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On the boundaries of the m D 2 amplituhedron

Tomasz Łukowski

Abstract. Amplituhedra A
.m/

n;k
are geometric objects of great interest in modern mathematics

and physics: for mathematicians, they are combinatorially rich generalizations of polygons and

polytopes, based on the notion of positivity; for physicists, the amplituhedron A
.4/

n;k
encodes

the scattering amplitudes of the planar N D 4 super Yang–Mills theory. In this paper, we

study the structure of boundaries for the amplituhedron A
.2/

n;k
. We classify all boundaries of

all dimensions and provide their graphical enumeration. We find that the boundary poset for the

amplituhedron is Eulerian and show that the Euler characteristic of the amplituhedron equals

one. This provides an initial step towards proving that the amplituhedron for m D 2 is homeo-

morphic to a closed ball.

1. Introduction

It is an elementary fact about convex polygons that they are homeomorphic to a two-

dimensional ball: a unit disk. This is strongly reflected in the combinatorial structure

of their boundaries and allows to prove general statements about them, for example

that their Euler characteristic equals one. For polygons this fact is easy to show by

direct counting: each n-gon has exactly n edges and exactly n vertices which leads us

to the Euler characteristic

� D 1 � n C n D 1; (1)

as expected. However, such direct enumeration is more involved for higher-dimen-

sional convex polytopes, which nonetheless are homeomorphic to d -dimensional

spheres, and therefore their Euler characteristic has to be equal to 1. In recent years,

it was shown that amplituhedra defined in [4] share many features with polygons

and polytopes. Amplituhedra A
.m/

n;k
are generalizations of polytopes into a Grassman-

nian space, relying on the notion of positivity, and they exhibit a rich combinatorial

structure. They can be defined as the image of the positive Grassmannian through

a positive linear map, and similar to polytopes they are bounded regions equipped

with cell decompositions. They are also of great interest in high-energy physics since
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they provide a geometric description for tree-level scattering amplitudes in planar

N D 4 super Yang–Mills (SYM). There, positivity properly encodes the factorization

properties of amplitudes, and replaces unitarity and locality as fundamental notions,

providing a surprising new framework for quantum theories.

Despite displaying a complicated combinatorial structure, amplituhedra are rather

simple topologically. In particular, it was proven in [9] that the m D 1 amplituhedron

A
.1/

n;k
is homeomorphic to a k-dimensional ball. Our conjecture is that this is also true

for m D 2, and in this paper we take a first step towards confirming this statement. We

start by classifying all boundaries of the amplituhedron A
.2/

n;k
and study the structure

of their partially ordered set (poset) of boundaries. We check that this poset is Eulerian

and find that the Euler characteristic of A
.2/

n;k
equals one. We also provide a useful dia-

grammatic enumeration for all boundaries, which enables us to study combinatorial

properties of A
.2/

n;k
for any n and k.

2. Amplituhedra and their boundaries

2.1. Positive Grassmannian

Our approach will strongly rely on the known classification of boundaries of the posit-

ive Grassmannians [1, 12], which states that each boundary of positive Grassmannian

GC.k; n/ can be parametrized by a permutation of n elements. Let us denote by †n;k

the set of all positroid cells for GC.k;n/, i.e., the boundaries of the positive Grassman-

nian GC.k; n/, of all possible dimensions. We also include the top cell of GC.k; n/ in

†n;k . There is a natural partial order �C on †n;k given by

�1 �C �2 () �1 is a boundary of �2: (2)

We can extend this order transitively to obtain a partially ordered set of positive Grass-

mannian boundaries .†n;k; �C /. This poset is graded by the cell dimension. For each

positroid cell � we define two sets:

• @C � is the set of all boundaries of � (of all dimensions),

@C � D ¹� 0 2 †n;kW � 0 �C �ºI

• @�1
C � is the set of all inverse boundaries of � , i.e., the set of all positroid cells � 0

for which � 2 @C � 0,

@�1
C � D ¹� 0 2 †n;kW � �C � 0º:
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2.2. Amplituhedron

A
.m/

n;k
is defined as the image of the positive Grassmannian GC.k; n/ through the

function

ˆZ W GC.k; n/ ! G.k; k C m/; (3)

induced by a .k C m/ � n matrix Z with positive maximal minors, defined by

Y A
˛ D ˆZ.C / D c˛i Z

A
i for C D ¹c˛iº 2 GC.k; n/: (4)

In this paper, we focus on the case m D 2. For k D 1 the image is the familiar planar,

convex n-gon embedded in the projective space P
2. When k > 1, it is a more com-

plicated bounded region inside the Grassmannian G.k; k C 2/ with all co-dimension

one boundaries given by

hY i i C 1i D 0; (5)

where hY ij i D "A1:::AkBC Y
A1

1 : : :Y
Ak

k
ZB

i ZC
j . The structure of all lower-dimensional

boundaries of A
.2/

n;k
has not been studied before and this paper provides their full clas-

sification.

2.3. Amplituhedron dimension

As we already mentioned, the full stratification of the positive Grassmannian GC.k;n/

is known. For a given positroid cell � , we can define its Grassmannian dimension,

which we will denote by dimC .�/. It is important to notice that the dimension of

the image of a positroid cell through the map ˆZ can differ from the dimension of

the cell itself. It can be already observed for n-gons, i.e., the k D 1 case: although

the dimension of the top cell of the positive Grassmannian GC.1; n/ equals n � 1,

the image through the map ˆZ is always two-dimensional. We therefore define the

amplituhedron dimension dimA.�/ of a positroid cell � as the dimension of its image:

dimA.�/ D dim.ˆZ.�//: (6)

Since it is always true that dimC .�/ � dimA.�/, we can distinguish two cases:

• dimC .�/ D dimA.�/, this will correspond to a simplicial-like image;

• dimC .�/ > dimA.�/, the image will be polytopal-like.

In particular, for a positroid cell � for which dimC .�/ > dimA.�/, we can find a

collection of cells in @C � with the same amplituhedron dimension as � . Moreover,

in all cases we studied, there exists a (non-unique) subset ¹�1; : : : ; �rº 2 @C � such

that the images ¹ˆZ.�1/; : : : ; ˆZ.�r/º triangulate the image ˆZ.�/. In the generic

case when n > m C k, the image of the top cell of GC.k; n/, i.e., the amplituhed-

ron A
.2/

n;k
itself, is polytopal-like and we are often interested in finding a collection of
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.k � m/-dimensional cells which triangulate it. We want to emphasize here that a sim-

ilar behaviour is also true for many boundaries of the amplituhedron.

2.4. Amplituhedron boundaries

In this paper, we are interested in studying the boundary structure of the amplituhed-

ron A
.2/

n;k
. Let us denote by Bn;k the set of all boundaries of A

.2/

n;k
. As we discussed

in the previous section, we can encounter two types of boundaries: simplicial-like

and polytopal-like. In the former case, we can label any simplicial-like boundary

B� 2 Bn;k by the corresponding positroid cell for which B� D ˆZ.�/, and there-

fore by the permutation associated to � . For a d -dimensional polytopal-like boundary
zB 2 Bn;k the situation is more complicated since there will be many positroid cells,

with amplituhedron dimension d , which will be mapped to (a subset of) zB . In order

to find a unique label for each boundary, we will characterize zB by the positroid

cell which is mapped to zB with the highest Grassmannian dimension. In particular,

it implies that the interior of the amplituhedron A
.2/

n;k
is labeled by the permutation

of the top cell of GC.k; n/. Importantly, the dimension of a boundary can be much

smaller than the Grassmannian dimension of the associated cell.

As we already mentioned, the co-dimension one boundaries of the amplituhedron

are well understood and they take the form hY i i C 1i D 0. To find lower-dimensional

boundaries we will proceed recursively. Assume that we have found all amplituhedron

boundaries of dimension larger than d . Let us study all positroid cells � 2 †n;k with

amplituhedron dimension dimA � D d . For a given cell � , there are two options:

• either the amplituhedron dimension for all inverse boundaries of � are higher than

the amplituhedron dimension of � , dimA � 0 > dimA � � 0 2 @�1� ;

• or we can find a cell among the inverse boundaries of � which has a higher

Grassmannian dimension but the same amplituhedron dimension as � : there exists

� 0 2 @�1� such that dimA � 0 D dimA � and dimC � �C dimC � 0.

We only keep the former cells, since the latter are necessarily elements of a triangu-

lation of a boundary of the amplituhedron. After doing that, there is still a possibility

that some of the remaining cell images are spurious boundaries, which arise as spuri-

ous faces in triangulations of polytopal-like boundaries. Spurious boundaries can be

identified (and removed) because they belong to a single .d C 1/-dimensional amp-

lituhedron boundary, while external boundaries belong to at least two such boundaries.

This procedure allows us to find all external boundaries of dimension d . We can fol-

low this procedure recursively, starting from the known co-dimension one boundaries,

and work our way down to zero-dimensional boundaries: points.
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P
.n/
top D P

.n/

i;iC1
D P

.n/

i
D

)c)b)a

Figure 1. Labels for the amplituhedron A
.2/

n;1
: a) two-dimensional bulk, b) one-dimensional

boundaries (lines .i; i C 1/), c) zero-dimensional boundaries (points i )

2.5. Graphical notation

We have followed the procedure described above and studied the set of all amplituhed-

ron boundaries Bn;k for a wide range of n and k. It led us to a graphical notation for

all boundaries of amplituhedron A
.2/

n;k
which we describe in the remaining part of this

section.

First, it is easy to enumerate all boundaries of polygons, i.e., the case k D 1. There

are exactly n co-dimension one boundaries: edges; and exactly n co-dimension two

boundaries: points. We will label them as in Figure 1, where we introduced a label for

the interior of the n-gon: P
.n/
top ; and its pictorial label as a solid n-gon; the labels for

edges: P
.n/
i;iC1, which are represented pictorially but highlighting the edge .i; i C 1/;

and for vertices: P
.n/
i , with a vertex i highlighted in its graphical label. Both notations

can be generalized to higher k to enumerate all boundaries in Bn;k . We explain the

main features of our notation by focusing on k D 2, which already provides a new

and rich structure, at the same time highlighting all types of behaviour we encounter

for higher k. The amplituhedron A
.2/
n;2 itself, which is the four-dimensional image of

the top cell of GC.2; n/ through ˆZ , is labeled by two solid n-gons:

P
.n/
top ˝ P

.n/
top D :

Co-dimension one boundaries, corresponding to hY i i C 1i D 0, are depicted as

P
.n/
top ˝ P

.n/
i;iC1 D :
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There are two types of co-dimension two boundaries:

P
.n/
top ˝ P

.n/
i D

and

P
.n/
i;iC1 ˝ P

.n/
j;j C1 D ;

with i < j . There is again only one type of co-dimension three boundaries which in

the generic case can be labeled as

P
.n/
i;iC1 ˝ P

.n/
j D ;

with j ¤ i; i C 1. We also find an additional type of labels for non-generic boundar-

ies:1

P
.n/
i�1;iC1 ˝ P

.n/
i D :

Finally, co-dimension four boundaries are just the amplituhedron vertices and they

can be depicted as

P
.n/
i ˝ P

.n/
j DD ;

with i < j .

1We interpret these labels for non-generic boundaries in the following way. Whenever we

encounter P .n/

i
in our label, we need to remove the point i from our considerations and in all

remaining labels we turn the n-gon into the .n � 1/-gon with the point i removed. Then the

boundary .i � 1; i C 1/ is one of the boundaries of the remaining .n � 1/-gon.
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This diagrammatics can be easily generalized to higher k and any boundary of

A
.2/

n;k
can be labeled by k copies of an n-gon:

P
.n/
top ˝ � � � ˝ P

.n/
top

„ ƒ‚ …

t times

˝P
.n/

i1i
C
1

˝ � � � ˝ P
.n/

il i
C

l

˝ P
.n/

j1
˝ � � � ˝ P

.n/
jp

; (7)

where t C l C pDk. The indices are ordered: i1 < i2 < � � � < il and j1 < j2 < � � � < jp ,

and we assume ia ¤ jb for a D 1; : : : ; l and b D 1; : : : ; p. Here, iC

a is the smallest

number in the ordered set ¹ia C 1; : : : ; n; 1; : : :; iaº n ¹j1; : : : ; jpº. To illustrate our

diagrammatics, we provide the complete list of all boundaries of the amplituhedron

A
.2/
5;2 in Figure 2. We also include for every boundary the permutation of the cor-

responding positroid cells of the positive Grassmannian GC.2; 5/. The diagrammatic

notation we just introduced, apart from providing a full list of boundaries of the amp-

lituhedron A
.2/

n;k
, also encodes many properties of each boundaries, as we explain in

Appendix A.

To conclude this section, we introduce a simplified version of our diagrammatics.

When working with fixed k, and since the marked edges and points present in different

n-gons do not intersect or overlap, we can simplify our notation by combining all n-

gons into one, e.g., for k D 4 we have

!
:

It is always possible to read off the full label from the simplified one if we know the

value of k. One needs to separate all line and points and place them on different copies

of an n-gon, and then add a number of P
.n/
top such that there are k copies of n-gon in

total.

2.6. Amplituhedron boundary poset

As for the positive Grassmannian we can also define a poset of boundaries for the

amplituhedron A
.2/

n;k
. First, we define a partial order on the set of all boundaries Bn;k

by

B1 �A B2 () B1 is a boundary of B2: (8)

and we extend it transitively. Clearly, if B1 �A B2 then dimA B1 < dimA B2. This poset

is graded by the amplituhedron dimension. It allows us to depict it as a layered graph,

where each layer corresponds to boundaries with a given dimension. An example of

such poset graph can be found in Figure 3, where we study the amplituhedron A
.2/
5;2

(we use the reduced graphical notation there).
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One can check that the amplituhedron boundary poset .Bn;k; �A/ possesses an

interesting property, namely that it is Eulerian. Eulerian posets are important notions

in topological combinatorics and are generalizations of boundary posets of polytopes.

To define them we need to introduce the notion of a poset interval: for all B1 �A B2

we denote by ŒB1; B2� the interval from B1 to B2, that is the set ¹B 2 Bn;kW B1 �A

B �A B2º. A poset is called Eulerian if every interval of length at least one has the

same number of elements of odd rank as of even rank. For us, the rank is defined

as the amplituhedron dimension of a given boundary. It was shown in [13] that the

positive Grassmannian boundary poset .†n;k; �C / is Eulerian. More recently, it has

been proven that the amplituhedron A
.1/

n;k
is homeomorphic to a ball [9], which also

implies that its boundary poset is Eulerian. We have checked for various values of n

and k that the poset .Bn;k; �A/ of the amplituhedron A
.2/

n;k
is Eulerian as well. With

the use of our diagrammatic notation, it seems to be within reach to find a rigorous

proof of this statement. We leave this problem for future work.

2.7. Counting boundaries

Using the method described in previous sections we can find all boundaries of a

given amplituhedron A
.2/

n;k
and label them using their graphical representatives or the

permutations of the corresponding positroid cells. In this section we use this diagram-

matics to calculate how many boundaries of a given dimension one can find for a given

amplituhedron A
.2/

n;k
. This will allow us to calculate the Euler characteristic �n;k for

each amplituhedron, which turns out to be equal to one for all n and k. We collect

our results in the tables below, where we gather all different types of boundaries for

A
.2/

n;k
, for k D 1; 2; 3. We also include the number of boundaries of a given type and

indicated the Grassmannian dimension of all cells corresponding to these boundaries.

Starting with k D 1, we simply obtain the counting for an n-gon, as shown in Table 1.

For k D 2, there is again n co-dimension one boundaries and also n co-dimension

two boundaries of the type P
.n/
top ˝ P

.n/
i . There is a second type of co-dimension two

boundaries, P
.n/
i;iC1 ˝ P

.n/
j;j C1, and since i < j then there are

�
n
2

�

of them. The number

of dimA D 1 boundaries P
.n/
i;iC1 ˝ P

.n/
j is n.n � 1/ since i ¤ j; j C 1 and we need

to remember to include the non-generic boundary P
.n/
i�1;iC1 ˝ P

.n/
i . Finally, there are

�
n
2

�

zero-dimensional boundaries P
.n/
i ˝ P

.n/
j , with i < j . All results are collected

in Table 2. We also include k D 3 results in Table 3. Results for higher k can be eas-

ily generated from our diagrammatics. Importantly, in all cases we studied we found

that the Euler characteristic of A
.2/

n;k
equals 1. We provide a general argument for this

assertion in the following section.



On the boundaries of the m D 2 amplituhedron 533

dimA boundary type number of boundaries dimC

2 1 n � 1

1 n 1

0 n 0

�n;1 D 1 � n C n D 1

Table 1. All boundaries for the k D 1 amplituhedron.

dimA boundary type number of boundaries dimC

4 1 2n � 4

3 n n � 1

2 n n � 2

2
�

n
2

�

2

1 n.n � 1/ 1

0
�

n
2

�

0

�n;2 D 1 � n C n C

�
n

2

�

� n.n � 1/ C

�
n

2

�

D 1

Table 2. All boundaries for the k D 2 amplituhedron.
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dimA boundary type number of boundaries dimC

6 1 3n � 9

5 n 2n � 5

4 n 2n � 6

4
�

n
2

�

n � 1

3 n.n � 1/ n � 2

3
�

n
3

�

3

2
�

n
2

�

n � 3

2 n �
�

n�1
2

�

2

1
�

n
2

�

� .n � 2/ 1

0
�

n
3

�

0

�n;3 D 1 � n C n C

�
n

2

�

� n.n � 1/ �

�
n

3

�

C

�
n

2

�

C n �

�
n

2

�

�

�
n

2

�

� .n � 2/ C

�
n

3

�

D 1

Table 3. All boundaries for the k D 3 amplituhedron.
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2.8. Generating function

To make a general claim about the number of amplituhedron boundaries and the amp-

lituhedron Euler characteristic, it is instructive to introduce a generating function:

Fn;k.x; y/ D
X

B2Bn;k

.�x/codimABy#B Œ �; (9)

where the power of x counts the amplituhedron co-dimension of the boundary B 2

Bn;k , where codimA B D 2k � dimA B , and the power of y counts how many solid

n-gons there are in the graphical representation of B . By collecting data from the

previous section we can write an explicit form of this function for k D 1; 2; 3:

Fn;1.x; y/ D y �

�
n

1

�

x C

�
n

1

�

x2 D y �

�
n

1

�

x.1 � x/; (10)

Fn;2.x; y/ D y2 �

�
n

1

�

y x C

�
n

1

�

y x2 C

�
n

2

�

x2 � 2

�
n

2

�

x3 C

�
n

2

�

x4

D y2 �

�
n

1

�

y x.1 � x/ C

�
n

2

�

x2.1 � x/2; (11)

Fn;3.x; y/ D y3 �

�
n

1

�

y2 x C

�
n

1

�

y2 x2 C

�
n

2

�

y x2 � 2

�
n

2

�

y x3 �

�
n

3

�

x3

C

�
n

2

�

y x4 C 3

�
n

3

�

x4 � 3

�
n

3

�

x5 C

�
n

3

�

x6

D y3 �

�
n

1

�

y2 x.1 � x/ C

�
n

2

�

y x2.1 � x/2 �

�
n

3

�

x3.1 � x/3:

(12)

By studying more examples for higher k, one can find a general formula valid for

any k:

Fn;k.x; y/ D

k
X

iD0

.�1/i

�
n

i

�

yk�i xi .1 � x/i : (13)

The Euler characteristic can be extracted from the function Fn;k by evaluating it at

x D 1 and y D 1. It is easy to notice that only the first term in the sum (13) survives

and we find for all n and k

�n;k D Fn;k.1; 1/ D 1: (14)
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2.9. Amplituhedron boundary operator

We finish this section by constructing an amplituhedron boundary operator @A with

the property

@A ı @A D 0: (15)

We define the following action of @A on a single-site n-gon label:

@AP
.n/
top D

n
X

iD1

P
.n/
i iC1; (16)

@AP
.n/
i iC1 D P

.n/
i � P

.n/
iC1; (17)

@AP
.n/
i D 0; (18)

and extend it for any k as

@A.P1 ˝ � � � ˝ Pk/ D

k
X

aD1

saP1 ˝ � � � ˝ @APa ˝ � � � ˝ Pk; (19)

where Pa is one of the labels .P
.n/
top ; P

.n/
i;iC1; P

.n/
i / and the sign sa is determined by

treating @A and P
.n/
i;iC1 as Grassmann-odd symbols (and treating P

.n/
top as Grassmann-

even). To check that (15) holds true, it is enough to check the action of @2
A on a two-

fold product P1 ˝ P2. The only non-trivial calculation to be done is in one of two

cases: P
.n/
top ˝ P

.n/
top or P

.n/
top ˝ P

.n/
i;iC1. It is straightforward to check that

@A.@A.P
.n/
top ˝ P

.n/
top //

D 2@A

� n
X

iD1

P
.n/
top ˝ P

.n/
i;iC1

�

D 2
�X

i

P
.n/
top ˝ .P

.n/
i � P

.n/
iC1/ �

n
X

i;j D1

P
.n/

j;j C1 ˝ P
.n/
i;iC1

�

D 0;

where the first term vanishes because

X

i

.P
.n/
i � P

.n/
iC1/ D 0

and in the second we used the fact that P
.n/
i;iC1 are Grassmann-odd symbols and there-

fore

P
.n/
i;iC1 ˝ P

.n/
j;j C1 D �P

.n/
j;j C1 ˝ P

.n/
i;iC1:
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In the second case we get

@A.@A.P
.n/
top ˝ P

.n/
i;iC1//

D @A

� n
X

j D1

P
.n/

j;j C1 ˝ P
.n/
i;iC1 C P

.n/
top ˝ .P

.n/
i � P

.n/
iC1/

�

D

n
X

j D1

.P
.n/

j � P
.n/

j C1/ ˝ P
.n/
i;iC1 �

n
X

j D1

P
.n/

j;j C1 ˝ .P
.n/
i � P

.n/
iC1/

C

n
X

j D1

P
.n/

j;j C1 ˝ .P
.n/
i � P

.n/
iC1/

D 0;

where the minus sign in the second line comes from sa in the definition (19). The

remaining cases trivially vanish, which proves the formula (15).

We can use the boundary operator @A to generate all co-dimension one boundaries

of A
.2/

n;k
by acting on P

.n/
top ˝ � � � ˝ P

.n/
top . We can proceed recursively and generate

all boundaries with the amplituhedron dimension equal d by acting with @A on all

boundaries of dimension d C 1, which we found in the previous recursive step. In

order to get the complete agreement with our classification of boundaries, we need to

additionally assume that

.P
.n/
i;j � P

.n/

i;l
C P

.n/

j;l
/ ˝ P

.n/
j D 0 for i < j < l D 1; : : : ; n: (20)

This allows us to find all boundaries of A
.2/

n;k
, including the non-generic ones of

the form P
.n/
i�1;iC1 ˝ P

.n/
i . It remains an interesting open problem to find a simpler

description of the boundary operator @A, one which is more similar to the positive

Grassmannian boundary operator that acts as a transposition on the permutation asso-

ciated to a cell.

3. Conclusions and outlook

In this paper we studied the combinatorial structure of amplituhedron boundaries. We

provided a diagrammatic description which classify all boundaries of A
.2/

n;k
, of all

dimensions, for all n and k. This allows us to describe the amplituhedron boundary

poset, which we check to be Eulerian. We also found that the Euler characteristics

for all amplituhedra equals one, which is a necessary condition for the amplituhedron

A
.2/

n;k
to be homeomorphic to a .2 � k/-dimensional closed ball.

There are obvious directions in which we can extend our results. It would be

of great interest for physics community to analyze the case m D 4, which is rel-
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evant for tree-level scattering amplitudes in planar N D 4 SYM. The boundaries

of the amplituhedron A
.4/

n;k
have not been classified yet and its topological prop-

erties are still unknown. Moreover, a similar analysis can be done for the recently

introduced momentum amplituhedron [7]. There also exists a further generalization

of the amplituhedron to the so-called loop amplituhedron, which is a (still mostly

unstudied) positive geometry relevant for perturbation theory of planar N D 4 SYM,

see [2,3,5,8,10,11] for known results. In this case, there are indications that the loop

amplituhedron is not a ball anymore. However, it would be worth studying its com-

plete boundary structure in a systematic way, which would provide us with a better

understanding of integrands relevant for scattering amplitudes, as well as promise new

results in combinatorics.

A. Properties of boundaries from graphical notation

Amplituhedron dimension. Given the label (7) for a boundary B� 2 Bn;k , the amp-

lituhedron dimension of � can be calculated as

dimA.�/ D 2 � #ŒP
.n/
top � C 1 � #ŒP

.n/
i iC1� C 0 � #ŒP

.n/
i � D 2t � l: (21)

Grassmannian dimension. Given the label (7) for a boundary B� 2 Bn;k , the amp-

lituhedron dimension of � can be calculated as

dimC .�/ D .n � k/t C l: (22)

Permutation. Given the label (7) for a boundary B� 2 Bn;k , we can find a permuta-

tion of the corresponding positroid cell � in the positive Grassmannian GC.k; n/,

which is mapped to B� through the map ˆZ . To do that, let us construct a k � n

matrix with entries ¹xabºaD1;:::;k;bD1;:::;n. We set generic values to entries:

• for each P
.n/
topa

, xab ¤ 0 for a D 1; : : : ; t , b D 1; : : : ; n;

• for each P
.n/
iaiaC1, xab ¤ 0 for a D t C 1; : : : ; t C l , b D ia and b D ia C 1;

• for each P
.n/
ia

, xab ¤ 0 for a D t C l C 1; : : : ; k, b D ia.

and set all remaining entries xab to zero. Then one can use the function matToPerm

from the Mathematica positroid package [6] to find the permutation for the positroid

cell � .
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Figure 2. All labels for boundaries of A
.2/
5;2

with the permutation of corresponding positroid

cells.
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Figure 3. Poset of boundaries for A
.2/

5;2
, using the reduced diagrammatical notation.
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