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Abstract: A brain–computer interface (BCI) is a computer-based system that allows for communica-
tion between the brain and the outer world, enabling users to interact with computers using neural
activity. This brain signal is obtained from electroencephalogram (EEG) signals. A significant obstacle
to the development of BCIs based on EEG is the classification of subject-independent motor imagery
data since EEG data are very individualized. Deep learning techniques such as the convolutional
neural network (CNN) have illustrated their influence on feature extraction to increase classification
accuracy. In this paper, we present a multi-branch (five branches) 2D convolutional neural network
that employs several hyperparameters for every branch. The proposed model achieved promising
results for cross-subject classification and outperformed EEGNet, ShallowConvNet, DeepConvNet,
MMCNN, and EEGNet_Fusion on three public datasets. Our proposed model, EEGNet Fusion V2,
achieves 89.6% and 87.8% accuracy for the actual and imagined motor activity of the eegmmidb dataset
and scores of 74.3% and 84.1% for the BCI IV-2a and IV-2b datasets, respectively. However, the pro-
posed model has a bit higher computational cost, i.e., it takes around 3.5 times more computational
time per sample than EEGNet_Fusion.

Keywords: convolutional neural network (CNN); brain–computer interface (BCI); deep learning;
fusion network; motor imagery (MI); electroencephalography (EEG)

1. Introduction

The brain–computer interface (BCI), which decodes brain signals, is a mode of com-
munication between the human brain and electronic devices. BCIs may enable people with
low motor strength to connect and interact with their environment without taking physical
action. Electroencephalography (EEG) is one of the most popular methods of gathering
input from the brain by reading brain waves using a device capable of electrophysiolog-
ical monitoring of the brain’s electrical activity [1]. The brain’s neural activity is usually
recorded using a non-invasive scalp EEG [2]. The global 10–20 standard approach for
electrode implantation is used to record brain signals by applying electrodes to the scalp.
The terms 10 and 20 denote that the specific gaps between adjacent electrodes account for
either 10% or 20% of the overall distance from the front to the back or from the right to
the left side of the skull [3–5] (from Wikipedia, the free encyclopedia. Available online:
https://en.wikipedia.org/wiki/10-20_system_(EEG), accessed date: 5 June 2023). EEG
generates readings of electrical potential as time signals for each electrode positioned on
the participant’s scalp. These data reflect the brain’s activity and provide vital information
that can be used in numerous fields, including cognitive science and medical diagnosis [6].
By utilizing EEG data, researchers can analyze brain functions, explore cognitive processes,
identify irregularities or disorders, and potentially assist in diagnosing certain conditions.
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Multiple studies have illustrated the connections between EEG signals and both actual
and imagined movements [7]. Motor imagery (MI) involves a dynamic mental state where
an individual mentally simulates a physical action. MI has gained considerable research
attention due to its unique ability to generate brain signals without reliance on external
triggers [8].

Recent studies have investigated the application of deep learning to EEG signals. Deep
learning (DL) is a type of machine learning that has become popular in recent years. DL
techniques have a high learning capacity and can retrieve complicated and significant
features from different data sorts. DL models achieved impressive results in EEG motor
imagery classification [9–11].

EEG-based BCI development has seen widespread use in medical applications. BCI in
neurorehabilitation offers promising avenues to enhance recovery and regain function for
individuals with neurological conditions and injuries. BCI applications support disabled
people to communicate and use assistive technologies like wheelchairs [12–15], robotic
arms [16,17], and wearable lower-limb exoskeletons [18]. BCI has been explored for im-
proving cognitive functions such as stroke neurorehabilitation [19], spinal cord injury, and
traumatic brain injury [20]. BCI systems have also been used to provide neurofeedback and
cognitive training exercises to enhance attention, memory, and executive functions [21].
Moreover, BCI can contribute to the improvement of neuroplasticity [22], which is the
brain’s capacity to modify and adapt its structure and function based on experience [23].
Patients with paralysis, amputations, or central nervous system dysfunction are receiving
support through BCI-based prosthetics [24]. Additionally, BCI has been used to assist
individuals with locked-in syndrome or amyotrophic lateral sclerosis (ALS) [25,26] and
Parkinson’s disease [27]. Imagined speech also has potential in the BCI domain, which al-
lows people with physical disabilities to communicate and use devices by imagining specific
commands that the device can then recognize and carry out [28]. This innovative approach
holds promise for enhancing the quality of life for patients with physical disabilities.

BCI implementations have also expanded into the entertainment industry, enabling
the development of smart environments [29], biofeedback-based games [30], and other
forms of entertainment that offer engaging and immersive experiences. In the realm of BCI
technology, a study highlights four areas where advancements can bring substantial benefits
to disabled individuals: communication and control, motor substitution, entertainment,
and motor recovery [2].

BCI applications have become popular due to their affordability, user-friendliness,
and adequate temporal resolution [31]. However, the highly discrete pattern of brain
signals makes building a cross-subject classifier challenging [32]. Convolutional neural
networks (CNN), a type of deep network, have been used in modern studies to explore
the possibility of automatic feature extraction. Deep and shallow CNN architectures with
distinctive design choices were researched in previous work [33]. EEGNet, a neural network
architecture designed for cross-paradigm BCI issues, was first presented in [34]. It can
correctly identify EEG signals obtained from diverse BCI systems.

Fusion structures have shown promise in addressing the issue of poor cross-subject
data generalization in EEG-based categorization. Fusion networks can extract information
from many branches with diverse designs or hyperparameters, combine the features in a
fusion layer, and improve the classification accuracy of the architecture [35]. This method
is based on the premise that the brain signal patterns of the subjects are unique and that
the high-performing networks and hyperparameters can change depending on the subject.
Overcoming the challenges of cross-subject classification development will enable the
widespread implementation of BCI [36].

A 3D multi-branch CNN with three branches and various strides and kernel sizes in
the convolutional layers was investigated in the study reported in [37]. After implementing
feature fusion, the softmax classification layer was applied to the final connected layer. On
the BCI Competition IV 2a dataset, the model secured 75% accuracy for within-subject
classification. Another study [38] applied each pooling layer prior to feature extraction
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to conduct multi-layer feature fusion. In this study, the features gathered from the four
branches were combined, and then the softmax classification layer was added. This
method’s accuracy rating on the BCI Competition IV 2a dataset is 74.5%. MMCNN, another
multi-branch, multi-scale CNN model, utilized parallel processing with five EEG Inception
Networks (EINs) to address subject and time variability issues.

A multi-branch 2D convolutional neural network (CNN) named EEGNet Fusion was
introduced in the literature [35] with varying hyperparameters, kernels, and filter sizes for
three branches. The primary architecture of each branch follows the EEGNet model [34].
On the eegmmidb dataset’s executed movement and imagined movement tasks, this network
scored 84.1% and 83.8% accuracy, respectively. The EEGNet Fusion network allowed more
freedom in hyperparameter selection and reduced the complexity of subject-independent
EEG classification. As a result, this model improved cross-subject classification accuracy.

In the literature, it has been observed that multi-branch fusion networks can improve
the accuracy of cross-subject classification in EEG-based BCIs. These networks provide
a flexible and adaptable structure that can capture diverse patterns and characteristics
across different subjects. Hence, our objective was to examine the performance of higher-
branch models and propose an optimal multi-branch model for EEGNet architecture [34].
We aimed to evaluate how the CNN network operates with higher branches and diverse
parameter configurations.

In this paper, we propose a novel technique for categorizing motor imagery tasks
using a multi-branch feature fusion convolutional neural network model. We improved
the EEGNet Fusion model and presented EEGNet Fusion V2, a five-branch convolutional
neural network model. We employed various hyperparameters to observe their impact
on the model’s performance. Additionally, we implemented four-branch, six-branch, and
seven-branch EEGNet Fusion models to evaluate the proposed model. Furthermore, we
compared the proposed model, EEGNet Fusion V2, with state-of-the-art models, including
DeepConvNet, ShallowConvNet, MMCNN, EEGNet, and EEGNet Fusion.

2. Materials and Methods

The dataset used for evaluation, pre-processing steps, proposed 5-branch fusion CNN
model architecture EEGNet Fusion V2, and training and testing approach are discussed in
this section.

2.1. Dataset and Preprocessing
2.1.1. Dataset 1: EEG Motor Movement/Imagery Dataset

Experimental tests of the proposed model was performed using the PhysioNet EEG
Motor Movement/Imagery dataset (Available online: https://physionet.org/content/
eegmmidb/1.0.0/, accessed date: 22 September 2022) which contains about 1500 one- and
two-minute EEG recordings from 109 subjects. The BCI2000 [39] system was used to record
EEG data while the experiment’s subjects engaged in various motor imagining activities.
Each participant completed 14 experimental runs, which included two baseline runs with
their eyes opened and closed as well as three two-minute runs with the tasks of executing
or imagining the opening and closing of the left or right hand, both fists or both feet.
For the validation of the model, two subgroups of the dataset were used. Left-hand or
right-hand movement tasks are included in the first subgroup. Imaginary left-hand or
right-hand movement tasks are included in the second subgroup. The motor movement or
imagery tasks were recorded as EEG signals on 64 channels placed on subject’s scalps. Each
channel is annotated with three codes: T0, T1, and T2. T0 refers to the rest period, while T1
refers to the motion of the left hand in some tasks and both fists in others. T2 denotes the
movement of the right hand for some tasks and both feet for others. Each experimental
run was partitioned based on these annotations. But according to the literature [35,40],
the EEG channels of six subjects (subject 38, 88, 89, 82, 100, and 104) were not annotated
as specified in the experiment. As a result, partitioning each experimental run based on

https://physionet.org/content/eegmmidb/1.0.0/
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these annotations carries the potential risk of making incorrect decisions. Due to incorrect
annotations, these six subjects were eliminated. Hence, 103 subjects out of 109 were used.

Each trial’s input data were divided into (C, W) dimensions, where C stands for
the number of channels and W is the temporal dimension. All trials contained 4 to 4.1 s
sustained and continuous movements for executed and imagined tasks. Therefore, to keep
the dataset consistent, 4 s of data were clipped on each trial, sampled at 160 Hz, for a
total of 640 samples. The sliding window approach was used to divide the 640 samples
into eight non-overlapping windows of 80 samples each. The target label of each window
was identical to the initial trial. The eight-time windows can provide more discriminatory
information on the motor imagery data. After that, the signal processing module in the
Gumpy BCI library [41] was applied to process the EEG signals. To eliminate the alternating
current (AC) noise at the 60 Hz frequency, a notch filter was applied to the data. Then,
Butterworth band-pass filtering was performed on the data in the 2 Hz to 60 Hz range with
an order value of 5.

2.1.2. Dataset 2: BCI Competition IV 2a

BCI Competition IV-2a dataset (BCI Competition IV dataset. Available online:
https://www.bbci.de/competition/iv/, accessed date: 15 October 2022) was used to
evaluate the proposed model [42]. The Graz University of Technology generated famous
public MI-EEG dataset in 2008 known as BCI-2a. The dataset’s small number of samples
taken in uncontrolled conditions with many artifacts makes decoding MI tasks difficult.
The dataset contains 5184 trials (samples) of MI-EEG data collected from 9 participants ap-
plying 22 EEG electrodes (576 trials per participant). Moreover, 3 extra electrooculography
(EOG) channels give information about eye movements. MI trials are 4 s long, captured at
250 Hz, and filtered between 0.5 and 100 Hz. Two sessions were captured for each subject
on different days. There were 288 trials per subject. Four MI tasks corresponds to each trial:
imagined movement of the left hand, right hand, both feet, and tongue.

The time frame length selected for this dataset is 4.5 s (from 1.5 s to 6 s), producing
1125 samples [33]. Standardization was applied in the pre-processing step [43].

2.1.3. Dataset 3: BCI Competition IV 2b

This publicly available dataset [44] was collected from 9 subjects using 3 bipolar
electrodes at a sampling rate of 250 Hz. A bandpass filter between 0.5 and 100 Hz was then
used for filtering. Moreover, 3 extra EOG channels were employed to collect data on eye
movement. The dataset consisted of two classes, called the motor imagery of left hand
and right hand. Each subject participated in 2 screening sessions without feedback and
3 screening sessions with feedback. Each session consisted of six runs with ten trials each
and two classes of imagery. This resulted in 20 trials per run and 120 trials per session. The
pre-processing step was similar to the BCI IV-2a dataset.

2.2. Model Architecture

The foundations for the proposed model architecture are the EEG-based CNN model,
EEGNet [34], and EEGNet Fusion [35]. The authors in EEGNet [34] demonstrated that
any EEG-based classification task may be successfully solved using EEGNet’s original
design. The proposed EEGNet Fusion V2 model included five distinct branches, each of
the branches received identical input. The architecture of each branch matched with the
EEGNet architecture. EEGNet Fusion V2 used different kernel sizes and convolutional
filters in the depth-wise and separable layers for all five branches. The fusion method
helps to reduce variance and enhance accuracy by aggregating the diverse predictions from
different branches. Figure 1 illustrates the proposed EEGNet Fusion V2 architecture.

https://www.bbci.de/competition/iv/
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Figure 1. The proposed five-branch fusion convolutional neural network (CNN) architecture, termed
EEGNet Fusion V2. This network consists of five branches, and each branch has input layer, a
convolutional filter, a depthwise convolutional filter, and a separable convolutional filter. Also,
average pooling layers follow the depthwise and separable convolutional filters. Then, the features
from five branches are combined using a fusion layer, and the final classification is performed using
a softmax activation function in the output layer. Different kernel and filter sizes are used in each
branch. This architecture is designed to achieve accurate classification of MI tasks by processing EEG
signals. The red box indicates the improvements of the EEGNet Fusion model.

First, 2-D input with temporal (datapoints per sample) and spatial (number of chan-
nels) dimensions are transmitted to the input layer for each sample. The model has five
branches, and each branch has a 2-D convolutional layers with kernel sizes 8, 16, 32, 64,
and 128, and filters with sizes (1, 64), (1, 80), (1, 96), (1, 112), and (1, 128), respectively. By
using the convolutional layers in each branch, the model initially learns frequency filters
with temporal convolutions.

After the initial temporal convolutional layer, a depth-wise convolutional layer with
(C, 1) filters for all branches was added, where C refers to the number of channels. The
depth-wise convolutions help to decrease the number of trainable parameters and extract
frequency specific spatial filters for each temporal filter [35].

Batch normalization, a useful technique for minimizing overfitting and enhancing the
network’s training pace, was used after the convolutional layer.

After that, a separable convolutional layer was added to each branch with kernel size
16, 32, 64, 128, and 256 and filter size (1, 8), (1, 16), (1, 32), (1, 64), and (1, 128), respectively. To
acquire temporal summaries of each feature map independently and to integrate the feature
maps, the separable convolution merges pointwise and depth-wise convolutions [34]. Batch
normalization was also used after the separable convolutional layer.

An exponential linear unit (ELU) activation function followed each convolution layer.
In CNN-based classification, this activation function is more computationally effective [45].

Furthermore, an input representation’s dimensions were down-sampled by using
average pooling layers following the depth-wise and separable convolutional layers. As
a result, the computational cost was diminished because there were fewer parameters to
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learn. Each pooling layer was additionally followed by a dropout function with a value of
0.5 to minimize overfitting.

After the final pooling layer, the five CNN branches’ weights were combined in
a feature fusion layer, and the output of this layer was used as input to the softmax
classification layer to create the output classes. The output classes were left-hand or right-
hand movement in one test and left-hand or right-hand imagined movement in another
test on eegmmidb dataset. For the BCI Competition IV 2a dataset, the output classes were
left hand, right hand, feet, and tongue imagined movement. For the BCI Competition IV 2b
dataset, the output classes were left-hand and right-hand imagined movement.

2.3. Implementation of the Models

The Python TensorFlow framework was used to implement the neural networks.
Google Colab GPU was used for testing and training the model. The implementation of
this model is publicly available at GitHub (Available online: https://github.com/radia-
rayan-chowdhury/EEGNet-Fusion-V2, accessed date: 11 July 2023).

2.4. Training and Testing Strategy

The PhysioNet EEG Motor Movement/Imagery dataset contains 45 trials per partic-
ipant and 360 labeled samples per subject after preprocessing. A total of 37,080 samples
from the executed and imagined task subsets for all 103 individuals are labeled. In total,
70% random data were used for training, 10% for validation, and 20% for testing. Each
experiment used the same data split because a fixed seed value was applied.

The BCI IV-2a dataset consists of 288 trials and 2 sessions per subject. In this dataset,
one session was used for training. The other session was used for testing. In the BCI
Competition 2b dataset, there are 5 sessions. Three sessions were used for training. The
other 2 sessions were used for testing.

The validation loss was calculated and the model weights with the best validation
accuracies were saved during the training period. The model weights were loaded, and
during the testing phase, the model was evaluated on the testing dataset by predicting target
labels and determining the accuracy. Also, the precision, recall, f1-score and computational
time per sample were calculated for the model. The Adam algorithm, a binary cross-entropy
loss function, and a learning rate of 0.00001 were applied for optimization. All dropout
layers have a dropout probability value of 0.5.

2.5. Performance Measure

Accuracy, precision, recall, and f1-score score were measured to examine the model.
No negative trials were found in the datasets since all movements were treated as positive
trials. The two-class classification required distinct computations for each hand. In one set
of assessments, the left-hand (L) target label served as positive, and the right-hand (R) label
served as negative. This was used to assess the model’s capacity to differentiate between
left- and right-hand movements. The right-hand target label served as a positive value in
another set of assessments. If the prediction is L (or R) and the actual label is L (or R), then
the value is true positive (TP). If the prediction is L (or R) but the actual label is R (or L),
then it is false positive (FP). If the prediction is R (or L), and the actual label is also R (or
L), then it is true negative (TN). If the prediction is R (or L), but the actual label is L (or R),
then the value is false negative (FN).

Moreover, there are four classes in the BCI IV-2a dataset, and the performance of each
class (left-hand (L), right-hand (R), feet (F), and tongue (T)) was calculated separately. At
first, the left-hand (L) target label was used as a positive, and the rest of the labels were
used as negatives. Similarly, for each time, one class target label was used as positive and
the others were used as negative to calculate the accuracy, precision, recall, and F1-score.
More comprehensive information can be found in Appendix A.

https://github.com/radia-rayan-chowdhury/EEGNet-Fusion-V2
https://github.com/radia-rayan-chowdhury/EEGNet-Fusion-V2
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3. Results

This section describes the experimental setup, results, and performance of the pro-
posed model and four benchmark models used for comparison.

3.1. Experimental Setup

The PhysioNet EEG Motor Movement/Imagery dataset was tested on our proposed
EEGNet Fusion V2, EEGNet Fusion [35], EEGNet [34], MMCNN [46], ShallowConvNet,
and DeepConvNet [33]. The dataset was used to evaluate different parameters on EEGNet
Fusion V2 model. The dataset also used to evaluate four-branch, six-branch, and seven-
branch EEGNet Fusion models. The results were recorded for comparison. For each
experiment, 20% of samples were selected at random for testing, 10% for validation, and
70% for training.

Furthermore, the BCI Competition IV-2a and the BCI Competition IV-2b dataset were
implemented to measure the performance. The sessions with class labels were used to train
the models, and the other sessions were used to test the models for both dataset.

3.2. Experimental Results: Evaluation of Different Parameters on EEGNet Fusion V2

In this study, we explored the effect of different filter sizes on the model’s performance.
We varied the filter sizes of the convolutional layers in each branch and assessed their
impact on the accuracy and computation time of the EEGNet Fusion V2 model. Our results
showed that certain filter sizes were more effective in capturing temporal patterns in the
EEG signals.

Each time the model was evaluated with different filter sizes of the convolutional
layers, the kernel sizes and filter sizes of the separable convolutional layers remained
unchanged. Each branch has a 2-D convolutional layers with kernel sizes 8, 16, 32, 64, and
128. A separable convolutional layer was added to each branch with kernel size 16, 32, 64,
128, and 256 and filter size (1, 8), (1, 16), (1, 32), (1, 64), and (1, 128).

The kernel sizes and filter sizes of the separable convolutional layers remained un-
changed during each evaluation of the model. For each branch, the kernel sizes were set to
16, 32, 64, 128, and 256, along with filter sizes of (1, 8), (1, 16), (1, 32), (1, 64), and (1, 128).
Each time the model was evaluated with different filter sizes for 2-D convolutional layers,
the kernel sizes remained unchanged at 8, 16, 32, 64, and 128.

To evaluate the model, we conducted five tests, with each test utilizing different filter
sizes for the convolutional layers in each branch. The specific filter sizes employed in each
test were as follows:

• Test 1: (1, 64), (1, 128), (1, 256), (1, 512), (1, 1024);
• Test 2: (1, 64), (1, 256), (1, 544), (1, 512), (1, 1024);
• Test 3: (1, 64), (1, 304), (1, 544), (1, 784), (1, 1024);
• Test 4: (1, 64), (1, 80), (1, 96), (1, 112), (1, 128);
• Test 5: (1, 64), (1, 96), (1, 128), (1, 192), (1, 256).

The PhysioNet EEG Motor Movement/Imagery dataset was used to test these models.
Based on the obtained results from Tables 1 and 2, it is evident that the filter sizes

have minimal impact on accuracy but significantly affect the computation time. Therefore,
we have made the decision to select the smallest filter sizes (Test 4) for our model. By
choosing smaller filter sizes, we aim to optimize the computational efficiency of our model
while maintaining a comparable level of accuracy. This allows us to reduce the compu-
tational burden and improve the overall efficiency of the model without compromising
its performance.
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Table 1. Evaluation of different parameters on EEGNet Fusion V2 model: results for motor movement
executed task.

Test Accuracy % Computation Time (per Sample)

Test 1 89.8% 752 ms
Test 2 87.9% 824 ms
Test 3 89.9% 875 ms
Test 4 89.6% 361 ms
Test 5 89.5% 419 ms

Table 2. Evaluation of different parameters on EEGNet Fusion V2 model: results for imagery motor
movement task.

Test Accuracy % Computation Time (per Sample)

Test 1 88.3% 754 ms
Test 2 86.7% 846 ms
Test 3 86.8% 877 ms
Test 4 87.8% 354 ms
Test 5 89.2% 434 ms

3.3. Experimental Results: Evaluation of Different Numbers of EEGNets

To evaluate the proposed five-branch EEGNet Fusion model, we implemented four-
branch, six-branch, and seven-branch EEGNet Fusion models. These models share a similar
structure to the proposed five-branch model, but with some variations in the number of
branches and the kernel and filter sizes.

By implementing these alternative fusion models, we aim to compare their perfor-
mance with the proposed five-branch model. This comparative analysis enables us to assess
the impact of the number of branches and the specific kernel and filter sizes on the overall
performance of the EEGNet Fusion architecture. Appendix B provides a comprehensive
overview of the filter and kernel sizes utilized in the four-branch, five-branch, six-branch,
and seven-branch models.

The PhysioNet EEG Motor Movement/Imagery dataset was used to test these models.
Due to limitations with the available GPU resources in Google Colab, we were unable

to implement the higher branch fusion networks to evaluate our proposed model. However,
despite this limitation, we proceeded with evaluating our proposed five-branch EEGNet Fu-
sion model and comparing it to the implemented four-branch, six-branch and seven-branch
models, while the evaluation could have been more comprehensive with the inclusion
of the higher branch models, the results obtained from the four-branch, six-branch, and
seven-branch models still provide valuable insights into the performance and effectiveness
of the proposed model. Future work could involve conducting evaluations with higher
branch fusion networks when more substantial computational resources are available to
further investigate the impact of increasing the number of branches on the performance of
the EEGNet Fusion architecture.

According to the observations from Tables 3 and 4, the accuracy generally increases
as the number of branches increases. Specifically, there is a noticeable improvement in
accuracy when going from three branches to four branches and from four branches to five
branches. However, the accuracy of the five branch, six branch and seven-branch models are
very close, despite the six branch and seven branch model requiring a significantly higher
computation time per sample. Based on these findings, we have decided to consider the
five branch model as the proposed model. The five branch model provides a good balance
between the accuracy and computation time compared to the six and seven branch models.
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Table 3. Evaluation of different numbers of EEGNets: results for motor movement executed task.

Model Accuracy % Computation Time (per Sample)

3-branch EEGNet 84.1% 107 ms
4-branch EEGNet 85.2% 249 ms
5-branch EEGNet 89.6% 361 ms
6-branch EEGNet 89.8% 555 ms
7-branch EEGNet 89.9% 601 ms

Table 4. Evaluation of different numbers of EEGNets: results for imagery motor movement task.

Model Accuracy % Computation Time (per Sample)

3-branch EEGNet 83.8% 110 ms
4-branch EEGNet 85.1% 253 ms
5-branch EEGNet 87.8% 354 ms
6-branch EEGNet 87.9% 547 ms
7-branch EEGNet 88.2% 598 ms

3.4. Experimental Results: Evaluation with Benchmark Model
3.4.1. Results of PhysioNet EEG Motor Movement/Imagery Dataset

As we improved the EEGNet Fusion model [35], the EEGNet Fusion model was
replicated and validated the results on the EEG Motor Movement/Imagery dataset. The
paper reported that the model achieved 84.1% and 83.8% accuracy in motor movement and
imagined movement task, respectively. Similarly, the replicated model of EEGNet Fusion
achieved 84.1% and 84.3% accuracy in motor movement and imagined movement task,
respectively, which validated the results of the model.

Table 5 contains the testing accuracy, precision (left and right hand), recall (left and
right hand), f1-score (left and right hand), and computing time (per sample) for executed
movement tasks from the EEG Motor Movement/Imagery dataset for all examined models.
Our proposed EEGNet Fusion V2 model outperformed the other classifiers, and achieved
89.6% accuracy, 89.7% left-hand F1-score, and 89.6% right-hand F1-score. However, the
average computation time of the EEGNet Fusion V2 model was 361 ms, which was the
slowest and 3.4 times higher than EEGNet Fusion model.

Table 5. Results for executed motor movement task.

Model Accuracy %
Precision % Recall % F1-Score % Comp Time

(per Sample)Left Right Left Right Left Right

DeepConvNet 76.6 76.2 77.1 77.3 76.0 76.7 76.5 44 ms

ShallowConvNet 79.3 79.2 79.3 79.2 79.3 79.2 79.3 23 ms

MMCNN 81.4 82.2 80.6 80.5 82.3 81.3 81.4 102 ms

EEGNet 66.6 69.1 64.8 59.9 73.3 64.2 68.8 34 ms

EEGNet
Fusion 84.1 84.2 84.5 83.8 83.9 84.0 84.2 107 ms

EEGNet
Fusion V2 89.6 89.9 89.4 89.4 89.8 89.7 89.6 361 ms

The bold texts represent the results of the proposed model.

For all evaluated models, Table 6 shows the testing accuracy, precision, recall, f1-score,
and computing time (per sample) for imagined movement tasks from the EEG Motor
Movement/Imagery dataset. The EEGNet Fusion V2 model performed better than the
benchmark models and scored 87.8% accuracy, 87.8% f1-score for left-hand and right-hand,
though the computational time per sample was higher than other models, which was
354 ms.



Sensors 2023, 23, 7908 10 of 16

Table 6. Results for imagery motor movement task.

Model Accuracy %
Precision % Recall % F1-Score % Comp Time

(per Sample)Left Right Left Right Left Right

DeepConvNet 76.2 76.5 75.9 76.0 76.4 76.3 76.1 36 ms

ShallowConvNet 78.2 78.2 78.3 78.7 77.8 78.5 78.0 24 ms

MMCNN 81.6 81.7 81.5 81.9 81.2 81.8 81.3 102 ms

EEGNet 68.4 68.3 68.4 69.2 67.5 68.8 67.9 36 ms

EEGNet
Fusion 83.8 85.0 83.3 82.9 84.8 83.9 84.0 110 ms

EEGNet
Fusion V2 87.8 88.1 87.5 87.5 88.1 87.8 87.8 354 ms

The bold texts represent the results of the proposed model.

3.4.2. Results of BCI IV-2a Dataset

According to Table 7, the proposed EEGNet Fusion V2 model achieved higher accuracy
on BCI IV-2a dataset, which confirmed that the multi-branch architecture outperformed on
cross-subject classification. The proposed model scored 74.3% accuracy and took 815 ms
computational time per sample. The fastest model, ShallowConvNet, achieved 69.8%
accuracy with 44 ms computational time per sample.

Table 7. Results on BCI Competition IV-2a dataset.

Model Accuracy %
Precision % Recall % F1-Score %

Comp Time
L R F T L R F T L R F T

DeepConvNet 63.7 67.2 53.8 69.6 73.2 64.5 81.2 56.9 52.3 65.8 64.7 62.6 61.0 51 ms

Shallow ConvNet 69.8 71.6 69.0 70.9 67.6 69.1 72.5 69.6 67.7 70.3 70.7 70.2 67.7 44 ms

MMCNN 70.1 69.4 70.7 72.3 68.3 75.6 72.2 63.7 68.8 72.4 71.5 67.8 68.6 199 ms

EEGNet 63.9 63.8 62.8 62.7 65.9 67.3 63.4 59.3 65.4 65.5 63.1 61.0 65.7 55 ms

EEGNet Fusion 73.8 75.2 73.1 72.8 74.2 76.1 75.0 70.1 74.1 75.6 74.0 71.4 74.1 211 ms

EEGNet Fusion V2 74.3 75.0 71.1 74.7 77.0 76.5 78.2 70.7 71.9 75.8 74.5 72.6 74.4 815 ms

The bold texts represent the results of the proposed model.

3.4.3. Results of BCI IV-2b Dataset

Table 8 demonstrates the accuracy, precision (left and right hand), recall (left and
right hand), and f1-score (left and right hand) of all the models on BCI IV-2b dataset. Our
EEGNet Fusion V2, outperformed using this dataset and achieved 84.1% with 326 ms
computational time per sample.

Table 8. Results on BCI Competition IV-2b dataset.

Model Accuracy %
Precision % Recall % F1-Score % Comp Time

(per Sample)Left Right Left Right Left Right

DeepConvNet 83.2 83.1 83.4 83.5 83.0 83.3 83.2 51 ms

ShallowConvNet 83.4 82.6 84.3 84.7 82.1 83.6 83.2 16 ms

MMCNN 81.2 82.9 79.6 78.6 83.7 80.7 81.6 59 ms

EEGNet 83.0 82.5 83.4 83.7 82.3 83.1 82.8 24 ms

EEGNet
Fusion 83.8 83.6 83.9 84.0 83.5 83.8 83.7 83 ms

EEGNet
Fusion V2 84.1 84.7 83.6 83.3 84.9 84.0 84.2 326 ms

The bold texts represent the results of the proposed model.
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The comparison between the EEGNet Fusion V2 model and the benchmark models
based on EEG Motor Movement/Imagery, BCI Competition IV-2a and IV-2b dataset were
plotted clearly in Figure 2.

Figure 2. Performance of the models based on EEG Motor Movement/Imagery, BCI Competition
IV-2a and IV-2b Dataset. This figure illustrates the proposed EEGNet Fusion V2 model improved the
accuracy for these dataset.

Based on these findings, it can be concluded that for cross-subject EEG motor imagery
categorization, the EEGNet Fusion V2 model outperforms the other architectures.

4. Discussion

The purpose of this research was to increase the accuracy of motor imagery clas-
sification to assist people with insufficient motor abilities in communicating with their
surroundings through a brain–computer interface. We proposed a multi-branch (five-
branch) composite two-dimensional neural network in this study, named the EEGNet
Fusion V2 model, to classify the EEG-based motor imagery data. The proposed model
was trained and tested on the PhysioNet EEG Motor Movement/Imagery dataset, the BCI
Competition IV-2a, and the BCI Competition IV-2b datasets.

The Motor Movement/Imagery dataset was implemented to categorize actual and
imagined movements made with the left and right hands. Band-pass signal filtering
and a moving window technique were used to preprocess the 103-subject data in this
dataset. The EEGNet Fusion V2 model achieved 89.6% and 87.8% accuracy for executed
and imagined movements, respectively. In comparison, the EEGNet Fusion model achieved
lower accuracy rates of 84.1% for executed and 83.8% for imagined movements. The
accuracy for executed movements increased by 5.5%, while the accuracy for imagined
movements increased by 4% in the proposed model. The other benchmark models achieved
less than 82% accuracy for both executed and imagined movement tasks. However, the
proposed model was slower than the other tested models. It took 361 ms and 354 ms of
computational time per sample for the real and imagined movement tasks, respectively.
The DeepConvNet, ShallowConvNet, MMCNN, EEGNet, and EEGNet Fusion models
had computation times of 44 ms, 23 ms, 102 ms, 34 ms, and 107 ms, respectively, for the
executed task and 36 ms, 24 ms, 102 ms, 36 ms, and 110 ms, respectively, for the imagined
task. These values indicate that the proposed model’s computation time is higher than
the other models. Although this computing time was more than three times longer than
the EEGNet Fusion model, the computational cost was moderated by the notably greater
accuracy of the EEGNet Fusion V2 model.

The BCI Competition IV-2a dataset was implemented to classify four classes: left hand,
right hand, feet, and tongue. The BCI Competition IV-2b dataset was also implemented to
classify two classes of left and right hands. The proposed model achieved higher accuracy
on both datasets, with 74.3% and 84.1% accuracy, respectively. In comparison, the EEGNet
fusion model scored 73.8% and 83.8% on the BCI Competition IV-2a and IV-2b datasets,
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which is less than the proposed model’s performance. The performance of the other
benchmark models is below 71% for the IV-2a dataset and 83.5% for the IV-2b dataset.

In our study, we investigated the performance of EEGNet Fusion models with different
numbers of branches, specifically four, five, six, and seven. We also explored different
filter sizes within the architecture to assess the models. Our findings demonstrate that
the five-branch EEGNet Fusion model achieved the highest accuracy with the lowest
computational time, outperforming the other models with four, six, and seven branches. As
a result, we proposed the five-branch EEGNet Fusion V2 model as the optimal choice due
to its performance and less complex structure than the higher-branch models. Our study
provides valuable insights into the design of EEGNet Fusion models and offers guidance
for future research in this area.

The performance indicates that this composite network outperforms EEGNet Fusion,
EEGNet, MMCNN, ShallowConvNet, and DeepConvNet. The results also show that
the higher number of multi-branch fusion models obtain higher accuracy and require
longer computational time. The key contribution of this study is the examination of multi-
branch (five-branch) composite networks using EEG motor imagery data, which represents
an enhanced version of EEGNet Fusion. The adaptability of the architecture’s multiple
branches improved the model’s performance. The ideal hyperparameter can be set for
each branch, and more sophisticated feature maps are created by combining features in the
fusion layer. The EEGNet Fusion V2 network can mitigate the complexity of cross-subject
EEG classification by providing more flexibility in choosing the hyperparameters.

When developing real-time applications such as brain–computer interfaces (BCIs), it
is crucial to prioritize computational efficiency to ensure rapid response following user
actions. Otherwise, delays in feedback could lead to a sense of loss of control for the
user. As the current model has demonstrated relatively longer computational time when
implementing multiple branches, a potential avenue for future research could be to explore
strategies for reducing computation time in such scenarios. The exploration of diverse
transfer learning approaches can lead to decreased computation time and superior model
performance [47–50]. Furthermore, the computation time can vary significantly depending
on the hardware and software used. In this study, the computation time per sample is
provided as a reference.

This model can be applied to various EEG-based areas, for example, driver fatigue
evaluation, disorder detection, sleep stage, etc. BCI-based motor movement classification
can be used to control prosthetic limbs or assistive devices for individuals with limb loss
or disabilities. By analyzing brain signals related to motor imagery, therapists can design
personalized rehabilitation programs and provide real-time feedback to patients, facilitating
motor recovery. Real-time motor movement classification can enable more immersive and
interactive gaming experiences where users can perform actions or navigate through virtual
worlds by simply imagining the movements.

The proposed model shows strong results when applied to cross-subject classification
across the mentioned datasets. However, using the model in real-time scenarios presents
challenges due to the dynamic nature of brain signals. The model’s performance might
deteriorate when it encounters new subject data that it has not been exposed to before, even
though it performs well in controlled experiments. Adapting the model to these changes
requires strategies like transfer learning [47–50], where the model builds upon its existing
knowledge to handle new scenarios.

There may be further opportunities to explore more multi-branch designs. As EEG
data is non-stationary, which has implications for the feature extraction process, different
approaches can be explored to address the issue of non-stationarity [51–53]. Transfer
learning approaches can be implemented to resolve the issue of less data per subject and
inter-subject variations of the EEG-based dataset.
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Appendix A

The BCI IV-2a dataset includes four classes: left-hand (L), right-hand (R), feet (F), and
tongue (T). Each class was assessed separately using metrics like precision, recall, and
F1-score. Positive target labels were assigned to one class at a time, while the rest were
treated as negative.

For the left-hand (L) class:

• TP: Prediction is L and actual label is L.
• FP: Prediction is L but actual label is R, F, or T.
• TN: Prediction is R, F, or T, and actual label is also R, F, or T.
• FN: Prediction is R, F, or T, but actual label is L.

For the right-hand (R) class:

• TP: Prediction is R and actual label is R.
• FP: Prediction is R but actual label is L, F, or T.
• TN: Prediction is L, F, or T, and actual label is also L, F, or T.
• FN: Prediction is L, F, or T, but actual label is R.

For the feet (F) class:

• TP: Prediction is F and actual label is F.
• FP: Prediction is F but actual label is L, R, or T.
• TN: Prediction is L, R, or T, and actual label is also L, R, or T.
• FN: Prediction is L, R, or T, but actual label is F.

For the tongue (T) class:

• TP: Prediction is T and actual label is T.
• FP: Prediction is T but actual label is L, R, or F.
• TN: Prediction is L, R, or F, and actual label is also L, R, or F.
• FN: Prediction is L, R, or F, but actual label is T.

https://www.bbci.de/competition/iv/
https://www.bbci.de/competition/iv/
https://physionet.org/content/eegmmidb/1.0.0/
https://physionet.org/content/eegmmidb/1.0.0/
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Appendix B

To assess the proposed five-branch EEGNet Fusion V2 model, we conducted experi-
ments using four-branch, six-branch, and seven-branch EEGNet Fusion models. The filter
and kernel sizes implemented in these models are listed below.

The four-branch EEGNet:

• Convolutional Filter sizes for each branch: (1, 64), (1, 80), (1, 96), and (1, 112)
• Convolutional Kernel sizes for each branch: 8, 16, 32, and 64
• Separable Filter sizes for each branch: (1, 8), (1, 16), (1, 32), and (1, 64)
• Separable Kernel sizes for each branch: 16, 32, 64, and 128

The proposed five-branch EEGNet:

• Convolutional Filter sizes for each branch: (1, 64), (1, 80), (1, 96), (1, 112), and (1, 128)
• Convolutional Kernel sizes for each branch: 8, 16, 32, 64, and 128
• Separable Filter sizes for each branch: (1, 8), (1, 16), (1, 32), (1, 64), and (1, 128)
• Separable Kernel sizes for each branch: 16, 32, 64, 128, and 256

The six-branch EEGNet:

• Convolutional Filter sizes for each branch: (1, 32), (1, 64), (1, 80), (1, 96), (1, 112),
and (1, 128)

• Convolutional Kernel sizes for each branch: 4, 8, 16, 32, 64, and 128
• Separable Filter sizes for each branch: (1, 8), (1, 16), (1, 32), (1, 64), (1, 128) and (1, 256)
• Separable Kernel sizes for each branch: 8, 16, 32, 64, 128, and 256

The seven-branch EEGNet:

• Convolutional Filter sizes for each branch: (1, 16), (1, 32), (1, 64), (1, 80), (1, 96), (1, 112),
and (1, 128)

• Convolutional Kernel sizes for each branch: 2, 4, 8, 16, 32, 64, and 128
• Separable Filter sizes for each branch: (1, 4), (1, 8), (1, 16), (1, 32), (1, 64), (1, 128)

and (1, 256)
• Separable Kernel sizes for each branch: 4, 8, 16, 32, 64, 128, and 256
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