an MCQ-based assessment on 
learning from the previous two modules. 

4.1. Training module - LEARN 

Unity ML-Agents are used to implement machine learning agents 
(Juliani et al., 2018) in the LEARN module. These agents are using 
reinforcement learning, defined by Sutton and Barto (2018) as “a ma-
chine learning training method award for desired behaviors and/or punish 
for undesired behaviors”. Unity ML-Agents is an open-source toolkit 
originally developed to integrate AI with machine learning in gaming. A 
reinforcement learning agent can perceive and interpret the environ-
ment, take actions, and learn through errors (Noothigattu et al., 2019) as 
Fig. 2 explains. Unity ML-agents are developed with python APIs and 
can be integrated with the Unity applications after training the neural 
network (NN). This process consists of Integrate, Train, and Embed; 
further explained in detail in Fig. 3. This toolkit previously explored in 
the context of custom gameplay by Youssef et al. (2019), shooting game 
by Lai et al. (2019), e-sports by Li (2022), and other kinds of gaming 
environments. The use of agents in immersive technology, especially in 
the context of immersive learning, is not explored yet to a level where 
this toolkit can help to develop a learning environment for STEM sub-
jects (see Fig. 4). 

The training process of LEARN module consists of the following;  

• Collecting required data of reinforcement learning; states, actions, 
rewards  

• Training of reinforcement learning model  
• Inputting trained model back to the unity application 

ML-agent trained for Grab, Move and Collide actions of user with 
observation collection function during kinesthetic tasks for performing 
chemical reactions in the virtual environment (as in Fig. 4). It considers 
each episode’s length and time consumed to perform a complete 
episode. An agent training process consists of several episodes followed 
by changing buffer size to gain better results. 

Different buffer sizes are needed to conduct an efficient training 
session for a reasonable learning rate. These parameters include buffer 
size, maximum steps, batch size and normalization permissions inside 

the Unity ml-agents. Agent learning is action based learning, learning 
through interaction with the cubic chemicals. 

4.2. Kinesthetic learning module - TEST 

The TEST module allows users to interact with 3D chemical elements 
and following the machine learning module, create chemical reactions 
in an immersive environment. In this module, reactions are followed by 
audio and vibration feedback to let the user know about chemical 
reactions. 

This module is developed using the latest Interaction SDK of Oculus 
Quest, which allows controller-free hand interaction in virtual envi-
ronments. Using deep learning technology, Unity ML-Agents SDK pro-
vides a very realistic and complex AI environment for training neural 
network models. 

In the TEST module, users can understand the gas, crystals, and 
liquid forms of different elements and molecules (see Fig. 5). This 
module allows users to move within the assigned tracking space and 
follow the complete hands-on learning approach. 

4.3. Assessment module - QUIZ 

After completing the TEST module and learning with hands-on 
practice, the user will enter to QUIZ module. The QUIZ module over-
lays the TEST module to provide MCQs-based assessment quiz for users. 
On every right answer, user will get 10 score and negative 5 if the user 
selects the wrong choice. The QUIZ module is linked to a database where 
instructors can review students’ learning outcomes. 

5. Evaluation plan 

When adopting a new technology, evaluation and assessment are the 
most crucial components in immersive learning same as other learning 
applications. Ledo et al. (2018) clarified the importance of adopting the 
right evaluation approach and how using ineffective or imperfect ap-
proaches in the learning systems can risk the successful acquisition of 
targeted learning goals and outcomes. It can also mislead the user 
experience with specific technologies creating negative perceptions. To 
achieve the proof-of-concept, this evaluation study aimed to investigate 
the effectiveness, interactiveness, and level of value creation in the 
learning process. 

Arpaia et al. (2022) emphasize that usability evaluation of XR sys-
tems allows the developers to assess different aspects of the system in a 
better way. In addition, the evaluation reveals how the users interact 
with the system and finds if the system easy to use, required meeting the 
proposed goals and investigating design issues (Dengel & Mägdefrau, 
2018). This blended learning approach using the components of Section 
3 in a VR application is supposed to provide a self-directed learning 
experience and user confidence in the immersive environment. 

This evaluation study investigated whether integrating hand inter-
action in immersive environment and using machine learning for user 
training could improve the students’ concept learning in science subjects 
with hands-on practice. This evaluation study uses the expert reviewers’ 
method to assess the usability of the proposed system. 

5.1. Recruiting participants 

For evaluating the prototype, an in-person evaluation was conducted 
during ACM International Conference on Interactive Media Experiences 
(IMX) 20222 and 16th EATEL Summer School on Technology Enhanced 
Learning 2022 (Learning, 1999). EATEL Summer School3 is an annual 
gathering of researchers in Technology Enhanced Learning (TEL) who 

1 https://www.meta.com/gb/quest/products/quest-2/. 

2 https://imx.acm.org/2022/.  
3 https://ea-tel.eu/jtelss22. 
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are working on immersive learning, learning analytics, and learning 
intelligence. 

ACM IMX is an international conference for researchers in interactive 
media experiences with major contributors from XR researchers. The 
main pre-requisite for participants participating in the research evalu-
ation was a research-level experience in immersive technology, HCI, and 
technology-enhanced learning with peer reviewed publications. A direct 
outreach was performed based on identified research work in their 
contribution to the IMX and summer school. A total of 15 expert re-
viewers (plus two subject experts presented in section 5.3) participated 
in the evaluation process, which included 6 subjects from summer 
school and 9 from the IMX conference. 

Out of 6 in summer school, 2 were females and 4 males, while out of 

9 in IMX conference, all 9 were males. All of the expert reviewers are at 
different levels of research with diverse age, starting from 23 to 38 as the 
maximum one (Fig. 6). Among these 15 participants, 6 participants who 
were from summer school had more background in technology- 
enhanced learning as general or learning pedagogy in XR. The 9 other 
participants who participated from the IMX conference had more 
experience in multimedia and interactive technologies for learning, 
which includes different types of immersive technologies. 

5.2. Learning goals 

In immersive learning, the primary learning goal is to support the 
learner with engaging and interactive experience to promote deep 

Fig. 1. System architecture for AGILEST Approach for HMDs.  

Fig. 2. Process of reinforcement learning in ML-agents.  
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understanding on the content (Appelman, 2005), developing skill and 
knowledge retention (Webster, 2016). In the context of this research, the 
learning goal of the experiments is basic chemical reactions at the sec-
ondary school level. The learning goal also includes evaluating the 
learning gain, cognitive load, and user confidence in the adopted 
approach. 

5.3. Subject matter 

Aside from the formal evaluation process by testing, we invited two 
(2) secondary school level instructors to participate in the process of 
developing and testing learning flow, using hand interaction and 
introducing cubic elements in the virtual environment. The aim of 
involving the chemistry-related instructors was to get subject-related 
help for usability recommendations for the system and help with the 

future work in TEL for STEM. 

5.4. Procedure 

Experimental procedures in immersive learning can have different 
procedures depending on the experiment’s goals. As a first step, getting 
informed consent is a crucial part in immersive learning same as any 
other research involving human participants. After getting consent from 
participants, they were introduced to the technical aspects of the 
application and the learning goal of this research. Further, they were 
guided about the learning flow in the application before starting actual 
experiments with Oculus Quest. With hand-tracking functionality 
enabled, Oculus Quest 2 was used in the experimentation process with 
fully controller-free interaction. Every expert reviewer was asked to step 
into LEARN module after starting the experiment, where a pre-trained 
machine learning-based neural network can help to learn creating 
chemical reactions in the virtual environment (Fig. 8). 

After learning through LEARN module, each participant switched to 
TEST module for practicing hands-on learning for creating chemical 
reactions practically. The tracking area, field view, and interaction space 
are set to a user sitting on a chair and can reach all elements at arm’s 
length without the need to walk in the tracking area. By following 
learning from the LEARN module, participants created all chemical re-
actions using virtual hand interaction with 3D cubic elements. 

After completing the both LEARN and TEST modules, each partici-
pant was provided with a Google form based questionnaire based on two 
components;  

• NASA Task Load Index (NASA TLX) 
• Technology Acceptance Model (TAM) to measure Perceived useful-

ness (PU) and Perceived ease-of-use (PEOU) 

Fig. 3. Steps of Training Machine Learning Agents & integrating in Mixed Reality application.  

Fig. 4. Process of training the Neural Network (NN) of ML-Agent.  
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NASA task load index (NASA TLX) is a tool used for conducting 
mental workload (MWL) assessment (Hart, 2006), its main objectives 
are listed in the Table 1. It is a widely used approach for subjective and 

multi-dimensional assessment. Applying Technology Acceptance Model 
(TAM) in VR can help to get valuable insights about the factors which 
influence the acceptance of VR learning experiences by users (explained 
in Fig. 7). 

By understanding the perceived usefulness, perceived ease of use, 
attitude toward using application, behavioral intention to use, and 
actual use of VR technologies, this evaluation has presented ways to 
optimize the proposed design of VR applications for improving user 
acceptance. Granić and Marangunić (2019) reported TAM is one of the 
most known research models to determine acceptance of information 
systems/information technology. According to Subramanian (1994) and 
Papakostas et al. (2021), perceived usefulness and perceived ease of use 
are fundamental determinants of TAM for user acceptance. When a user 
perceives a new technology as useful, they are likely to see value in 
adopting it due to its alignment with their needs and expectations (Lee & 
Coughlin, 2015). 

6. Results 

To measure the efficacy of immersive technology tools in education 
and the relevant learning outcomes, there are several factors those are 
investigated through this post-experiment questionnaire. The results of 

Fig. 5. (a) Start Menu and Navigating between different modules of the application; (b, c d) Interacting with chemical elements to grab and create reactions.  

Fig. 6. Participants Age group.  

Fig. 7. Technology Acceptance Model (TAM) used in the part of questionnaire.  
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the questionnaires are presented in Table 2, Table 3 and analysis done 
using R studio. 

6.1. Evaluation results 

The evaluation results hold importance in research as critical nexus 
between hypothesis and conclusion, which means bridging the gap be-
tween theory and empirical evidence based on the experiments (Fig. 10 
shows the partipants during experiments). 

The result of the NASA TLX in Table 2 and Fig. 9 shows the level of 
mental and physical workload required to complete the tasks in the 

Fig. 8. Learning with LEARN module using self-directed learning: Evaluations with young researchers at ACM International Conference on Interactive Media Ex-
periences 2022. 

Fig. 9. Results of NASA TLX on 5-Likert scale.  

Table 1 
Sub-dimensions of workload NASA Task Load Index.  

Sub-dimensions of 
workload 

Explanation 

Mental Demand Mentally demand needed for task completion. 
Physical Demand Physical demand for task completion. 
Temporal Demand Time demand and pace of the task. 
Performance Success in accomplishing the task. 
Effort How hard to accomplish your level of performance? 
Frustration How irritated, stressed, and annoyed felt to complete 

the task?  

M.Z. Iqbal and A.G. Campbell                                                                                                                                                                                                               



Computers & Education: X Reality 3 (2023) 100038

8

application is 1.8 and 1.6 respectively in average on a scale of 5. It shows 
interaction with the application and performing experiments in the 
virtual environment was not causing much workload for the partici-
pants. If participants experiencing lower levels of time pressure when 
performing a task, they perform better to allocate cognitive resources, 
engage in problem-solving, and apply decisions effectively. 

The time pressure of performing tasks and work needed to accom-
plish performance is 1.93 and 1.86, respectively, which shows a minimal 
level on both of these parameters. As discussed by Jeffri and Rambli 
(2021), there is a positive correlation when mapping task performance 
against mental workload. 

In getting success to perform the tasks successfully, the average score 
is 3.93, reasonably higher, which shows participants were very suc-
cessful in performing the required tasks with hand interaction. Finally, 
the level of irritation, stress, and annoyance compared to the quality of 
content, level of relaxation, and self-satisfaction was low with an 
average score of 1.73 which shows participants were more relaxed and 
satisfied as compared to irritation. 

Results based on TAM for Perceived Usefulness and Ease of Use 
questionnaire in Table 3 and Fig. 11 show use of hands-on “kinesthetic” 
learning in immersive environment increased the learning performance 
with an average score of 6.07 on a scale of 7 and use of real-time hand 

interaction with an average of 6.40 for effectiveness. 
The use of machine learning agents is the most crucial component of 

this study as RQ 2 is entirely focusing on the success of the component. 
With an average of score of 5.33, participants think machine learning 
can help in self-directed learning in immersive environments. This result 
has endorsed the previous studies where machine learning and artificial 
agents are proposed for immersive learning (Dyulicheva & Glazieva, 
2022; Elor & Kurniawan, 2020). 

This shows the potential of adding the power of intelligent agents in 
immersive learning environments. By leveraging the power of these 
agents, immersive learning can become more engaging, efficient, and 
productive. The visual presentation of these results is in Fig. 11. The 
average score of all other usability and ease of questions, including the 
nature of the experience, was high, showing a higher engagement and 
satisfaction, leading to a higher recommendation score of 6.33. Visual 
stimuli boost cognitive processing, visual information process faster in 
brain and more effective as compared to text-based information (Kuhail 
et al., 2022) (see Fig. 12). 

Perceived usefulness and ease of use are key predictors to find if the 
users will adopt and use this learning technology with the proposed 
approach. With higher scores, expert reviewers perceived that this 
technology could be useful and easy to use, and it can be beneficial with 
the real end users. Due to immersive, more natural and intuitive inter-
action methods in the virtual environment, this approach has shown 
higher user experience and increased engagement which is a major 
requirement for such solutions (Mäkinen et al., 2022). The higher 
pleasant score of the learning experiment proved as significant impact in 
the learners’ overall motivation and engagement. 

The combination of TAM and NASA TLX results allows researchers to 
gauge learners’ inclination to adopt immersive learning and holistically 
evaluate the cognitive implications of using these technologies. These 
findings help to understand the interplay between user acceptance and 
mental demands, ultimately guiding the design process and imple-
menting immersive learning environments that are user-friendly and 
effective. 

6.2. Subjective questionnaire results 

Along with the NASA TLX and TAM questionnaire, expert reviewers 
were asked to provide subjective feedback about usability and further 
recommendations. About hand interaction to create chemical reactions, 
participants responded “Hand interaction makes it more interactive as 
compared to other interaction approaches in XR", “easy to use and friendly" 
and “interactive, accessible and very responsive". This shows the realistic 
level of hand interaction technology in immersive environment. The 
results of NASA TLX and TAM proved that hand interactions in VR can 
potentially reduce cognitive load as compared to using traditional 
controllers. As hands are the primary way of interaction with the real 
world, so hand interaction ability in VR enhances the feeling of realism. 
The use of hand interaction can help to manipulate virtual objects in VR 
environment with higher precision and accuracy which plays a crucial 
role in STEM related XR applications like training or VR laboratories. 
This way, we can reduce the workload for complex UI of button presses 
or controllers, which makes learning friendlier. A participant expressed 
his views about the adopted approach, “I like the adopted approach of 
kinesthetic learning". This is very similar to Hernandez, Jessa et al. (2020) 
study, where kinesthetic learners gained broader visuospatial under-
standing in learning anatomy. This shows the potential of this proposed 
approach of intelligent agents and real-time interaction for future 
research. 

About using machine learning agents for self-directed learning, the 
responses of the expert reviewers were; “it can help in personalization, 
more scalable and deliver accurate learning contents". According to Tapa-
lova and Zhiyenbayeva (2022), personalized learning can help for 
training in virtual contexts, adaptation of learning content to personal 
needs, real-time feedback, improving the learning process and mental 

Table 2 
Analysis based on data of NASA Task Load Index questionnaire’s responses with 
average, median, minimum, and maximum.  

Questions- NASA Task Load Index (TLX) 
5-point Likert scale 

Average Median Min Max 

How much mental and perceptual activity 
was required? (Low - High) 

1.8 2 1 4 

How much physical activity was required for 
performing hands-on tasks? 

1.6 2 1 3 

How much time pressure did you feel when 
performing tasks? 

1.93 2 1 3 

How successful were you in performing the 
task? 

3.93 4 3 5 

How hard did you have to work (mentally 
and physically) to accomplish your level of 
performance? 

1.86 2 1 3 

How irritated, stressed, and annoyed versus 
content, relaxed, and complacent did you 
feel during the task? 

1.73 2 1 3  

Table 3 
Data of Perceived Usefulness and Ease of Use questionnaire responses with 
average, median, minimum, and maximum score.  

Questions - Perceived Usefulness and Ease of 
Use) 
7-point Likert scale 

Average Median Min Max 

Using a hands-on learning approach in an 
immersive environment improves learning 
performance? 

6.07 6 3 7 

Use of VR-based real-time hand interaction 
with 3D material will enhance learning 
effectiveness? 

6.40 7 5 7 

Does the machine Learning module help to 
learn before the hands-on activity of 
creating chemical reactions? 

5.33 5 4 7 

It was easy to learn chemical reactions with 
hand interaction in MR. 

6.33 6 2 7 

It was easy to interact with the Application? 6.33 7 3 7 
It was easy to follow the steps in LEARN 

Module? 
6.00 7 4 7 

It was easy to interact with the 3D chemicals 
through hand interaction? 

6.33 7 4 7 

I am satisfied with the learning approach and 
interaction. 

5.93 6 4 7 

Will you recommend it to your students or 
friends? 

6.33 6 5 7 

How pleasant was this experience for you? 6.40 6 6 7  
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stimulations. Other participants said, “machine learning and intelligent 
agents can play a very big role in learning systems for training users", “I like 
the self-directed learning approach before going to hands-on learning" which 
is acceptance of the workflow designed in this methodology and “Yes, it 
can be improved more. It helps definitely before going to actual 
interaction-based experience". These responses show encouragement from 
expert reviewers for exploration on intelligent agents for immersive 

learning. The intelligent agents in immersive technology are those fu-
turistic components of XR research which will continue to advance and 
opening up new opportunities (Guan et al., 2023; Loureiro, 2023). 
Fig. 12 shows the main keywords found in the subjective responses of 
the expert reviewers. 

Answering the question of the most interesting thing about experiment, 
expert reviewers responded “I liked the interaction and the immediate 

Fig. 10. Hands-on learning with interaction hand: Evaluations with young researchers at ACM International Conference on Interactive Media Experiences 2022.  

Fig. 11. Ratings for Perceived Usefulness and Ease of Use on 7-point Likert scale.  
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reaction" and “The visual effects that make for an immersive experience". 
Bowma & McMahan (2007) suggest that higher immersive quality in 
system can help to bring more psychological presence. “To see visual 
reactions like fire really enhances the experience" and “Simulated environ-
ment is pleasant with attractive textures", inclusion of these above features 
certainly have a cost in terms of application speed. This shows that 
creating visual effects in chemicals to make them realistic and real-time 
hand interaction provides a pleasant experience in the immersive 
environment. An expert user appreciated the learning cycle, “learning 
flow of the app is interesting; taking the user from self-guided learning 
approach to hands-on learning and then integrated assessment". This can 
help a learner to learn in a proper way where training occurs before 
practice and testing. Sharing experience about the use of ML-agents, an 
expert reviewer said “use of agent guided learning can reduce cognitive 
overload and such suitable learning concepts can improve the learning gain". 
One expert reviewer appreciated the use of the kinesthetic learning 
approach, “use of kinesthetic learning encourages users to engage with 3D 
material and increase the effectiveness", and another one acknowledged 
the approach, this approach combines great thoughts of hands-on learning, 
agent-led, and interactive learning. The best thing about real-time hand 
interaction is using immersive technology practice scenarios in a 
kinesthetic learning style which proves the hypothesis of this paper. 

In expert reviewers’ recommendations, “increasing the overall visual 
quality (including special fusion effects) would improve the experience in 
general", “the organization of the cubes should be optimized. Even though the 
Model explains in which "order" you must combine the elements, to give the 
user freedom of exploration regarding similar components, would be much 
appreciated and “adding more relevant case studies to engage user within the 
app". These recommendations encourage the advancement in the pro-
totype for more engagement of users and scalability if the approach. One 
expert reviewer recommended using user collaboration in an immersive 
environment, “this approach can be enhanced to collaborative approach, 
adding multiple users in the learning environment", this is a great idea to 
develop a co-creation concept within this approach. de et al. (2020) has 
explored the collaborative learning aspects in immersive environments 
in great detail for CAVE, but it is definitely increasing opportunities in 
the HMDs based XR like Drey et al. (2022). Another similar response was 
about collaboration, “try to develop user collaboration for interaction to 
create co-learning activities". Collaboration in learning environment pro-
motes social interaction where learners can exchange ideas and provide 
peer support (Jovanović and Milosavljević, 2022). When collaborating 

with peers, students feel a sense of connection leading to increased 
participation and reduced feelings of isolation (Hu et al., 2022). 

Moving towards the realism approach, a response was “You can use 
this approach with multi-sensory experiences which will allow the user 
to play in the immersive environment with realism", this can be achieved 
by combining VR tools with wearable haptic devices like Sanfilippo et al. 
(2022) which is definitely the future of the XR and indeed it will add 
much higher value in the current system. 

7. Design implications 

The expert reviewers’ feedback about the ML-agent for increasing 
the learning efficiency was positive as discussed in the section 6.1, 
which supported the hypothesis behind implementing the machine 
learning agents. Addressing the RQ1, this evaluation suggests that 
integration of kinesthetic or hands-on learning using real-time hand 
interaction technology can actively engage learners in technical topics 
by involving physical movement, manipulation of objects, and practical 
experimentation. When a learner actively involves in the learning pro-
cess, it helps better understanding of abstract concepts by making them 
tangible and relatable. Furthermore, the realism approach by providing 
real-time hand interaction with learning material got positive reviews 
from reviewers. Recently, the development of cloud anchors (Antunes 
et al., 2019), spatial anchors (Delmerico, et al., 2022), and the 
increasing capability of recent Meta HMD Quest Pro has created many 
opportunities for collaboration in immersive learning experiences which 
will enhance the importance of kinesthetic learning in virtual collabo-
ration (Jovanović and Milosavljević, 2022). 

Addressing the RQ2, the integration of AI or machine learning agents 
in immersive learning has the potential to create personalized, interac-
tive, and engaging learning environments. But it is a fact that there are 
lots of ethical issues (Mystakidis et al., 2021), data privacy concerns 
(Zallio & Clarkson, 2022), and need to balance automation and human 
interaction for a beneficial learning experience. The Unity ML-Agents 
Toolkit has developed over time and offers more stability with every 
new release. These new releases come up with additional features, and 
slowly it is becoming possible to implement complex learning systems 
within the Unity platform. Unity ML-agents can be used to implement 
gamification concepts in the learning experiences by creating 
game-based learning environments, which can make the learning pro-
cess more engaging and interactive. According to the goal of RQ2, AI or 

Fig. 12. Word cloud for “Most interesting thing" from expert reviewers.  
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machine learning agents can work as virtual mentors or tutors (Patar-
anutaporn et al., 2021) in immersive learning environments to empower 
independent learning. These agents can be developed to guide learners 
in learning or performing numerous tasks, simulations, or scenarios and 
providing real-time support. This approach can enhance the learning 
process by demonstrating proper techniques, correcting mistakes, and 
providing expert advice. 

8. Limitations 

Though the usability tests show results and participants’ acknowl-
edgment of this approach with positive reviews and recommendations, 
this study still has its limitations. The primary limitation of this research 
is the lack of extensive end-user experiments, which have a fundamental 
role in assessing the true effectiveness and practical implications of the 
proposal solution. As we have evaluated with expert reviewers, we still 
need to conduct assessments with secondary school students who are 
real end-users to explore more advanced usability factors. There is also a 
need to conduct control group experiments to draw a comparison with 
traditional learning. As this study will go through control group exper-
iments, there will be different design, ethics and privacy related issues to 
focus in this proposed solution. 

9. Conclusion & future work 

In this tech-savvy generation, immersive learning has professed ad-
vantages that encourage embracing technologies like XR as pedagogical 
tools in STEM education. Although the XR, as a learning technology has 
shown very positive and encouraging results (Tang et al., 2020; Yang & 
Goh, 2022), it can be challenging to see how these results could be scaled 
and repeated for different use cases. This study offers insight into how 
this could be possible by focusing on controller-free hand interaction for 
kinesthetic learning and using machine learning as self-guided learning 
using agents. 

The results of the NASA Task Load Index and TAM for Perceived 
Usefulness and Ease of Use show alignment with the proposed approach. 
These results also suggest that XR has a strong ability to work as a bridge 
between hands-on learning practices and learning technical topics in the 
resource-constrained environments. In immersive learning environ-
ments, the agency can play a supportive role in simulated experiences 
and can help in progress toward the metaverse (Iqbal & Campbell, 
2022). As technology continues to evolve with time, we can expect more 
innovative and advanced uses of intelligent agents as learning technol-
ogy in the near future. Knowing that the use of XR technologies is 
becoming a prominent trend for virtual laboratories for STEM subjects, 
this research will further enhance the capacity of XR with standalone 
devices, controller-free interaction, and a self-directed learning 
approach for personalized learning spaces. The findings from this eval-
uation indicate that such immersive learning approaches can be incor-
porated to increase the learning gain, equal access to learning resources, 
and add more value to existing XR approaches for user engagement. The 
approach is complementary to existing constructivist approaches, which 
summed up by Travers et al. (1993) as “an approach to learning that 
holds that people actively construct or make their knowledge and that 
reality is determined by the experiences of the learner". Further, with the 
recommendations and new developments in the multi-sensory haptic 
technology (Sanfilippo et al., 2022), this approach can further extend to 
realism with sensing gloves in future work. Finally, this work mirrors 
current developments in robotics, where NVIDIA uses ML agents trained 
in physical simulations to perform those actions in real life (Mako-
viychuk, et al., 2021). AGILEST approach points to a fascinating and 
novel pedagogical approach where data can be used to train virtual 
agents to become our teachers and assessors. This area is not limited to 
the STEM case study presented in this paper, as it offers a world where 
virtual agents coexisting in our reality could fundamentally change 
immersive learning in future. 
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