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Abstract

Synthetic Biology seeks to design and assemble novel biological systems with favourable

properties. It allows us to comprehend and modify the fundamental mechanisms of life and

holds significant promise in revolutionizing current technologies ranging from medicine

and biomanufacturing to energy and environmental protection. Biological processes con-

stitute remarkably complex dynamical systems operating impeccably well in messy and

constantly changing environments. Their ability to do so is rooted in sophisticated molec-

ular control architectures crafted by natural evolutionary innovation over billions of years.

Such control architectures, often blended with human- engineering approaches, are the

key to realizing efficient and reliable synthetic biological systems. Aiming to accelerate

the development of the latter, the present thesis addresses some fundamental challenges in

biomolecular systems and control design.

We begin by elucidating biological mechanisms of temporal gradient computation, en-

abling cells to adjust their behaviour in response to anticipated environmental changes.

Specifically, we introduce biomolecular motifs capable of functioning as highly tunable

and accurate signal differentiators to input molecular signals around their nominal opera-

tion. We investigate strategies to deal with high-frequency input signal components which

can be detrimental to the performance of most differentiators. We ascertain the occurrence

of such motifs in natural regulatory networks and demonstrate the potential of synthetic

experimental realizations. Our motifs can serve as reliable speed biosensors and can form

the basis for derivative feedback control.
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Motivated by the pervasiveness of Proportional-Integral-Derivative (PID) controllers

in modern technological applications, we present the realization of a PID controller via

biomolecular reactions employing, among others, our differentiator motifs. This biomolec-

ular architecture represents a PID control law with set point weighting and filtered deriva-

tive action, offering robust regulation of a single-output biological process with enhanced

dynamic performance and low levels of stochastic noise. It is characterized by significant

ease of tuning and can be of particular experimental interest in molecular programming

applications.

Finally, we investigate efficient regulation strategies for multi-output biological pro-

cesses with internal coupling interactions, expanding previously established single-output

control approaches. More specifically, we propose control schemes allowing for robust

manipulation of the outputs in various ways, namely manipulation of their product/ratio,

linear combinations of them as well as manipulation of each of the outputs independently.

Our analysis is centered around two-output biological processes, yet the scalability of the

proposed regulation strategies to processes with a higher number of outputs is highlighted.

In parallel, their experimental implementability is explored in both in vivo and in vitro

settings.
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Chapter 1

Introduction

1.1 Motivation

Synthetic Biology undoubtedly constitutes one of the most promising and rapidly devel-

oping fields of research in the 21st century, lying at the crossroads of Engineering and

Biology. It comprises the concepts, methods and technologies enabling the design and en-

gineering of novel biological systems or modification of existing, natural ones in order to

carry out predefined tasks. The well-known Richard Feynman’s dictum, “What I cannot

create, I do not understand”, is often cited by synthetic biologists to eloquently summarize

the field’s promise: only via the process of creating artificial forms of life can the mysteries

of life be fully illuminated.

Recent advancements have illustrated the immense potential for Synthetic Biology ap-

plications to revolutionize the current technology landscape and address major humanitar-

ian problems across areas as diverse as healthcare, manufacturing, energy, the environment

and others. Examples include: bacterial and mammalian cell-based systems for diagnos-

tic and drug delivery purposes targeting a variety of human diseases such as metabolic

and autoimmune disorders [59, 15]; programmable living materials created by genetically

engineered microorganisms [28]; fuels and chemical synthesis through cell factories em-
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Figure 1.1: General structure of a feedback control closed loop

ploying renewable resources and atmospheric CO2 [52, 50]; fast microbial production of

high-quality food ingredients [78] and cellular biosensors for environmental pollution mon-

itoring [30].

Control Theory provides a mathematical framework encompassing powerful techniques

for the analysis, design and manipulation of physical systems. A central notion in this the-

ory is feedback control referring to the ability of a system to fine-tune its behaviour by mea-

suring one or more of its outputs. Feedback can be found almost in every aspect of modern

life including power generation and transmission, transportation, internet networks, elec-

tronic devices, industrial robotics and economics. Negative feedback is probably the most

prevalent form of feedback in engineering applications. The general idea is the creation

of a closed loop where the output of a process is compared with a reference input (Figure

1). As a result, an error signal is generated which is then processed by a controller. The

latter, in turn, produces a new input to the initial process, which steers the output towards

the desired value even in the presence of disturbances.

Intriguingly, feedback control architectures are ubiquitous in nature at various orga-

nizational levels and timescales, regulating essential processes for the survival of living

systems. Numerous natural homeostatic mechanisms exploit integral feedback control [8],

one of the fundamental regulation schemes in traditional control engineering, as happens,

for instance, with bacterial chemotaxis [88], yeast osmoregulation [62] or the regulation of

calcium concentration in mammals [20]. Other mechanisms, such as the one responsible
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for bacterial persistence [73], take advantage of positive feedback strategies while in more

complex cases, such as the regulatory network of galactose metabolism in yeast [85], a

combination of positive and negative feedback loops is used.

Drawing inspiration from the natural evolutionary innovation blended with concepts

from modern technology has led to several success stories in the front of biological feed-

back control systems. In fact, the first two synthetic genetic circuits built, namely a bistable

toggle switch [27] and an oscillatory network termed the repressilator [21], which marked

the initiation of Synthetic Biology as a field at the beginning of the current millennium, both

used feedback to design dynamics. In the recent years, there have been various successful

synthetic implementations of feedback regulation strategies within cells (in vivo) such as

integral controllers [42, 38, 7, 26], feedforward control topologies [9, 41, 25, 31], paradox-

ical [55], layered [37] or burden-driven [14] feedback motifs and others. In parallel, similar

approaches have been studied in cell-free or in vitro environments [1, 65, 71]. Additionally,

substantial research has focused on in silico control of biological processes by interfacing

the latter with a computer executing the control algorithm [36, 69, 82, 48, 70, 68, 47].

The design of well-regulated biomolecular devices with reliable performance is a key

prerequisite for synthetic biology to fulfill its potential, allowing current and future devel-

opments to be directly transferable to out-of-the-lab contexts. Despite recent progress, our

capacity to attain this aim is still hampered by a number of ongoing system-level chal-

lenges resulting to a tremendous lack of robustness, modularity and predictability. More

specifically, the performance of artificial biomolecular networks is severely affected by the

presence of undesirable crosstalk interactions between different genetic modules as well

as by environmental variations in terms of, for instance, temperature, growing media and

cell cycle stage [61, 13]. Unexpected or even catastrophic changes in a design’s behaviour

may also occur due to loading effects stemming from the interconnection of biomolecu-

lar components [19] or due to competition for accessing the limited resources of the host

cell [72]. Another important contributing factor is the stochastic noise which is generated
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from randomizing effects of the cellular environment (extrinsic noise) and the probabilistic

nature of chemical reactions (intrinsic noise) [83, 67]. Moreover, synthetic circuit failure

might be caused by the emergence of random genetic mutants with a fitness advantage, ca-

pable of dominating the cell population (mutational escape) [81]. These challenges, among

others, highlight the fact that biological systems are quite distinct, exhibiting a plethora of

features and requirements that are absent in traditional engineering contexts. As a conse-

quence, our ability to mimic conventional control schemes found in the latter is severely

restricted. This, by extension, necessitates the construction of new systematic design tools

and methods specifically tailored to biomolecular environments.

This thesis constitutes a step forward in addressing the problems and limitations dis-

cussed above, with the ultimate goal of accelerating the realization of dependable synthetic

bio-devices. This work provides novel theory-grounded frameworks and architectures for

efficient biomolecular system design and control by leveraging principles and techniques

from the broad area of Dynamical Systems, and especially Control Theory. Special em-

phasis has been placed on establishing stability, disturbance rejection, and predictable per-

formance while guaranteeing biological implementability. Furthermore, new light is shed

on the underlying mechanisms of naturally occuring motifs.
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1.2 Thesis Outline

An overview of the thesis is provided below, briefly summarizing the content of each chap-

ter. The contributions and novelties of this work are organized into research papers which

have been published or submitted for publication.

• Chapter 2

This chapter presents a high-level review of fundamental ideas necessary for the

analysis and design of biomolecular systems which are not covered in later chapters.

It begins with a concise introduction to basic mathematical tools, followed by a brief

discussion of some core concepts in molecular biology.

• Chapter 3

This chapter introduces three modular and tunable biomolecular devices capable of

operating as signal differentiators of high accuracy. Tuning strategies and structural

additions for enhanced performance and high-frequency input noise insensitivity are

also investigated. Finally, natural regulatory networks whose structure resemble the

core of these architectures are studied and guidelines for potential synthetic imple-

mentations are provided. The corresponding manuscript has been published [5].

• Chapter 4

This chapter describes a chemical reaction network implementation of a highly tun-

able Proportional-Integral-Derivative (PID) controller. It shows two special char-

acteristics, namely set-point weighting and high-frequency noise filtering regarding

derivative control. It is demonstrated that the feedback bio-controller in question

is able to achieve robust regulation of a biological process with improved transient

dynamics and mitigates stochastic noise. The corresponding manuscript has been

published [4].

• Chapter 5

5



This chapter investigates the problem of regulating biomolecular systems of multiple

outputs interacting with each other in the presence of disturbances from the external

environment. In particular, feedback architectures for processes with two outputs of

interest are introduced, capable of robustly controlling the ratio/product of the latter,

a linear combination of them and each of them independently. Potential synthetic

experimental realizations are also discussed. The corresponding manuscript has been

submitted for publication and is currently under revision [6].

• Chapter 6

This chapter provides a synopsis of the thesis’ findings and a discussion on future

research avenues.
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1.3 Thesis contributions and related works

My doctoral research has led to the following publications which are part of the present

thesis:

• Alexis, E., Schulte, C. C., Cardelli, L., Papachristodoulou, A., Biomolecular mech-

anisms for signal differentiation, Iscience, 24(12), 103462, 2021

• E. Alexis, L. Cardelli and A. Papachristodoulou, On the Design of a PID Bio-Controller

With Set Point Weighting and Filtered Derivative Action, IEEE Control Systems Let-

ters, vol. 6, pp. 3134-3139, 2022 ∗

• Alexis, E., Schulte, C. C., Cardelli, L., Papachristodoulou, A., Regulation strategies

for two-output biomolecular networks, bioRxiv, 2022

∗ This paper was presented as an invited paper in 61st IEEE Conference on Decision

and Control (CDC) 2022.

I have also contributed to the following study which is not covered herein:

• Sootla, A.#, Delalez, N.#, Alexis, E., Norman, A., Steel, H., Wadhams, G. H., Pa-

pachristodoulou, A., Dichotomous feedback: a signal sequestration-based feedback

mechanism for biocontroller design, Journal of the Royal Society Interface, 19(189),

20210737, 2022

# joint first authors

There have been several recent efforts towards the three primary research directions of

this thesis, namely biomolecular realizations of signal differentiators, PID controllers, and

multi-output control strategies. Subsequently, a concise comparative discussion on related

works is presented, highlighting the main novelties of our results.
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Biomolecular signal differentiators

Literature review

The main research attempts in this area are summarized below:

• In the design of biological topologies, dual rail encoding [63] can be employed to rep-

resent a signal as the non-physical difference between two molecular species compo-

nents obeying mass-action kinetics. Exploiting this technique and incorporating time

delays, two structurally distinct topologies are presented by the authors in [87] and

[66], capable of approximating time derivatives of input signals. While these topolo-

gies are synthesizable in vitro via nucleic acid-based chemistry, their realization in

vivo poses considerable challenges.

• A feedback architecture containing integral action and a high gain is proposed in

[35, 34] to estimate temporal gradients of input signals. Furthermore, a potential

experimental implementation through a two-gene circuit in a cell-free environment

is discussed. The design approach used therein is similar to [63] and, thus, the output

temporal derivative is given by the difference of two biomolecular concentrations.

• A two-node circuit based on a bacterial chemotaxis-like mechanism is adopted by the

authors in [17] to design a signal differentiator. This circuit involves active degrada-

tion processes following Michaelis-Menten kinetics and operating close to saturation.

• Three feedback motifs with ultrasensitive and quasi-integral components are intro-

duced in [75], which are able to function as practical differentiators. Their structure

includes reactions related to enzymatic activation/deactivation cycles and molecular

sequestration.

• Constructing a derivative operator via an incoherent feedforward loop and time de-

lays is investigated in [76]. Specifically, architectures based on molecular seques-

tration, a push-pull system, and a hybrid promoter are examined. The output of the
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resulted operator does not estimate the “full derivative” of an input signal but rather

(only) the positive or negative gradients of it.

• The authors in [23] explore different ways of realizing derivative action for biomolec-

ular feedback control applications. In particular, they accomplish this by utilizing

incoherent feedforward loops. In parallel, by placing various integral motifs within

feedback loops, they construct different types of differentiator modules, namely “an-

tithetic” differentiators (based on molecular sequestration), inflow/outflow zero-order

differentiators, and auto-catalytic differentiators. An important characteristic of these

topologies is that the computed derivative is represented by a reaction rate rather

than a biomolecular species. While this can be convenient in biocontroller design,

it might not be favourable in situations where the computed derivative needs to be

(experimentally) measured, for example, in the case of speed sensing.

• A derivative-based controller tailored to gene expression processes is proposed in

[60]. The controller is implemented through a coupled feedforward-feedback bio-

chemical circuit taking advantage of time delays.

Thesis contribution

We introduce three architectures employing production-inhibition loops and molecular

sequestration. The biomolecular reactions involved following mass-action kinetics while,

in one of the architectures, an enzyme-catalyzed degradation based on Michaelis-Menten

kinetics is used. Our circuits can function as general-purpose signal differentiators of high

accuracy where the derivative of an input signal is encoded as a biomolecular species. They

are suitable for (in vivo and/or in vitro) synthetic experimental implementations and can be

used as lenses to investigate natural regulatory mechanisms.
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Biomolecular PID controllers

Literature review

In some of the above works, besides the development of differentiator modules, biomolec-

ular realizations regarding the remaining constituent components of a PID controller are

also presented. More specifically:

• Two alternative PID control strategies, especially suitable for molecular program-

ming applications, are reported in [87] and [66]. Using dual rail encoding, each of the

controller parts is designed independently and, then, their control actions are added

up. The improved behaviour of the resulting closed-loop systems is demonstrated in

the deterministic setting.

• Similarly to the aforementioned concept, the authors in [17] design the P, I and D

components independently to build a controller with enhanced dynamic performance

in the deterministic setting. This PID architecture heavily depends on processes that

follow Michaelis-Menten kinetics.

• Adopting Hill and mass-action kinetics, the study in [23] introduces a set of PID

topologies of varying structural complexity, where the P, I and D parts are not explic-

itly separable. Higher complexity results in additional degrees of freedom, increased

structural separability, and improved performance capabilities. Compared to PI con-

trol, the deterministic closed-loop behaviour of the PID topologies is shown to be

improved in terms of stability and transient dynamics while some of these topologies

are able to suppress stochastic fluctuations. A noteworthy feature is the incorporation

of a first-order low-pass filter into some or all the control terms of these designs.

• Focusing on the stochastic nature of gene expression, the work in [60] studies the

efficacy of proportional, integral, and derivative control action in mitigating protein
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count fluctuations. Note that each type of control is analyzed separately and, there-

fore, a full PID architecture is not discussed.

Thesis contribution

We propose a chemical reaction network based on mass-action kinetics capable of op-

erating as a PID controller with set point weights and filtered derivative action. The latter

is achieved through a second-order low-pass filter. The effectiveness of our strategy is

demonstrated in both the deterministic and stochastic setting and compared with PI regu-

lation. Our PID scheme can offer significant tunability and can enhance the closed-loop

output behavior by eliminating overshoots and oscillations as well as reducing stochastic

noise. Note that our design approach is relatively similar to [23] . Nevertheless, our ar-

chitecture implements a different type of PID control law which, in turn, results in distinct

structural differences.

Biomolecular multi-output control strategies

Literature review

Multi-output control of biological systems has been previously studied exclusively in con-

texts with either external computer-based control or via genetic logic gates. In particular:

• The genetic toggle switch [27] is a two-output, bistable circuit composed of two

mutually repressing genes. The authors in [54] examine different in-silico control

approaches to balance the toggle switch, namely PI control, Bang Bang control, and

open-loop periodic forcing based on mutually exclusive pulse waves. At the same

time, two alternative in-silico methods are reported in [32]. This study exploits a

model-based hybrid strategy of PI control and pulse-width modulation (PWM) as

well as a PWM-based strategy using Zero Average Dynamics (ZAD) control.
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• Combinatorial logic circuits with multiple inputs and multiple outputs have been

successfully engineered in bacterial [10] and mammalian [86] cells. While these ad-

vancements hold great potential for biomolecular computation, their applicability in

feedback control applications may be limited.

Thesis contribution

We present the first chemical reaction network implementation of multi-output feed-

back control strategies. Using mass-action kinetics and leveraging the concept of antithetic

integral feedback [11], our strategies are able to achieve robust steady-state tracking with

respect to each of the outputs independently or a desired combination of them. Notably, our

regulatory topologies are suitable for fully in vivo or in vitro experimental settings without

the need for external computer-based control.

Finally, it is important to emphasize that the mathematical modelling and analysis in

all three main parts of the thesis follow a deterministic approach based on Ordinary Dif-

ferential Equations (ODEs). Additionally, in the second part, Van Kampen’s Linear Noise

Approximation (LNA) of the Chemical Master Equation (CME) is adopted to study the

stochastic behaviour of the topology under consideration.

12



13



Chapter 2

Background

The aim of the present chapter is to provide the reader with a succinct overview of im-

portant mathematical and biological concepts that are used in the ensuing chapters of this

thesis, yet are not expounded upon therein.

2.1 Mathematical Background

We commence with an exposition of some mathematical ideas that play an instrumental

role in modelling and analyzing the dynamics of the biological systems investigated in this

thesis.

2.1.1 Modelling chemical reaction networks

Consider q biochemical species X1, . . . ,Xq, where q ∈ N, which undergo m chemical reac-

tions, where m ∈ N, composing the following chemical reaction network (CRN)

q

∑
j=1

Ai jX j

ki q

∑
j=1

Bi jX j, i = 1, . . . ,m, (2.1)
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The terms
q

∑
j=1

Ai jX j and
q

∑
j=1

Bi jX j represent the reactant and the product of the ith re-

action, respectively, where Ai j, Bi j, also known as stoichiometric coefficients, are non-

negative integers. In addition, ki refers to the reaction rate constant of the ith reaction and

is a positive real number.

Each of the reactions participating in CRN (2.1) is assumed to be irreversible - the

transformation of reactants into products is carried out only in the direction of the arrow (

→ ). In case of a reversible reaction where the converse transformation also takes place the

notation ( ⇆ ) or ( ↔ ) is often used instead. To be aligned with the formalism above (CRN

(2.1)), the reverse reaction can be introduced as a separate reaction. Furthermore, CRN

(2.1) is considered a closed system since there is no material exchange with the external

environment. In other words, the reactants and the products of the reactions involved lie

within the network in question. Another commonly encountered symbol is ( ∅ ) which may

appear at the left-hand side or the right-hand side of a reaction representing an unspecified

process which is not important for the problem under consideration. In this scenario Ai j

or Bi j is 0, respectively, corresponding to an open system where mass addition/removal is

permitted.

The dynamic behaviour of a CRN is usually studied under the following assumptions :

• Spatial homogeneity : This is also known as the well-mixed assumption and entails

equal distribution of the reactants throughout the reaction volume - no spatial struc-

ture exists. The reaction rates are therefore spatially independent. This implies that

the time scale governing the evolution of the process of interest is longer than the one

corresponding to diffusion of its molecular components.

• Continuum hypothesis : This refers to the description of molecular abundance by a

continuously changing (real-valued) concentration instead of using a discrete (integer-

valued) measure. This approximation is valid provided that the number of molecules

of the species involved is sufficiently large.
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In a fixed volume where the above two assumptions hold, the dynamics of a CRN can

be derived by invoking the Law of Mass Action, according to which the rate of a chemical

reaction is proportional to the product of the concentrations of its reactants. Thus, the

dynamics of CRN (2.1) can be given by the following ordinary differential equations which

are referred to as the mass action kinetics or the reaction rate equations of the network:

ẋ(t) = (B−A)T [k ◦ xA(t)], x(0) = x0, t ≥ 0, (2.2)

where x j(t) represents the concentration of species X j at time t, x(t) = [x1(t), . . . ,xq(t)]T ,

k = [k1, . . . ,km]
T and A = [Ai j], B = [Bi j] correspond to m×q non-negative matrices. More-

over, the notations ◦ and xA(t) denote component-wise multiplication and vector-matrix

exponentiation, respectively.

Equation (2.2) can be rewritten as:

ẋ(t) = NRxA(t), x(0) = x0, t ≥ 0, (2.3)

where N = (B−A)T , commonly known as the stoichiometry matrix, and R = diag(k1, . . . ,km).

As expected from their physical interpretation, an important property of the above ki-

netic equations is that their states remain non-negative provided that the initial conditions

are also non-negative and that the solution exists.

Enzymes (a specialized class of proteins) are responsible for catalyzing the vast major-

ity of chemical reactions taking place within the cell. To achieve that, enzymes are able

to bind the reactants - termed (enzyme) substrates - and aid their transformation into the

products. A general enzymatic reaction can be described as:

E +S
k1

k2

C
k3

E +P (2.4)

in which E, S, C represent the (free) enzyme, the substrate and the complex formed by the

16



former two, respectively.

By applying mass action kinetics and assuming that the first, reversible reaction is much

faster than the second, reversible one in CRN (2.4), meaning k1,k2 ≫ k3, and that the ini-

tial concentration of S is sufficiently high, the so-called Michaelis-Menten kinetics can be

derived:

ṗ(t) = k3
etots

s+Km
=Vmax

s
s+Km

(2.5)

where:

• etot = e+ c is the total enzyme concentration which remains constant (the enzyme is

not consumed)

• Vmax = k3etot is known as the maximal flow or maximal velocity.

• Km =
k2 + k3

k1
is known as the Michaelis-Menten constant

Equation (2.5) can be further simplified in the following two scenarios:

• For s ≫ Km (the enzyme is saturated by the substrate), Equation (2.5) becomes:

ṗ(t)≈Vmax

which states that the reaction practically reaches its maximal speed. The production

rate does not depend on the concentration of the substrate and it is often referred to

as zero-order kinetics.

• For s ≪ Km, Equation (2.5) becomes:

ṗ(t)≈ Vmax

Km
s

which states that the production rate varies almost linearly with the concentration of

the substrate and it is often referred to as first-order kinetics.
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Further details on the above can be found in [16, 39, 18, 40].

2.1.2 State-space representation

The dynamical systems studied in this thesis can be modelled via a finite number of coupled

first-order ordinary differential equations [43, 2]. Using vector notation these equations can

be represented in a compact form as :

ẋ = f (t,x,u) (2.6)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector and f : Rn ×Rm → Rn is a

smooth (possibly time-varying and/or non-linear) mapping. Equation (2.6) is called the

state equation.

Another equation, called the output equation, is often associated with Equation (2.6):

y = h(t,x,u) (2.7)

where y ∈Rq and h : Rn ×Rm →Rq is a smooth (possibly time-varying and/or non-linear)

mapping.

The state variables composing x represent the memory of a dynamical system in terms

of its past whereas the output variables composing y represent the variables of interest

which must behave in a certain way and/or can be physically measured. Equations (2.6)

and (2.7) together constitute the so-called (normalized) state-space representation or system

realization.

Systems with multiple inputs and outputs, meaning m, q > 1, are referred to as multi-

input, multi-output (MIMO) systems. In the special case where m = q = 1, systems are

referred to as single-input, single-output (SISO).
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2.1.3 Linear, time-invariant systems and linearisation

In many practical situations, modelling is based on finite-dimensional linear, time invariant

(LTI) systems. Equations (2.6) and (2.7) can therefore be simplified as:

ẋ = Ax+Bu (2.8)

y =Cx+Du (2.9)

where A, B, C, D are real, constant matrices of appropriate dimensions known as the dy-

namics matrix, the control matrix, the sensor matrix, the direct term, respectively.

A very common approach of studying the behaviour of a non-linear system is to analyze

its dynamics in a regime of interest where this system can be approximated by an LTI

system of the form (2.8)-(2.9) (local behaviour). An important characteristic of a system

that plays a central role here is that of equilibrium point describing a stationary condition

for its dynamics. Considering again the non-linear system (2.6), (2.7), the fixed point

(x∗,u∗) constitutes an equilibrium point if f (x∗,u∗) = 0. Assuming now that the functions

f and h are continuously differentiable, Jacobian linearization based on a truncated Taylor

series expansion can be employed. More specifically, the following linearised model can

be obtained:

˙̄x = Ax̄+Bū

ȳ =Cx̄+Dū

where x̄ = x− x∗, ū = u−u∗ represent small perturbations around (x∗,u∗) and:

A =
∂ f (x,u)

∂x

∣∣∣∣
(x,u)=(x∗,u∗)

B =
∂ f (x,u)

∂u

∣∣∣∣
(x,u)=(x∗,u∗)
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C =
∂h(x,u)

∂x

∣∣∣∣
(x,u)=(x∗,u∗)

D =
∂h(x,u)

∂u

∣∣∣∣
(x,u)=(x∗,u∗)

2.1.4 State controllability and state observability

Here, we introduce the concepts of state controllability and state observability with respect

to systems of the form (2.8)-(2.9).

Definition 2.1.1 (Definition 4.1 in [79]). The dynamical system (2.8), or equivalently the

pair (A,B), is said to be state controllable if, for any initial state x(0) = x0, any time t1 > 0

and any final state x1, there exists an input u(t) such that x(t1) = x1. Otherwise the system,

or (A,B), is said to be state uncontrollable.

Definition 2.1.2 (Definition 4.2 in [79]). The dynamical system (2.8)-(2.9) (or the pair

(A,C)), is said to be state observable if, for any time t1 > 0, the initial state x(0) = x0 can

be determined from the time history of the input u(t) and the output y(t) in the interval

[0, t1]. Otherwise the system, or (A,C), is said to be state unobservable.

To check if a system is state controllable and state observable, one can use the following

tests: [79]:

• Test for state controllability: The system (A,B) is state controllable if and only if the

controllability matrix [
B AB A2B . . . An−1B

]

has rank n (full row rank) . Note that n corresponds to the number of states.

• Test for state observability: The system (A,C) is state observable if and only if the
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observability matrix 


C

CA
...

CAn−1




has rank n (full column rank).

2.1.5 Stability of autonomous systems

The stability analysis presented in this thesis mainly focuses on non-linear systems that

take the form [57]:

ẋ = f (x) (2.10)

System (2.10) does not explicitly depend on time and is called autonomous. Without loss

of generality, x∗ = 0 is assumed to be an equilibrium point of this system.

Definition 2.1.3 (Definition A.2 in [12]). The equilibrium point x∗ = 0 is said to be stable

if, for any ρ > 0, there exists r > 0 such that if ∥ x(0) ∥< r, then ∥ x(t) ∥< ρ for all t ≥ 0.

Definition 2.1.4 (Definition A.3 in [12]). The equilibrium point x∗ = 0 is asymptotically

stable if it is stable, and if in addition there exists some r > 0 such that ∥ x(0) ∥< r implies

that x(t)→ 0 as t → ∞.

Definition 2.1.5 (Definition A.5 in [12]). The equilibrium point x∗ = 0 is exponentially

stable if there exist two strictly positive numbers α and λ , independent of time, and initial

conditions such that

∥ x(t) ∥≤ α ∥ x(0) ∥ e−λ t , for all t > 0

in some ball around the origin.
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In the above definitions, the notation ∥ · ∥ refers to the Euclidean (L2) norm in Rn, i.e.

∥ x ∥=
√

xT x for all x ∈ Rn.

It is apparent that exponential stability is the strongest type of stability from the con-

cepts defined above and that it implies asymptotic stability (whereas the converse is not

true). Moreover, these stability concepts refer to the local behaviour of system (2.10)

around x∗. If their corresponding conditions are satisfied for any initial state, then they

become global.

Theorem 2.1.6 (Theorem 3.11 in [57]). Let x∗ = 0 be an equilibrium point for system

(2.10). Assume that f is continuously differentiable in D ( f : D→Rn) and A= ∂ f (x)
∂x

∣∣∣
(x)=(x∗)

.

Then if the eigenvalues λi of the matrix A satisfy Re(λi) < 0, the origin is a (locally)

exponentially stable equilibrium point for system (2.10).

The eigenvalues of a given matrix A are the roots of the characteristic equation:

∆(s) = det(sI −A) = αnsn +αn−1sn−1 + · · ·+α1s+α0 = 0 (2.11)

where I denotes the identity matrix.

Linear stability of A requires that the real parts of these roots are strictly negative.

Nevertheless, explicit calculation of the eigenvalues can often be challenging, especially

for high-order polynomials. Instead, the Routh-Hurwitz criterion can be exploited in order

to determine if the position of the eigenvalues is in the open-half plane. This constitutes a

necessary and sufficient criterion for linear stability. More specifically, given polynomial

(2.11), this method uses an array based on the ordering of the coefficients regarding the
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polynomial as follows [56]:




sn αn αn−2 αn−4 . . .

sn−1 αn−1 αn−3 αn−5 . . .

sn−2 bn−1 bn−3 bn−5 . . .

sn−3 cn−1 cn−3 cn−5 . . .

sn−4 dn−1 dn−3 dn−5 . . .

...




where

bn−1 =− 1
αn−1

∣∣∣∣∣∣∣

αn αn−2

αn−1 αn−3

∣∣∣∣∣∣∣
, bn−3 =− 1

αn−1

∣∣∣∣∣∣∣

αn αn−4

αn−1 αn−5

∣∣∣∣∣∣∣

cn−1 =− 1
bn−1

∣∣∣∣∣∣∣

αn−1 αn−3

bn−1 bn−3

∣∣∣∣∣∣∣
, cn−3 =− 1

bn−1

∣∣∣∣∣∣∣

αn−1 αn−5

bn−1 bn−5

∣∣∣∣∣∣∣

dn−1 =− 1
cn−1

∣∣∣∣∣∣∣

bn−1 bn−3

cn−1 cn−3

∣∣∣∣∣∣∣
, . . .

According to Routh-Hurwitz criterion, all the elements of the first column are required to

be nonzero and have the same sign (necessary and sufficient condition).

A thorough treatment of stability of dynamical systems can be found in [12, 43, 57, 80].

2.1.6 Transfer function representation and frequency response

It is often convenient to study the input-output relationships in LTI systems by using trans-

fer functions. In particular, applying the Laplace transform to system (2.8)-(2.9), under the

assumption that all initial conditions are zero, yields:

sX(s) = AX(s)+BU(s)
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Y (s) =CX(s)+DU(s)

where s ∈ C is the Laplace variable.

Thus, the following expression is obtained:

Y (s) = G(s)U(s) (2.12)

in which

G(s) =
[
C(sI −A)−1B+D

]

represents, for a general MIMO system, a transfer function matrix whose elements are

(SISO) rational transfer functions between a specific input and output. Two important

concepts in transfer function representation are those of poles and zeros which are defined

below.

Definition 2.1.7 (Definition 4.6 in [79]). The poles pi of a system with state-space de-

scription (2.8)-(2.9) are the eigenvalues λi(A), i = 1, . . . ,n of the matrix A. The pole or

characteristic polynomial φ(s) is defined as φ(s) ≜ det(sI −A) = ∏n
i=1(s− pi). Thus the

poles are the roots of the characteristic equation φ(s)≜ det(sI −A) = 0

Definition 2.1.8 (Definition 4.7 in [79]). zi is a zero of G(s) if the rank of G(zi) is less than

the normal rank of G(s). The zero polynomial is defined as z(s) = ∏nz
i=1(s− zi) where nz is

the number of finite zeros of G(s).

Finally, substituting s = jω in Equation (2.12) results in:

Y ( jω) = G( jω)U( jω) (2.13)

which describes the input-output relationship of the system via Fourier transform. G( jω)

is known as the frequency response of the system and can provide significant insight into

its behaviour such as revealing its response to sinusoids of varying frequency.
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Note that switching between Laplace and Fourier representation via the aforementioned

substitution is not always possible. Nevertheless, this process is valid when followed in this

work since the systems under consideration are asymptotically stable.

Further information on the above topics is provided in [2, 79, 49, 64].

2.1.7 Positive realness

Here we discuss the notion of positive realness with respect to transfer functions as well

as its application to stability of interconnected systems within a negative feedback loop by

presenting some key definitions and theorems.

About the notations used below: H and T indicate the conjugate transpose and the

transpose of a matrix, respectively while ≻ (≽) indicates a positive definite (positive-

semidefinite) matrix.

Definition 2.1.9 (Definition 2.34 in [12]). The transfer matrix H(s)∈Cm×m is positive real

(PR) if:

• H(s) has no pole in Re[s]> 0.

• H(s) is real for all positive real s.

• H(s)+HH(s)≽ 0 for all Re[s]> 0.

Theorem 2.1.10 (Theorem 2.48 in [12]). The rational function H(s) ∈ Cm×m is positive

real (PR) if and only if:

• H(s) has no pole in Re[s]> 0.

• H( jω)+HH( jω)≽ 0 for all positive real ω such that jω is not a pole of H(·).

• If jω0, finite or infinite, is a pole of H(·), it is a simple pole and the corresponding

residual K0 = lims→ jω0(s−ω0)H(s) if ω0 <+∞, or K∞ = limω→∞
H( jω)

jω
if ω0 =∞,

is a positive semi-definite Hermitian matrix.
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Definition 2.1.11 (Definition 2.58 in [12]). A rational transfer function matrix H(s) ∈

Cm×m that is not identically zero for all s is strictly positive real (SPR) if H(s− ε) is PR

for some ε > 0.

Definition 2.1.12 (Definition 2.77 in [12]). A rational transfer function matrix H(s) ∈

Cm×m is weakly strictly positive real (WSPR) if:

• H(s) is analytic in Re[s]≥ 0.

• H( jω)+HT (− jω)≻ 0 for all ω ∈ R.

Theorem 2.1.13 (Lemma 3.67 in [12]). Consider a system H1 : u1 → y1 in negative feed-

back with a system H2 : u2 → y2, i.e. u1 = −y2 and u2 = y1, where H1 is PR and H2 is

WSPR. Under those conditions u1, u2, y1 and y2 all converge to zero exponentially.

A detailed discussion on topics associated with positive realness can be found in [12,

43, 45].

2.1.8 Singular perturbations and model reduction

Due to their multi-time-scale behaviour, many biological processes can take the form of

the singular perturbation model [43]:

ẋ = f (t,x,z,ε) (2.14)

ε ẏ = g(t,x,z,ε) (2.15)

where ε is considered a small positive parameter. In additon, f and g are continuously

differentiable in their arguments for (t,x,z,ε) ∈ [0, t1]×Dx ×Dz × [0,ε0] and Dx ⊂ Rn,

Dz ⊂ Rm are open connected sets.
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Setting ε = 0 results in degeneration of differential Equation (2.15) into the algebraic

or transcendental equation:

0 = g(t,x,z,0) (2.16)

thus reducing the dimension of state-space model (2.14), (2.15) from n+m to n. The model

is said to be in standard form if Equation (2.16) has k ≥ 1 isolated real roots

z = hi(t,x), i = 1,2, . . . ,k (2.17)

for each (t,x)∈ [0, t1]×Dx. Assuming ε = 0 and substituting Equation (2.17) into Equation

(2.14) gives the following reduced model:

ẋ = f (t,x,h(t,x),0) (2.18)

where the subscript i has been removed from h. Equation (2.18) is also known as the slow

model or the quasi-steady state model. Note that when ε is small and g ̸= 0, ż =
g
ε

can be

large and z may quickly converge to a root of Equation (2.16).

To get a deeper insight, we focus on the problem of solving the system :

ẋ = f (t,x,z,ε), x(t0) = ξ (ε) (2.19)

ε ẏ = g(t,x,z,ε), z(t0) = η(ε) (2.20)

where ξ (ε) and η(ε) depend smoothly on ε and t0 ∈ [0, t1). Additionally, let x(t,ε), z(t,ε)

represent the solution of the system.

The reduced model (see Equation (2.18)) is given by:

ẋ = f (t,x,h(t,x),0), x(t0) = ξ0 ≜ ξ (0) (2.21)

Let x̄(t) be the solution of Equation (2.21). The quasi-steady state behaviour of z when
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x = x̄ can be obtained as:

z̄ ≜ h(t, x̄(t)) (2.22)

Performing the change of variables y = z−h(t,x) and assuming ε = 0, Equation (2.20)

becomes:

dy
dτ

= g(t0,ξ0,y+h(t0,ξ0),0), y(0) = η(0)−h(t0,ξ0)≜ η0 −h(t0,ξ0) (2.23)

where τ =
t − t0

ε
is the new time variable (fast time-scale).

Assuming that x̄(t) is defined for t ∈ [0, t1] and x̄(t) ∈ Dx ⊂ Rn, for some domain Dx,

Equation (2.23) can be rewritten as:

dy
dτ

= g(t,x,y+h(t,x),0) (2.24)

where the slowly varying parameters (t,x) ∈ [0, t1]×Dx are treated as fixed parameters.

Equation (2.24) is referred to as the boundary-layer model/system. Note that the same

terminology is often used for Equation (2.23) which constitutes an evaluation of Equation

(2.24) for some given initial time and state.

Theorem 2.1.14 (Theorem 11.1 in [43]). Consider the singular perturbation problem of

Equations (2.19) and (2.20) and let z = h(t,x) be an isolated root of Equation (2.16).

Assume that the following conditions are satisfied for all

[t,x,z−h(t,x),ε] ∈ [0, t1]×Dx ×Dy × [0,ε0]

for some domains Dx ⊂Rn and Dy ⊂Rm, in which Dx is convex and Dy contains the origin:

• The functions f and g, their first partial derivatives with respect to (x,z,ε), and the

first partial derivative of g with respect to t are continuous; the function h(t,x) and

the Jacobian
[

∂g(t,x,z,0)
∂ z

]
have continuous first partial derivatives with respect to
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their arguments; the initial date ξ (ε) and η(ε) are smooth functions of ε .

• The reduced problem (2.21) has a unique solution x̄(t) ∈ S, for t ∈ [t0, t1], where S is

a compact subset of Dx.

• The origin is an exponentially stable equilibrium point of the boundary-layer model

(2.24), uniformly in (t,x); let Ry ⊂ Dy be the region of attraction of Equation (2.23)

and Ωy be a compact subset of Ry.

Then, there exists a positive constant ε∗ such that for all η0−h(t0,ξ0)∈Ωy and 0< ε < ε∗,

the singular perturbation problem of Equations (2.19) and (2.20) has a unique solution

x(t,ε), z(t,ε) on [t0, t1] and

x(t,ε)− x̄(t) = O(ε)

z(t,ε)−h(t, x̄(t))− ŷ(t/ε) = O(ε)

hold uniformly for t ∈ [t0, t1], where ŷ(τ) is the solution of the boundary-layer model (2.23).

Moreover, given any tb > t0, there is ε∗∗ ≤ ε∗ such that

z(t,ε)−h(t, x̄(t)) = O(ε)

holds uniformly for t ∈ [tb, t1] whenever ε < ε∗∗.

Note that the region of attraction mentioned above refers to the set of all initial condi-

tions that converge to a given asymptotically stable equilibrium point [8].

Theorem 2.1.14 is also known as Tikhonov’s theorem.

A comprehensive treatment of singular perturbation methods can be found in [77, 44,

43].
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2.2 Biological Background

To facilitate the comprehension of the experimental implementations discussed in this the-

sis, here a number of fundamental concepts in molecular biology are briefly introduced.

The definitions presented in this section are adopted from [53] and, for the reader’s conve-

nience, are listed alphabetically.

Activator Specific transcription factor that stimulates transcription.

ATP (adenosine triphosphate) A nucleotide that is the most important molecule for

capturing and transferring free energy in cells. Hydrolysis of each of the two phospho-

anhydride bonds in ATP releases a large amount of free energy that can be used to drive

energy-requiring cellular processes.

Amino acid An organic compound containing at least one amino group and one car-

boxyl group. In the amino acids that are the monomers for building proteins, an amino

group and carboxyl group are linked to a central carbon atom, the α carbon, to which a

variable side chain is attached.

Antibody A protein (immunoglobulin), normally produced in response to an antigen,

that interacts with a particular site (epitope) on the same antigen and facilitates its clearance

from the body.

Antigen Any material (usually foreign) that elicits an immune response.

Bacteria Class of prokaryotes that constitutes one of the three distinct evolutionary

lineages of modern-day organisms; also called eubacteria. Phylogenetically distinct from

archaea and eukaryotes.
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Bacteriophage (phage) Any virus that infects bacterial cells. Some phages are widely

used as vectors in DNA cloning.

Base Any compound, often containing nitrogen, that can accept a proton (H+) from an

acid. Also, commonly used to denote the purines and pyrimidines in DNA and RNA.

Base pair Association of two complementary nucleotides in a DNA or RNA molecule

stabilized by hydrogen bonding between their base components. Adenine pairs with thymine

or uracil (A · T, A · U) and guanine pairs with cytosine (G · C).

Catalyst A substance that increases the rate of a chemical reaction without undergoing

a permanent change in its structure. Enzymes are proteins with catalytic activity, and ri-

bozymes are RNAs that can function as catalysts.

Cell cycle Ordered sequence of events in which a eukaryotic cell duplicates its chro-

mosomes and divides into two. The cell cycle normally consists of four phases: G1 before

DNA synthesis occurs; S when DNA replication occurs; G2 after DNA synthesis; and M

when cell division occurs, yielding two daughter cells. Under certain conditions, cells exit

the cell cycle during G1 and remain in the G0 state as nondividing cells.

Cell division Separation of a cell into two daughter cells. In higher eukaryotes, it in-

volves division of the nucleus (mitosis) and of the cytoplasm (cytokinesis); mitosis often is

used to refer to both nuclear and cytoplasmic division.

Cell strain A population of cultured cells, of plant or animal origin, that has a finite life

span and eventually dies, commonly after 25–50 generations.
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Chaperone Collective term for two types of proteins — molecular chaperones and

chaperonins — that prevent misfolding of a target protein or actively facilitate proper fold-

ing of an incompletely folded target protein, respectively.

Chemotaxis Movement of a cell or organism toward or away from certain chemicals.

Constitutive Referring to the continuous production or activity of a cellular molecule

or the continuous operation of a cellular process (e.g., constitutive secretion) that is not

regulated by internal or external signals.

Cytoplasm Viscous contents of a cell that are contained within the plasma membrane

but, in eukaryotic cells, outside the nucleus.

DNA (deoxyribonucleic acid) Long linear polymer, composed of four kinds of de-

oxyribose nucleotides, that is the carrier of genetic information.

DNA-binding domain The domain of a transcription factor that binds specific, closely

related DNA sequences.

DNA polymerase An enzyme that copies one strand of DNA (the template strand) to

make the complementary strand, forming a new double-stranded DNA molecule.

Double helix, DNA The most common three-dimensional structure for cellular DNA

in which the two polynucleotide strands are antiparallel and wound around each other with

complementary bases hydrogen-bonded.
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Enzyme A protein that catalyzes a particular chemical reaction involving a specific

substrate or small number of related substrates.

Gene Physical and functional unit of heredity, which carries information from one gen-

eration to the next. In molecular terms, it is the entire DNA sequence — including ex-

ons, introns, and transcription-control regions — necessary for production of a functional

polypeptide or RNA.

Gene control All of the mechanisms involved in regulating gene expression. Most

common is regulation of transcription, although mechanisms influencing the processing,

stabilization, and translation of mRNAs help control expression of some genes.

Gene expression Overall process by which the information encoded in a gene is con-

verted into an observable phenotype (most commonly production of a protein).

Genetic code The set of rules whereby nucleotide triplets (codons) in DNA or RNA

specify amino acids in proteins.

In vitro Referring to experiments or manipulations performed outside a cell (including

cell fragments, lysates, or purified molecules) or to cells placed in an artificial environment

such as in a petri dish or test tube; literally, in glass.

In vivo Referring to experiments or manipulations performed in the context of an intact

organism or intact cell, in contrast to experiments using cell fragments, lysates, or purified

molecules; literally, in the living.

Monomer Any small molecule that can be linked chemically with others of the same
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type to form a polymer. Examples include amino acids, nucleotides, and monosaccharides.

mRNA (messenger RNA) Any RNA that specifies the order of amino acids in a protein

(i.e., the primary structure). It is produced by transcription of DNA by RNA polymerase.

In eukaryotes, the initial RNA product (primary transcript) undergoes processing to yield

functional mRNA.

Nucleic acid A polymer of nucleotides linked by phosphodiester bonds. DNA and

RNA are the primary nucleic acids in cells.

Nucleotide A nucleoside with one or more phosphate groups linked via an ester bond

to the sugar moiety, generally to the 5
′

carbon atom. DNA and RNA are polymers of nu-

cleotides containing deoxyribose and ribose, respectively.

Peptide A small linear polymer composed of amino acids connected by peptide bonds.

The terms peptide and oligopeptide are often used interchangeably.

Plasmid Small, circular extrachromosomal DNA molecule capable of autonomous repli-

cation in a cell.

Polymer Any large molecule composed of multiple identical or similar units (monomers)

linked by covalent bonds.

Polypeptide Linear polymer of amino acids connected by peptide bonds, usually con-

taining 20 or more residues.

Promoter DNA sequence that determines the site of transcription initiation for an RNA
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polymerase.

Protease Any enzyme that cleaves one or more peptide bonds in target proteins.

Protein A macromolecule composed of one or more linear polypeptide chains and

folded into a characteristic three-dimensional shape (conformation) in its native, biolog-

ically active state.

Repressor Specific transcription factor that inhibits transcription.

Residue General term for the repeating units in a polymer that remain after covalent

linkage of the monomeric precursors.

Ribosome A large complex comprising several different rRNA molecules and as many

as 83 proteins, organized into a large subunit and small subunit; the engine of translation

(protein synthesis).

RNA (ribonucleic acid) Linear, single-stranded polymer, composed of ribose nucleotides.

mRNA, rRNA, and tRNA play different roles in protein synthesis; a variety of small RNAs

play roles in controlling the stability and translation of mRNAs and in controlling chro-

matin structure and transcription.

RNA polymerase An enzyme that copies one strand of DNA (the template strand) to

make the complementary RNA strand using as substrates ribonucleoside triphosphates.

rRNA (ribosomal RNA) Any one of several large RNA molecules that are structural

and functional components of ribosomes.
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Substrate Molecule that undergoes a charge in a reaction catalyzed by an enzyme.

Transcription Process in which one strand of a DNA molecule is used as a template

for synthesis of a complementary RNA by RNA polymerase.

Transcription factor (TF) General term for any protein, other than RNA polymerase,

required to initiate or regulate transcription in eukaryotic cells. General factors, required

for transcription of all genes, participate in formation of the transcription-preinitiation com-

plex near the start site. Specific factors stimulate (activators) or inhibit (repressors) tran-

scription of particular genes by binding to their regulatory sequences.

Translation The ribosome-mediated assembly of a polypeptide whose amino acid se-

quence is specified by the nucleotide sequence in an mRNA.

tRNA (transfer RNA) A group of small RNA molecules that function as amino acid

donors during protein synthesis. Each tRNA becomes covalently linked to a particular

amino acid, forming an aminoacyl-tRNA.

Virus A small intracellular parasite, consisting of nucleic acid (RNA or DNA) enclosed

in a protein coat, that can replicate only in a susceptible host cell; widely used in cell biol-

ogy research.

For a full treatment of the principles and phenomena encountered in the biological parts

of this work, the reader is referred to [53, 46, 3].
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Chapter 3

Biomolecular mechanisms for signal

differentiation

38



iScience

Article

Biomolecular mechanisms for signal differentiation

Network 
of interest

Differentiator

U

Derivative dU/dt + bias

Output signal X

C
on

ce
nt

ra
tio

n

Time

X

Z1

Z2

Emmanouil Alexis,

Carolin C.M.

Schulte, Luca

Cardelli, Antonis

Papachristodoulou

antonis@eng.ox.ac.uk

Highlights
Calculating the speed or

higher derivatives of

molecular signals has

been a challenge

Biomolecular topologies

acting as signal

differentiators are studied

High performance and

insensitivity to high-

frequency input signals

can be achieved

Natural circuits and

synthetic realizations for

signal differentiation are

described

Alexis et al., iScience 24,
103462
December 17, 2021 ª 2021
The Authors.

https://doi.org/10.1016/

j.isci.2021.103462

ll
OPEN ACCESS

39



iScience

Article

Biomolecular mechanisms for signal differentiation

Emmanouil Alexis,1 Carolin C.M. Schulte,1,2 Luca Cardelli,3 and Antonis Papachristodoulou1,4,*

SUMMARY

Cells can sense temporal changes of molecular signals, allowing them to predict
environmental variations and modulate their behavior. This paper elucidates bio-
molecular mechanisms of time derivative computation, facilitating the design of
reliable synthetic differentiator devices for a variety of applications, ultimately
expanding our understanding of cell behavior. In particular, we describe and
analyze three alternative biomolecular topologies that are able to work as signal
differentiators to input signals around their nominal operation. We propose stra-
tegies to preserve their performance even in the presence of high-frequency
input signal componentswhich are detrimental to the performance ofmost differ-
entiators. We find that the core of the proposed topologies appears in natural
regulatory networks andwe further discuss their biological relevance. The simple
structure of our designs makes them promising tools for realizing derivative con-
trol action in synthetic biology.

INTRODUCTION

Measuring the speed at which a physical process evolves over time is of central importance to science and en-

gineering. This can be done by computing the time derivative of the function describing the process. Several

examples of cellular systems exhibiting derivative action indicate that calculating the rate of change of biolog-

ical processes is essential in nature. The retina of our eyes, for instance, is one of the best-studied neural net-

works of the brain. Its response to changes in light intensity reveals typical characteristics of derivative action

which stem from the interaction between cone and horizontal cells (Wilson, 1999; Åström and Murray, 2021).

In microbiology, the chemotaxis signaling pathway in bacteria such as Escherichia coli involves computation

of time derivatives: To navigate toward nutrients and away from toxins, bacteria are able to sample their envi-

ronment as theymoveandconvert spatial gradients into temporal ones (Alon, 2019; Shimizuet al., 2010; Iglesias

andDevreotes, 2008; Barkai and Leibler, 1997; Block et al., 1983; Macnab and Koshland, 1972). Furthermore, in

the context of cellular energy metabolism, in silico studies have revealed the role of creatine phosphate as a

buffering species that allows for adaptation to a changing demand of adenosine triphosphate (ATP), thus ex-

ploiting the anticipatory actionenabledbyderivative control (Cloutier andWellstead, 2010). This observation is

a specificexampleof abroader classofbiomolecularprocesseswhere thepresenceof rapidbufferingproves to

be equivalent to negative derivative feedback (Hancock et al., 2017).

In traditional engineering, differentiators refer to devices capable of applying time differentiation to an

input stimulus, for example a mechanical or electrical signal. In the rapidly growing field of synthetic

biology, the ability to build reliable biomolecular differentiators would offer considerable advantages

(Steel et al., 2017; Del Vecchio et al., 2016; Lu et al., 2009). As an immediate application, such genetic cir-

cuits would be able to track the rate of change of the concentration of biomolecules, thus acting as speed

biosensors. This is of interest when assessing uptake rates of certainmolecules, such as uptake of pollutants

into bacteria used for bioremediation (Chen and Wilson, 1997; Pieper and Reineke, 2000). They can also

allow for advanced regulation strategies in the cellular environment by enabling the construction of

more efficient bio-controllers, e.g., Proportional-Integral-Derivative (PID) control schemes, the workhorses

of modern technological process control applications (Åström and Murray, 2021). In general, derivative

control can enhance the stability of a feedback system and provide a smoother transient response.

Recent efforts in this rather underexplored research area include the design of a differentiator module con-

sisting of linear input/output functions realized by specific processes of protein production (Halter et al.,

2017; Halter et al., 2019). It has further been demonstrated that calculation of time derivatives is possible

by using ultrasensitive topologies operating within a negative feedback loop (Samaniego et al., 2019), and

a motif capable of computing positive and negative temporal gradients, which includes input delays and
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the idea of an incoherent feedforward loop, has been presented (Samaniego et al., 2020). With the aim of

providing derivative action in PID control architectures, networks directly inspired by bacterial chemotaxis

(Chevalier et al., 2019) or based on the so-called dual rail encoding have also been proposed (Whitby et al.,

2021; Paulino et al., 2019). This approach enables the representation of both positive and negative signals

via biomolecular species by decomposing a signal into two non-negative parts (Oishi and Klavins, 2011).

Finally, a derivative controller tailored to gene expression is analyzed in (Modi et al., 2019), while in the

PID architecture introduced in (Filo and Khammash, 2021), derivative control is carried out with inseparable

connection to proportional and integral actions.

In this article, we introduce novel differentiator modules aiming to elucidate unexplored mechanisms that cells

potentially exploit to achieve signal differentiation. In parallel, these motifs can pave the way for designing effi-

cient and reliable synthetic signal differentiator devices in a cellular context. Notably, our motifs offer consider-

able ease of experimental implementation compared to some of the earlier discussed designs which are based

onmore ‘‘artificial’’ mechanisms such as dual-rail encoding. In addition, themotifs under consideration can func-

tion as independent, general-purpose differentiators, whichmay be a challenging task for other topologies, such

as somecontrol-oriented topologies showingderivative action.Moreover, under suitable tuninghigh accuracy of

temporal derivative calculation for a wide range of molecular signals can be guaranteed.

Specifically, we present three biomolecular architectures capable of functioning as signal differentiators

around their equilibria. We call them Biomolecular Signal Differentiators (BioSD). Each of these networks

can be interpreted as a modular and tunable topology inside the cell that accepts a molecular signal as

an input and produces an output signal proportional to the time derivative of the input signal (Figure 1A).

The output corresponds to a biochemical species whose concentration can bemeasured. The proposed ar-

chitectures provide simple blueprints for the design of synthetic biomolecular differentiators, but can also

be interpreted as lenses through which derivative action in natural systems can be identified and studied.

Figure 1. Biomolecular structures capable of signal differentiation

(A) Schematic representation of the notion of signal differentiation carried out by a biomolecular device inside the cell.

(B)Graphical representation of the biological concepts found in the signal differentiator motifs. To describe the different

kind of biomolecular reactions the following notation is adopted: ( / ) means that the transformation of reactants into

products only happens in the direction of the arrow. (—,) indicates that reactants enable product formation without being

consumed. (—j) denotes inhibition of products by a reactant where the reactant is not consumed. In addition, the

depicted concept of enzymatic degradation is further analyzed in STAR Methods Equilibria and stability of biomolecular

signal differentiators: Biomolecular Signal Differentiator-I.

(C) Topology of Biomolecular Signal Differentiator - I or BioSD-I (Equation (1)).

(D) Topology of Biomolecular Signal Differentiator - II or BioSD-II (Equation (2)).

(E) Topology of Biomolecular Signal Differentiator - III or BioSD-III (Equation (3)).
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We demonstrate the special characteristics and the performance trade-offs of the three BioSD architec-

tures (BioSD-I, II, and III) via theoretical analyses and numerical simulations. We also discuss a major

obstacle of both technological and biological differentiators, namely amplification of undesired high-fre-

quency components of the input signal, and propose strategies to overcome this obstacle. Finally, we show

the occurrence of one of the BioSD topologies in natural regulatory networks involved in bacterial adap-

tation to stress conditions and present potential synthetic implementations for all three topologies, high-

lighting the biological relevance of our designs.

RESULTS

Biological structure

We begin by presenting the molecular interactions in the BioSD circuits as chemical reaction networks

(CRNs). These circuits represent three alternative topological entities which, under certain assumptions,

realize the same concept of signal differentiation. In the analysis that follows, the input and output signals

of the differentiators are generally treated as biomolecular species, namelyU and X respectively. Neverthe-

less, an input signal may also refer to different concepts such as light, temperature or pH.

Figure 1C illustrates the first architecture, BioSD-I, which consists of the following reactions:

B/
kinU

X ; B/
b
X ; X/

k2
X + Z

X + Z/
k1
Z; X/

d
B; Z/

dEsat
B

(Equation 1)

Here, the production of output species X depends on two reactions. One of them has a constant rate while

the other occurs at a rate proportional to the concentration of input species U. It is convenient to represent

such processes via reactions of the form B/
r
X , where r can be a constant or a time-varying quantity, e.g.,

biomolecular concentration. This allows us to describe general concepts of production without the need to

specify their impact on the reactants involved. Furthermore, X also catalyzes the formation of species Z

which, in turn, inhibits X. Note that the process of inhibition is interpreted as catalysis of degradation.

Finally, the removal rate of X is proportional to its concentration (first-order decay) while, as indicated by

the notation dEsat (defined in Figure 1B), Z adheres to a constant rate of decay (0th-order decay). The latter

behavior is attained through enzyme-catalyzed degradation of Z where the enzyme is operating at satu-

rating substrate levels (for more details see STAR Methods Equilibria and stability of biomolecular signal

differentiators: biomolecular signal differentiator-I).

In the second architecture, BioSD-II (Figure 1D), the formation process of output species X is the same as in

BioSD-I, while Z1, the production of which is facilitated by X, and Z2 annihilate each other. Z1inhibits Xwhich

decays in the same way as in BioSD-I. The reactions that form the corresponding CRN are:

B/
kinU

X ; B/
b
X ; X/

k2
X + Z1

X + Z1/
k1
Z1; B/

k3
Z2; Z1 + Z2/

h
B; X/

d
B

(Equation 2)

Finally, Figure 1E shows the third topology, BioSD-III, which is described by the reactions:

B/
kinU

X ; B/
b
X; X/

k2
X + Z1; X + Z1/

k1
Z1

B/
k3
Z2; X + Z2/

k1
X +X + Z2; Z1 + Z2/

h
B; X/

d
B

(Equation 3)

This CRN includes an autocatalytic-like reaction: X is able to produce more of itself in the presence of Z2.

The rest of its structure is identical to the CRN of BioSD-II.

Mathematical description

We now derive the dynamics of the proposed BioSD networks using the law of mass action (Del Vecchio and

Murray, 2015) unless otherwise stated, adopting the same order of presentation as in the preceding section.

BioSD-I (CRN given by Equation (1)) can be described by the following system of Ordinary Differential

Equations (ODEs):

_X = kinU +b � k1XZ � dX (Equation 4a)
_Z = k2X � k3 (Equation 4b)
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Note that the enzymatic degradation of Z is assumed to follow saturated (0th-order) Michaelis-Menten ki-

netics, as previously discussed.

Next, from the CRN given by Equation (2) we obtain the following ODE model for BioSD-II:

_X = kinU +b � k1XZ1 � dX (Equation 5a)
_Z1 = k2X � hZ1Z2 (Equation 5b)
_Z2 = k3 � hZ1Z2 (Equation 5c)

For the last circuit, BioSD-III, the CRN given by Equation (3) can be modeled using the following ODEs:

_X = kinU +b � k1XZ1 + k1XZ2 � dX (Equation 6a)
_Z1 = k2X � hZ1Z2 (Equation 6b)
_Z2 = k3 � hZ1Z2 (Equation 6c)

By assuming a constant input U� and setting the derivatives to zero, we can show that each of the BioSD

network models has a unique equilibrium. In addition, we can prove through linearization that the equi-

librium is locally exponentially stable (a detailed analysis can be found in STAR Methods Equilibria and

stability of biomolecular signal differentiators). Near their steady-states, the circuits are able to exhibit

derivative action, as shown in the next section. Furthermore, for the purpose of this study we assume

that the parameter h in BioSD-II is sufficiently large which can lead to a practically insignificant concen-

tration of species Z2 (more details can be found in STAR Methods The notion of strong rate of annihila-

tion between Z1, Z2 (large h) in biomolecular signal differentiator-II). This constraint does not have to

hold for BioSD-III, which includes the same annihilation reaction. Finally, Equations (5b) and (5c) indicate

that in case _Z2z0, the removal rate of Z1 is roughly constant and equal to k3, similar to the 0th-order

removal of Z in BioSD-I.

Achieving biological signal differentiation

In order for the proposed biomolecular modules to work as signal differentiators, we desire for their output

X to be proportional to the derivative of their input U. This immediately raises the following challenge: Both

U and X refer to biomolecular species concentrations and, by extension, represent non-negative signals.

However, in the general case, the derivative of a nonnegative signal can take negative values and, as a

result, X would need to go below zero. Thus, it could be argued that X is unable to express the rate of

change of an arbitrary input signal. An obvious way to overcome this obstacle is to add a bias to the

computed derivative. As we demonstrate here, the perfect candidate for realizing this bias is the steady

state of X around which derivative action can be achieved.

We are interested in the local behavior of the BioSD networks and, therefore, consider input stimuli that do

not force them to operate far away from their equilibrium. Subsequently, we assume that every input signal

can be described as:

U = U� +UTV (Equation 7)

where U� is constant while UTV is time-varying. Here, we focus on Fourier transformable signals which is

typically the case for physical signals in practical applications (for more details see STAR Methods Signals

under consideration).

By linearizing and applying appropriate transformations, we can show that the dynamics of the output of

any of the three BioSD topologies presented in the previous section can be approximated by the following

non-dimensional second - order differential equation (see STAR Methods Behavior analysis of biomole-

cular signal differentiators):

ε€xn + ε _xn + xn = _un (Equation 8)

wherexn and un refer to the output and input, respectively and:

ε =
k22
k1k33

ðkinU� +bÞ2 (Equation 9)
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Equation (8) represents a signal differentiator accompanied with some filtering action. Indeed, the input/

output relation in the Laplace domain can be described by the following transfer function (Oppenheim

et al., 1996):

~DBSDðsÞ =
~XnðsÞ
~UnðsÞ

=
s

εðs2 + sÞ+ 1
(Equation 10)

where ~XnðsÞ and ~UnðsÞ are the Laplace transform of the output xn and input un, respectively and s is the Lap-

lace variable (complex frequency). As can be seen from Equation (10), a BioSD network is the series com-

bination of an ideal differentiator and a second-order low pass filter (Samoilov et al., 2002). Therefore, for a

given positive ε, the accuracy of signal differentiation depends on the frequency spectrum of the input

signal or, in other words, the range of frequencies contained by it (see STARMethods Signals under consid-

eration). Accompanying a differentiator with a low-pass filter is a widely used strategy in traditional engi-

neering in order to deal with high-frequency input noise (this topic is analyzed in Response to input signals

corrupted by high-frequency noise and A structural addition for enhanced performance).

To gain a deeper insight, we calculate the Fourier transform (Oppenheim et al., 1996) of the output:

~XnðjuÞ = ~DBSDðjuÞ ~UnðjuÞ (Equation 11)

where u represents the frequency, j is the imaginary unit number (j =
ffiffiffiffiffiffiffi�1

p
) and ~XnðjuÞ, ~UnðjuÞ are the Four-

ier transform of the output xn and input un, respectively. Furthermore, ~DBSDðjuÞ is the Fourier transform of

the system’s impulse response, also known as the frequency response of the system. (ibid.). Since we have a

linear, asymptotically stable, system we can compute the latter Fourier transform from Equation (10) by

setting s = ju. Thus, we have:

~XnðjuÞ = ju

εð�u2 + juÞ+ 1
~UnðjuÞ (Equation 12)

The operation of (ideal) differentiation in the frequency domain is defined as:

~XndðjuÞ = ju ~UnðjuÞ (Equation 13)

To compare the output of an ideal differentiator to the one of a BioSD device, we introduce the following

performance metric:

~LðjuÞ =
~XnðjuÞ
~XndðjuÞ

=
1

εð�u2 + juÞ+ 1
(Equation 14)

Using the magnitude-phase representation of Equation (14) we get:

j~LðjuÞj = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
2u2 + ð1� εu2Þ2

q (Equation 15)

and

:~LðjuÞ = arctan
� �εu

1� εu2

�
Signal differentiation of high accuracy is carried out when ~LðjuÞ is close to 1:0+. As shown in Figure 2,

there is a ‘‘low-frequency’’ range where this is true, but as ε decreases the aforementioned range expands

toward ‘‘higher frequencies’’. In the time domain this entails that for a given positive ε, a BioSD device can

work as an accurate signal differentiator for sufficiently slow input signals and, in that case, the BioSD

output can be approximated by (see STAR Methods Behavior analysis of biomolecular signal

differentiators):

X =
kin
k1k3

_U +
k3
k2

(Equation 16)

There is a family of input signals for which the BioSD topologies are able to provide accurate differentiation

regardless of the exact value of ε (see STAR Methods Behavior analysis of biomolecular signal differentia-

tors). More specifically, this holds for input signals for which the term UTV in Equation (7) is of the form:

UTV = x1e
�x3 t + x2t; (Equation 17)
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where x1, x2 are arbitrary constants and x3 =
k2
k3

ðkinU� +bÞ. If x2 is not zero which implies linear growth over

time, we assume that the above holds as long as the system stays near its equilibrium. This means that the

term x2t is sufficiently small. Indeed, several biological processes can generate (bounded) signals some

part of which can be viewed as linear growth (Del Vecchio and Murray, 2015). We study such a scenario

in Sensing the response speed of biomolecular networks.

As Equation (8) states, the response of a BioSD network, is given as the solution of a second-order non-ho-

mogeneous differential equation with constant coefficients where the forcing function is _un. The response

can therefore be seen as the sum of two terms: a ‘‘transient’’ term which highly depends on the initial con-

ditions and dies out with time; and a ‘‘steady-state’’ term which, under the conditions discussed above, can

approximate the derivative of the input signal (Zill, 2012). Therefore, for input signals applied for a suffi-

ciently long time, the BioSD output practically coincides with the latter since the effect of the former is

negligible. However, this may not be always the case for short duration input signals where any undesired

initial transient phenomena can greatly compromise the accuracy of the differentiator output.

FromEquation (16), we can see that the BioSDmodules use the biomolecular concentration
k3
k2

as a bias. Around

this point they canoperate as signal differentiators, producinganoutput signal componentwhich is proportional

to the derivative of the input. The bias therefore depends only on two parameters which, ideally, can be adjusted

asdesired. Thisprovidesuswith the freedomof choosingany (fixed) concentrationofXas abias,whichwill remain

unchanged regardless of the rest of themodel parameters, the input stimulus, or potential constantdisturbances

on the output. To appreciate this further, we recall the production reaction for X with constant rate b, which is

included in each of the proposed CRNs. Besides its role as a structural requirement, this production reaction

can also represent an external constant disturbance applied on X; this, however, does not affect the zero-level

we choose for our measurements. Once the concentration of X reaches this level, it will stay there until an input

excitation appears and it will come back once the excitation stops. Hence, the previously mentioned fixed con-

centration can also be seen as a ‘‘rest position’’ for the differentiators.

Figure 2. A performance metric for Biomolecular Signal Differentiators in the frequency domain

Bode plot of the metric given by Equation (14). Different colors represent the magnitude and the phase of the

corresponding transfer function for different values of ε. The case of ideal differentiation corresponds to ε= 0 and the

direction in which the latter increases indicated by an arrow.
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The feature just described is of key importance and stems mainly from the following two sources: the sta-

bility that characterizes BioSDs and the fact that the steady-state of the output coincides with the afore-

mentioned zero-level concentration. The latter is achieved due to integration carried out by the ‘memory’

function which is realized via species Z within BioSD-I and the quantity Z1 � Z2 within BioSD-II, III.

Tunability and accuracy

It is convenient for the circuit designer who aims to implement the BioSD topologies to be able to choose

the parameter values and ensure that the resulting differentiators meet the expected performance require-

ments. Nonetheless, there may be cases where the number of system parameters that can be suitably

tuned is limited, for instance due to constraints related to the cellular processes involved in the circuits un-

der investigation. Even in this case, the architecture of our circuits allows for some tunability as long as the

designer can choose some crucial parameters.

Consider for example the extreme scenario where only one of the model parameters can be regulated. If

this parameter is k3, then, according to Equation (16), its appropriate tuning may result in an acceptable

gain by which the output signal is multiplied (output gain) and bias based on which this signal is measured.

At the same time, Equation (9) reveals that (contrary to other parameters) a small change in k3 can affect ε

significantly since the latter is inversely proportional to the cube of k3.

It immediately emerges from the above that the way we tune the BioSD networks defines the level of ac-

curacy regarding their derivative action. Indeed, ε is subject to almost all parameter rates in these networks

and, as pointed out in the previous section, the value of ε defines the range of frequencies over which Bio-

SDs can accurately compute the rate of change of a biological signal.

Sensing the response speed of biomolecular networks

Wenow demonstrate through an example the ability of BioSDmodules to compute the temporal derivative

of biological signals. At the same time, we highlight one of their potential applications discussed above,

namely as rate-of-change detectors or speed biosensors.

We consider the antithetic motif (Figure 3) (Briat, Gupta, and Khammash, 2016, 2018; Chevalier et al., 2019;

Olsman et al., 2019a, 2019b; Olsman and Forni, 2020; Baetica et al., 2020):

B/
n1
C1; C1/

n2
C1 +Y1; Y1/

n3
Y1 +Y2

Y2/
n4
Y2 +C2; C1 +C2/

n5
B; Y1/

n6
B; Y2/

n7
B

(Equation 18)

Species Y1, Y2 represent an arbitrary biological process whose output, Y2, can be robustly steered toward a

desired value

�
n1

n4

�
. This is feasible through the feedback integral control which is implemented via species

C1, C2, thus achieving robust perfect adaptation. Depending on the parameter rates, the dynamics of the

above architecture can be either stable or unstable. Nonetheless, even in a stable system, the species of

interest, Y2, sometimes displays a long-lasting transient response with damped oscillations before it settles

to a steady-state. This provides an opportunity to assess the ability of the BioSD networks to calculate the

speed at which these oscillations evolve.

In order for a BioSD device to function as a biosensor for the CRN given by (Equation 18), a suitable inter-

connection between these circuits is required while preserving the modularity of the two networks and

avoiding any loading problems, i.e., effects of retroactivity (Del Vecchio and Murray, 2015; Del Vecchio

et al., 2008, 2016). One way to accomplish this is through the reaction:

Y2/
kin
Y2 +X (Equation 19)

whereY2 plays the role of the input species U without being consumed. Alternatively, in case the nature of Y2

prevents it from directly producing X, we can use a separate sensory species S which is capable of participating

in the formation of X. In particular, we assume that S is co-expressed with and decays at the same rate as Y2, i.e.:

Y1/
n3
Y1 + Y2 + S; S/

kin
S +X ; S/

n7
B (Equation 20)

Adopting thesecond interconnectionas themostgeneralone,wedemonstrate inFigure3 that the rateofchange

of the concentration of Y2 can be accurately represented by the output of the BioSD networks. We also
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Figure 3. Sensing the rate-of-change of the output of a synthetic regulatory biomolecular network through a

Biomolecular Signal Differentiator

(A) Schematic of CRN (18) (network of interest) accompanied by a BioSD device (differentiator) which measures the speed

of the output, Y2 of the network via the sensing mechanism in Equation (20). We adopt the same arrow notation as in

Figure 1 while the symbol ð«Þ represents any of the three BioSD devices.

(B) ODE model capturing the dynamics of the topology given by Equations (18) and (20). As anticipated, the behavior of

species Y2 and S is described by the same equation.

(C) Input U of the differentiator coincides with species S and results from the simulation of the ODE model depicted in (B)

with the following parameters: n1 = 2 nM min�1, n2 = n4 = 2 min�1, n3 = 4 min�1, n5 = 12 nM�1 min�1 , n6 = n7 = 1 min�1.

(D) Simulation of BioSD-I (Equations (4a) and (4b)) response to the input shown in (C) using the following parameters: kin =

100 min�1, k3 =b= 100 nM min�1, k1 = 1 nM�1 min�1, k2 = 1 min�1, d= 0:5 min�1. Equation (9) therefore yields ε = 0:01. As

can be seen, the output, X, of the differentiator is an accurate replica of the derivative of input U.

(E) The simulation in (D) is repeated after replacing the value of both kin and k3 with 10. Equation (9) therefore yields ε =

10. Although the output, X, of the differentiator remains close to the derivative of input U, there is some loss of accuracy

compared to (D). The respective simulations regarding BioSD-II and BioSD-III are presented in Figure S1. As expected,

their responses are identical to those of BioSD-I.
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demonstrate that, foragiven input signal, thereexist sufficiently largevaluesof ε forwhich theBioSDperformance

may not be satisfactory due to some loss of accuracy (discussed in Achieving biological signal differentiation).

We now replace the circuit described by (18) with the general production-removal process:

B/
nb
Y3; Y3/

nd
B (Equation 21)

maintaining the same type of interconnection, as illustrated in Figure 4. Although the response of this pro-

cess eventually converges to an equilibrium, for some period of time it practically increases linearly with

time. Here, we focus on this linear regime of the response which is clearly aligned with Equation (17).

Thus, as can be seen from Figure 4, BioSD networks are now able to provide accurate signal differentiation

regardless of the high value of ε which, in the case of Figure 3, lead to a noticeable loss of accuracy.

Response to input signals corrupted by high-frequency noise

Potentially the most important problem of differentiator devices is their sensitivity to high-frequency noise

components which the applied input signal may contain (Åström and Murray, 2021). To this end, we

consider an input signal with a time-varying component

UTV = Ausinðuut +4uÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
useful information

+Adsinðudt +4dÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
noise

(Equation 22)

Figure 4. Sensing the rate-of-change of a production - removal biomolecular process through a Biomolecular

Signal Differentiator

(A) Schematic of CRN (21) (network of interest) accompanied by a BioSD device (differentiator), which measures the speed

of the output of the network (Y3) via the sensing mechanism in Equation (20). We adopt the same arrow notation as in

Figure 1 while the symbol ð«Þ represents any of the three BioSD devices.

(B) ODE model capturing the dynamics of the topology given by Equations (20) and (21). As anticipated, the behavior of

species Y3 and S is described by the same equation.

(C) Input U of the differentiator coincides with species S and results from the simulation of the ODE model depicted in

Bwith the following parameter values: nb = 0:1 nM min�1, nd = 0:001 min�1.

(D) Simulation of the BioSD-I (Equation (4a),(4b)) response to the input presented in (C) using the following parameters:

kin = 10 min�1, k3 = 10 nMmin�1, b= 100 nM min�1, k1 = 1 nM�1 min�1, k2 = 1 min�1, d= 0:5 min�1 (same as in Figure 3E, ε =

10). The output, X, of the differentiator is now an accurate replica of the derivative of input U. The latter (shown in C)

belongs to the class of signals defined by Equations (7) and (17). The respective simulations regarding BioSD-II and

BioSD-III are presented in Figure S2. As expected, their responses are identical to those of BioSD-I.
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where the actual signal we want to differentiate–useful information–is accompanied by undesired fluctua-

tions (noise) arising, for instance, from unintended cross-talk interactions (Del Vecchio and Murray, 2015).

Note that although we model both the useful information and the noise as sinusoids, this is without loss of

generality as they can be thought of as Fourier components of more general signals (see STAR Methods

Signals under consideration). Assuming perfect differentiation, we get:

_U
TV

= uuAusin
�
uut +4u +

p

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
derivative of useful information

+udAdsin
�
udt +4d +

p

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

derivative of noise

(Equation 23)

Hence, even if the level of input corruption is low (e.g., Ad is much smaller than Au - Equation (22)), the dam-

age in the output of a perfect differentiator may be detrimental in case of a rapidly fluctuating noise signal

(ud high). That is, udAd can be made arbitrarily large compared to uuAu (Equation (23)) and, therefore, it is

possible for the derivative of the useful signal to be completely drowned out by the derivative of some high

frequency input noise. It is also apparent that the behavior of such an ideal differentiator module in the

cellular environment is undesirable since it can lead to generation of greatly amplified output signals, which

can be catastrophic.

Interestingly, the BioSD topologies allow us to deal with this noise amplification by suitably adjusting ε. As

already discussed, BioSDs possess a low-pass filtering property defined by ε (see Equation (10)). Although

this may be viewed as an ‘‘imperfection’’ in terms of their signal differentiation ability, it turns out to be a

saving feature of great significance. Recalling the performance metric given by Equation (10) which coin-

cides with the frequency response of the embedded filter and the Bode plot of Figure 2, we can see

that there is a range of high frequencies over which signal attenuation can be effectively performed (see

also STAR Methods Behavior analysis of biomolecular signal differentiators and Figure S3). This implies

that Equation (15) approaches zero. Moreover, as ε increases, this range expands toward lower frequencies.

Nevertheless, between the aforementioned range and the low-frequency one corresponding to signal dif-

ferentiation, we can detect the existence of a relatively narrow frequency band where BioSD circuits may

not be able to differentiate or attenuate input signals with satisfactory accuracy. The characteristics

described above are demonstrated in Figure 5.

Figure 5. Response of Biomolecular Signal Differentiators to input signals with undesired high frequency

components

(A) Without loss of generality we select BioSD-I (Equations (4a) and (4b)) to plot: A simulated response to an input of the

form given by Equations (7) and (22) using the following parameters: U� = 1:2 nM, Au = 1 nM uu = 1 rad min�1, Ad = 0:2 nM,

ud = 400 rad min�1, 4u =4d = 0 rad, kin = 100 min�1, k3 =b= 100 nM min�1, k1 = 1 nM�1 min�1, k2 = 1 min�1, d= 0:5 min�1.

Equation (9) therefore yields ε = 0:0484. Consequently, with respect to the input signal, the frequency of the undesired

component (noise) is 400 times higher than that of the component of interest (useful information). It is evident that

significant noise attenuation takes place and the accuracy of signal differentiation therefore remains very high.

(B) The simulation in (A) is repeated after changing the value of ud to 50 which makes the noise 50 times faster compared

to the useful information. As can be seen, there is a decrease in the accuracy level of signal differentiation since the input

noise of this frequency cannot be filtered adequately. For demonstration purposes, in both (A) and (B) we have chosen a

baseline (around of which derivative action is carried out) much larger than the amplitudes of the (ideal) derivatives

regarding all the input stimuli. The useful information is represented by a signal component whose (ideal) derivative has

an amplitude much smaller than the one of the (ideal) derivative of the noise. Consequently, the former can be drowned

out by the latter if no noise attenuation is performed.
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A structural addition for enhanced performance

In case there are increased requirements for noise reduction that cannot be easily met via parameter tun-

ing, we present an alternative version of the BioSD networks with higher noise insensitivity, which we call

BioSDF (Figure 6A). These topologies are described by the same CRNs presented in the section Biological

structure, but amended appropriately.

More analytically, recalling the CRNs given by Equations (1), (2), and (3), we see that input signals are

applied to BioSD modules through the reaction:

B/
kinU

X

In BioSDF topologies, the above is replaced by the following set of reactions:

B/
m1U

Z3; Z3/
kin
Z3 +X ; Z3/

m2
B

The additional species Z3 is produced by the input species and degrades in the traditional manner while it

catalyzes the formation of the output species. This structural addition is inspired by the work in (Samoilov

et al., 2002; Laurenti et al., 2018), where biomolecular concepts from the area of signal processing were

studied. In the following, we briefly present the main features of BioSDF modules – a comprehensive

Figure 6. An alternative version of Biomolecular Signal Differentiators with an enhanced capability of input noise filtering

(A) Schematic structure of BioSDF. We adopt the same arrow notation as in Figure 1 while the symbol ð«Þ represents the remaining reactions composing any of

the three BioSD devices. (B) Bode plot of the performance metric given by Equation (25) with ε = 0:1. We consider different values of m, where m = m1 = m2,

that correspond to solid lines of different colors while the increasing direction of m indicated by an arrow. We also depict the bode plot (magnitude and

phase) of Equation (14) for the same value of ε and the case of ideal differentiation which are represented by blue and black dashed lines, respectively. In

addition, for comparison purposes, we focus on a BioSDF device based on BioSD-I to re-plot the simulation of c Figures 5A and d Figure 5B for the same

values of the mutual parameters and m1 =m2 = 5 min�1. It is apparent that in both (C) and (D) very strong input noise attenuation takes place and the

differentiation of the useful signal is thus conducted with significantly high accuracy.
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analysis of their behavior can be found in STAR Methods An alternative version of biomolecular signal dif-

ferentiators (Figures S4 and S5).

The input/output relation of BioSDF networks in the Laplace domain can be described by the transfer

function:

~DBSDF ðsÞ = m1

s+m2

,
s

εðs2 + sÞ+ 1
(Equation 24)

Similarly to BioSDs, we introduce the (normalized) performance metric:

~LFðjuÞ = m2

m1

~XnFðjuÞ
~XndðjuÞ

=
m2

ju+m2

1

εð�u2 + juÞ+ 1
(Equation 25)

where ~XnFðjuÞ refers to the output of a BioSDF network.

Using the magnitude-phase representation of Equation (25) we get:

j~LFðjuÞj = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
u
m2

�2
s 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε
2u2 + ð1� εu2Þ2

q (Equation 26)

and

:~LFðjuÞ = arctan
� �εu

1� εu2

�
+ arctan

��u

m2

�
When ~LFðjuÞ is close to 1:0+ signal differentiation of high accuracy is achieved (Figure 6B) and the BioSDF

output can be approximated by:

X =
m1kin
m2k1k3

_U +
k3
k2

(Equation 27)

Compared to the original BioSD topologies (Equation (16)), we now have two additional tuning parameters

(m1, m2) with respect to the output differentiation gain when it comes to the low-frequency regime. However,

the major advantage of this version of differentiators is an enhanced capability of noise filtering. In fact, we

can have a greatly extended frequency range across which very strong attenuation of high frequency input

noise can be achieved (Figures 6C and 6D). In that case, Equation (26) approaches zero. At the same time,

the width of this frequency band depends on m2 and can be adjusted appropriately. As Equation (24) imme-

diately reveals, the latter advantage stems from the fact that compared to BioSD circuits, BioSDsF are

equipped with an additional low-pass filter.

Biomolecular signal differentiators in natural regulatory networks

As outlined in the introduction, derivative action appears to be an important mechanism in various biolog-

ical systems. To explore the biological relevance of the proposed BioSDs for cellular adaptations to envi-

ronmental changes, we identified two naturally occurring and well-investigated regulatory network motifs

that resemble the BioSD-II network. Note that these natural topologies are operating in the larger context

of complex regulatory networks involving a plethora of signaling factors, some of which remain to be iden-

tified. We therefore describe the relevant motifs but do not comprehensively detail all interactions occur-

ring in the biological system.

Stationary phase and starvation response - RpoS regulatory network

As shown in Figure 7A, we found the BioSD-II motif in the context of adaptation to nutrient starvation and

entry into stationary phase, which is mediated by the sigma factor RpoS in E. coli and related bacteria (re-

viewed in (Battesti et al., 2011; Hengge-Aronis, 2002)). Stress conditions, such as nutrient depletion or high

pH, serve as the inputU. While RpoS is present at low levels (b) in exponentially growing cells, its expression

is substantially increased through both transcriptional and post-transcriptional regulation in response to

environmental stresses or starvation (Battesti et al., 2011). One of the genes whose expression is depen-

dent on RpoS is rssB, which encodes a response regulator. RssB binds to RpoS and mediates its degrada-

tion by the ClpXP protease (Pruteanu and Hengge-Aronis, 2002), thus functioning as Z1. Nutrient starvation

also induces the expression of several anti-adaptor proteins (Ira; inhibitor of RssB activity). These proteins
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bind to RssB and prevent RpoS degradation (Battesti et al., 2013), which corresponds to the action of Z2 in

BioSD-II.

Heat shock response - RpoH regulatory network

A second example for the BioSD-II motif was identified in the regulatory network of the sigma factor RpoH,

which coordinates the heat shock response in E. coli (Figure 7B) (Straus et al., 1987; Roncarati and Scarlato,

2017). Upon heat shock, cellular RpoH levels rise above their low baseline concentration (b), inducing the

expression of several chaperones (e.g. DnaKJ and GroELS) and proteases (e.g. FtsH and Lon). DnaK and

DnaJ can bind to RpoH and facilitate its degradation by FtsH (Straus, Walter, and Gross, 1989a; Gamer

et al., 1992), thereby acting as Z1. Unfolded or misfolded proteins will sequester chaperones and proteases

(Gamer et al., 1992), thus increasing the stability of RpoH and fulfilling the function of Z2. In this network, the

amount of active RpoH (as opposed to the total amount of RpoH) should be considered as X, since it has

been found that the activity rather than the concentration of RpoH inside the cell drops during temperature

downshifts (Straus, Walter, and Gross, 1989b).

Guidelines for experimental implementation of biomolecular signal differentiators

In addition to the natural regulatory networks described in the preceding section, here we outline possible

synthetic implementations for all BioSD circuits inside a living cell and, in particular, in E. coli (Figure 8).

Inducible expression of species X can be achieved from any well-characterized promoter, such as the

IPTG-inducible Plac. Leakiness of the lac promoter will ensure nonzero expression levels (b) even in the

absence of inducer. Alternatively, if higher baseline expression levels are required, X could additionally

be expressed from a weak constitutive promoter. To minimize undesirable interference with other cellular

processes, X should be an orthogonal sigma factor, such as sF from Bacillus subtilis (Bervoets et al., 2018). A

translational fusion of X to GFP will allow for easy tracking of the system output. sFwill then induce expres-

sion of a Lon protease (Z in BioSD-I, Z1 in BioSD-II and III) from its cognate promoter PF1. In this case, a Lon�

strain of E. coli would be used to avoid interference of naturally present Lon protease. Addition of a degra-

dation tag to sF will target it for degradation by the Lon protease. To approximate 0th-order degradation

of Z in BioSD-I, an ssrA tag will be fused to the Lon protease as described in (Wong et al., 2007; Ang et al.,

2010).

Figure 7. Examples of the Biomolecular Signal Differentiator-II motif in natural systems

Simplified schematics of BioSD-II topologies occurring as part of (A) the RpoS-mediated stress response and (B) the

RpoH-mediated heat shock response in Escherichia coli. Corresponding components of BioSD-II are indicated.
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For BioSD-II, we additionally introduce constitutive expression of the protease inhibitor PinA from phage

T4 (Z2), which has been shown to specifically inhibit the Lon protease in E. coli with high affinity (Hilliard

et al., 1998). A synthetic promoter from the BioBrick collection (Kelly et al., 2009) may be used to achieve

the desired expression level of Z2. Ideally, an orthogonal Lon protease should be used (e.g. Lon protease

from Mesoplasma florum (Aoki et al., 2019)) to prevent cross-talk with other cellular proteins. However,

since the interaction of PinA with proteases has been characterized only in E. coli so far, we have suggested

use of the E. coli Lon protease.

Figure 8. Possible experimental implementations of Biomolecular Signal Differentiators

Schematic representation of synthetic designs for ABioSD-I, BBioSD-II and CBioSD-III.

ll
OPEN ACCESS

14 iScience 24, 103462, December 17, 2021

iScience
Article

53



Due to the number of required interactions in BioSD-III, it will likely be necessary to introduce auxiliary spe-

cies for X, Z1and Z2, which we refer to as Xaux , Z1;aux and Z2;aux , respectively. These auxiliary species would

ideally have identical behavior to the main species X, Z1and Z2, even though simulations indicate that

completely identical behavior is not required (see STAR Methods Analysis of the experimental topology

of Biomolecular Signal Differentiator-III and Figure S6). One option is to augment the design for BioSD-

II with the Hrp system from Pseudomonas syringae, which has previously been implemented in synthetic

biology studies (Wang et al., 2014). HrpR (Xaux ) is expressed from Plac together with sF , and HrpS (Z2;aux)

is expressed as a protein fusion with PinA. HrpR and HrpS are both required to induce additional produc-

tion of sF and HrpR from PhrpL. At the same time, HrpV (Z1;aux ) binds HrpS rendering it inactive. The struc-

tural addition required for BioSDF can be implemented by, for example, expressing X from a T7 promoter

and expressing T7 RNA polymerase (Z3) from a separate inducible promoter.

DISCUSSION

In this study, we propose three biomolecular topologies that are able to act as highly accurate signal differ-

entiators inside the cell. These designs provide guidance for building cellular devices capable of

computing time derivatives of molecular signals. At the same time, they reveal concepts that are found

in natural biological networks implementing differentiation and derivative feedback.

More specifically, we introduce three general biomolecular architectures BioSD-I, II, and III. Their generality

lies in the fact that they are represented by CRNs without being restricted by the biological identity of

reactants and products and, by extension, the corresponding biological pathway. Important structural

components of the BioSDs are a negative feedback loop created by a special process of excitation and in-

hibition between two species (Iglesias and Shi, 2014), an enzymatic degradation of zero-order kinetics

(BioSD-I), an autocatalytic-like reaction (BioSD-III) and an antithetic-like motif based on annihilation (Oishi

and Klavins, 2011; Briat et al., 2016) (BioSD-II, BioSD-III). We theoretically analyze their features and show

the conditions under which high performance can be guaranteed. Among others, important concepts such

as stability, tunability, and accuracy are discussed in detail.

Special emphasis is placed on the expected sensitivity of differentiators to input signals corrupted by high-

frequency noise. We demonstrate that this issue can be resolved to a certain extent through suitable

parameter tuning. Nevertheless, for cases in which stronger noise attenuation is needed, we present a

structural modification that gives rise to three slightly different architectures, namely BioSDF-I, II and III,

with enhanced capabilities. However, the price for this improvement is the addition of an extra biomole-

cular species, which implies an increase in structural complexity. Moreover, we introduce performance

metrics both for BioSDs and BioSDsF based on which the circuit designer can assess the quality of signal

differentiation and attenuation. These metrics take into account both the frequency content of the input

signal and the reaction rates involved in the circuits, thus facilitating tuning according to the expected per-

formance standards.

The ability to perform time differentiation is of central importance in various biological systems, contrib-

uting to stability and fast adaptation to changing conditions (Barkai and Leibler, 1997; Bazellières et al.,

2015; Cloutier and Wellstead, 2010). Owing to the generality of the presented topologies, we anticipate

that the present study will facilitate the investigation of naturally occurring systems capable of derivative

action. In this study, we discuss the regulatory networks of two bacterial sigma factors, RpoS and RpoH,

which play a central role in the response and adaptation to stress conditions and heat shock, respectively.

Interestingly, these networks share structural characteristics with one of the proposed topologies, BioSD-II.

In addition, the motifs presented here provide building blocks that can be both implemented in stand-

alone applications, such as speed biosensors, and also combined with existing biochemical control struc-

tures in a modular fashion, e.g., for building biomolecular PID controllers (Chevalier et al., 2019). We

describe potential designs for synthetic experimental implementation of all three BioSDs, which can be

readily adapted depending on the nature of the system and available biological parts. To realize the anti-

thetic motif in BioSD-II and III, we propose the use of a protease/protease inhibitor pair as an alternative to

the previously described systems using sigma and anti-sigma factors (Aoki et al., 2019) or sRNAs and

mRNAs (Huang et al., 2018; Kelly et al., 2018). To allow for greater flexibility in choosing the biomolecular

species, we introduce a concept of auxiliary species whose usefulness is demonstrated through BioSD-III.

Furthermore, to enhance the biological significance of our work in STARMethodsModeling amore realistic
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case of Biomolecular Signal Differentiator-II (Figures S7 and S8, Table S1), we investigate the behavior of

one of the differentiator modules, namely BioSD-II, under more realistic conditions stemming from our

experimental designs.

Stochasticity is an essential characteristic of biomolecular systems which operate in a noisy environment

(Del Vecchio and Murray, 2015; Laurenti et al., 2018; Raj and Van Oudenaarden, 2008; Eldar and Elowitz,

2010; Cardelli et al., 2016; Warne et al., 2019). The biomolecular motifs introduced in the current study

were analyzed through ODE models (deterministic analysis) which generally approximate well the dy-

namics of CRNs whose species are present in high copy-numbers. It therefore remains an interesting

endeavor to identify the probabilistic effects of the molecular reactions involved that may have a significant

impact on the behavior of these motifs when the biomolecular counts are low.

The speed or higher derivatives of the output of a system offers important information about its properties.

For an electromechanical system this is not difficult, but it has been a challenging question for biological

systems. In this article, we provide an approach to gain access to this information, which will be invaluable

for assessing and improving the performance of biological systems. We believe that our BioSD topologies

will expand the tools available for understanding and engineering biological systems for robustness and

reliability.

Limitations of the study

As emphasized in the Discussion, the behavior of the topologies presented here is studied via deterministic

mathematical analysis and simulations; the effect of inherent stochasticity of living systems stemming from

the random nature of molecular reactions on these topologies is left for future work.
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in Figure 5 where the ODE solver ode113 was used. Simulation parameter values can be found in the figure

captions. Initial conditions for the biomolecular species involved are considered zero except for BioSDs

and BioSDsF where the corresponding equilibria (‘‘rest-positions’’) are used (see STAR Methods Equilibria

and stability of Biomolecular Signal Differentiators and An alternative version of Biomolecular Signal Differ-

entiators). The corresponding programming code is available at: https://github.com/emgalox/

BioS-Differentiators.

METHOD DETAILS

Signals under consideration

In this study we consider Fourier-transformable signals (unless otherwise stated) (Lathi, 1998; Oppenheim

et al., 1996). The Fourier transform exists for any signal, sðtÞ, satisfying the following conditions, also known

as Dirichlet conditions:

� sðtÞ is absolutely integrable, i.e.:

Z +N

�N

jsðtÞjdt<N

� sðtÞhas a finite number of maxima and minima within any finite interval.

� sðtÞhas a finite number of discontinuities within any finite interval. In addition, each of these discon-

tinuities must be finite.

The Dirichlet conditions are sufficient but not necessary for the existence of Fourier transform of a signal.

Moreover, it should be noted that the Fourier transform of periodic signals can be computed from their

Fourier series representation (assuming it exists) with the help of impulse functions.

The main idea behind Fourier analysis is the decomposition of a signal into a sum of sinusoids, the relative

amplitudes and phases of which are determined by the Fourier spectrum of that signal. In the case of a

linear, time invariant system, transmission of a signal can be therefore treated as transmission of its constit-

uent sinusoids. Moreover, the frequency-domain description of such a system using its frequency response

is an alternative to the time-domain description based on convolution.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB Mathworks www.mathworks.com

Matlab code used for simulations This study https://github.com/emgalox/BioS-

Differentiators
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Finally, in the current study we focus on physical signals that can be generated in a cellular environment.

Such naturally-occurring signals typically satisfy the Dirichlet conditions and, thus, have a Fourier represen-

tation - signals that do not satisfy these conditions do not normally arise in practical applications. Further

details on the above can be found in (Lathi, 1998; Oppenheim et al., 1996).

Equilibria and stability of biomolecular signal differentiators

We assume that all biomolecular circuits in this study are represented by chemical reaction networks (CRNs)

whose dynamics are described by the law ofmass action unless otherwise stated. For the purposes of determin-

istic modeling, we consider inputs UðtÞ that are bounded, non-negative, continuous-time signals of finite

duration, the time derivatives of which exist and are also bounded and continuous. This is clearly aligned with

the biological nature ofUðtÞwhich can correspond, for example, to the concentration of a biomolecular species.

Biomolecular signal differentiator-I. Biomolecular Signal Differentiator-I (BioSD-I) is described by the

CRN:

B/
kinU

X ; B/
b
X ; X/

k2
X + Z

X + Z/
k1
Z ; X/

d
B; Z/

k3=Z
B

(Equation S1)

where kin, b, k2, k1, k3, d ˛R+ . Note that the removal rate of Z is constant and equal to k3. To achieve this we

assume that Z participates in an enzyme-catalyzed degradation process which is traditionally described by

Michaelis-Menten kinetics. More precisely, the removal rate of Z is equal to

k3
Z

Z +Km
(Equation S2)

where Km ˛R+ is the Michaelis-Menten constant. When the enzyme that catalyzes the degradation process

is saturated by its substrate, we have:

Z[Km (Equation S3)

which entails, in effect, zero-order kinetics since Equation (S2) becomes practically equal to k3.

The dynamics of the above CRN (Equation (S1)) are given by the following system of Ordinary Differential

Equations (ODEs):

_X = kinU +b � k1XZ � dX (Equation S4)
_Z = k2X � k3 (Equation S5)

For any constant input U�, a steady state (X�, Z�) of the system given by Equations (S4) and (S5) exists and is

finite. By setting the time derivatives of this system to zero, we can obtain the following unique steady-state:

X� =
k3
k2

(Equation S6)

Z� =
k2ðkinU� +bÞ

k1k3
� d

k1
(Equation S7)

Clearly X� is positive while, due to Equation (S3), the same is true for Z� (in fact: Z�[0).

To study the local stability of the above equilibrium, we linearize Equations (S4) and (S5) around (X�, Z�) for a
constant input U� to get:

"
_X
_Z

#
=

2
64 �

k2ðkinU� +bÞ
k3

�k1k3
k2

k2 0

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G1

"
X
Z

#
(Equation S8)

As far as the linear system described by Equation (S8) is concerned, the steady state (X�, Z�) is exponentially
stable since matrix G1 is Hurwitz. To prove this, we find the characteristic polynomial of G1 as:
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P1ðsÞ = detðsI�G1Þ= s2 +
k2
k3

ðkinU� + bÞs+ k1k3 (Equation S9)

According to Routh-Hurwitz criterion, the second-order polynomial given by Equation (S9) has both roots in

the open left half plane if, and only if, both
k2ðkinU� +bÞ

k3
and k1k3 are positive, which is always true. Conse-

quently, (X�, Z�) is a positive locally exponentially stable steady state for the nonlinear system given by

Equations (S4) and (S5).

Following the same procedure, we next analyze BioSD-II and BioSD-III.

Biomolecular signal differentiator-II. TheCRN that corresponds to Biomolecular Signal Differentiator-II

(BioSD-II) is:

B/
kinU

X ; B/
b
X ; X/

k2
X + Z1

X + Z1/
k1
Z1; B/

k3
Z2; Z1 + Z2/

h
B; X/

d
B

(Equation S10)

where kin, b, k2, k1, d, h ˛R+ .

The dynamics of the above CRN (Equation (S10)) are described by the set of ODEs:

_X = kinU +b � k1XZ1 � dX (Equation S11)
_Z1 = k2X � hZ1Z2 (Equation S12)
_Z2 = k3 � hZ1Z2 (Equation S13)

For any constant input U�, provided that:

k2ðkinU� + bÞ>dk3; (Equation S14)

we have a unique positive (finite) steady state:

X� =
k3
k2

(Equation S15)

Z�
1 =

k2ðkinU� +bÞ
k1k3

� d

k1
(Equation S16)

Z�
2 =

k3

h

�
k2ðkinU� +bÞ

k1k3
� d

k1

� (Equation S17)

We now linearize Equations (S11), (S12), and (S13) around the fixed point defined by Equations (S15), (S16),

and (S17) to obtain:

2
4 _X

_Z1
_Z2

3
5=

2
66664
�k2ðkinU� +bÞ

k3
�k1k3

k2
0

k2 �hZ�
2 �hZ�

1

0 �hZ�
2 �hZ�

1

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G2

2
4X
Z1

Z2

3
5

The characteristic polynomial of G2 is:

P2ðsÞ = detðsI�G2Þ= s3 +a2s
2 +a1s+a0 (Equation S18)

where

a2 = s+ h
�
Z�
1 + Z�

2

	
(Equation S19)

a1 = k1k3 + sh
�
Z�
1 + Z�

2

	
(Equation S20)

a0 = k1k3hZ
�
1 (Equation S21)

and

s =
k2ðkinU� +bÞ

k3
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The polynomial given by Equation (S18) has all roots in the open-half plane if and only if a2;a0 are positive

and a2a1>a0 (Routh-Hurwitz criterion). Indeed:�
s+ h

�
Z�
1 + Z�

2

		�
k1k3 + sh

�
Z�
1 + Z�

2

		
>hk1k3z

�
1

or

sk1k3 + s2h
�
Z�
1 + Z�

2

	
+ k1k3h

�
Z�
1 + Z�

2

	
+ sh2

�
Z�
1 + Z�

2

	2
>hk1k3z

�
1

or

sk1k3 + s2h
�
Z�
1 + Z�

2

	
+ sh2

�
Z�
1 + Z�

2

	2
+ hk1k3Z

�
2>0

which is always true since all the quantities involved are positive. Therefore, (X�, Z�
1 , Z

�
2 ) is a positive locally

exponentially stable steady state (G2 is Hurwitz) for the nonlinear system described by Equations (S11),

(S12), and (S13).

Note that outside the parameter regime defined by Equation (S14) BioSD-II is unable to reach equilibrium.

In particular, assuming non-negative initial conditions for Equations (S11), (S12), and (S13) (which is always

the case because the variables involved represent biomolecular concentrations) the states of the latter

remain always non-negative (as expected from mass action kinetics). Indeed, when X = 0, Equation (S11)

implies _X = kinU +b>0. Furthermore, when Z1 = 0, Equation (S12) results in _Z1 = k2XR0 and, finally, when

Z2 = 0, Equation (S13) imposes _Z2 = k3>0. However, outside the parameter regime in question, one of

the following must hold: k2ðkinU� +bÞ<dk3or k2ðkinU� +bÞ = dk3. In the first scenario, it is apparent from

Equations (S16) and (S17) that the steady state of Z1, Z2 becomes negative while in the second case Equa-

tion (S17) indicates that Z2 tends to infinity - thus, BioSD-II cannot approach a finite steady state.

Biomolecular signal differentiator-III. Biomolecular Signal Differentiator-III (BioSD-III) is represented

by the CRN:

B/
kinU

X; B/
b
X ; X/

k2
X + Z1; X + Z1/

k1
Z1

B/
k3
Z2; X + Z2/

k1
X +X + Z2; Z1 + Z2/

h
B; X/

d
B

(Equation S22)

where kin, b, k2, k1, d, h˛R+ .

The corresponding ODE model describing the dynamics is

_X = kinU +b � k1XZ1 + k1XZ2 � dX (Equation S23)
_Z1 = k2X � hZ1Z2 (Equation S24)
_Z2 = k3 � hZ1Z2 (Equation S25)

For any constant input U�, we have a unique positive steady state (providing that it exists and is finite):

X� =
k3
k2

(Equation S26)

Z�
1 =

1

2



k2ðkinU� +bÞ

k1k3
� d

k1

�
+
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ðkinU� +bÞ

k1k3
� d

k1

�2
+ 4

k3
n

s
(Equation S27)

Z�
2 = � 1

2



k2ðkinU� +bÞ

k1k3
� d

k1

�
+
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ðkinU� +bÞ

k1k3
� d

k1

�2
+ 4

k3
n

s
(Equation S28)

Linearizing the system given by Equations (S23), (S24), and (S25) around its steady state (Equations (S26),

(S27), and (S28)) yields:

2
4 _X

_Z1
_Z2

3
5 =

2
66664

�
k2ðkinU� +bÞ

k3
�k1k3

k2

k1k3
k2

k2 �hZ�
2 �hZ�

1

0 �hZ�
2 �hZ�

1

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}G3

2
4X
Z1

Z2

3
5

The characteristic polynomial of G3 is:

P3ðsÞ = detðsI�G3Þ= s3 +a02s2 +a01s+a00 (Equation S29)

where a02, a01 are identical to a2 (Equation S19), a1 (Equation S20), respectively and:
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a00 = k1k3h
�
Z�
1 + Z�

2

	
In order to show that G3 is Hurwitz we need to verify that a02a01>a00 (from Routh-Hurwitz criterion).

This inequality is satisfied because:�
s+ h

�
Z�
1 + Z�

2

		�
k1k3 + sh

�
Z�
1 + Z�

2

		
>hk1k3

�
Z�
1 + Z�

2

	
or

sk1k3 + s2h
�
Z�
1 + Z�

2

	
+ k1k3h

�
Z�
1 + Z�

2

	
+ sh2

�
Z�
1 + Z�

2

	2
>k1k3h

�
Z�
1 + Z�

2

	
or

sk1k3 + s2h
�
Z�
1 + Z�

2

	
+ sh2

�
Z�
1 + Z�

2

	2
>0

which is always true as a sum of positive quantities. Hence, (X�, Z�
1 , Z

�
2 ) is a positive locally exponentially sta-

ble steady state for the nonlinear system described by Equations (S23), (S24), and (S25).

The notion of strong rate of annihilation between Z1, Z2 (large h) in Biomolecular Signal

Differentiator-II

This reaction describes a process where species Z1, Z2 bind to each other irreversibly to form a product

which can be considered as biologically inactive. In other words, this product does not participate in any

of the reactions in BioSD-II. Here we demonstrate that the steady state of Z2 as well as its deviation from

it is practically negligible if the formation rate, h, of the product in question is sufficiently high. At the

same time, the effect of Z2 on the dynamics of BioSD-II can be considered insignificant, too.

By adopting the coordinate transformations: u = U�U�, x = X � X�, z1 = Z1 � Z�
1 , z2 =Z2 � Z�

2 which denote

small perturbations around (U�, X�, Z�
1 , Z

�
2 ), we obtain through linearization of Equations (S11), (S12), and

(S13):

2
4 _x

_z1
_z2

3
5 =

2
66664
�k2ðkinU� +bÞ

k3
�k1k3

k2
0

k2 �hZ�
2 �hZ�

1

0 �hZ�
2 �hZ�

1

3
77775
2
4 x
z1
z2

3
5+

2
4 kin
0
0

3
5u (Equation S30)

We now introduce the non-dimensional variables:

tn = b1t (Equation S31)

xn =
1

b2

x (Equation S32)

z1n =
b1

b2k2
z1 (Equation S33)

z2n =
b1

b2k2
z2 (Equation S34)

un =
kin
b1b2

u (Equation S35)

where

b1 =
k3�

k2ðkinU� +bÞ
k1k3

� d

k1

� (Equation S36)

and b2 is an arbitrary scaling parameter that carries the same units as xn. In addition, we introduce the non-

dimensional parameters:

l1 =
b2
1

hk3
(Equation S37)

l2 =
k2ðkinU� +bÞ

b1k3
(Equation S38)

l3 =
k1k3
b1k2

(Equation S39)
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By substituting Equations (S31), (S32), (S33), (S34), (S35), (S36), (S37), (S38), and (S39) into themodel given by

Equation (S30), we obtain:

_xn = un � l2xn � l3z1n

_z1n = k2xn � z1n � 1

l1
z2n

_z2n = � z1n � 1

l1
z2n

or

_xn = un � l2xn � l3z1n
l1 _z1n = l1xn � l1z1n � z2n
l1 _z2n = � l1z1n � z2n

We now introduce the linear transformation gn = z1n � z2n resulting in the following mathematically equiv-

alent system:

_xn = un � l2xn � l3gn � l3z2n (Equation S40)
_gn = xn (Equation S41)

l1 _z2n = � l1gn � ð1 + l1Þz2n (Equation S42)

According to Equation (S37), l1/0as h/N. This means that we canmake l1 negligible by choosing a large

value for h:

h[
b2
1

k3
(Equation S43)

We now regard l1 as a singular perturbation parameter and use Theorem 11.1 in (H. K. Khalil, 2002). From

Equations (S40), (S41), and (S42) we obtain the following reduced model for l1 = 0:

_xn = un � l2xn � l3gn (Equation S44)
_gn = xn (Equation S45)

since z2n = 0.

For a finite time interval ½0; tf � of interest, Equations (S44) and (S45) produce a unique solution xnðtÞ;gnðtÞ
taking into account the initial conditions of the system. In addition, the origin is an exponentially stable

equilibrium point of the boundary layer model:

dz2n
dt

= � z2n

where t = tn=l1.

Thus, according to Tikhonov’s theorem (Theorem 11.1 in (Khalil, 2002)), there exist a positive constant l�1
such that for 0<l1<l

�
1 the singular perturbation problem of Equations (S40), (S41), and (S42) has a unique

solution xnðt;l1Þ, gnðt;l1Þ, z2nðt; l1Þ on ½0; tf � and

xnðt; l1Þ� xnðtÞ=Oðl1Þ
gnðt; l1Þ�gnðtÞ=Oðl1Þ

Moreover, given any tb>0, there is l��1 such that

z2nðt; l1Þ = Oðl1Þ
whenever l1<l

��
1 .

Finally, combining Equations (S16), (S17), (S36), and (S37) results in:

l1 =
Z�
2

Z�
1

Assuming that Z�
1 corresponds to some finite (nonzero) concentration, Z�

2/0 as l1/0.
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Behavior analysis of biomolecular signal differentiators

Here we prove that, near their equilibria, BioSD networks are capable of signal differentiation.

We begin with BioSD-I whose dynamics close to its steady state are derived via linearization of Equations

(S4) and (S5) as:



_x
_z

�
=

2
64�k2ðkinU� +bÞ

k3
�k1k3

k2

k2 0

3
75
 xz

�
+



kin
0

�
u (Equation S46)

assuming the coordinate transformations: u = U� U�, x = X � X�, z =Z � Z� which represent small pertur-

bations around (U�, X�, Z�). Note that u represents UTV of the main text. We next consider the non-dimen-

sional variables:

tn = c1t (Equation S47)

xn =
1

c3
x (Equation S48)

zn =
c1
k2c3

z (Equation S49)

un =
c1kin
k2c2c3

u (Equation S50)

where

c1 =
k2ðkinU� +bÞ

k3
(Equation S51)

c2 =
k1k3
k2

(Equation S52)

andc3 is an arbitrary scaling parameter that carries the same units as xn. We also introduce the non-dimen-

sional parameter:

ε =
c21
k2c2

(Equation S53)

Substituting Equations (S47), (S48), (S49), (S50), (S51), (S52), and (S53) into the system (S46) results in:

_xn = � xn � 1

ε

zn +
1

ε

un

_zn = xn

or

ε _xn = � εxn � zn + un (Equation S54)
_zn = xn (Equation S55)

The system described by Equations (S54), (S55) is mathematically equivalent to the following second - order

differential equation:

ε€xn + ε _xn + xn = _un (Equation S56)

We see immediately that if εð€xn + _xnÞ= 0 then xn = _un which gives through Equations (S47), (S48), (S50), and

(S52):

x =
kin
k1k3

_u (Equation S57)

By recalling Equation (S6) and our initial coordinate transformations, this relationship can be rewritten as:

X =
kin
k1k3

_U +
k3
k2

(Equation S58)

Having this in mind and taking into account that ε is positive as a combination of positive parameters (Equa-

tion (S53)) we calculate the general solution of €xn + _xn = 0 as:

xn = q1e
�tn + q2 (Equation S59)

whereq1; q2 are arbitrary constants. Subsequently, from Equations (S47), (S48), (S57), and (S59) we get:
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u = f1e
�c1t + f2t + f3 (Equation S60)

where f1, f2, f3 are arbitrary constants.

To study the behavior of BioSD-I in the more general case where the input signal does not satisfy Equa-

tion (S60) we consider the following transfer function describing the system defined by Equations (S54)

and (S54) in the Laplace domain:

~DBSDðsÞ =
~XnðsÞ
~UnðsÞ

=
s

εðs2 + sÞ+ 1
(Equation S61)

where ~XnðsÞ and ~UnðsÞ are the Laplace transform of the output xn and input un, respectively and s is the com-

plex frequency. As can be seen, BioSD-I can compute the derivative of the input signal filtered by a second -

order low - pass filter.

As pointed out in Signals under consideration, Fourier transform is a powerful tool that allows the decom-

position of a signal into its constituent sinusoids. Thus, focusing on the frequency response of the system,

we set s= ju (where j =
ffiffiffiffiffiffiffi�1

p
) in Equation (S61) to get:

~DBSDðjuÞ = ju

εð�u2 + juÞ+ 1
(Equation S62)

which can be equivalently represented by:

j~DBSDðjuÞj = uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
2u2 + ð1� εu2Þ2

q (Equation S63)

and

:~DBSDðjuÞ = arctan

�
1

εu
�u

�
(Equation S64)

As shown in Figure S3, for a given ε, there is a low-frequency range over which BioSD-I functions as a pure

signal differentiator and, by extension Equation (S58) holds (the filtering action is practically zero), and a

high-frequency one over which it works as a signal attenuator instead. At the same time, there is a narrow

frequency band in between where the aforementioned operations may not be carried out with the ex-

pected accuracy. The behavior of BioSD-I therefore depends on the value of ε as well as on ’’how fast’’

an input signal varies over time.

Following the same procedure, we study the local dynamics of BioSD-III by linearizing Equations (S23),

(S24), and (S25):

2
4 _x

_z1
_z2

3
5 =

2
66664
�k2ðkinU� +bÞ

k3
�k1k3

k2

k1k3
k2

k2 �hZ�
2 �hZ�

1

0 �hZ�
2 �hZ�

1

3
77775
2
4 x
z1
z2

3
5+

2
4 kin
0
0

3
5u

where the variables u = U�U�, x = X � X�, z1 = Z1 � Z�
1 , z2 =Z2 � Z�

2 refer to small perturbations around the

equilibrium (U�, X�, Z�
1 , Z

�
2 ). Introducing the linear transformation g= z1 � z2 results in the following math-

ematically equivalent system:

2
4 _x

_g
_z2

3
5 =

2
66664
�k2ðkinU� +bÞ

k3
�k1k3

k2
0

k2 0 0

0 �hZ�
2 �h

�
Z�
1 + Z�

2

	

3
77775
2
4 x
g
z2

3
5+

2
4 kin
0
0

3
5u (Equation S65)

We notice that the dynamics of x and g of the system given by Equation (S65) are identical to that of x and z

of the system given by Equation (S46), respectively. Hence, the output, x, of BioSD-III behaves in the exact

same way as the one of previously analyzed BioSD-I.

Subsequently, we recall Equation (S30) describing the dynamics of BioSD-II near its equilibrium. It is evident

that using the linear transformation g= z1 � z2 again and assuming a sufficiently large h (Equation (S43)
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holds), the dynamics of x and g in BioSD-II are described by Equation (S46), namely the dynamics of BioSD-I

(see The notion of strong rate of annihilation between Z1, Z2 (large h) in Biomolecular Signal Differentiator-

II). By extension, the output behavior of these two circuits is identical.

An alternative version of biomolecular signal differentiators

Here we analyze a slightly different version of the previously studied BioSD networks which we call Biomol-

ecular Signal DifferentiatorsF (BioSDsF) that include an additional biomolecular species, Z3. In particular, we

describe the following three biomolecular topologies:

� BioSDF-I

We have the CRN:

B/
m1U

Z3; Z3/
kin
Z3 +X ; Z3/

m2
B; B/

b
X

X/
k2
X + Z ; X + Z/

k1
Z ; X/

d
B; Z/

k3=Z
B

where m1, m2, kin, b, k2, k1, d, k3 ˛R+ . The 0th-order removal of Z is the result of enzymatic degradation

following saturated Michaelis - Menten kinetics (see Equilibria and stability of biomolecular signal differ-

entiators: biomolecular signal differentiator-I).

The corresponding ODE model is:

_Z3 = m1U � m2Z3

_X = kinZ3 +b � k1XZ � dX
_Z = k2X � k3

� BioSDF-II

We have the CRN:

B/
m1U

Z3; Z3/
kin
Z3 +X ; Z3/

m2
B

B/
b
X; X/

k2
X + Z1; X + Z1/

k1
Z1

B/
k3
Z2; Z1 + Z2/

h
B; X/

d
B

where m1, m2, kin, b, k2, k1, d, h˛R+ . We assume that the parameter rate h is sufficiently large (see The notion

of strong rate of annihilation between Z1, Z2 (large h) in Biomolecular Signal Differentiator-II).

The corresponding ODE model is:

_Z3 = m1U � m2Z3

_X = kinZ3 +b � k1XZ1 � dX
_Z1 = k2X � hZ1Z2

_Z2 = k3 � hZ1Z2

� BioSDF-III

We have the CRN:

B/
m1U

Z3; Z3/
kin
Z3 +X ; Z3/

m2
B

B/
b
X ; X/

k2
X + Z1; X + Z1/

k1
Z1; B/

k3
Z2

X + Z2/
k1
X +X + Z2; Z1 + Z2/

h
B; X/

d
B

where m1, m2, kin, b, k2, k1, d, h ˛R+ .

The corresponding ODE model is:

_Z3 = m1U � m2Z3
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_X = kinZ3 +b � k1XZ1 + k1XZ2 � dX
_Z1 = k2X � hZ1Z2

_Z2 = k3 � hZ1Z2

Each of the above circuits can be seen as the interconnection of two subsystems. More specifically, we have

the linear, asymptotically stable, subsystem (the first equation in each of above ODE models):

_Z3 = m1U � m2Z3 (Equation S66)

which receives the signal U we want to differentiate as input and produces an output Z3. This is, in turn,

applied as input to a second subsystem whose output is X. While the first subsystem is the same in all Bio-

SDF topologies, the second one differs. In fact, the latter is identical to BioSD-I, BioSD-II, BioSD-III (see pre-

vious sections) for BioSDF-I, BioSDF-II, BioSDF-III, respectively, with the only difference lying in the input,

which is now Z3 (instead of U as before).

For a constant input U� the first subsystem defined by Equation (S66) has a unique positive steady state

(assuming it exists and is finite):

Z3 =
m1U

�

m2

(Equation S67)

Since Equation (S66) is linear and (m2) is always positive then Equation (S67) is a globally exponentially stable

equilibrium point.

We now concentrate on the local behavior of BioSDF modules and, consequently, we consider the coordi-

nate transformations: u = U� U�, x = X � X�, z = Z � Z�, z1 = Z1 � Z�
1 , z2 = Z2 � Z�

2 , z3 =Z3 � Z�
3 denoting

small perturbations around the corresponding equilibria of BioSDF networks - (U�, X�, Z�, Z�
3 ) for BioSDF-I

and (U�, X�, Z�
1 , Z

�
2 , Z

�
3 ) for BioSD

F-II, BioSDF-III (the steady states of the last two networks do not necessarily

coincide).

First, we study Equation (S66) separately. In the Laplace domain, we have:

~DLPFðsÞ =
~Z3ðsÞ
~UðsÞ =

m1

s+m2

(Equation S68)

where ~Z3ðsÞ, ~UðsÞ are the Laplace transform of z3, u, respectively. Focusing on the frequency response, we

get:

~DLPFðjuÞ = m1

m2

1

j
u

m2

+ 1
(Equation S69)

This is a transfer function of a first-order low-pass filter which is capable of preserving low-frequency signals

and rejecting high-frequency signals. Indeed, the magnitude and the phase of the system in question are

given by:

j~DLPFðjuÞj = m1

m2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
u
m2

�2
s

and

:~DLPFðjuÞ = � arctan
u

m2

;

respectively.

We can easily see that in practice, when u � m2, there is a constant input/output gain

�
m1

m2

�
and no phase

lag. On the other hand, for u2[m2
2 strong attenuation takes place. The general behavior of the filter can be

easily understood through the Bode diagram in Figure S4.
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We now consider a BioSDF design which can be described by the transfer function of the series connection

of the previously studied filter and a BioSD design (as already outlined in Behavior analysis of biomolecular

signal differentiators, all three BioSD circuits are described by the same transfer function), i.e.:

~DBSDF ðsÞ =
~XnðsÞ
~UnðsÞ

= ~DLPFðsÞ~DBSDðsÞ

or

~DBSDF ðsÞ = m1

s+m2

,
s

εðs2 + sÞ+ 1
(Equation S70)

where ~DLPFðsÞ =
~Z3ðsÞ
~UnðsÞ

, ~DBSDðsÞ=
~XnðsÞ
~Z3nðsÞ

with ~Z3nðsÞ=p~Z3ðsÞ and p=
un
u
(see Behavior analysis of biomolecular

signal differentiators).

Shifting our focus on the frequency response we have:

~DBSDF ðjuÞ = ~DLPFðjuÞ~DBSDðjuÞ (Equation S71)

for which: ��~DBSDF ðjuÞ�� = j~DLPFðjuÞjj~DBSDðjuÞj
and

:~DBSDF ðuÞ = :~DLPFðjuÞ+:~DBSDðjuÞ
Consequently, for a given ε, BioSDF circuits are characterized by an enhanced capability of high-frequency

signal attenuation compared to BioSD ones. In fact, as demonstrated in Figure S5, we can extend the fre-

quency band where strong signal attenuation is carried out by appropriately tuning the filter module. In

other words, we can adjust the bandwidth of the extra filter as desired through the parameter rate m2.

The price we pay for this significant improvement is the increase in structural complexity due to the addition

of the species Z3 via which the additional filtering is accomplished. Finally, in the low-frequency regime,

where only signal differentiation takes place (the filtering action is practically zero), the BioSDF output

can be approximated in the time domain as (recall Behavior Analysis of Biomolecular Signal

Differentiators):

X =
m1kin
m2k1k3

_U +
k3
k2

Analysis of the experimental topology of Biomolecular Signal Differentiator-III

Here we further analyze the proposed synthetic design of BioSD-III, the behavior of which may be more

complicated due to the use of three auxiliary species (see Guidelines for experimental implementation

of biomolecular signal differentiators).

The biomolecular topology shown in Figure 8C can be described by the following set of ODEs:

_X = kinU +b � k1XZ1 + k1aXauxZ2;aux � dX (Equation S72)
_Xaux = kinU +b � k1bXauxZ1 + k1aXauxZ2;aux � daXaux (Equation S73)

_Z1 = k2X � hZ1Z2 (Equation S74)
_Z1;aux = k2X � haZ1;auxZ2;aux (Equation S75)

_Z2 = k3 � hZ1Z2 (Equation S76)
_Z2;aux = k3 � haZ1;auxZ2;aux (Equation S77)

where kin, b, k2, k1, k1a, k1b, d, da, h, ha ˛R+ .

In order for the behavior of X (measured output species) in the system described by Equations (S72)-(S77) to

perfectly match the one of X in themodel given by Equations (S23)-(S25), we need: k1 = k1a = k1b, d= da and

h = ha. Nevertheless, non-satisfaction of the aforementioned conditions does not necessarily entail consid-

erable loss of accuracy regarding signal differentiation (Figure S6).
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Modeling a more realistic case of Biomolecular Signal Differentiator-II

Here we study the behavior of Biomolecular Signal Differentiator-II under more realistic conditions result-

ing from the corresponding experimental design discussed in Guidelines for experimental implementation

of biomolecular signal differentiators.

First, we consider the ODE model:

_X = kinU +b � k1XZ1 � dX (Equation S78)

_Z1 = Vmax
X

X +Km
� hZ1Z2 (Equation S79)

_Z2 = k3 � hZ1Z2 (Equation S80)

For a constant input U�, provided that:

ðkinU� + bÞ>dX�;

we have a unique positive (finite) steady state:

X� =
k3Km

Vmax � k3
(Equation S81)

Z�
1 =

ðkinU� +bÞ
k1X� � d

k1
(Equation S82)

Z�
2 =

k3
hZ�

1

(Equation S83)

Compared to the original model of BioSD-II (Equations (S11), (S12), and (S13)), we now use a Michaelis-

Menten function to describe the activation of species Z1 by species X (Equation S79) through gene expres-

sion (Aoki et al., 2019). It is evident that, assuming small perturbations around (U�, X�, Z�
1 , Z

�
2 ), linearization

of Equations (S78), (S79), and (S80) yields a system of the same form as Equation (S30). Consequently, we

can follow a similar analysis to study its local behavior as the one used for the original model (see The notion

of strong rate of annihilation between Z1, Z2 (large h) in biomolecular signal differentiator-II and Behavior

analysis of biomolecular signal differentiators). Nevertheless, it should be emphasized that when no satu-

ration occurs and the slope of the Michaelis-Menten function is approximately linear, the corresponding

production rate can be effectively considered proportional to the concentration of the regulator species

(ibid.). In that case, the results of our original analysis can be used directly.

Implementation of BioSD-II in living cells implies the existence of an additional degradation mechanism

due to cell growth affecting all the biomolecules involved, known as dilution (Aoki et al., 2019; Qian and

Del Vecchio, 2018). This can lead to a ‘‘leaky’’ integration process realized by species Z1, Z2 and, by exten-

sion, it can affect the output response (see Achieving biological signal differentiation). To this end, we

consider the following, more complex, ODE model:

_X = kinU +b � k1XZ1 � ðd + gÞX (Equation S84)

_Z1 = Vmax
X

X +Km
� hZ1Z2 � gZ1 (Equation S85)

_Z2 = k3 � hZ1Z2 � gZ2 (Equation S86)

where g represents a dilution rate constant.

In general, linearization of Equations (S84), (S85), and (S86) around their steady-state (which is obviously

different than before) results in a system which does not have the same form as Equation (S30) and,

thus, the procedures of our original analysis are not valid here. Nevertheless, if the dilution effect is not

strong, it can be seen from simulations that the behavior of this model approaches the one of Equations

(S78), (S79), and (S80).

Note that the above structural ’’perturbations’’ appear also in the natural systems discussed in Biomole-

cular signal differentiators in natural regulatory networks. In parallel, activation of species X by Z and Z1
in BioSD-I and BioSD-III, respectively is also done through gene expression (see Guidelines for experi-

mental implementation of biomolecular signal differentiators). In addition, dilution is present when real-

izing the latter topologies in living cells. Consequently, we can draw similar conclusions about them as

with BioSD-II.
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We now numerically investigate the behavior of BioSD-II. Figure S7A shows the response of the system

given by Equations (S78), (S79), and (S80) to the input presented in Figure 3C using the parameter rates

in Table S1, except for the dilution rate g which is considered zero. As can be seen, BioSD-II can accurately

calculate the rate of change of the input applied.

Note also the following:

� From Equation (S85) and Table S1 we calculate the steady-state concentration of species X which is

equal to 20 nM. Based on the values of Vmax , Km and taking into account that X moves around the

aforementioned point, the production rate of species Z1 can be approximated well by the term

k2X , where k2z1 (no saturation occurs).

� To facilitate the comparison of the BioSD output with the derivative of the input we choose a value for

kin equal to the value of the quantity k1k3 (see Equation (S58)). At the same time, here input U rep-

resents an actuator species whose concentration is related linearly with the corresponding produc-

tion rate of output species X (which may result from the linear regime of a Hill function as discussed

above). Nevertheless, in the general case the term kinU can represent any (nonlinear) function

describing the activating mechanism of the output species.

� From Equation (S53) we get εz0:125. Moreover, h can be considered sufficiently large since h= 425

nM�1 min�1[
b21
k3
z14:18 nM�1 min�1 (see Equation (S36)). Consequently, Equation (S43) holds.

� Protein production rates regarding gene expression can be easily adjusted, for example, by chang-

ing gene copy number and, thus, a wide range of values can be achieved - a typical parameter range

for E. coli is 0:5� 104 nM nM (Aoki et al., 2019). This implies extensive tunability which is important for

meeting different performance standards (see Tunability and accuracy) since a considerable number

of parameter rates in BioSD-II is associated with gene expression, i.e. b, k2 (which is related to Vmax ,

Km), k3 and kin.

Figure S7B shows the response of the system given by Equations (S84), (S85), and (S86) to the same input

stimulus.We also use the same parameters rates as before except for the dilution rate which is now nonzero

and equal to a typical value for E. coli (see Table S1). It is evident that the output remains an accurate replica

of the derivative of the input.

Subsequently, in Figures S7C and S7D we further investigate the impact of dilution on the output of BioSD-

II by repeating the simulation of Figure S7B with a 5 and 10 times larger dilution rate, respectively. We

notice that as this rate gets stronger the actual response moves away from the zero-level ‘‘bias’’ which co-

incides with the corresponding output steady-state. Moreover, although the accuracy drops to some

extent, the form of the output remains close to the one of the ideal derivative.

As already pointed out, the annihilation rate h is chosen to be sufficiently large so that the condition given

by Equation (S43) is satisfied (only BioSD-II entails such a requirement). More specifically, h is approximately

30 times larger than the quantity
b21
k3
. Nevertheless, it remains unclear to us if such suitable values of h can be

always guaranteed in vitro by the interaction between the pair of protease/protease inhibitor proposed in

Guidelines for experimental implementation of biomolecular signal differentiators. It is therefore impor-

tant to investigate the behavior of the differentiator module in the case where h is not as large as our theo-

retical analysis demands. As shown in Figure S8, non-satisfaction of the condition given by Equation (S43)

does not necessarily entail significant loss of accuracy regarding signal differentiation. Note also that the

quantity
b21
k3

can be easily adjusted to a suitable value by appropriately tuning the protein production rates

involved in BioSD-II (discussed earlier).

Finally, to make the above analysis even more realistic (Del Vecchio and Murray, 2015), one could model

gene expression as a multi-stage process, thus capturing the dynamics of transcription and translation.

At the same time, the dynamics of complexes participating in intermediate stages of inhibition and anni-

hilation reactions could also be considered. Nonetheless, it is important to emphasize that such an

approach would increase the complexity of the resulting mathematical models.
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Description Value Unit Comments Source

γ Dilution rate 0.028 min−1 Value for E. coli, assum-
ing 25 min doubling time

Aoki et al., 2019

δ Degradation
rate

0.1 min−1
Unspecified mechanism
(disturbance) contribut-
ing to degradation

Aoki et al., 2019

η Annihilation
rate

425 nM−1

min−1

Value based on bind-
ing rates for protein-
protein interactions that
are diffusion-limited

Schlosshauer and Baker,
2004; Fekkes, Blaauwen,
and Driessen, 1995

k1
Catalytic inhi-
bition rate

1.6 nM−1

min−1
Value based on the action
of Lon protease

Gur, Vishkautzan, and
Sauer, 2012

k3

Constitutive
production
rate

20
nM
min−1

Buchler and Louis, 2008;
Aoki et al., 2019

b
Constitutive
production
rate

40
nM
min−1

Buchler and Louis, 2008;
Aoki et al., 2019

Vmax
Maximal pro-
duction rate

900
nM
min−1

Buchler and Louis, 2008;
Aoki et al., 2019

Km

Michaelis-
Menten
constant

880 nM
Buchler and Louis, 2008;
Aoki et al., 2019

Table S1: Simulation parameters for STAR Methods Modelling a more realistic case of Biomolecular Signal
Differentiator-II
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Figure S1: Sensing the rate-of-change of a synthetic regulatory biomolecular network through a Biomolecular
Signal Differentiator. Related to Figure 3.
a Simulation of the BioSD-II (Equations (S11)-(S13)) response to the input presented in Figure 3c with η = 3000 nM−1

min−1, b = 150 nM min−1 and the remaining parameters same as those used in Figure 3d. η can be characterized as
sufficiently large since condition (S43) is satisfied. b Simulation of the BioSD-III (Equations (S23)-(S25)) response to
the input presented in Figure 3c with η = 30 nM−1 min−1 and the remaining parameters same as those used in Figure 3d.
c The simulation in a is repeated with the values of kin, k3, b set to 10, 10 and 100, respectively. d The simulation in b
is repeated with the values of both kin and k3 set to 10. As can be seen, the behaviour of both BioSD-II and BioSD-III is
identical to that of BioSD-I depicted in the main text. As a result, the conclusions drawn with respect to the latter circuit
are valid for the other designs as well.
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Figure S2: Sensing the rate-of-change of a birth-death biomolecular process through a Biomolecular Signal Dif-
ferentiator. Related to Figure 4.
a Simulation of the BioSD-II (Equations (S11)-(S13)) response to the input presented in Figure 4c with η = 3000 nM−1

min−1 and the remaining parameter same as those used in Figure 4d. η can be described as sufficiently large since condi-
tion (S43) is satisfied. b Simulation of the BioSD-III (Equations (S23)-(S25)) response to the input presented in Figure 4c
with η = 30 nM−1 min−1 and the remaining parameter same as those used in Figure 4d. As can be seen, the behaviour of
both BioSD-II and BioSD-III is identical to that of BioSD-I depicted in the main text. As a result, the conclusions drawn
with respect to the latter circuit are valid for the other designs as well.
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Figure S3: Frequency response analysis of Biomolecular Signal Differentiators. Related to STAR Methods.
Bode plot of a BioSD differentiator (Equation (S62)). The magnitude and the phase of its transfer function are depicted
for different values of ε via distinct colours.The case of ideal differentiation corresponds to ε = 0 and the direction in
which the latter increases indicated by an arrow..
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Figure S4: Frequency response analysis of the subsystem that receives the input signal U . Related to STAR
Methods.
Bode diagram of the filter module described by Equation (S69). The magnitude and and the phase lag of its frequency
response for different values of µ are shown in different colours where µ = µ1 = µ2. The increasing direction of µ
indicated by an arrow.
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Figure S5: Frequency response analysis of Biomolecular Signal DifferentiatorsF . Related to STAR Methods.
Bode diagram depicting the magnitude and phase shift regarding the frequency response of a BioSDF differentiator
(Equation (S71)) with ε = 0.1. We consider different values of µ , where µ = µ1 = µ2, that correspond to solid lines of
different colours while the increasing direction of µ indicated by an arrow. For comparison purposes, we also depict
the Bode plot (magnitude and phase) of a BioSD differentiator (Equation (S62)) with ε = 0.1 and the one of an ideal
differentiator which are represented by blue and black dashed lines, respectively.
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Figure S6: Sensing the rate-of-change of a synthetic regulatory biomolecular network through the proposed (ex-
perimental) circuit of Biomolecular Signal Differentiator-III. Related to STAR Methods.
a Simulation of the circuit given by Equations (S72)-(S77) using the input presented in Figure 3c and the following pa-
rameters: kin = 100 min−1, k3 = b = 100 nM min−1, k1 = k1a = k1b = 1 nM−1 min−1, k2 = 1 min−1, η = ηa = 30 nM−1

min−1, δ = δa = 0.5 min−1 (this scenario corresponds to the simulation depicted in Figure S1b). b We repeat the simu-
lation in a with the values of k1a, k1b, ηa, δa set to 1.5 (increase by 50%), 1.25 (increase by 25%), 45 (increase by 50%),
0.75 (increase by 50%), respectively.
It is evident that in both a (ideal case) and b the output, X , of the differentiator is an accurate replica of the derivative of
input U - the loss of accuracy in b is negligible.
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Figure S7: Sensing the rate-of-change of a synthetic regulatory biomolecular network through a more realistic
model of Biomolecular Signal Differentiator-II. Related to STAR Methods.
a Simulation of the system given by Equations (S78)-(S80) using the input presented in Figure 3c and the parameters of
Table S1 (no dilution). b Simulation of the system given by Equations (S84)-(S86) using the input presented in Figure
3c and the parameters of Table S1. c The simulation in b is repeated with a five times larger dilution rate, i.e. γ = 0.14
min−1. d The simulation in b is repeated with a ten times larger dilution rate, i.e. γ = 0.28 min−1.
In all the simulations we assume that the value of kin is equal to the value of the quantity k1k3.
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Figure S8: Sensing the rate-of-change of a synthetic regulatory biomolecular network through a more realistic
model of Biomolecular Signal Differentiator-II with a lower annihilation rate, η , than the one of Table S1. Related
to STAR Methods.

Simulation of the system given by Equations (S84)-(S86) using the input presented in Figure 3c and a η = 10
β 2

1
k3

, b η =

5
β 2

1
k3

, c η =
β 2

1
k3

, d η = 0.5
β 2

1
k3

which correspond to 141.8 nM−1 min−1, 70.9 nM−1 min−1, 14.18 nM−1 min−1 and 7.09

nM−1 min−1, respectively (see STAR Methods Modelling a more realistic case of Biomolecular Signal Differentiator-
II). In addition, the value of kin is assumed to be equal to the value of the quantity k1k3 while rest of the parameters are in
accordance with Table S1.
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On the Design of a PID Bio-controller with Set
Point Weighting and Filtered Derivative Action

Emmanouil Alexis, Luca Cardelli, Antonis Papachristodoulou, Fellow, IEEE

Abstract— Effective and robust regulation of biomolecu-
lar processes is crucial for designing reliable synthetic bio-
devices functioning in uncertain and constantly changing
biological environments. Proportional-Integral-Derivative
(PID) controllers are undeniably the most common way
of implementing feedback control in modern technological
applications. Here, we introduce a highly tunable PID bio-
controller with set point weighting and filtered derivative
action presented as a chemical reaction network with mass
action kinetics. To demonstrate its effectiveness, we apply
our PID scheme on a simple biological process of two mu-
tually activated species, one of which is assumed to be the
output of interest. To highlight its performance advantages
we compare it to PI regulation using numerical simulations
in both the deterministic and stochastic setting.

Index Terms— PID control, biomolecular systems, syn-
thetic biology

I. INTRODUCTION

SYNTHETIC Biology aims to engineer biomolecular sys-
tems with novel and useful functionalities in order to

tackle a long list of pressing, real-world problems [1]–[4].
One of the main challenges of building synthetic bio-devices
operating in the uncertain cellular environment is achieving
a reliable and predictable behaviour. Feedback control theory
provides a large variety of tools that have proven to be of
fundamental importance in regulating such devices, optimizing
their function and rendering them robust to disturbances [5]–
[10].

Proportional - Integral - Derivative (PID) feedback con-
trollers are regarded as the workhorses of control engineering
[11], [12]. They are often called “three - term” controllers due
to their triple control action accounting for the past, present
and future. More specifically, integral control (I-term) accounts
for the history of the error between the set point (desired
target value) and the output of interest by accumulating it over
time. An important characteristic of the I-term is its ability
to eliminate the steady-state error, provided that the feedback
system is stable. The present is represented by the P-term
which produces a control signal proportional to the current
value of the error. Lastly, derivative control (D-term) provides

E. Alexis (corresponding author) and A. Papachristodoulou
are with the Department of Engineering Science, University of
Oxford, Oxford OX1 3PJ, UK. E-mail:{emmanouil.alexis,
antonis}@eng.ox.ac.uk. L. Cardelli is with the Department of
Computer Science, University of Oxford, Oxford OX1 3QD, UK. E-mail:
luca.cardelli@cs.ox.ac.uk. This work was supported by
funding from the Engineering and Physical Sciences Research Council
(EPSRC) [grant numbers EP/M002454/1 and EP/L016494/1]. L. Cardelli
is supported by a Royal Society Research Professorship.

anticipatory action by estimating future values of the error via
linear extrapolation.

Because of the pervasiveness of PID control in technological
applications, the biomolecular implementation of PID con-
trollers has seen great interest in Synthetic Biology and several
successful research efforts. Notably, the authors in [13] present
a hierarchical library of nonlinear PID controllers consisting
of up to four biomolecular species with a first-order low-pass
filter accompanying some or all the three control terms (P-, I-
and D-term). The PID architecture proposed in [14] exploits
different variations of Michaelis-Menten functions. Further-
more, the PID designs studied in [15], [16] use the so-called
dual rail encoding [17], by which a signal is decomposed
into two non-negative components and, thus, both positive
and negative signals can be represented via biomolecular
species. Lastly, [18] analyzes the noise suppression properties
of individual proportional, integral and derivative controllers
tailored to gene expression.

In this paper, we introduce an alternative biomolecular
network functioning as a PID controller around the nominal
operation of the resulting closed-loop system. This local
approach is also adopted in [13]. The biomolecular interactions
involved are defined by general chemical reaction networks
(CRNs) based purely on mass action kinetics [19] and without
using dual rail encoding. At the same time, our bio-controller
acts solely on the target species (output of interest) without
considering other species or reactions of the network to be
controlled (open-loop system) as happens, for instance, in [13].
To achieve enhanced dynamic performance we adopt a special
form of set point weighting commonly used in technological
applications and we accompany derivative control with the
strong filtering action of a second-order low-pass filter. More-
over, our PID configuration includes six controller species
that allow us to build each of the P-, I-, D- terms almost
independently providing significant tuning flexibility regarding
controller gains, set point weights and filtering. Finally, the
proposed PID configuration can be used for controlling any
open-loop biological process assuming the existence of a
biologically meaningful equilibrium and asymptotic stability
for the resulting closed-loop system. Here we only consider
scenarios where this condition holds.

Section II presents some background concepts on PID con-
trol, biomolecular interactions, modelling tools and essential
biomolecular motifs. Section III analyzes the main charac-
teristics of the proposed PID bio-controller. Subsequently,
an application example including a comparison between PI
and PID control in the deterministic and stochastic setting
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is provided in Sections IVand V, respectively. Section VI
concludes our work and discusses future research directions.

II. BACKGROUND
Here we first outline key properties of PID control, review

principles of biomolecular modelling and then present two
important biomolecular motifs that implement integral and
derivative action.

A. Key points on PID control
Here we briefly present some important features of PID

control action [11], [12] based on which our PID bio-controller
has been developed.

First, recall that the “traditional”, ideal PID algorithm (Fig.
1) is described as follows:

u(t) = kpe(t) + ki

∫
t

0

e(τ)dτ + kd
de(t)

dt
(1)

where u(t), e(t) represent the control input signal and the
control error, respectively. The latter is defined as e(t) =
ysp−y(t), where ysp is the set point and y is the process output.

A major problem of the (ideal) derivative action in (1) is its
sensitivity to high-frequency signal components. This can lead
to excessively high gains and, by extension, large variations in
terms of the control signal. A common strategy to overcome
this obstacle is to accompany the derivative term with a low-
pass filter.

Another challenge is derivative kick: When the set point is

constant, the derivative of the error in (1) becomes
de(t)

dt
=

−dy(t)
dt

since
dysp

dt
= 0. Abrupt changes of the set point (when

the set point is adjusted) make the aforementioned derivative
very large causing undesirable transients in the control signal
(derivative kick). To avoid this, we replace e(t) with −y(t) in
the derivative term of (1).

The behaviour of the controller can be further improved
by modifying appropriately the error quantity on which the
proportional action acts. To this end, we consider an alternative
PID control law with set point weighting:

u(t) = kp(λysp − y) + ki

∫
t

0

e(τ)dτ − kd
dy(t)

dt
(2)

A PID controller based on (2) with λ = 1 and λ = 0 is
often referred to as a PI-D and I-PD controller, respectively.
Finally, the error quantity in the integral term needs to remain
unchanged in order for the error to go to zero at steady-state.

B. Biomolecular interactions and modelling
In Fig. 2(a) we present all different types of biomolecular in-

teractions as well as their graphical notation used in this paper.
These interactions can be divided into two main categories:
non-catalytic reactions where the reactants are consumed in
order for products to be formed and catalytic ones where
species facilitate production/inhibition processes without being
consumed. For deterministic analysis of the biomolecular

Fig. 1: Ideal PID control of a process based on error feedback
[11], [12].

networks in this paper (Sections II-C, III, IV) we use Ordinary
Differential Equations (ODEs) models based on the law of
mass action [19]. For stochastic analysis (Section V) we use
the Linear Noise Approximation (LNA) of the Chemical Mas-
ter Equation (CME) [21], [22]. LNA stochastic simulations are
performed using [21] which provides analytical results that can
be exploited in further work.

C. Two important biomolecular motifs

We now review two basic biomolecular motifs from the lit-
erature, which are constituent elements of our PID architecture
under appropriate modifications.

Fig. 2(b) shows the antithetic motif introduced in [23],
which is realized by controller species CI1, CI2, regulating
a target (output) species, Y , which is part of an arbitrary
biological process - “cloud” network. This mechanism can
achieve robust perfect adaptation (RPA) through integral feed-
back control. To see this, focusing on the controller species,
we have the CRN:

∅
µ

CI1 , CI1
k1 CI1 +Y ,

Y
k2 Y +CI2 , CI1 +CI2

η
∅

(3)

which can be modelled by the following set of ODEs:

ĊI1 = µ −ηCI1CI2 (4a)

ĊI2 = k2Y −ηCI1CI2 (4b)

where µ , k1, k2, η ∈ R+.
Integration is carried out by a hidden “memory” variable.

Subtract (4a) - (4b) and integrate to obtain:

(CI1 −CI2)(t) = k2

∫
t

0

(
µ

k2
−Y (τ)

)
dτ

Assuming closed-loop stability, at the steady state:

Y ∗ =
µ

k2

where the ∗ notation denotes the steady state of a variable.
Fig. 2(c) shows a topology known as BioSD-III which we

introduced in [20]. This topology can function as a signal
differentiator module around its nominal operation. In partic-
ular, it receives an input signal, U , and calculates its filtered
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Fig. 2: (a) Table with the different types of biomolecular interactions adopted from our previous work [20]. (b) Antithetic
integral controller regulating a target species which is part of an arbitrary biological process - “cloud” network (CRN (3)). (c)
BioSD-III differentiator module (CRN (5)).

derivative in the output species CD1. Contrary to the antithetic
motif, this is not a regulatory topology but, as shown in the
following section, it can be used for developing derivative
control with respect to a target species.

The CRN for BioSD-III consists of the reactions:

∅
kinU

CD1 , ∅ b CD1 ,

CD1
k2 CD1 +CD2 , CD1 +CD2

k1 CD2 ,

∅
k3 CD3 , CD2 +CD3

η
∅

CD1 +CD3
k1 CD1 +CD1 +CD3

(5)

where kin, b, k2, k1, η ∈ R+. The degradation rate of CD1
considered in [20] is assumed to be zero.

The dynamics of CRN (5) can be modelled as:

ĊD1 =kinU +b− k1CD1CD2 + k1CD1CD3 (6a)

ĊD2 =k2CD1 −ηCD2CD3 (6b)

ĊD3 =k3 −ηCD2CD3 (6c)

As shown in [20], for any non-negative constant input U∗, we
obtain a positive locally exponentially stable steady state (X∗,
Z∗

1 , Z∗
2 ).

Through (Jacobian) linearization of (6), we have the local
dynamics of BioSD-III:ċD1

ċD2
ċD3

=
−

k2(kinU∗+b)
k3

−k1k3

k2

k1k3

k2
k2 −ηC∗

D3 −ηC∗
D2

0 −ηC∗
D3 −ηC∗

D2


cD1

cD2
cD3

+
kin

0
0

u

where variables u =U −U∗, cD1 =CD1 −C∗
D1,

cD2 =CD2 −C∗
D2, cD3 =CD3 −C∗

D3 represent small
perturbations around (X∗, Z∗

1 , Z∗
2 ). The corresponding

input/output relation in the Laplace domain is:

T̃ (s) =
c̃D1(s)
ũ(s)

=
kin

k1k3

s
ε(s2 + s)+1

(7)

where:

ε =
k2

2

k1k3
3
(kinU∗+b)2 (8)

and s is the Laplace variable (complex frequency).
Equation (7) is an ideal signal differentiator multiplied by

a constant gain in series with a second-order low pass filter.
The filtering action can be adjusted to meet our performance
requirements by appropriately tuning the dimensionless pa-
rameter (8). Thus, moving to the time domain, for a given
value of (8), there are sufficiently slow input signals yielding:

cD1 =
kin

k1k3
u̇ (9)

The structural complexity of the differentiator
module can be reduced by removing the reaction
CD1 +CD3

k1 CD1 +CD1 +CD3 in CRN (5) while
the input/output behaviour remains the same [20]. This results
in ODE model (6) without the term +k1CD1CD3 in (6a).
However, this simplification comes with the cost of imposing
the following constraint:

η ≫
k2

1k3
3

k2
2(kinU∗+b)2 (10)

Finally, computing the time derivatives of molecular signals
as species concentrations constitutes a fundamental difference
compared to the differentiators used in [13] where the deriva-
tives in question correspond to reaction rates.

III. STRUCTURE AND BEHAVIOUR OF THE PID
ARCHITECTURE

Fig. 3 shows our PID controller regulating a target (output)
species, Y , of an abstract “cloud” network. This “cloud” net-
work represents a general biomolecular network with arbitrary
number of species/interactions accounting also for potential
time delays [19]. The reactions that form the corresponding
CRN are given by (11) where αi ∈ R+ with i ∈ N and
1 ≤ i ≤ 12. R is a non-negative reference signal that can vary
over time while β1, β2 are non-negative scaling parameters: R,
β1, β2 can be controlled externally. CP0 can be considered as
an auxiliary species with constant concentration that catalyzes
the degradation of the target species Y . The modified version
of the antithetic motif with an additional inhibitory reaction
as formed by species CI1, CI2 has been studied in [24].

A. Achieving PID control
To gain a deeper understanding of the proposed topology

(Fig. 3), we study the corresponding dynamics which can be
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∅
β1R

Y , CP0 +Y
α1 CP0 , Y

α2 Y +CI1 , CI1 +Y
α3 CI1 , ∅

β2R
CI2 , CI2

α4 CI2 +Y

CI1 +CI2
α5 ∅ , Y

α6 Y +CD1 , CD1 +Y
α7 CD1 , ∅

α8 CD1 , CD1
α9 CD1 +CD2 (11)

∅
α10 CD3 , CD1 +CD3

α11 CD1 +CD1 +CD3 , CD1 +CD2
α11 CD2 , CD2 +CD3

α12 ∅

described by the following set of ODEs:

Ẏ = F +β1R−α1CP0Y +α4CI1 −α3CI2Y −α7CD1Y︸ ︷︷ ︸
control input signal

(12a)

ĊI1 = β2R−α5CI1CI2 (12b)

ĊI2 = α2Y −α5CI1CI2 (12c)

ĊD1 = α6Y +α8 −α11CD1CD2 +α11CD1CD3 (12d)

ĊD2 = α9CD1 −α12CD2CD3 (12e)

ĊD3 = α10 −α12CD2CD3 (12f)

where F represents potential interactions associated with the
output species Y in the cloud network.

We assume the existence of a (locally) asymptotically stable
and biologically meaningful equilibrium for the overall closed
loop system for some constant value, R∗, of the reference
signal of interest, R. We consider the local behaviour of our
bio-controller by adopting coordinate transformations of the
form x = X −X∗ which denote small perturbations around the
equilibrium - X and X∗ represent any variable involved in the
system under consideration and its corresponding steady state,
respectively. Thus, we obtain via (Jacobian) linearization of
(12a)-(12f):

ẏ = f +uPID (13a)
ċI1 = β2r−α5C∗

I2cI1 −α5C∗
I1cI2 (13b)

ċI2 = α2y−α5C∗
I2cI1 −α5C∗

I1cI2 (13c)
ċD1 = α6y−α11(C∗

D2 −C∗
D3)cD1 −α11C∗

D1cD2 +α11C∗
D1cD3

(13d)
ċD2 = α9cD1 −α12C∗

D3cD2 −α12C∗
D2cD3 (13e)

ċD3 = −α12C∗
D3cD2 −α12C∗

D2cD3 (13f)

where f is the “linearized version” of F around the equilibrium
and the control input signal is given by:

uPID = β1r− (α1CP0 +α3C∗
I2 +α7C∗

D1)Y
+α4cI1 −α3Y ∗cI2 −α7Y ∗cD1

(14)

From Equations (12b)-(12c) we get at the steady state :

Y ∗ =
β2R∗

α2

Moreover, species CD1, CD2, CD3 form a BioSD-III module
with u = y (see (12d)-(12f)). Thus, taking into account (7),
(8), (10), we have for the input/output relation in the Laplace
domain:

T̃ (s) =
c̃D1(s)
ỹ(s)

=
α6

α10α11

s
ε(s2 + s)+1

where:

ε =
α2

9

α3
10α11

(α6Y ∗+α8)
2

Fig. 3: The proposed PID bio-controller regulating a target
species which is part of an arbitrary biological process -
“cloud” network (CRN (11)).

while the parameter constraint for the simplified BioSD-II
module becomes:

α12 ≫
α3

10α2
11

α2
9 (α6Y ∗+α8)2 (15)

Setting now

δ =
β2(α1CP0 +α3C∗

I2 +α7C∗
D1)

α2

and assuming β2R∗ =
α2α4

α3
(16), the control input signal (14)

can be rewritten as:

uPID = kp(λysp − y) + ki

∫
t

0

(ysp − y) dτ − kdcD1 (17)

with:

ysp =
β2r
α2

, λ =
β1

δ
, kp =

α2δ

β2
, ki =

α4

α2
, kd =

α4α7

α3

In addition, taking into account (9), we have:

cD1 =
α6

α10α11
ẏ

assuming y is sufficiently slow.
Equation (17) describes a PID control law with set point

weighting and filtered derivative action. Our architecture offers
considerable tunability since the controller gains, the reference
signal (including the ratio in (16)), the set point, the set point
weight regarding proportional control as well as the filtering
action regarding derivative control can be tuned separately as
desired. In addition, setting β1 = 1 or β1 = 0 leads to a PI-D
or I-PD control law, respectively.

Local closed-loop stability can be assessed by studying the
Jacobian matrix resulting from (13a)-(12f). If this matrix is
Hurwitz, i.e. the real parts of its eigenvalues are strictly neg-
ative, then the equilibrium in question is a locally asymptoti-
cally stable equilibrium for the nonlinear system (12a)-(12f).
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Necessary and sufficient conditions can be found using the
Routh-Hurwitz criterion. We can find suitable parameters by
taking into account any parameter constraints stemming from
our performance standards or the experimental implementation
of interest as well as using the rich toolkit of PID tuning
techniques [11], [12].

IV. REGULATING A SPECIFIC BIOLOGICAL PROCESS

In this section we investigate the properties of our PID
controller on a specific biological process. In particular, we
replace the abstract cloud network of Fig. 3 with a biological
process of two mutually activated species, Y and W , with the
first species being the target species on which we apply PID
control (Fig. 4(a)). This process is based on a positive feedback
loop which is a very common concept in biological systems
[25], [26].

The open-loop process under consideration consists of the
following reactions:

∅
γ1

Y , ∅
γ2

W ,

Y
γ3 ∅ , W

γ4 ∅ ,

Y
γ5

Y +W , W
γ6

Y +W

(18)

Taking into account CRNs (11) and (18), the dynamics of
the resulting closed-loop system can be modelled as:

Ẏ = γ1 − γ3Y1 + γ6Y2 +β1R−α1CP0Y
+α4CI1 −α3CI2Y −α7CD1Y (19a)

Ẇ = γ2 − γ4Y2 + γ5Y1 (19b)

ĊI1 = β2R−α5CI1CI2 (19c)

ĊI2 = α2Y −α5CI1CI2 (19d)

ĊD1 = α6Y +α8 −α11CD1CD2 +α11CD1CD3 (19e)

ĊD2 = α9CD1 −α12CD2CD3 (19f)

ĊD3 = α10 −α12CD2CD3 (19g)

In Fig. 4(b) we present the response of output species,
Y , using PI and PID control, respectively. In both scenaria
identical integral action takes place and, thus, Y converges
to the same value. Nevertheless, the transient response in the
first case shows a significant overshoot and oscillations which
are eliminated due to the anticipatory action of derivative
control in the second case. Moreover, as can be seen, the
output response remains the same regardless of the signal
differentiator module used in the PID bio-controller.

V. STOCHASTIC SIMULATIONS

The random nature of biomolecular reactions makes bi-
ological systems inherently stochastic [19], [28], [29]. The
deterministic approach we have followed so far can offer a
satisfactory insight into the average biological behaviour when
biomolecular populations are sufficiently large. However, this
may not be always the case and, as a consequence, analysis of
the probabilistic effects may be needed. We focus here on the
stochastic evolution of the closed-loop system shown in Fig.
4 over time using the Linear Noise Approximation (LNA).
Fig. 5 shows the time evolution of the standard deviation,

Fig. 4: (a) The proposed PID bio-controller regulates a target
species (Y ) of a network consisting of two mutually activated
species (CRNs (11), (18)). (b) Simulated response of the target
species (Y ) regarding the topology in (a) described by ODE
model (19). For PI case, we use only (19a)-(19d) with the
following parameter values: γ1 = 0.5, γ2 = 1, γ3 = 1, γ4 =
2, γ5 = 4, γ6 = 4, β1R = 1, β2R = 5, α1CP0 = 0.2, α2 = 1,
α3 = 0.4, α4 = 2, α5 = 10. Additionally, the term −α7CD1Y in
(19a) is removed since there is no derivative action. For PID1,
derivative control takes place through BioSD-III. Here we use
(19a)-(19g) with the following parameter values: α6 = 100,
α7 = 0.15, α8 = 100, α9 = 1, α10 = 100, α11 = 1, α12 = 10
with the rest of the parameter values the same as in PI case.
For PID2 we replace BioSD-III with BioSD-II which results in
ODE model (19) without the term +α11CD1CD3 in (19e). We
also use the same parameter values as in PID1 except for α12 =
500 so that condition (15) is satisfied. The simulations depicted
in this figure were performed in MATLAB (Mathworks).

denoted here as σ , with respect to the output species for
both PI and PID control. As can be seen, PID control leads
to a considerably smaller σ compared to PI control at the
steady state, demonstrating the noise reduction capability of
derivative control through BioSD modules. Attenuation of
stochastic fluctuations through derivative action has been also
demonstrated in [13], [18].

VI. CONCLUSION

This paper proposed a highly tunable CRN architecture
capable of applying PID feedback control locally using set
point weights and derivative control filtering. Notable char-
acteristics of our design are the “antithetic integration” and
“BioSD signal differentiation”. For the latter, we consider two
differentiator modules of different structure but identical in-
put/output behaviour. Proportional control is realized through a
special birth-death process to which the integral and derivative
parts also contribute. To demonstrate the performance benefits
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Fig. 5: Time evolution of the standard deviation, σ of the
target species Y of the closed-loop system shown in Fig. 4. The
models and the parameter sets for PI and PID cases correspond
to the cases of PI and PID1 of Fig. 4. Also, the case of
PID2 results in identical behaviour to PID1. The simulations
depicted in this figure were performed in Kaemika [27] using
LNA.

of our PID control strategy, we apply it to an (open-loop)
process of two mutually activated species and compare it to
PI regulation. We show through deterministic simulations that
the concentration of the output species of interest exhibits a
significantly improved transient response with PID compared
to PI control. At the same time, using LNA we show that the
addition of BioSD derivative action can reduce the standard
deviation at the steady state.

In the future it would be interesting to study the stochastic
behaviour of the proposed controller using other, more accu-
rate methods [30], and compare the results with LNA. More-
over, as our PID bio-controller is experimentally realizable,
it would be interesting to implement it in vitro via molecular
programming. In particular, our topology relies purely on mass
action kinetics and, thus, can be translated into a DNA strand
displacement system [31]–[33]. Finally, the analytical results
presented in this work have been obtained by applying linear
perturbation analysis since our PID controller is supposed
to work around the nominal operation and their accuracy
is supported by simulations of the actual nonlinear systems
under consideration. A possible extension to this would be the
analysis regarding the non-local behaviour of our controller
(large signal analysis) and the comparison with the results
herein.
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Abstract11

Feedback control theory facilitates the development of self-regulating systems with desired perfor-12

mance which are predictable and insensitive to disturbances. Feedback regulatory topologies are13

found in many natural systems and have been of key importance in the design of reliable syn-14

thetic bio-devices operating in complex biological environments. Here, we study control schemes15

for biomolecular processes with two outputs of interest, expanding previously described concepts16

based on single-output systems. Regulation of such processes may unlock new design possibilities17

but can be challenging due to coupling interactions; also potential disturbances applied on one of18

the outputs may affect both. We therefore propose architectures for robustly manipulating the ra-19

tio/product and linear combinations of the outputs as well as each of the outputs independently. To20

demonstrate their characteristics, we apply these architectures to a simple process of two mutually21

activated biomolecular species. We also highlight the potential for experimental implementation by22

exploring synthetic realizations both in vivo and in vitro. This work presents an important step forward23

in building bio-devices capable of sophisticated functions.24

1 Introduction25

For more than two decades we have witnessed significant advances in the highly interdisciplinary field26

of synthetic biology whose goal it is to harness engineering approaches in order to realize genetic27

networks that produce user-defined cell behaviour. These advances have the potential to transform28

several aspects of our life by providing efficient solutions to many global challenges related to food29

security, healthcare, energy and the environment [1–6]. A fundamental characteristic of living systems30

is the presence of multi-scale feedback mechanisms facilitating their functioning and survival [7, 8].31

Feedback control enables a self-regulating system to adjust its current and future actions by sensing32

the state of its outputs, thus maintaining an acceptable response even in the face of unintended and33

unknown changes. This can be the answer to a number of major challenges [9–11] that prevent34

the successful implementation of synthetic genetic circuits and keep innovative endeavours in the35

field trapped at the laboratory stage. Control theory offers a rich toolkit of powerful techniques to36

design and manipulate biological systems and enable the reliable function of next-generation synthetic37

biology applications [12–16].38
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Engineering synthetic gene circuits aims at constructing modular biomolecular devices which are39

able to operate in a controllable and predictable way in constantly changing environments with a40

high level of metabolic burden and interactions (cross-talk) with endogenous signaling systems. It41

is therefore a requirement for them to be resilient to context-dependent effects and adapt to external42

environmental perturbations. Several control approaches inspired by both natural and technological43

systems have recently been proposed allowing for effective and robust regulation of biological net-44

works in vivo and/or in vitro [17–23]. Despite some conceptual differences, all of these studies focus45

on biomolecular systems with one output of interest, such as the expression of a single protein.46

Building advanced bio-devices capable of performing more sophisticated computations and tasks47

requires the design of genetic circuits where multiple inputs are applied and multiple outputs are48

measured. In control engineering these types of systems are also known as multi-input multi-output49

or MIMO systems [24]. This may be the key for achieving control of the whole cell, which can be50

regarded as a very complex MIMO bio-device itself. Regulation of processes comprising multiple51

interacting variables of interest can be challenging since there may be interactions between inputs52

and outputs. Thus, a change in any input may affect all outputs. At the same time, when attempting to53

apply feedback control by “closing the loop”, a quandary arises as to which input should be connected54

with which output (input-output pairing problem). Addressing such problems therefore requires alter-55

native, suitably adjusted regulation schemes which take into account the presence of mutual internal56

interactions in the network to be controlled (open-loop system).57

The research area of MIMO control bio-systems has up until now remained relatively unexplored.58

There have been only a few studies towards this direction, associated with cybergenetic approaches59

where a computer is a necessary part of the control feedback loop [25, 26]. In contrast, substantial60

progress has been made in a closely related area, namely MIMO logic bio-circuits which are able to61

realize Boolean functions [27, 28] while “multi-layer/level” control concepts for one-output processes62

[29, 30] and resource allocation in gene expression [31] have also been proposed.63

In this paper, we investigate regulation strategies for biomolecular networks with two outputs of in-64

terest which can correspond, for example, to the concentration of two different proteins inside the cell,65

assuming the presence of mutual interactions. Both the open-loop and the closed-loop system (open-66

loop system within a feedback control configuration) are represented by chemical reaction networks67

(CRNs) obeying the law of mass action [8]. Consequently, the entire regulation process takes place68
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in the biological context of interest without the use of computer-aided methods. Our designs take69

advantage of the antithetic integral motif which was first introduced in [32] and whose properties and70

performance trade-offs have been extensively studied in various single-output biomolecular systems71

[33–51] . The antithetic integral motif is able to achieve robust steady-state tracking, which is equiv-72

alent to the biological principle of robust perfect adaptation (RPA) [17, 52, 53], via integral feedback73

control. A core element of this motif is an (ideally) irreversible sequestration reaction between two74

species representing a comparison operation at the molecular level. The memory function, necessary75

for any integral controller, is performed by a memory variable accumulating, through (mathematical)76

integration, the error between an output and a set-point of interest over time. In the general case, this77

memory variable is “hidden” in the sense that it corresponds to a non-physical quantity defined as78

a (mathematical) combination of the (physical) controller species. The efficacy of this biomolecu-79

lar mechanism has also been demonstrated experimentally in living cells, at both the cell population80

and the single-cell level, and in cell-free environments using either external (in silico) or embedded81

single-output control schemes [33, 35, 49, 50, 54–60]. Furthermore, in recent years, considerable at-82

tention has been given to topologies combining the antithetic integral controller with proportional and83

derivative control action or biomolecular buffering [35, 49, 50, 55, 61–65]. Such efforts seek to re-84

solve commonly encountered issues associated with the standalone antithetic integral controller, such85

as instability, poor transient dynamics including overshoots, and long-lasting oscillations or increased86

variance.87

One of the main objectives of this work is to show how this molecular sequestration mechanism88

can be utilized to regulate biomolecular processes with more than one output, expanding existing89

theoretical single-output approaches. Thus, we introduce novel strategies of biomolecular intercon-90

nections which are able to efficiently control multi-output biological systems in several ways and91

discuss important challenges and phenomena arising in such contexts. Focusing primarily on two-92

output biological systems, we present regulatory designs exploiting “multi-loop” concepts based on93

two independent feedback loops as well as concepts where the control action is carried out jointly con-94

sidering both outputs simultaneously. Our designs are scalable and, with appropriate modifications,95

can handle biological systems with an arbitrary number of outputs.96

Specifically, we present regulatory architectures, which we refer to as regulators, capable of achiev-97

ing one of the following control objectives: robustly driving a) the ratio/product of the outputs; b) a98

96



linear combination of the outputs; and c) each of the outputs to a desired value (set-point). At steady99

state, the architectures of a) and b) result in two coupled outputs which can still affect each other,100

albeit in a specific way dictated by the respective control approach. On the other hand, the architec-101

tures for c) achieve steady-state decoupling, thus making the two outputs independent of each other.102

Our control schemes can be used for regulation of any arbitrary open-loop process provided that the103

resulting closed-loop system has a finite, positive steady state and the closed-loop system converges104

to that steady state as time goes to infinity (closed-loop (asymptotic) stability). Thus, the present105

analysis focuses exclusively on such scenarios. Furthermore, we mathematically and computation-106

ally demonstrate their special characteristics by applying these schemes to a simple, monomolecular,107

biological process of two mutually activating species. Finally, to highlight their biological relevance108

and motivate further experimental investigation, we explore potential implementations of our designs.109

Results110

2 Control schemes with steady-state coupling111

In Figure 1A we show a general biomolecular process with two outputs of interest for which we112

first present two bio-controllers aiming to regulate the ratio and an arbitrary linear combination of113

the outputs, respectively. The different types of biomolecular reactions as well as their graphical114

representations used in this work are presented in Figure 1B.115

2.1 Regulating the ratio of outputs116

Figure 1C illustrates a motif which we call Ratio-Regulator (R-Regulator) and consists of the follow-117

ing reactions:118

Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , Y2 +Z2

k3
Z2 , Z1 +Z2

η
∅ (1)

This controller consists of two species, Z1 and Z2, which annihilate each other. The production of Z1,119

Z2 is catalyzed by the target species Y1, Y2, respectively while Y2 is also inhibited by Z2.120

The dynamics of the R-Regulator are described by the following system of Ordinary Differential121
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Equations (ODEs):122

Ż1 = k1Y1 −ηZ1Z2 (2a)

Ż2 = k2Y2 −ηZ1Z2 (2b)

Equations (2a)-(2b) give rise to a non-physical memory variable which enables integration, i.e.:

Ż1 − Ż2 = k1Y1 − k2Y2

or123

(Z1 −Z2)(t) = k1

∫
t

0

(
Y1(τ)−

k2

k1
Y2(τ)

)
dτ (3)

As a result, assuming closed-loop stability (Ż1, Ż2, Ẏ1, Ẏ2 → 0 as t → ∞), we get:124

Y ∗
1

Y ∗
2
=

k2

k1
(4)

where the ∗ notation indicates the steady state concentration of a species. As can be seen, the integrand125

in Equation (3) corresponds to an error quantity which converges to zero over time, thus guaranteeing126

that the output ratio
(

Y ∗
1

Y ∗
2

)
will converge to the set-point

(
k2

k1

)
. It is important to note that the127

aforementioned stability depends on the structure of the open-loop process, which is unknown here,128

as well as the set of the reaction rates/parameter values we select for the closed-loop system.129

As revealed by Equation (4), the R-Regulator is characterized by a dynamic set-point tracking prop-130

erty regarding species Y1 and Y2. This property becomes more apparent if we examine the resulting131

closed-loop architecture from a different viewpoint. Imagine, for instance, that Y1 represents an input132

species through which a “reference signal” is applied while Y2 represents an output (target) species.133

Then, Y ∗
2 is able to track the changes of the set-point

(
k1Y ∗

1
k2

)
(and vice versa).134

A modified version of the above control scheme can be obtained by replacing Y1

k1
Y1 +Z1 ,135

Y2

k2
Y2 +Z2 with ∅

k1
Z1 , Y1 +Y2

k2
Z2 in CRN (1). As a result, the mem-136

ory variable becomes Ż1 − Ż2 = k1 − k2Y1Y2 leading to Y ∗
1 Y ∗

2 =
k1

k2
. This modified R-Regulator is137

able to regulate the product of two outputs, assuming both outputs represent species concentrations.138

Equivalently, this can be seen as regulation of the ratio of two outputs where one of them represents139
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a species concentration and the other one the reciprocal of a species concentration (see also Section140

S12 of the supplementary material for further demonstration).141

2.2 Regulating a linear combination of the outputs142

In Figure 1D a second motif, which we call Linear Combination - Regulator (LC-Regulator), is de-143

picted. The only difference to the R-Regulator is that species Z1, Z2 are also produced through two144

independent processes with constant rates θ1, θ2, respectively. More specifically, the corresponding145

reaction network is:146

∅
θ1

Z1 , ∅
θ2

Z2 , Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 ,

Y2 +Z2

k3
Z2 , Z1 +Z2

η
∅

(5)

The dynamics of LC-Regulator is given by the set of ODEs:147

Ż1 = θ1 + k1Y1 −ηZ1Z2 (6a)

Ż2 = θ2 + k2Y2 −ηZ1Z2 (6b)

Similar to before, in order to see the memory function involved, we subtract Equations (6a) - (6b)

and integrate to get:

(Z1 −Z2)(t) =

∫
t

0

((
k1Y1(τ)− k2Y2(τ)

)
−
(

θ2 −θ1

))
dτ

Under the assumption of closed-loop stability (Ż1, Ż2, Ẏ1, Ẏ2 → 0 as t → ∞), we have at steady state:148

k1Y ∗
1 − k2Y ∗

2 = θ2 −θ1 (7)

An interesting feature of LC-Regulator is that Equation (7) can be adjusted as desired by modifying149

the production reactions regarding Z1, Z2. A more general formulation of this control scheme provid-150

ing a full characterization of the possible (steady-state) output combinations is discussed in Section151

S2 of the of the supplementary material.152

Finally, in Figure 1E we show an alternative version of the controllers presented above. Specifically,153 99



the inhibitory reaction Y1 +Z1

k4
Z1 has been added to the R- or LC-Regulator. Note that this154

additional reaction does not change the dynamics of the controllers - Equations (2a)-(2b) and (6a) -155

(6b) still hold for R-Regulator and LC-Regulator, respectively. Despite the increase in complexity,156

the additional reaction strengthens the regulatory ability of the controllers in the sense that control157

action is now applied on both target species. This could, for example, be useful to make closed-loop158

stability more robust. These slightly modified motifs are further discussed from a stability viewpoint159

in Section Closed-loop stability and Section S9 of the supplementary material.160

3 Control schemes with steady-state decoupling161

We now present three alternative bio-controllers, which we call Decoupling - Regulator (D-Regulator)162

I, II and III, capable of achieving independent control of each output in the arbitrary biomolecular163

process (Figure 1A). In particular, D-Regulators are able to drive each output species to a desired164

steady-state concentration unaffected by the behaviour of the other species.165

D-Regulators I, II follow a decentralized approach exploiting a “multi-loop” control strategy. More166

analytically, each of them uses two single-input single-output (SISO) integral controllers which can be167

constructed separately. This might be advantageous in certain applications in the sense that already-168

existing, successful SISO implementation techniques can be utilized. However, in the general case,169

the two SISO controllers cannot be analyzed or tuned independently due to the existence of coupling170

interactions in the network to be controlled. D-Regulators I, II and, by extension, their resulting171

closed-loop architectures are MIMO systems and should be studied as such in order for a desirable172

overall behaviour to be achieved – for instance, in terms of closed-loop stability or dynamic perfor-173

mance of both output responses. Furthermore, in a later section, we investigate a “pairing problem”174

between actuator and sensor species using a simple example based on one of the above regulators.175

Problems of such nature are very common in multi-loop contexts and can be difficult to address, es-176

pecially for complex, strongly coupled networks. Moreover, in D-Regulator I, II the individual SISO177

controllers constitute alternative realizations of the antithetic integral motif [32]. We choose to focus178

on these specific versions because of their essential structural differences which can play a crucial179

role for a circuit designer implementation-wise. At the same time, other well-studied realizations of180

the antithetic integral motif in the literature appear to be more complex and use the aforementioned181
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versions as a structural basis. A characteristic example is the (SISO) rein controller presented in [46],182

which is implemented as part of a D-Regulator discussed in Section S3 of the supplementary material.183

On the other hand, D-Regulator III follows a centralized approach where some parts of the archi-184

tecture jointly contribute to the realization of integral control on both output species. This control185

strategy can result in a structurally simpler topology with fewer controller species. Nevertheless,186

building such a topology might require more sophisticated biomolecular components.187

3.1 D-Regulator I188

The set of reactions describing D-Regulator I (Figure 2A) is:189

Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , Y1 +Z1

k3
Z1 , Y2 +Z2

k4
Z2 ,

∅
θ1

Z3 , ∅
θ2

Z4 , Z1 +Z3

η1
∅ , Z2 +Z4

η2
∅

(8)

This design comprises four controller species. The target species Y1, Y2 catalyze the formation190

of two of them, Z1, Z2, which, in turn, inhibit the former. In addition, Z3, Z4, which are produced191

independently at a constant rate, participate in annihilation reactions with Z1 and Z2, respectively.192

The dynamics of D-Regulator I can be modelled using the following set of ODEs:193

Ż1 = k1Y1 −η1Z1Z3 (9a)

Ż2 = k2Y2 −η2Z2Z4 (9b)

Ż3 = θ1 −η1Z1Z3 (9c)

Ż4 = θ2 −η2Z2Z4 (9d)

In contrast to the regulation strategies presented in the preceding section, D-Regulator I includes194

two memory variables which carry out integral action independently. Indeed, combining Equations195

(9a), (9c) results in:196

(Z3 −Z1)(t) = k1

∫
t

0

(
θ1

k1
−Y1

)
dτ (10)
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while combining Equations (9b), (9d) gives:197

(Z4 −Z2)(t) = k2

∫
t

0

(
θ2

k2
−Y2

)
dτ (11)

Consequently, the steady-state output concentrations under the assumption of closed-loop stability198

(Ż1, Ż2, Ż3, Ż4, Ẏ1, Ẏ2 → 0 as t → ∞) are:199

Y ∗
1 =

θ1

k1
, Y ∗

2 =
θ2

k2
(12)

3.2 D-Regulator II200

By using four controller species as before, we construct D-Regulator II (Figure 2B) consisting of the201

following reactions:202

Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , ∅

θ1
Z3 , ∅

θ2
Z4 , Z3

k3
Z3 +Y1 ,

Z4

k4
Z4 +Y2 , Z1 +Z3

η1
∅ , Z2 +Z4

η2
∅

(13)

In this case, species Z3, Z4 catalyze the formation of the target species Y1, Y2, respectively, and Z3,203

Z4 are produced at a constant rate. Furthermore, species Z1, Z2 are catalytically produced by Y1, Y2,204

respectively, while the pairs Z1-Z3 and Z2-Z4 participate in an annihilation reaction.205

Note that the species of D-Regulator II are described by the same ODE model as D-Regulator I206

(Equations (9a)-(9d)). Thus, the memory variables involved (Equations (10), (11)) as well as the207

steady-state output behaviour (Equation (12)) are identical in these two motifs (provided that closed-208

loop stability is guaranteed). Nonetheless, in general, regulating the same open-loop process via the209

aforementioned controllers results in different output behaviour until an equilibrium is reached or, in210

other words, the transient responses differ. This is because of the different topological characteristics211

of the two motifs which cannot be captured by focusing only on the controller dynamics: considering212

closed-loop dynamics is required, which is addressed in a later section.213
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3.3 D-Regulator III214

The last bio-controller presented in this study is D-Regulator III (Figure 2C) whose structure is com-215

posed of the following reactions:216

Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , ∅

θ1
Z3 , Z3

k3
Z3 +Y1 ,

Y2 +Z2

k4
Z2 , Z1 +Z3

η1
C , Z2 +C

η2
∅

(14)

Here there are three controller species. Z1, Z3 interact with the target species Y1 as well as with217

each other in the same way as in D-Regulator II. The complex C, which is formed by the binding of218

Z1, Z3, and the third controller species, Z2, can annihilate each other. Finally, the target species Y2219

catalyzes the production of Z2 which, in turn, inhibits Y2 analogous to D-Regulator I.220

The dynamics of D-Regulator III can be described by the following set of ODEs:221

Ż1 = k1Y1 −η1Z1Z3 (15a)

Ż2 = k2Y2 −η2Z2C (15b)

Ż3 = θ1 −η1Z1Z3 (15c)

Ċ = η1Z1Z3 −η2Z2C (15d)

Similar to the other D-Regulators, the memory function responsible for the regulation of the output

Y1 is carried out by the (non-physical) quantity Z3 −Z1 (Equation (10)). However, the memory vari-

able related to the output Y2 is realized in a different way than before. More specifically, combining

Equations (15b)-(15d) yields:

Ż3 +Ċ− Ż2 = θ1 − k2Y2

or

(Z3 +C−Z2)(t) = k2

∫
t

0

(
θ1

k2
−Y2

)
dτ

Therefore, assuming closed-loop stability, i.e. Ż1, Ż2, Ż3, Ċ, Ẏ1, Ẏ2 → 0 as t → ∞, the steady-state222

output behaviour is:223

Y ∗
1 =

θ1

k1
, Y ∗

2 =
θ1

k2
(16)
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4 Specifying the biological network to be controlled224

We now turn our focus to a specific two-output open-loop network which will henceforward take the225

place of the abstract “cloud” process in the preceding sections. This will allow us to implement in226

silico the proposed control motifs and demonstrate the properties discussed above (see Implementing227

the proposed regulation strategies). In addition, we will explore potential experimental realizations228

of the resulting closed-loop networks (see Experimental realization).229

Figure 3A illustrates a simple biological network comprised of two general birth-death processes230

involving two target species, Y1, Y2. These species are coupled in the sense that each of them is231

able to catalyze the formation of the other. Such motifs of positive feedback action are ubiquitous in232

biological systems [66–68]. In particular, we have the reactions:233

∅
b1

Y1 , ∅
b2

Y2 , Y1

d1
∅ , Y2

d2
∅ ,

Y1

α2
Y1 +Y2 , Y2

α1
Y1 +Y2

(17)

which can be modelled as:234

Ẏ1 = b1 −d1Y1 +α1Y2 (18a)

Ẏ2 = b2 −d2Y2 +α2Y1 (18b)

For any d1d2 > α1α2, ODE system (18a)-(18b) has the following unique positive steady state:235

Y ∗
1 =

α1b2 +b1d2

d1d2 −α1α2
, Y ∗

2 =
α2b1 +b2d1

d1d2 −α1α2
(19)

which is (globally) exponentially stable (see Section S4 of the supplementary material).236

Note that for this system, a change in any of the reaction rates of network (17) due to, for instance,237

undesired disturbances, will affect the behaviour of both species Y1 and Y2 (Figure 3B).238

5 Implementing the proposed regulation strategies239

We now demonstrate the efficiency of the bio-controllers introduced in Control schemes with steady-240

state coupling and Control schemes with steady-state decoupling by regulating the open-loop net-241
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work (17) presented in Specifying the biological network to be controlled (see also Discussion242

for regulation of a more complex network). A detailed analysis of the steady-state behaviour of the243

resulting closed-loop processes can be found in Section S5 of the supplementary material.244

We show in Figure 4 that R-Regulator and LC-Regulator are capable of driving the ratio and a245

desired linear combination of the output species to the set-point of our choice in the presence of246

constant disturbances, respectively. Similarly, we illustrate in Figure 5 the ability of D-Regulators to247

robustly steer each of the output species towards a desired value independently, thus cancelling the248

steady-state coupling.249

In the topology shown in Figure 5B there are two actuation reactions realized though Z3 and Z4.250

Due to the existence of coupling interactions in the network that we aim to control, it is evident251

that these actuator species act on both Y1 and Y2 simultaneously. Consequently, one could argue that252

an alternative way of closing the loop would be through a different species pairing (Figure 6). In253

particular, an annihilation (comparison) reaction between Z1, Z4 and Z2, Z3 could be used instead (Z1,254

Z2 can be considered as sensor species measuring the outputs Y1, Y2, respectively). However, it can be255

demonstrated (see Section S6 of the supplementary material) that this control strategy is not feasible256

since there is no realistic parameter set that can ensure closed-loop stability.257

Finally, in the supplementary material, using three closed-loop architectures (one for each regulator258

type - R, LC and D), we demonstrate through simulations the robust steady-state tracking property of259

the systems by perturbing several model parameters (see Section S7 of the supplementary material).260

At the same time, we computationally investigate the effect of controller species degradation on their261

performance and how the latter can be mitigated via appropriate parameter tuning (see Section S8 of262

the supplementary material).263

6 Closed-loop stability264

As already emphasized, assuming the existence of a finite, positive equilibrium, the proposed reg-265

ulation strategies require asymptotic closed-loop stability, at least around that equilibrium (locally).266

A commonly used approach to assess local stability of a nonlinear system is through (Jacobian) lin-267

earization. Specifically, we can study the resulting Jacobian matrix [8]. If its eigenvalues have strictly268

negative real parts, i.e. the matrix is Hurwitz, then the aforementioned equilibrium is locally asymp-269

totically stable. Necessary and sufficient conditions for that can be determined via the Routh-Hurwitz270 105



criterion (see the sections of the supplementary material associated with Specifying the biological271

network to be controlled and Implementing the proposed regulation strategies).272

Instead of analyzing the system as a whole, we can alternatively examine it as an interconnection of273

two (or more) subsystems [69, 70]. It is often possible to assess the overall stability by studying those274

subsystems separately. This could be beneficial when only an input-output property of the system275

to be controlled is known. To demonstrate this, we consider the R-Regulator and LC-Regulator with276

two inhibitory reactions controlling a general “cloud” network in a negative feedback configuration, as277

shown in Figure 1E. Focusing on the behaviour around an equilibrium of interest, we can show in both278

cases that if k2k4Z∗
1 = k1k3Z∗

2 , then the “controller block” corresponds to a positive real (PR) system.279

It is also known [69] that the negative feedback interconnection of a PR block and a weakly strictly PR280

(WSPR) one yields an overall asymptotically stable system. Consequently, for every WSPR “cloud281

block”, asymptotic closed-loop stability can be guaranteed. Further details including definitions of282

PR and WSPR concepts as well as proofs can be found in Section S9 of the supplementary material.283

7 Experimental realization284

To highlight the feasibility of experimentally realizing the proposed control schemes, this section285

describes potential in vivo and in vitro implementations of the open-loop and closed-loop circuits in-286

troduced earlier. We first focus on implementations using biological parts that have been characterized287

in Escherichia coli and further discuss a molecular programming approach.288

Following the description in Specifying the biological network to be controlled, the biological289

network to be controlled can be realized as shown in Figure 7. In this implementation, Y1 and Y2290

are heterologous sigma factors [71], which are fused to fluorescent proteins (GFP and mCherry) to291

facilitate tracking of the output. While genes encoding fusion proteins are shown for simplicity,292

bicistronic constructs could also be used and may be preferred in practice to avoid impairment of293

sigma factor activity by fusion to a fluorescent protein. Through a suitable choice of promoters, Y1294

mediates the expression of Y2 and vice versa. Low levels of Y1 and Y2 are continuously produced from295

constitutive promoters, such as promoters from the BioBrick collection [72]. In all following figures,296

the biological parts underlying these interactions are not explicitly shown.297
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7.1 R-Regulator and LC-Regulator298

For the proposed implementation of the R-Regulator (Figure 8), Y2 mediates expression of the hep-299

atitis C virus protease NS3 fused to maltose-binding protein (MBP) (Z2). Y1 facilitates expression300

of a MBP-single-chain antibody (scFv) fusion (Z1) that specifically binds to and thus inhibits NS3301

protease. Inhibition of NS3 protease activity through coexpression with single-chain antibodies in the302

cytoplasm of E. coli has been demonstrated previously [73]. Adding a recognition sequence to Y2 will303

further allow for its degradation by NS3. Importantly, this will require identification of sites in the Y2304

protein that allow for integration of the NS3 recognition sequence without compromising the catalytic305

activity of Y2. An additional requirement for the LC-Regulator would be constitutive expression of306

malE-scFv and malE-scNS3 as indicated in the dashed boxes in Figure 8. It is important to note that307

binding between the biomolecular species realising the annihilation reaction should ideally be irre-308

versible, which would likely require targeted engineering of a suitable antibody [74] or exploration of309

alternative protease-protease inhibitor pairs with exceptionally strong binding.310

7.2 D-Regulators311

Similar to R- and LC-Regulator, the implementation for D-Regulator I makes use of the interaction312

between NS3 protease and a suitable single-chain antibody (Figure 9A). However, the antibody is313

solely expressed from a constitutive promoter in this case. As a second protease-protease inhibitor314

pair, we suggest the E. coli Lon protease and the phage T4 protease inhibitor PinA as discussed in our315

previous work [75]. For this purpose, a suitable degradation tag should be added to Y1 and to avoid316

leaky integration due to endogenous Lon protease, a Lon-deficient E. coli strain, such as BL21(DE3)317

[76] should be used. Note that the latter protease-protease inhibitor pair can also be used for realizing318

the R-Regulator and LC-Regulator.319

To realize the two annihilation reactions in D-Regulator II (Figure 9B), we propose the use of sigma320

factors and anti-sigma factors as described previously [33, 77]. Specifically, Z3 could be the sigma321

factor SigW, which is constitutively expressed and mediates expression of SigF (Y1). SigF mediates322

expression on the anti-sigma factor RsiW (Z1), which binds to SigW. Analogous reactions are realized323

using SigM (Y2), SigB (Z4) and RsbW (Z2).324

The design for D-Regulator III may be more difficult to implement experimentally due to the re-325

quirement of a two-stage complex formation by three biomolecules (Z1, Z2 and Z3) in addition to326
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the requirement of Z3 catalysing the production of Y1 and Z2 inhibiting Y2. While it may be possible327

to achieve the desired behaviour of biomolecules using protein fusions and/or protein engineering,328

an alternative method to implement this design (as well as all the others) would be via molecular329

programming as discussed in the following section. In section S10 of the supplementary material,330

we further discuss some challenges and limitations of such in vivo implementations accompanied by331

simulations based on more realistic (non-ideal) conditions.332

7.3 Molecular programming implementation333

In molecular programming, an abstract reaction network is realized by designing a concrete chemical334

reaction network using engineered molecules, so that the latter network emulates the kinetics of the335

former. At the edges of the abstract network, appropriate chemical transducers must be introduced336

to interface the abstract network with the environment. While such transducers are specific to each337

application, the core network is generic, and DNA (natural or synthetic) is commonly used to con-338

struct it. These systems are typically tested in vitro in controlled environments, with the eventual aim339

of embedding them in living cells, in synthetic cells [78], or in other deployable physical media. We340

refer to [21], Section IV, for details of concrete synthetic DNA schemes in the context of biochemical341

regulation, and for literature overview. Suffices to say that all the reactions used in this paper can342

be systematically compiled into networks of synthetic molecules that well approximate the required343

mass action kinetics [79]. In particular, Section S11 of the supplementary material details the DNA344

strand-displacement realization of a bimolecular reaction A + B ⇌ C + D. A collection of such reac-345

tions (and their unimolecular special cases) can then realize the chemical reaction networks used in346

this paper. Tools are available to simulate strand displacement systems, e.g., to evaluate their fidelity347

to the corresponding chemical reaction networks [21, 22, 79].348

8 Discussion349

In this paper, we address the challenge of regulating biomolecular processes with two outputs of in-350

terest which are, in the general case, co-dependent due to coupling interactions. This co-dependence351

means that disturbances applied to one of the outputs will also affect the other - each of the output352

species may be part of a separate, independent network and, by extension, be subject to different per-353
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turbations. Thus, we propose control schemes for efficient and robust manipulation of such processes354

adopting concepts based on both output steady-state coupling and decoupling. The proposed regu-355

lators describe biomolecular configurations with appropriate feedback interconnections which, under356

some assumptions, result in closed-loop systems where different types of output regulation can be357

achieved.358

In particular, we present a variety of bio-controllers for regulating the ratio (R-Regulators) and359

linear combinations of the outputs (LC-Regulators) as well as each of the outputs individually (D-360

Regulators). At the core of their functioning lies a “hidden” integral feedback action realized in361

suitable ways in order to meet the control objectives for each case. Integral control is one of the362

most widely used strategies in traditional control engineering since it guarantees zero control error363

and constant disturbance rejection at the steady state. This is based on the fact that with this type364

of control, the existence of a positive/negative error, regardless of its magnitude, always generates an365

increasing/decreasing control signal. Essential structural components of these designs are production-366

inhibition loops [75] and/or annihilation reactions [32]. Moreover, to get a more practical insight, we367

consider a two-output biomolecular network with positive feedback coupling interactions. Treating368

the network as an open-loop system, we use our control designs to successfully manipulate its outputs369

under constant parameter perturbations and non-ideal conditions. At the same time, we discuss an370

alternative way of closing the loop in D-Regulator-II via a different controller species “pairing”.371

Although it may seem reasonable, we show that this feedback configuration leads to an unstable372

closed-loop system.373

Assuming a biologically meaningful equilibrium, the proposed designs can be used to regulate374

arbitrary biological processes provided that the closed-loop topologies are asymptotically stable. We375

therefore anticipate that they will be useful for building complex pathways that robustly respond to376

environmental perturbations in synthetic biology applications. To this end, we extensively discuss377

ways of achieving local closed-loop asymptotic stability while, for R- and LC- Regulator, we also378

present specific sufficient conditions based on the concept of positive realness. Furthermore, we379

describe possible experimental implementations of all regulators using either biomolecular species in380

E. coli or molecular programming.381

The regulation strategies presented in this work can be easily adapted to more complex networks382

to be controlled, than the one introduced in Specifying the biological network to be controlled. In383
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Section S12 of the supplementary material, we demonstrate the scalability of our control schemes384

to networks to be controlled with both monomolecular and bimolecular reactions, a high number of385

(strongly coupled) species and more than two outputs of interest. We also show that, in general, our386

control schemes do not require for actuator species to act directly on output species, as happens with387

the architectures discussed in the main text. In networks to be controlled with high number of acces-388

sible species, this can offer significant design flexibility, as different variations of our control schemes389

might be feasible. Our regulation strategies can be implemented through different biomolecular in-390

terconnections provided that the latter result in a stable closed-loop system with suitable memory391

variables and, by extension, in a desired steady-state output behaviour.392

Biological networks are inherently stochastic due to the probabilistic nature of biomolecular inter-393

actions [8, 80–83]. In the present study, we use deterministic mathematical analysis and simulations394

which offer a good approximation of the CRN dynamics when the biomolecular counts are sufficiently395

high. Thus, an interesting future endeavour would be to investigate the behaviour of our topologies396

within a stochastic mathematical framework examining, for instance, both the stationary mean and397

variance [63, 83–86]. Another interesting extension of our work would be to study the non-local398

behaviour of our topologies. For example, the region of attraction for an equilibrium point of interest399

can be estimated via Lyapunov functions [87]. Additionally, treating those topologies as interconnec-400

tions of suitably selected subsystems, dissipativity theory approaches based on storage functions can401

be used to assess the corresponding (local or global) stability [69, 70].402
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Figure 1: Open-loop biomolecular network and control architectures with steady-state coupling.
A Schematic representation of a general biomolecular network with two output species of interest, Y1, Y2, and an arbitrary
number of other species and/or biomolecular interactions. B Graphical representation of the different types of biochemical
reactions adopted from our previous work [75]: general transformation of reactants into products (A B ), catalytic
production (A A + B ), catalytic inhibition (A + B A ). Schematic representation of a general closed-loop
architecture using C R-Regulator (CRN (1)), D LC-Regulator (CRN (5)), E R- and LC- Regulator with an additional
inhibitory reaction (the biological parts enclosed in dashed boxes are only required for LC-Regulator).
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Figure 2: Control architectures with steady-state decoupling.
Schematic representation of a general closed-loop architecture using A D-Regulator I (CRN (8)), B D-Regulator II (CRN
(13)) and C D-Regulator III (CRN (14)).

Figure 3: Specifying the open-loop biomolecular network.
A A simple biological process with two mutually activating output species Y1, Y2, described by CRN (17). B Simulated
response of the topology in A using the ODE model (18) with the following parameters: b1 = 2 nM min−1, b2 = 1 nM
min−1, d1 = d2 = 1 min−1, α1 = 0.1 min−1, α2 = 0.4 min−1. At time t = 50 min, a disturbance on Y1 is introduced which
affects both output species. More specifically, the value of parameter b1 changes from 2 to 4.
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Figure 4: Regulating the ratio and an arbitrary linear combination of the outputs.
A A closed-loop architecture based on the open-loop network shown in Figure 3A and R-Regulator. For the simulated
response presented here the following parameters are used: k1 = 0.5 min−1, k2 = 1 min−1, k3 = 2 nM−1 min−1, η = 10
nM−1 min−1 while the rest of the parameters (associated with the open-loop network) are the same as the ones used in
Figure 3B. At time t = 50 min, a disturbance is applied (same as in Figure 3B) which alters the output steady states.

Nevertheless,
Y ∗

1
Y ∗

2
=

k2

k1
= 2 always holds (Equation (4)). B A closed-loop architecture based on the open-loop network

shown in Figure 3A and LC-Regulator. For the simulated response presented here the following parameters are used:
k1 = 1 min−1, k2 = 3 min−1, k3 = 2 nM−1 min−1, η = 10 nM−1 min−1, θ1 = 4 nM min−1, θ2 = 5 nM min−1. The rest
of the parameters (associated with the open-loop network) as well as the type of the disturbance (including the time
of entry) remain the same as in A. Although the output steady states change due to the presence of the disturbance,
k1Y ∗

1 − k2Y ∗
2 = θ2 −θ1 or Y ∗

1 −3Y ∗
2 = 1 always holds (Equation (7)).
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Figure 5: Regulating each output independently.
A A closed-loop architecture based on the open-loop network shown in Figure 3A and D-Regulator I. For the simulated
response presented here the following parameters are used: k1 = 2.5 min−1, k2 = 0.5 min−1, k3 = 2 nM−1 min−1, k4 = 2
nM−1 min−1, η1 = η2 = 10 nM−1 min−1, θ1 = 1.5 nM min−1, θ2 = 0.5 nM min−1 while the rest of the parameters
(associated with the open-loop network) are the same as the ones used in Figure 3B. Despite the presence of a disturbance,

Y ∗
1 =

θ1

k1
= 0.6 nM, Y ∗

2 =
θ2

k2
= 1 nM always hold (Equation (12)). B A closed-loop architecture based on the open-

loop network shown in Figure 3A and D-Regulator II. For the simulated response presented here the following parameters
are used: k1 = 1 min−1, k2 = 0.8 min−1, k3 = k4 = 0.5 min−1, η1 = η2 = 0.5 nM−1 min−1, θ1 = 10 nM min−1, θ2 = 8
nM min−1 while the rest of the parameters (associated with the open-loop network) are the same as the ones used in

Figure 3B. Despite the presence of a disturbance, Y ∗
1 =

θ1

k1
= 10 nM, Y ∗

2 =
θ2

k2
= 10 nM always hold (Equation (12)).

C A closed-loop architecture based on the open-loop network shown in Figure 3A and D-Regulator III. For the simulated
response presented here the following parameters are used: k1 = 0.5 min−1, k2 = 2 min−1, k3 = 0.5 min−1, k4 = 2 nM−1

min−1, η1 = 0.5 nM−1 min−1, η2 = 10 nM−1 min−1, θ1 = 8 nM min−1 while the rest of the parameters (associated with

the open-loop network) are the same as the ones used in Figure 3B. Despite the presence of a disturbance, Y ∗
1 =

θ1

k1
= 16

nM, Y ∗
2 =

θ1

k2
= 4 nM always hold (Equation (16)). The choice of the set-points in A, B and C is arbitrary while the

type of the disturbance (including the time of entry) is the same as in Figure 3B.
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Figure 6: A different feedback configuration regarding the topology shown in Figure 5B. It is based on D-Regulator
II with a different actuator-sensor species pairing which leads to instability.

Figure 7: Experimental realization of the network to be controlled described by CRN (17). It constitutes a gene
expression system of two mutually activated output species based on a positive feedback loop.

Figure 8: Experimental realization of the closed-loop architecture based on the open-loop network shown in Figure
7 and R-Regulator or LC-Regulator. The biological parts enclosed in dashed boxes are only required for LC-Regulator.
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Figure 9: Experimental realization of the closed-loop architecture based on the open-loop network shown in Figure
7 and A D-Regulator I, B D-Regulator II.
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S1 Modelling Assumptions12

The molecular interactions of the topologies presented in this work are described by chemical reaction13

networks (CRNs) under mass-action kinetics [1], unless otherwise stated.14

15

S2 LC-Regulator16

A general formulation of LC-Regulator (see Section 2.2 Regulating a linear combination of the17

outputs of the main text) providing a full characterization of the possible adjustments is given by the18

following system of Ordinary Differential Equations (ODEs):19

Ż1 = f1(Y1,Y2)−ηZ1Z2

Ż2 = f2(Y1,Y2)−ηZ1Z2

where fi = θi + ki1Y1 + ki2Y2 and i = 1,2.20

Provided that closed-loop stability (Ż1, Ż2, Ẏ1, Ẏ2 → 0 as t → ∞) can be achieved, we have at steady

state:

f1(Y1,Y2)− f2(Y1,Y2) = 0

or21

(k11 − k21)Y ∗
1 +(k12 − k22)Y ∗

2 = θ2 −θ1 (S1)

All possible versions of LC-Regulator can be obtained by selectively setting any of the rates ki1, ki222

(i = 1,2) in Equation (S1) to zero. Note that, for a given network to be controlled, not all versions23

might be capable of ensuring closed-loop stability.24

25

S3 Rein D-Regulator26

Exploiting the concept introduced in [2], we present rein D-Regulator. Assuming the general biomolec-

ular process depicted in Figure S1 as the network to be controlled, rein D-Regulator is composed of
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the following set of reactions:

Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , ∅

θ1
Z3 , ∅

θ2
Z4 , Z3

k3
Z3 +Y1 ,

Z4

k4
Z4 +Y2 , Z1 +Z3

η1
∅ , Z2 +Z4

η2
∅ ,

Y1 +Z1

k5
Z1 , Y2 +Z2

k6
Z2

As can be seen, rein D-Regulator is essentially a combination of D-Regulator I and II presented in27

Section 3 Control schemes with steady-state decoupling of the main text (see CRNs (8) and (13))28

and its behaviour can be described by the same equations as the latter regulators (see Equations (9a)-29

(9d), (10), (11), (12)).30

31

S4 Open-loop biological network32

The open-loop biological network introduced in Section 4 Specifying the biological network to be33

controlled of the main text is represented by the CRN (see Figure 3A) :34

∅
b1

Y1 , ∅
b2

Y2 , Y1

d1
∅ , Y2

d2
∅ ,

Y1

α2
Y1 +Y2 , Y2

α1
Y1 +Y2

(S2)

where b1, b2, d1, d2, α1, α2 ∈ R+.35

The dynamics of CRN (S2) are described by the system of ODEs:36




Ẏ1

Ẏ2


=



−d1 α1

α2 −d2







Y1

Y2


+




b1

b2


 (S3)

Using the linear transformations y1 = Y1 −Y ∗
1 , y2 = Y2 −Y ∗

2 , we get the following mathematically37

equivalent system:38 


ẏ1

ẏ2


=



−d1 α1

α2 −d2




︸ ︷︷ ︸
G1




y1

y2


 (S4)
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where

(
Y ∗

1 =
α1b2 +b1d2

d1d2 −α1α2
, Y ∗

2 =
α2b1 +b2d1

d1d2 −α1α2

)
is the unique positive steady state of (Y1, Y2) for any39

d1d2 > α1α2.40

The characteristic polynomial of system matrix G1 is:

Po(s) = det(G1 − sI) = s2 +(d1 +d2)s+d1d2 −α1α2

Both d1 + d2 and d1d2 −α1α2 are positive and, thus, matrix G1 is Hurwitz (Routh-Hurwitz crite-41

rion). Consequently, since system (S4) is linear, the origin is a globally exponentially stable steady42

state of (S4). By extension, (Y ∗
1 , Y ∗

2 ) is a globally exponentially stable steady state of system (S3).43

44

S5 Closed-loop biological networks45

Here we analyze the behaviour of the closed-loop systems presented in Section 5 Implementing the46

proposed regulation strategies of the main text.47

R-Regulator48

We have the CRN (see Figure 4A):

∅
b1

Y1 , ∅
b2

Y2 , Y1

d1
∅ , Y2

d2
∅ ,

Y1

α2
Y1 +Y2 , Y2

α1
Y1 +Y2 , Y1

k1
Y1 +Z1 ,

Y2

k2
Y2 +Z2 , Y2 +Z2

k3
Z2 , Z1 +Z2

η
∅

where b1, b2, d1, d2, α1, α2, k1, k2, k3, η ∈ R+.49

The corresponding ODE model is :50

Ẏ1 = b1 −d1Y1 +α1Y2 (S5a)

Ẏ2 = b2 −d2Y2 +α2Y1 − k3Y2Z2 (S5b)

Ż1 = k1Y1 −ηZ1Z2 (S5c)

Ż2 = k2Y2 −ηZ1Z2 (S5d)129



System (S5) has the following unique positive steady state if and only if λ1 = d1k2 −α1k1 > 0 and51

λ2 = b1(α2k2 −d2k1)+b2(d1k2 −α1k1)> 0:52

Y ∗
1 =

b1k2

λ1
(S6a)

Y ∗
2 =

b1k1

λ1
(S6b)

Z∗
1 =

b2
1k2

1k2k3

ηλ1λ2
(S6c)

Z∗
2 =

λ2

b1k1k3
(S6d)

Combining Equations (S6a), (S6b) yields:

Y ∗
1

Y ∗
2
=

k2

k1

By linearizing system (S5) around its steady state (S6) we get:53




Ẏ1

Ẏ2

Ż1

Ż2



=




−d1 α1 0 0

α2 −(d2 + k3Z∗
2) 0 −k3Y ∗

2

k1 0 −ηZ∗
2 −ηZ∗

1

0 k2 −ηZ∗
2 −ηZ∗

1




︸ ︷︷ ︸
GR




Y1

Y2

Z1

Z2




(S7)

If all the eigenvalues of system (S7) have a negative real part - matrix GR is Hurwitz - , then (S6)54

is a locally exponentially stable steady state for system (S5). This stability criterion can be easily55

checked for a given set of parameters and was taken into account in all the simulations depicted56

in Section 5 Implementing the proposed regulation strategies of the main text. Of course, as57

shown in this section, different closed-loop networks may result in different stability matrices. Finally,58

parameter regimes that guarantee local stability in each case can be found by applying the Routh-59

Hurwitz criterion.60
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LC-Regulator61

We have the CRN (see Figure 4B):

∅
b1

Y1 , ∅
b2

Y2 , Y1

d1
∅ , Y2

d2
∅ Y1

α2
Y1 +Y2 ,

Y2

α1
Y1 +Y2 , ∅

θ1
Z1 , ∅

θ2
Z2 Y1

k1
Y1 +Z1 ,

Y2

k2
Y2 +Z2 , Y2 +Z2

k3
Z2 , Z1 +Z2

η
∅

where b1, b2, d1, d2, α1, α2, θ1, θ2, k1, k2, k3, η∈ R+.62

The corresponding ODE model is :63

Ẏ1 = b1 −d1Y1 +α1Y2 (S8a)

Ẏ2 = b2 −d2Y2 +α2Y1 − k3Y2Z2 (S8b)

Ż1 = θ1 + k1Y1 −ηZ1Z2 (S8c)

Ż2 = θ2 + k2Y2 −ηZ1Z2 (S8d)

with the following unique steady state:64

Y ∗
1 =

λ3

λ1
(S9a)

Y ∗
2 =

λ4

λ1
(S9b)

Z∗
1 =

k3λ4λ5

ηλ1λ6
(S9c)

Z∗
2 =

λ6

k3λ4
(S9d)

where λ3 = b1k2 −α1(θ2 −θ1), λ4 = b1k1 −d1(θ2 −θ1), λ5 = b1k1k2 −α1k1θ2 +d1k2θ1, λ6 = λ2 +65

(d1d2 −α1α2)(θ2 −θ1). Here, we are interested in parameter regimes for which the steady state (S9)66

is positive.67

Using Equations (S9a), (S9b) we calculate:68

k1Y ∗
1 − k2Y ∗

2 =
1
λ1

(k1λ3 − k2λ4) (S10)
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Taking into account the definitions of λ1, λ3 and λ4 above, relationship (S10) can be rewritten as:

k1Y ∗
1 − k2Y ∗

2 =
k1k2b1 − k1k2b1 +(θ2 −θ1)(d1k2 −α1k1)

d1k2 −α1k1

or

k1Y ∗
1 − k2Y ∗

2 = θ2 −θ1

Moreover, linearizing system (S8) around its steady state (S9) results in system (S7).69

D-Regulator-I70

We have the CRN (see Figure 5A):

∅
b1

Y1 , ∅
b2

Y2 , Y1

d1
∅ , Y2

d2
∅ Y1

α2
Y1 +Y2 ,

Y2

α1
Y1 +Y2 , Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , Y1 +Z1

k3
Z1 ,

Y2 +Z2

k4
Z2 ∅

θ1
Z3 , ∅

θ2
Z4 , Z1 +Z3

η1
∅ ,

Z2 +Z4

η2
∅

where b1, b2, d1, d2, α1, α2, θ1, θ2, k1, k2, k3, k4, η1, η2 ∈ R+.71

The corresponding ODE model is :72

Ẏ1 = b1 −d1Y1 +α1Y2 − k3Y1Z1 (S11a)

Ẏ2 = b2 −d2Y2 +α2Y1 − k4Y2Z2 (S11b)

Ż1 = k1Y1 −η1Z1Z3 (S11c)

Ż2 = k2Y2 −η2Z2Z4 (S11d)

Ż3 = θ1 −η1Z1Z3 (S11e)

Ż4 = θ2 −η2Z2Z4 (S11f)

System (S11) has the following unique positive steady state if and only if λ7 = b1k1k2 +α1k1θ2 −73
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d1k2θ1 > 0 and λ8 = b2k1k2 +α2k2θ1 −d2k1θ2 > 0:74

Y ∗
1 =

θ1

k1
(S12a)

Y ∗
2 =

θ2

k2
(S12b)

Z∗
1 =

λ7

k2k3θ1
(S12c)

Z∗
2 =

λ8

k1k4θ2
(S12d)

Z∗
3 =

k2k3θ 2
1

η1λ7
(S12e)

Z∗
4 =

k1k4θ 2
2

η2λ8
(S12f)

Linearization of system (S11) around its steady state (S12) gives:




Ẏ1

Ẏ2

Ż1

Ż2

Ż3

Ż4




=




−(d1 + k3Z∗
1) α1 −k3Y ∗

1 0 0 0

α2 −(d2 + k4Z∗
2) 0 −k4Y ∗

2 0 0

k1 0 −η1Z∗
3 0 −η1Z∗

1 0

0 k2 0 −η2Z∗
4 0 −η2Z∗

2

0 0 −η1Z∗
3 0 −η1Z∗

1 0

0 0 0 −η2Z∗
4 0 −η2Z∗

2




︸ ︷︷ ︸
GDI




Y1

Y2

Z1

Z2

Z3

Z4




D-Regulator-II75

We have the CRN (see Figure 5B):

∅
b1

Y1 , ∅
b2

Y2 , Y1

d1
∅ , Y2

d2
∅ Y1

α2
Y1 +Y2 ,

Y2

α1
Y1 +Y2 , Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , ∅

θ1
Z3 ,

∅
θ2

Z4 , Z3

k3
Z3 +Y1 Z4

k4
Z4 +Y2 Z1 +Z3

η1
∅ ,

Z2 +Z4

η2
∅

where b1, b2, d1, d2, α1, α2, θ1, θ2, k1, k2, k3, k4, η1, η2 ∈ R+.76
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The corresponding ODE model is :77

Ẏ1 = b1 −d1Y1 +α1Y2 + k3Z3 (S13a)

Ẏ2 = b2 −d2Y2 +α2Y1 + k4Z4 (S13b)

Ż1 = k1Y1 −η1Z1Z3 (S13c)

Ż2 = k2Y2 −η2Z2Z4 (S13d)

Ż3 = θ1 −η1Z1Z3 (S13e)

Ż4 = θ2 −η2Z2Z4 (S13f)

System (S13) has the following unique positive steady state if and only if λ7 = b1k1k2 +α1k1θ2 −78

d1k2θ1 < 0 and λ8 = b2k1k2 +α2k2θ1 −d2k1θ2 < 0:79

Y ∗
1 =

θ1

k1
(S14a)

Y ∗
2 =

θ2

k2
(S14b)

Z∗
1 = −k1k2k3θ1

η1λ7
(S14c)

Z∗
2 = −k1k2k4θ2

η2λ8
(S14d)

Z∗
3 = − λ7

k1k2k3
(S14e)

Z∗
4 = − λ8

k1k2k4
(S14f)

We linearize system (S13) around its steady state (S14) to obtain:




Ẏ1

Ẏ2

Ż1

Ż2

Ż3

Ż4




=




−d1 α1 0 0 k3 0

α2 −d2 0 0 0 k4

k1 0 −η1Z∗
3 0 −η1Z∗

1 0

0 k2 0 −η2Z∗
4 0 −η2Z∗

2

0 0 −η1Z∗
3 0 −η1Z∗

1 0

0 0 0 −η2Z∗
4 0 −η2Z∗

2




︸ ︷︷ ︸
GDII




Y1

Y2

Z1

Z2

Z3

Z4



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D-Regulator-III80

We have the CRN (see Figure 5C):

∅
b1

Y1 , ∅
b2

Y2 , Y1

d1
∅ , Y2

d2
∅ Y1

α2
Y1 +Y2 ,

Y2

α1
Y1 +Y2 , Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , ∅

θ1
Z3 ,

Z3

k3
Z3 +Y1 , Y2 +Z2

k4
Z2 , Z1 +Z3

η1
C , Z2 +C

η2
∅

where b1, b2, d1, d2, α1, α2, θ1, k1, k2, k3, k4, η1, η2 ∈ R+.81

The corresponding ODE model is :82

Ẏ1 = b1 −d1Y1 +α1Y2 + k3Z3 (S15a)

Ẏ2 = b2 −d2Y2 +α2Y1 − k4Y2Z2 (S15b)

Ż1 = k1Y1 −η1Z1Z3 (S15c)

Ż2 = k2Y2 −η2Z2C (S15d)

Ż3 = θ1 −η1Z1Z3 (S15e)

Ċ = η1Z1Z3 −η2Z2C (S15f)

System (S15) has the following unique positive steady state if and only if λ9 =−b1k1k2+θ1λ1 > 083

and λ10 = b2k1k2 +θ1(α2k2 −d2k1)> 0:84

Y ∗
1 =

θ1

k1
(S16a)

Y ∗
2 =

θ1

k2
(S16b)

Z∗
1 =

k1k2k3θ1

η1λ9
(S16c)

Z∗
2 =

λ10

k1k4θ1
(S16d)

Z∗
3 =

λ9

k1k2k3
(S16e)

C∗ =
k1k4θ 2

1
η2λ10

(S16f)
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Linearization of system (S15) around its steady state (S16) yields:




Ẏ1

Ẏ2

Ż1

Ż2

Ż3

Ċ




=




−d1 α1 0 0 k3 0

α2 −(d2 + k4Z∗
2) 0 −k4Y ∗

2 0 0

k1 0 −η1Z∗
3 0 −η1Z∗

1 0

0 k2 0 −η2C∗ 0 −η2Z∗
2

0 0 −η1Z∗
3 0 −η1Z∗

1 0

0 0 η1Z∗
3 −η2C∗ η1Z∗

1 −η2Z∗
2




︸ ︷︷ ︸
GDIII




Y1

Y2

Z1

Z2

Z3

C




85

86

S6 D-Regulator-II: A different feedback configuration87

In this section we explore a different way of “closing the loop” in D-Regulator-II (see Section S5 D-88

Regulator-II). More specifically, we “pair” species Z1, Z4 and Z2, Z3 by assuming they can annihilate89

each other.90

The resulting CRN is (see Figure 6):

∅
b1

Y1 , ∅
b2

Y2 , Y1

d1
∅ , Y2

d2
∅ Y1

α2
Y1 +Y2 ,

Y2

α1
Y1 +Y2 , Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , ∅

θ1
Z3 ,

∅
θ2

Z4 , Z3

k3
Z3 +Y1 Z4

k4
Z4 +Y2 Z1 +Z4

η1
∅ ,

Z2 +Z3

η2
∅

where b1, b2, d1, d2, α1, α2, θ1, θ2, k1, k2, k3, k4, η1, η2 ∈ R+.91
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The corresponding ODE model is :92

Ẏ1 = b1 −d1Y1 +α1Y2 + k3Z3 (S17a)

Ẏ2 = b2 −d2Y2 +α2Y1 + k4Z4 (S17b)

Ż1 = k1Y1 −η1Z1Z4 (S17c)

Ż2 = k2Y2 −η2Z2Z3 (S17d)

Ż3 = θ1 −η2Z2Z3 (S17e)

Ż4 = θ2 −η1Z1Z4 (S17f)

For any λ11 = d2k1θ1 − α2k2θ2 − b2k1k2 > 0 and λ12 = d1k2θ2 −α1k1θ1 −b1k1k2 > 0, system93

(S17) has a unique positive steady state:94

Y ∗
1 =

θ2

k1
(S18a)

Y ∗
2 =

θ1

k2
(S18b)

Z∗
1 =

k1k2k4θ2

η1λ11
(S18c)

Z∗
2 =

k1k2k3θ1

η2λ12
(S18d)

Z∗
3 =

λ12

k1k2k3
(S18e)

Z∗
4 =

λ11

k1k2k4
(S18f)

By linearizing system (S17) around its steady state (S18) we get:95




Ẏ1

Ẏ2

Ż1

Ż2

Ż3

Ż4




=




−d1 α1 0 0 k3 0

α2 −d2 0 0 0 k4

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11




︸ ︷︷ ︸
GDFII




Y1

Y2

Z1

Z2

Z3

Z4




(S19)

where µ14 = η1Z∗
4 , µ11 = η1Z∗

1 , µ23 = η2Z∗
3 and µ22 = η2Z∗

2 .96
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The determinant of matrix GDFII can be calculated as follows:

detGDFII =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d1 α1 0 0 k3 0

α2 −d2 0 0 0 k4

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

α2 −d2 0 0 0 k4

−d1 α1 0 0 k3 0

0 k2 0 −µ23 −µ22 0

0 0 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 −d2
α2µ14

k1
0 0 k1k4+α2µ11

k1

−d1 α1 0 0 k3 0

0 k2 0 −µ23 −µ22 0

0 0 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 −d2
α2µ14

k1
0 0 k1k4+α2µ11

k1

0 α1 −d1µ14
k1

0 k3 −d1µ11
k1

0 k2 0 −µ23 −µ22 0

0 0 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 α1 −d1µ14
k1

0 k3 −d1µ11
k1

0 −d2
α2µ14

k1
0 0 k1k4+α2µ11

k1

0 0 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −d1µ14
k1

α1µ23
k2

k2k3+α1µ22
k2

−d1µ11
k1

0 −d2
α2µ14

k1
0 0 k1k4+α2µ11

k1

0 0 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −d1µ14
k1

α1µ23
k2

k2k3+α1µ22
k2

−d1µ11
k1

0 0 α2µ14
k1

−d2µ23
k2

−d2µ22
k2

k1k4+α2µ11
k1

0 0 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

0 0 α2µ14
k1

−d2µ23
k2

−d2µ22
k2

k1k4+α2µ11
k1

0 0 0 −µ23 −µ22 0

0 0 −d1µ14
k1

α1µ23
k2

k2k3+α1µ22
k2

−d1µ11
k1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

0 0 0 −d2µ23
k2

−d2µ22
k2

k4

0 0 0 −µ23 −µ22 0

0 0 −d1µ14
k1

α1µ23
k2

k2k3+α1µ22
k2

−d1µ11
k1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

0 0 0 −d2µ23
k2

−d2µ22
k2

k4

0 0 0 −µ23 −µ22 0

0 0 0 α1µ23
k2

k2k3+α1µ22
k2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

0 0 0 α1µ23
k2

k2k3+α1µ22
k2

0

0 0 0 −µ23 −µ22 0

0 0 0 −d2µ23
k2

−d2µ22
k2

k4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

0 0 0 α1µ23
k2

k2k3+α1µ22
k2

0

0 0 0 0 k2k3
α1

0

0 0 0 −d2µ23
k2

−d2µ22
k2

k4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=(−1)4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

0 0 0 α1µ23
k2

k2k3+α1µ22
k2

0

0 0 0 0 k2k3
α1

0

0 0 0 0 d2k3
α1

k4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

0 0 0 α1µ23
k2

k2k3+α1µ22
k2

0

0 0 0 0 d2k3
α1

k4

0 0 0 0 k2k3
α1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 0 −µ14 0 0 −µ11

0 k2 0 −µ23 −µ22 0

0 0 −µ14 0 0 −µ11

0 0 0 α1µ23
k2

k2k3+α1µ22
k2

0

0 0 0 0 d2k3
α1

k4

0 0 0 0 0 −k2k4
d2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

or97

detGDFII =−k1k2k3k4µ14µ23 (S20)

since the determinant of a triangular matrix is equal to the product of the entries on the main diagonal.98

Note also the following:99

• The degree of the characteristic polynomial of matrix GDFII , PDFII(s) = det(GDFII − sI), and,100

by extension, the number of the eigenvalues of system (S19) is 6 (counting multiplicities).101

• The product of the eigenvalues of system (S19) is equal to detGDFII .102

• All the entries of matrix GDFII are real. Consequently, its complex eigenvalues (if they exist)103

occur in conjugate pairs.104

• The product of a complex number and its conjugate is a real, non-negative number.105

• As already discussed, the parameters and the steady state of the system under consideration are106

positive. Thus, Equation (S20) indicates that detGDFII < 0107

We therefore conclude that at least one of the eigenvalues of system (S19) is real and positive. This108

implies that steady state (S18) cannot be stable and, thus, the feedback configuration in question does109 140



not constitute an efficient regulation strategy.110

111

S7 Perturbation of multiple kinetic parameters112

We consider the following closed-loop ODE models (see section S5):113

114

R-Regulator115

Ẏ1 = b1 −d1Y1 +α1Y2 − k4Y1Z1

Ẏ2 = b2 −d2Y2 +α2Y1 − k3Y2Z2

Ż1 = k1Y1 −ηZ1Z2

Ż2 = k2Y2 −ηZ1Z2

LC-Regulator116

Ẏ1 = b1 −d1Y1 +α1Y2 − k4Y1Z1

Ẏ2 = b2 −d2Y2 +α2Y1 − k3Y2Z2

Ż1 = θ1 + k1Y1 −ηZ1Z2

Ż2 = θ2 + k2Y2 −ηZ1Z2

D-Regulator-III117

Ẏ1 = b1 −d1Y1 +α1Y2 + k3Z3

Ẏ2 = b2 −d2Y2 +α2Y1 − k4Y2Z2

Ż1 = k1Y1 −η1Z1Z3

Ż2 = k2Y2 −η2Z2C

Ż3 = θ1 −η1Z1Z3

Ċ = η1Z1Z3 −η2Z2C
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Note that for R- and LC-Regulator, we also take into account an additional inhibitory reaction118

Y1 +Z1

k4
Z1 (see Section 2 Control schemes with steady-state coupling).119

In Figure S2 we illustrate the robust steady-state tracking property of the above regulators by per-120

turbing multiple parameters (reaction rates). The regulators are able to track set-point changes and121

reject disturbances applied on the system parameters (not involved in the set-point).122

Depending on the experimental setting (see Section 7 Experimental realization of the main text),123

different biomolecular processes might be less/more prone to disturbances. Here, we exemplify the124

potential biological relevance of disturbances (stemming from a natural or synthetic source) that can125

directly affect the output species (Y1, Y2) in common in vivo experimental settings:126

• Production/activation reactions involving the output species. These reactions might represent127

gene expression processes where disturbances can be applied as an increase/decrease of the128

corresponding regulator (activator/repressor) species. The relevant mathematical terms in the129

above ODE models are: b1, b2, α1Y2, α2Y1.130

• Degradation reactions involving the output species. Assuming that the output species represent131

some proteins of interest, disturbances can be applied via the action of proteases. The relevant132

mathematical terms in the above ODE models are : −d1Y1, −d2Y2.133

S8 Controller species degradation and adaptation134

Our analysis has focused so far on biomolecular architectures where the controller species are not135

affected by degradation mechanisms - they are only lost due to annihilation/antithetic reactions. This136

is a requirement for constructing ideal integral controllers and might be able to approximate well ex-137

perimental realizations where such degradation mechanisms, if present, can be considered practically138

negligible. Nevertheless, this is not often the case when it comes to implementations in living sys-139

tems (see Section S10). Degradation of controller species generally leads to a phenomenon known as140

“leaky” integration, affecting the adaptation property of the system and, thus, inducing steady-state141

errors [3–5].142

We now consider the closed-loop architectures discussed in Section S7 and we appropriately mod-143

ify the corresponding ODE models to incorporate the action of controller species degradation. We144

therefore have:145 142



R-Regulator146

Ẏ1 = b1 −d1Y1 +α1Y2 − k4Y1Z1

Ẏ2 = b2 −d2Y2 +α2Y1 − k3Y2Z2

Ż1 = k1Y1 −ηZ1Z2 − γZ1

Ż2 = k2Y2 −ηZ1Z2 − γZ2

LC-Regulator147

Ẏ1 = b1 −d1Y1 +α1Y2 − k4Y1Z1

Ẏ2 = b2 −d2Y2 +α2Y1 − k3Y2Z2

Ż1 = θ1 + k1Y1 −ηZ1Z2 − γZ1

Ż2 = θ2 + k2Y2 −ηZ1Z2 − γZ2

D-Regulator-III148

Ẏ1 = b1 −d1Y1 +α1Y2 + k3Z3

Ẏ2 = b2 −d2Y2 +α2Y1 − k4Y2Z2

Ż1 = k1Y1 −η1Z1Z3 − γZ1

Ż2 = k2Y2 −η2Z2C− γZ2

Ż3 = θ1 −η1Z1Z3 − γZ3

Ċ = η1Z1Z3 −η2Z2C− γC

where γ ∈ R+ represents a degradation rate constant. In D-Regulator-III, we assume that the com-149

plex C is degraded, too.150

To observe the “leakiness” regarding the integral action taking place within the above regulators,151

one can calculate the resulting memory variables, which are different from the corresponding (ideal)152

ones presented in Section 2 Control schemes with steady-state coupling and Section 3 Control153

schemes with steady-state decoupling of the main text:154

155
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R-Regulator156

(Z1 −Z2)(t) = k1

∫
t

0

(
Y1(τ)−

k2

k1
Y2(τ)−

γ
k1

(
Z1(τ)−Z2(τ)

))
dτ

LC-Regulator157

(Z1 −Z2)(t) =

∫
t

0

((
k1Y1(τ)− k2Y2(τ)

)
−
(

θ2 −θ1

)
− γ
(

Z1(τ)−Z2(τ)
))

dτ

D-Regulator-III

(Z3 −Z1)(t) = k1

∫
t

0

(
θ1

k1
−Y1 −

γ
k1

(
Z3(τ)−Z1(τ)

))
dτ

and

(Z3 +C−Z2)(t) = k2

∫
t

0

(
θ1

k2
−Y2 −

γ
k2

(
Z3(τ)+C(τ)−Z2(τ)

))
dτ

In Figures S3, S4 and S5-S6 we computationally investigate the negative effect of controller species158

degradation on the behaviour of R-Regulator, LC-Regulator and D-Regulator III, respectively. More159

specifically, we show that as γ increases, the behaviour of these systems deviates from the ideal160

one and their capacity to reject disturbances diminishes. At the same time, it is demonstrated that161

the aforementioned effect can be mitigated via appropriate parameter tuning. Here, we focus on162

the following parameters: inhibitory rate k3 and annihilation rate η regarding R-Regulator and LC-163

Regulator, production rate k3 and annihilation rates η1, η2 regarding D-Regulator-III.164

165

S9 Feedback interconnection and closed-loop stability166

Useful mathematical concepts167

• Here we deal with linear, time-invariant systems whose input-output relationship in the Laplace168

domain can be described by a proper, rational and square transfer function matrix H(s), where169

s ∈ C is the Laplace variable.170

• A state-space realization (A,B,C,D) of H(s) is said to be a minimal realization of H(s) if A171
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has the smallest possible dimension (i.e. the fewest number of states). The smallest dimension172

is called the McMillan degree of H(s). A mode is hidden if it is not state controllable or173

observable and thus does not appear in the minimal realization (Definition 4.3 in [6]). Moreover,174

a state-space realization is minimal if and only if (A,B) is state controllable and (A,C) is state175

observable [6]. Here, we consider only such state-space realizations.176

• The transfer matrix H(s) ∈ Cm×m is positive real (PR) if i) H(s) has no pole in Re[s]> 0, ii)177

H(s) is real for all positive real s, iii) H(s)+HH(s) ≽ 0 for all Re[s]> 0. (Definition 2.34 in178

[7]).179

• A rational transfer matrix H(s) ∈ Cm×m is weakly strictly positive real (WSPR) if i) H(s) is180

analytic in Re[s]≥ 0, ii) H( jω)+HT (− jω)≻ 0 for all ω ∈ R. (Definition 2.77 in [7]).181

The notations H and T indicate the conjugate transpose and the transpose of a matrix, respectively182

while ≻ (≽) indicates a positive definite (positive-semidefinite) matrix.183

R- and LC- Regulator and closed-loop behaviour184

We consider a general (“cloud”) biomolecular process (see Figure 1A) consisting of q species, Y1,Y2, . . . ,Yq185

which participate in an arbitrary number of chemical reactions following mass action kinetics. The186

dynamics of the process can be represented as:187

Ẏ = f (Y ) (S27)

where Y = [Y1 Y2 . . . Yq]
T . Species Y1,Y2 are treated as the species of interest.188

We now consider the feedback configuration depicted in Figure 1E where R-Regulator and LC-189

Regulator are used to control the target (output) species, Y1,Y2, of the aforementioned “cloud” process.190

Given the analysis of Section 2 Control schemes with steady-state coupling of the main text and191

Equation (S27), we have for the closed-loop dynamics:192
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• R-Regulator case193

Ẏ = f (Y )−ξ1k4Y1Z1 −ξ2k3Y2Z2 (S28a)

Ż1 = k1Y1 −η1Z1Z3 (S28b)

Ż2 = k2Y2 −η2Z2Z4 (S28c)

• LC-Regulator case194

Ẏ = f (Y )−ξ1k4Y1Z1 −ξ2k3Y2Z2 (S29a)

Ż1 = θ1 + k1Y1 −η1Z1Z3 (S29b)

Ż2 = θ2 + k2Y2 −η2Z2Z4 (S29c)

where ξ1 = [1 0 . . . 0]T , ξ2 = [0 1 . . . 0]T ∈ Zq and b1, b2, d1, d2, α1, α2, θ1, θ2, k1, k2, k3, k4, η195

∈ R+.196

We assume a finite, positive steady state (equilibrium) of interest E = (Y ∗
1 ,Y

∗
2 , . . . ,Y

∗
q ,Z

∗
1 ,Z

∗
2) and197

we focus on the behaviour of the above closed-loop systems around it. We therefore adopt the coor-198

dinate transformations y1 = Y1 −Y ∗
1 ,y2 = Y2 −Y ∗

2 , . . . ,yq = Yq −Y ∗
q ,z1 = Z1 −Z∗

1 ,z2 = Z2 −Z∗
2 which199

denote small perturbations around the aforementioned steady state. The resulting linearized dynamics200

of both systems (S28) and (S29) are described as:201




ẏ

ż1

ż2



=




Ap −ξ1k4Y ∗
1 −ξ2k3Y ∗

2

ξ T
1 k1 −ηZ∗

2 −ηZ∗
1

ξ T
2 k2 −ηZ∗

2 −ηZ∗
1







y

z1

z2




(S30)

where y = [y1 y2 . . . yq]
T and Ap =

∂ f
∂y

∣∣∣∣
E
−ξ1k4Z∗

1 −ξ2k3Z∗
2 .202

System (S30) can be seen as the negative feedback interconnection of two subsystems representing203

the (linearized) “cloud” process and the controller, respectively. More specifically, we have:204

ẏ = Apy+Bpup (S31a)

wp =Cpy+Dpup (S31b)
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and205

ż = Acz+Bcuc (S32a)

wc =Ccz+Dcuc (S32b)

where z = [z1 z2]
T , up = [u1p u2p]

T , uc = [u1c u2c]
T , Ac =



−ηZ∗

2 −ηZ∗
1

−ηZ∗
2 −ηZ∗

1


 Bp = [ξ1 ξ2], Bc =206




k1 0

0 k2


, Cp = [ξ1 ξ2]

T , Cc =




k4 0

0 k3


, Dp = Dc = 0. In addition, up =−wc and uc = wp.207

208

We now calculate the transfer function matrix corresponding to state-space model (S32) as Hc(s) =209

Cc(sI −Ac)
−1 +Dc to obtain:210

Hc(s) =




k1k4(s+ηZ∗
1)

s(s+η(Z∗
1+Z∗

2))
−k2k4ηZ∗

1
s(s+η(Z∗

1+Z∗
2))

−k1k3ηZ∗
2

s(s+η(Z∗
1+Z∗

2))
k2k3(s+ηZ∗

2)
s(s+η(Z∗

1+Z∗
2))


 (S33)

Here Wc(s) = Hc(s)Uc(s), where Wc(s) and Uc(s) are the Laplace transform of wc and uc, respectively.211

212

Theorem If k2k4Z∗
1 = k1k3Z∗

2 , then the transfer function matrix Hc(s) (Equation (S33)) is positive213

real (PR).214

Proof. For k2k4Z∗
1 = k1k3Z∗

2 , Equation (S33) can be written as:215

Hc(s) =




k1k4(s+ηZ∗
1)

s(s+η(Z∗
1+Z∗

2))
−k2k4ηZ∗

1
s(s+η(Z∗

1+Z∗
2))

−k2k4ηZ∗
1

s(s+η(Z∗
1+Z∗

2))

k2k3(s+η k2k4
k1k3

Z∗
1)

s(s+η(Z∗
1+Z∗

2))


 (S34)

Transfer function matrix (S34) has no poles in Re[s]> 0.216

We also calculate:

Hc( jω)+HH
c ( jω) =




1
k3

2k2k2
4ηZ∗

1
ω2+η2(Z∗

1+Z∗
2)

2
2k2k4ηZ∗

1
ω2+η2(Z∗

1+Z∗
2)

2

2k2k4ηZ∗
1

ω2+η2(Z∗
1+Z∗

2)
2

2k2k3ηZ∗
1

ω2+η2(Z∗
1+Z∗

2)
2




Hc( jω)+HH
c ( jω)≽ 0 since tr

(
Hc( jω)+HH

c ( jω)
)
> 0 and det

(
Hc( jω)+HH

c ( jω)
)
= 0 for all ω .217

In addition, jω0 is a simple pole of transfer function matrix (S34) with ω0 = 0 while the corre-
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sponding residual is:

K0 = lim
s→0

sHc(s) =




k1k4ηZ∗
1

η(Z∗
1+Z∗

2)
−k2k4ηZ∗

1
η(Z∗

1+Z∗
2)

−k2k4ηZ∗
1

η(Z∗
1+Z∗

2)
k2

2k4ηZ∗
1

k1η(Z∗
1+Z∗

2)




K0 ≽ 0 since tr(K0)> 0 and det(K0) = 0.218

Thus, according to Theorem 2.48 in [7] transfer function matrix (S34) is PR.219

Let now Hp(s) be the transfer function matrix corresponding to state-space model (S31). According220

to Lemma 3.67 in [7], if Hp(s) is WSPR, then the closed-loop system (S30) is asymptotically stable.221

Toy example222

We consider a closed-loop system based on R-Regulator described by the following CRN:

∅
b1

Y1 , ∅
b2

Y2 , Y1

k1
Y1 +Z1 ,

Y2

k2
Y2 +Z2 , Z1 +Z2

η
∅ ,

Y1 +Z1

k4
Z1 , Y2 +Z2

k3
Z2

For simplicity, we assume unitary kinetic parameter values and obtain the following ODE model for223

the dynamics:224

Ẏ1 = 1−Y1Z1 (S35a)

Ẏ2 = 1−Y2Z2 (S35b)

Ż1 = Y1 −Z1Z2 (S35c)

Ż2 = Y2 −Z1Z2 (S35d)

The point E = (1,1,1,1) is a steady state for system (S35). The linearized dynamics about E is given225

by:226 


ẏ1

ẏ2

ż1

ż2



=




−1 0 −1 0

0 −1 0 −1

1 0 −1 −1

0 1 −1 −1







y1

y2

z1

z2




(S36)
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As can be seen, k2k4Z∗
1 = k1k3Z∗

2 = 1.227

Moreover:228

Hp(s) =Cp(sI −Ap)
−1 +Dp =




1
s+1 0

0 1
s+1


 (S37)

which is analytic in Re[s]≥ 0.229

We also calculate:

Hp( jω)+HH
p ( jω) =




2
ω2+1 0

0 2
ω2+1




Hp( jω)+HH
p ( jω)≽ 0 since tr

(
Hc( jω)+HH

c ( jω)
)
, det

(
Hc( jω)+HH

c ( jω)
)
> 0 for all ω .230

Consequently, transfer function matrix (S37) is WSPR (see the respective definition in Useful231

mathematical concepts). We therefore conclude that closed-loop system (S36) is asymptotically232

stable. To confirm this, we compute the eigenvalues of its dynamics matrix: −1.5 ± j0.87 and233

−0.5± j0.87 (they all have negative real parts).234

Finally, note that in case we had R-Regulator with only one inhibitory reaction (either Y1 +Z1

k4
Z1235

or Y2 +Z2

k3
Z2 ) we can immediately see from ODE model (S35) that one of the target236

species - Y2 or Y1 respectively - would go to infinity since the corresponding derivative would al-237

ways be positive.238

239

S10 In vivo implementations240

Practical considerations241

Here we discuss some key challenges/limitations with respect to the experimental implementations in242

Escherichia coli presented in Section 7 Experimental realization of the main text. It is worth noting243

that the points raised below are also relevant to potential implementations in other types of organisms,244

such as yeast or mammalian cells.245

• Biochemical reactions of the form A
r

A+B are realized via gene expression processes.246

Although this is a common approach, it is important to emphasize that it is valid only in a247

specific regime due to the limited capacity of promoters [5, 8]. In particular, in the reaction248
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under consideration the formation rate of product B is proportional to the concentration of the249

regulator (activator) species A. In other words, the formation rate is a linear function of A,250

i.e.
dB
dt

= rA (r ∈ R+). Taking into account the process of gene expression, this rate can be251

modelled via a Michaelis-Menten function of the form:252

g(A) =Vmax
A

A+Km

where Vmax, Km ∈ R+ is the maximal production rate and the Michaelis-Menten constant, re-253

spectively. Consequently, the system needs to operate in its first-order regime (linear range)254

which can be achieved if Km ≫ A. On the other hand, if saturation occurs, i.e. Km ≪ A, then255

g(A)≈Vmax and the formation rate of B becomes effectively independent of A.256

• Biochemical reactions of the form A+B
r

∅ (annihilation/antithetic reactions) corre-257

spond to processes where two species are able to bind to each other, forming an inert complex,258

i.e. A+B
r1

A : B . However, in reality the reverse reaction, A : B
r2

A+B also259

takes place which can compromise the performance of the overall circuit if its rate is not suffi-260

ciently small.261

The actual in vivo binding/unbinding rates regarding the “antithetic pairs” used in the proposed262

experimental implementations are generally not well-defined in the literature. In fact, only the263

sigma/anti-sigma factors SigW/RsiW (in D-Regulator II) have been successfully tested in living264

cells for realizing antithetic integral feedback [5]. It therefore remains unclear if the rest of the265

“antithetic pairs” are suitable for this purpose in practice.266

• The species of the annihilation/antithetic reactions ( A+B
r

∅ ) are supposed to be lost267

solely due to these reactions. In case they participate in additional decay processes, then the268

performance of the overall circuit might be affected (see Section S8). Nevertheless, the presence269

of such decay mechanisms in living cells is, to some extent, unavoidable. A characteristic270

example is the phenomenon of dilution caused by cell growth [3, 5].271

For a genetic circuit operating under non-ideal conditions, such as the above, appropriate parameter272

tuning is often required to achieve an acceptable performance. The most important feature that the273

latter entails is achieving sufficiently small output steady-state errors in the presence of disturbances.274 150



An often convenient way to identify operating regimes that include this feature (assuming such oper-275

ating regimes exist) is the following [5]: computing the differences between the output steady-states276

quantities of interest in the absence of a disturbance and the ones in the presence of a disturbance and,277

given the available parameter ranges, minimizing the former.278

Realistic simulations279

Taking into account the above considerations, in Figure S7 we successfully simulate the response of280

the genetic circuits depicted in Figure 7 (open-loop system) and Figure 9B (closed-loop system) of281

the main text under more realistic conditions - our results are aligned with the corresponding (ideal)282

ones of the main text. The simulations are based on the following ODE models and the parameters in283

Table S1.284

285

Open-loop system286

Ẏ1 = b1 − (d + γ)Y1 +Vmax
Y2

Y2 +K1

Ẏ2 = b2 − (d + γ)Y2 +Vmax
Y1

Y1 +K2

Closed-loop system287

Ẏ1 = b1 − (d + γ)Y1 +Vmax
Y2

Y2 +K1
+Vmax

Z3

Z3 +K3

Ẏ2 = b2 − (d + γ)Y2 +Vmax
Y1

Y1 +K2
+Vmax

Z4

Z4 +K4

Ż1 = Vmax
Y1

Y1 +K5
−ηZ1Z3 − γZ1 + kuZ5

Ż2 = Vmax
Y2

Y2 +K6
−ηZ2Z4 − γZ2 + kuZ6

Ż3 = θ1 −η1Z1Z3 − γZ3 + kuZ5

Ż4 = θ2 −η2Z2Z4 − γZ4 + kuZ6

Ż5 = ηZ1Z3 − kuZ5 − γZ5

Ż6 = ηZ2Z4 − kuZ6 − γZ6

where Z5, Z6 represent the complex Z1 : Z3, Z2 : Z4, respectively.288
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289

S11 Molecular programming realization of an abstract reaction290

We describe how to implement a bimolecular reaction A + B ⇌ C + D by DNA strand-displacement.291

Note that any finite chemical reaction network can be reduced to a collection of such reactions and292

their special cases. Here A, B, C, D are meant as abstract species and not as specific chemicals. These293

abstract species are then mapped to specially designed DNA molecules that implement the desired294

reaction kinetics by their interactions. That is, we are interested in representing the kinetics of a295

desired chemical reaction network by choosing (designing) the species involved, and not (directly) in296

manipulating existing chemicals.297

Each of the A, B, C, D abstract species is represented (Figure S8) by a 3-domain: a single-stranded298

DNA sequence logically subdivided into three domains (nucleotide subsequences), of which the mid-299

dle one is short (≈ 6 bases) and the others are long (≈ 20 bases). Short domains are such that they bind300

reversibly to their Watson-Crick complements (indicated by *), while long domains bind irreversibly.301

A 3-domain is composed of a long history domain (left), which participated in past interactions but302

does not affect future interactions. Next is a short toehold domain, which is used to initiate interac-303

tions between 3-domains and gates that implement the reactions. Next is a long identity domain that304

is the one that identifies the chemical species (right). The same short sequence t can be used for all305

toehold occurrences, as successful bindings are determined by matching identity domains. However,306

different toehold can be chosen, for example, to fine tune reaction rates.307

A gate is a double-stranded DNA structure that includes backbone breaks on the top strand; when308

two breaks or strand-ends are in close proximity, they form an open (i.e., single-stranded) toehold309

within the double-strand. A gate accepts 3-domains (the inputs to the reaction) that bind to its open310

toeholds, and through strand displacement releases other 3-domains (the outputs of the reaction).311

Strand displacement is a reversible random walk that starts at an open toehold and gradually replaces312

a domain with another identical domain within a double strand. At the end of the random walk, a313

whole single strand can detach from the double strand.314

In summary, the species in a reaction networks can be uniquely assigned to domains (i.e., to specific315

sequences of nucleotides) and then a gate can be constructed for each desired reaction. The 3-domain316

structure is uniformly accepted and produced by the gates, so reactions can be composed.317 152



318

S12 Regulating complex networks319

We consider an open-loop biological network (network to be controlled) represented by the CRN320

(Figure S9A):321

∅
b1

Y4 , ∅
b2

Y5 , ∅
b3

Y6 , Y4

α1
Y4 +Y1 Y5

α2
Y5 +Y2 ,

Y6

α3
Y6 +Y3 , Y3 +Y4

α4
Y3 , Y3 +Y5

α5
Y3 Y1 +Y6

α6
Y1 ,

Y2 +Y6

α7
Y2 , Y1

d1
∅ , Y2

d2
∅ , Y3

d3
∅ , Y4

d4
∅ ,

Y5

d5
∅ , Y6

d6
∅

(S40)

where b1, b2, b3, α1, α2, α3, α4, α5, α6, α7, d1, d2, d3, d4, d5, d6 ∈ R+. We treat Y1, Y2, Y3 as the322

target species we aim to regulate.323

The corresponding ODE model is :324

Ẏ1 = α1Y4 −d1Y1 (S41a)

Ẏ2 = α2Y5 −d2Y2 (S41b)

Ẏ3 = α3Y6 −d3Y3 (S41c)

Ẏ4 = b1 −d4Y4 −α4Y3Y4 (S41d)

Ẏ5 = b2 −d5Y5 −α5Y3Y5 (S41e)

Ẏ6 = b3 −d6Y6 −α6Y1Y6 −α7Y2Y6 (S41f)

Figure S9B shows the response of Y1, Y2, Y3 and and how they are affected by an, arbitrarily chosen,325

disturbance applied on Y5 (corresponding to an increase of its birth reaction rate).326

We now discuss some examples of the controllers which can be build exploiting the regulation327

strategies introduced in this work. We also plot the output responses of the resulting closed-loop sys-328

tems (based on CRN(S40)) considering the same disturbance as before.329

330
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R-Regulator331

We have the controller CRN (Figure S10A):332

Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z1 , Y3

k3
Y3 +Z2 ,

Y6 +Z2

k4
Z2 , Z1 +Z2

η
∅

(S42)

where k1, k2, k3, k4, η ∈ R+.333

The closed-loop dynamics can be described by:334

Ẏ1 = α1Y4 −d1Y1 (S43a)

Ẏ2 = α2Y5 −d2Y2 (S43b)

Ẏ3 = α3Y6 −d3Y3 (S43c)

Ẏ4 = b1 −d4Y4 −α4Y3Y4 (S43d)

Ẏ5 = b2 −d5Y5 −α5Y3Y5 (S43e)

Ẏ6 = b3 −d6Y6 −α6Y1Y6 −α7Y2Y6 − k4Y6Z2 (S43f)

Ż1 = k1Y1 + k2Y2 −ηZ1Z2 (S43g)

Ż2 = k3Y3 −ηZ1Z2 (S43h)

Steady-state behaviour (Figure S10B): Ż1 − Ż2 = 0 or
Y ∗

1 +
k2

k1
Y ∗

2

Y ∗
3

=
k3

k1
335

336

A different version of this controller is given by the following CRN (Figure S11A):337

Y1 +Y2

k1
Z1 , Y3

k2
Y3 +Z2 ,

Y6 +Z2

k3
Z2 , Z1 +Z2

η
∅

(S44)

where k1, k2, k3, η ∈ R+.338

339
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The closed-loop dynamics can be described by:340

Ẏ1 = α1Y4 −d1Y1 − k1Y1Y2 (S45a)

Ẏ2 = α2Y5 −d2Y2 − k1Y1Y2 (S45b)

Ẏ3 = α3Y6 −d3Y3 (S45c)

Ẏ4 = b1 −d4Y4 −α4Y3Y4 (S45d)

Ẏ5 = b2 −d5Y5 −α5Y3Y5 (S45e)

Ẏ6 = b3 −d6Y6 −α6Y1Y6 −α7Y2Y6 − k3Y6Z2 (S45f)

Ż1 = k1Y1Y2 −ηZ1Z2 (S45g)

Ż2 = k2Y3 −ηZ1Z2 (S45h)

(S45i)

Steady-state behaviour (Figure S11B): Ż1 − Ż2 = 0 or
Y ∗

1 Y ∗
2

Y ∗
3

=
k2

k1
341

Note that the steady-state behaviour remains the same if we replace Y1 +Y2

k1
Z1 with342

Y1 +Y2

k1
Y1 +Y2 +Z1 (catalytic production) in CRN (S44).343

344

LC-Regulator345

We have the controller CRN (Figure S12A):346

∅
θ1

Z1 , ∅
θ2

Z2 , Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z1 ,

Y3

k3
Y3 +Z2 , Y6 +Z2

k4
Z2 , Z1 +Z2

η
∅

(S46)

where θ1, θ2, k1, k2, k3, k4, η ∈ R+.347
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The closed-loop dynamics can be described by:348

Ẏ1 = α1Y4 −d1Y1 (S47a)

Ẏ2 = α2Y5 −d2Y2 (S47b)

Ẏ3 = α3Y6 −d3Y3 (S47c)

Ẏ4 = b1 −d4Y4 −α4Y3Y4 (S47d)

Ẏ5 = b2 −d5Y5 −α5Y3Y5 (S47e)

Ẏ6 = b3 −d6Y6 −α6Y1Y6 −α7Y2Y6 − k4Y6Z2 (S47f)

Ż1 = θ1 + k1Y1 + k2Y2 −ηZ1Z2 (S47g)

Ż2 = θ2 + k3Y3 −ηZ1Z2 (S47h)

Steady-state behaviour (Figure S12B): Ż1 − Ż2 = 0 or k1Y1 + k2Y2 − k3Y3 = θ2 −θ1349

350

A combination of R- and LC-Regulator351

We have the controller CRN (Figure S13A):352

∅
θ1

Z1 , ∅
θ2

Z2 , Y1 +Y2

k1
Z1 , Y3

k2
Y3 +Z2 ,

Y6 +Z2

k3
Z2 , Z1 +Z2

η
∅

(S48)

where θ1, θ2, k1, k2, k3, η ∈ R+.353

354
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The closed-loop dynamics can be described by:355

Ẏ1 = α1Y4 −d1Y1 − k1Y1Y2 (S49a)

Ẏ2 = α2Y5 −d2Y2 − k1Y1Y2 (S49b)

Ẏ3 = α3Y6 −d3Y3 (S49c)

Ẏ4 = b1 −d4Y4 −α4Y3Y4 (S49d)

Ẏ5 = b2 −d5Y5 −α5Y3Y5 (S49e)

Ẏ6 = b3 −d6Y6 −α6Y1Y6 −α7Y2Y6 − k3Y6Z2 (S49f)

Ż1 = θ1 + k1Y1Y2 −ηZ1Z2 (S49g)

Ż2 = θ2 + k2Y3 −ηZ1Z2 (S49h)

(S49i)

Steady-state behaviour (Figure S13B): Ż1 − Ż2 = 0 or k1Y1Y2 − k2Y3 = θ2 −θ1.356

Note that the steady-state behaviour remains the same if we replace Y1 +Y2

k1
Z1 with357

Y1 +Y2

k1
Y1 +Y2 +Z1 (catalytic production) in CRN (S48).358

359

D-Regulator III360

We have the controller CRN (Figure S14A):361

Y1

k1
Y1 +Z1 , Y2

k2
Y2 +Z2 , Y3

k3
Y3 +Z3 , ∅

θ1
Z4 ,

Z4

k4
Z4 +Y4 , Y5 +Z2

k5
Z2 , Y3 +Z3

k6
Z3 , Z1 +Z4

η1
C1 ,

Z2 +C1

η2
C2 , Z3 +C2

η3
∅

(S50)

where θ1, k1, k2, k3, k4, k5, η1, η2, η3 ∈ R+.362
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The closed-loop dynamics can be described by:363

Ẏ1 = α1Y4 −d1Y1 (S51a)

Ẏ2 = α2Y5 −d2Y2 (S51b)

Ẏ3 = α3Y6 −d3Y3 − k6Y3Z3 (S51c)

Ẏ4 = b1 −d4Y4 −α4Y3Y4 + k4Z4 (S51d)

Ẏ5 = b2 −d5Y5 −α5Y3Y5 − k5Y5Z2 (S51e)

Ẏ6 = b3 −d6Y6 −α6Y1Y6 −α7Y2Y6 (S51f)

Ż1 = k1Y1 −η1Z1Z4 (S51g)

Ż2 = k2Y2 −η2Z2C1 (S51h)

Ż3 = k3Y3 −η3Z3C2 (S51i)

Ż4 = θ1 −η1Z1Z4 (S51j)

Ċ1 = η1Z1Z4 −η2Z2C1 (S51k)

Ċ2 = η2Z2C1 −η3Z3C2 (S51l)

Steady-state behaviour (Figure S14B): Ż1 − Ż4 = 0 or Y ∗
1 =

θ1

k1
, Ż4 + Ċ1 − Ż2 = 0 or Y ∗

2 =
θ1

k2
, Ż4 +364

Ċ1 +Ċ2 − Ż3 = 0 or Y ∗
3 =

θ1

k3
.365

Constructing control schemes based on D-Regulator I, II (see Section 3 Control schemes with366

steady-state decoupling of the main text) and Rein D-Regulator (see Section S3) requires three SISO367

control loops and, thus, it is quite straightforward. Note though that for this approach we would need,368

at least, 6 controller species - two more compared to D-Regulator III.369
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Figure S1: Rein D-Regulator
Schematic representation of a general closed-loop architecture based on the D-Regulator described in Section S3.
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Figure S2: Behaviour in the presence of multiple parameter perturbations.
A Simulated response of R-Regulator presented in Section S7 using the following parameters: b1 = 2 nM min−1, b2 = 1
nM min−1, η = 10 nM−1 min−1, d1 = 1 min−1, d2 = 1 min−1, α1 = 0.1 min−1, α2 = 0.4 min−1, k2 = 1 min−1, k4 = 2
nM−1 min−1, k3 = 2 nM−1 min−1, k1 = 0.5 min−1. Every 30 min, one of these parameters is pertrubed by 50% (in

the order they appear above).
Y ∗

1
Y ∗

2
=

k2

k1
always holds. B Simulated response of LC-Regulator presented in Section S7

using the following parameters: b1 = 2 nM min−1, b2 = 1 nM min−1, η = 10 nM−1 min−1, d1 = 1 min−1, d2 = 1 min−1,
α1 = 0.1 min−1, α2 = 0.4 min−1, θ2 = 5 nM min−1, k4 = 2 nM−1 min−1, k3 = 2 nM−1 min−1, θ1 = 4 nM min−1, k1 = 1
min−1, k2 = 3 min−1. Every 30 min, one of these parameters (apart from k1, k2) is pertrubed by 50% (in the order
they appear above). k1Y ∗

1 − k2Y ∗
2 = θ2 −θ1 always holds. C Simulated response of D-Regulator-III presented in Section

S7 using the following parameters: b1 = 2 nM min−1, b2 = 1 nM min−1, η1 = 0.5 nM−1 min−1, d1 = 1 min−1, d2 = 1
min−1, α1 = 0.1 min−1, α2 = 0.4 min−1, k3 = 0.5 min−1, k4 = 2 nM−1 min−1, η2 = 10 nM−1 min−1, θ1 = 8 nM min−1,
k2 = 2 min−1, k1 = 0.5 min−1. Every 30 min, one of these parameters is pertrubed by 50% (in the order they appear

above). Y ∗
1 =

θ1

k1
nM, Y ∗

2 =
θ1

k1
nM always hold.
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Figure S3: Controller species degradation and adaptation: R-Regulator.

Simulated response of
Y1

Y2
with respect to R-Regulator presented in Section S8 with A b1 = 2 nM min−1, b2 = 1 nM

min−1, d1 = 0.1 min−1, d2 = 0.1 min−1, α1 = 0.1 min−1, α2 = 0.4 min−1, k1 = 1 min−1, k2 = 2 min−1, k3 = 0.5 nM−1

min−1, k4 = 1 nM−1 min−1, η = 0.5 nM−1 min−1 while γ varying as shown. B, C, D γ = 0.1 min−1, k3 and η varying
as shown while the rest of the parameters remaining the same as in A. In all the above simulations, a disturbance is
introduced at time t = 50 min in the form of an increase regarding parameter b1, i.e. its value changes from 2 to 6.
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Figure S4: Controller species degradation and adaptation: LC-Regulator.
Simulated response of Y1 −3Y2 with respect to LC-Regulator presented in Section S8 with A b1 = 2 nM min−1, b2 = 1
nM min−1, d1 = 0.1 min−1, d2 = 0.1 min−1, α1 = 0.1 min−1, α2 = 0.4 min−1, k1 = 1 min−1, k2 = 3 min−1, k3 = 0.5
nM−1 min−1, k4 = 2 nM−1 min−1, η = 0.5 nM−1 min−1, θ1 = 4 nM min−1, θ2 = 5 nM min−1 while γ varying as shown.
B, C, D γ = 0.1 min−1, k3 and η varying as shown while the rest of the parameters remaining the same as in A. In all the
above simulations, the same disturbance as in Figure S3 is introduced at time t = 150 min.
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Figure S5: Controller species degradation and adaptation: output species Y1 of D-Regulator-III.
Simulated response of output species Y1 with respect to D-Regulator-III presented in Section S8 with A b1 = 2 nM min−1,
b2 = 1 nM min−1, d1 = 0.9 min−1, d2 = 0.9 min−1, α1 = 0.1 min−1, α2 = 0.4 min−1, k1 = 0.5 min−1, k2 = 2 min−1,
k3 = 0.5 min−1, k4 = 2 nM−1 min−1, η = η1 = η2 = 0.5 nM−1 min−1, θ1 = 4 nM min−1 while γ varying as shown. B,
C, D γ = 0.1 min−1, k3 and η varying as shown while the rest of the parameters remaining the same as in A. In all the
above simulations, the same disturbance as in Figure S3 is introduced at time t = 100 min.
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Figure S6: Controller species degradation and adaptation: output species Y2 of D-Regulator-III.
Simulated response of output species Y2 with respect to D-Regulator-III presented in Section S8 following the exact same
concept as in Figure S5.
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Figure S7: Realistic simulations.
Simulated response of the A open-loop system B closed-loop system considered in Section S10 using the parameters
of Table S1. In both simulations, a disturbance is introduced at time t = 150 min in the form of an increase regarding
parameter b1, i.e. its value changes from 0.5 to 10.5 .
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Figure S8: DNA strand-displacement representation of the reaction A + B ⇌ C + D. A, B, C, D and t are unique
DNA sequences chosen not to bind to each other. The initial DNA structures are indicated by a boldface border: these
are the single-stranded inputs marked A and B and the roughly double-stranded ”gate” structure marked A + B ⇌ C + D;
the intended outputs are the structures marked C and D. The graph details the chemical interactions that happen between
these DNA structures. Reactions between DNA structures (small squares) have hollow heads for direct reactions and filled
heads for reverse reactions. A, B, C, D need not be distinct in this scheme, i.e., a reaction like A + B ⇌ 2A would work as
expected. The A + B ⇌ C + D reaction described above is reversible: the outputs can bind back through the open toeholds
on the right. However, it is easy to convert this to an irreversible A + B → C + D reaction by attaching a double stranded
domain to the right of the gate (not shown), with an auxiliary single strand that irreversibly binds to the right toehold once
it is exposed and to the new domain, preventing the outputs from binding back to the gate since no open toeholds are left.
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Figure S9: A three-output open-loop biomolecular network.
A Schematic representation of the network to be controlled described by CRN (S40). Y1, Y2, Y3 are considered the output
species of interest. B Simulated response of the topology in A using the ODE model (S41) with the following parameters:
b1 = 2 nM min−1, b2 = 1.5 nM min−1, b3 = 1 nM min−1, d1 = d2 = d3 = d4 = d5 = d6 = 1 min−1, α1 = 1.5 min−1,
α2 = 1 min−1, α3 = 2 min−1, α4 = 0.5 nM−1 min−1, α5 = 0.4 nM−1 min−1, α6 = 0.2 nM−1 min−1, α7 = 0.3 nM−1

min−1. At time t = 50 min, a disturbance is introduced in the form of an increase regarding parameter b2, i.e. its value
changes from 1.5 to 3.5 .
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Figure S10: R-Regulator.
A Schematic representation of a closed-loop architecture based on the network to be controlled shown in Figure S9 and
R-Regulator described by CRN (S42). B Simulated response of the topology in A using the ODE model (S43) with the
following parameters: k1 = 0.5 min−1, k2 = 0.5 min−1, k3 = 4 min−1, k4 = 6 nM−1 min−1, η = 10 nM−1 min−1 while
the rest of the parameters as well as the type of the disturbance introduced (including the time of entry) remain the same
as in Figure S9.
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Figure S11: An alternative version of R-Regulator.
A Schematic representation of a closed-loop architecture based on the network to be controlled shown in Figure S9 and
R-Regulator described by CRN (S44). B Simulated response of the topology in A using the ODE model (S45) with the
following parameters: k1 = 1.5 nM−1 min−1, k2 = 1 min−1, k3 = 20 nM−1 min−1, η = 10 nM−1 min−1 while the rest of
the parameters as well as the type of the disturbance introduced (including the time of entry) remain the same as in Figure
S9.
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Figure S12: LC-Regulator.
A Schematic representation of a closed-loop architecture based on the network to be controlled shown in Figure S9 and
R-Regulator described by CRN (S46). B Simulated response of the topology in A using the ODE model (S47) with the
following parameters: k1 = 0.5 nM−1 min−1, k2 = 0.5 min−1, k3 = 14 nM−1 min−1, k4 = 30 nM−1 min−1, η = 10 nM−1

min−1, θ1 = 15 nM min−1, θ2 = 16 nM min−1 while the rest of the parameters as well as the type of the disturbance
introduced (including the time of entry) remain the same as in Figure S9.
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Figure S13: A combination of R- and LC-Regulator.
A Schematic representation of a closed-loop architecture based on the network to be controlled shown in Figure S9 and
R-Regulator described by CRN (S48). B Simulated response of the topology in A using the ODE model (S49) with
the following parameters: k1 = 1 nM−1 min−1, k2 = 1 min−1, k3 = 10 nM−1 min−1, η = 10 nM−1 min−1, θ1 = 10 nM
min−1, θ2 = 8 nM min−1 while the rest of the parameters as well as the type of the disturbance introduced (including the
time of entry) remain the same as in Figure S9.

171



Figure S14: D-Regulator-III.
A Schematic representation of a closed-loop architecture based on the network to be controlled shown in Figure S9 and
R-Regulator described by CRN (S50). B Simulated response of the topology in A using the ODE model (S51) with the
following parameters: k1 = 1 min−1, k2 = 25 min−1, k3 = 10 min−1, k4 = 0.5 min−1, k5 = 10 nM−1 min−1, k6 = 5 nM−1

min−1, η1 = 10 nM−1 min−1, η2 = 10 nM−1 min−1, η3 = 10 nM−1 min−1, θ1 = 12 nM min−1 while the rest of the
parameters as well as the type of the disturbance introduced (including the time of entry) remain the same as in Figure S9.
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Description Parameter
value

Unit Comments Source

Maximal
production rate

Vmax = 104 nM min−1 [5]

Constitutive
production rate

b1 = 0.5,
b2 = 2.5,
θ1 = 60,
θ2 = 35

nM min−1 [5]

Michaelis-
Menten constant

K1 = 105,
K2 = 104,
K3 = 104,
K4 = 105,

K5 = 5 ·103,
K6 = 2.5 ·103

nM [5]

Dilution rate γ = 0.028 min−1 Assuming 25min doubling
time in bacterial growth

[5]

Degradation rate d = 1.6 min−1 Unspecified degradation
mechanism (disturbance);

value based on the
action of a protease

[9]

Binding rate η = 0.05 nM−1 min−1 [5]
Unbinding rate ku = 0.0096 min−1 [10]

Table S1: Simulation parameters for the ODE models in Section S10.
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Chapter 6

Conclusion and Outlook

The overarching aim of the present thesis is to address key challenges in the design and

control of synthetic biological systems. Our contributions are founded on mathematical

and computational approaches and encompass the proposal of theory-guided experimental

implementations.

In Chapter 3 we propose biological mechanisms for realizing the mathematical oper-

ation of differentiation with respect to molecular signals. Estimating time derivatives of

signals involved in a system can generally offer useful insights into its function. Nonethe-

less, unlike electromechanical systems, such a task might be difficult in biological settings.

To this end, we introduce three biomolecular topologies which can accept a molecular in-

put signal, such as the concentration of a biomolecule of interest, and produce an output

signal which is proportional to the derivative of the former. More precisely, they can suc-

cessfully differentiate (Fourier transformable) signals of sufficiently long duration around

a desired steady state of the output species. The latter cab be interpreted as an elevated “x-

axis” (zero-level concentration) and is robust to constant disturbances. Their characteristics

and performance trade-offs are mathematically and computationally analyzed. Special em-

phasis is given to their performance in the presence of input signals with high-frequency

components (high-frequency input noise), as this can lead to undesired output signal am-
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plification, which is probably the most important problem of both technological and bio-

logical differentiators. It is shown that, under appropriate tuning, the proposed topologies

are able to “distinguish” input signals based on their frequency content and differentiate

only the ones in the frequency range of interest with high accuracy. We further present

a structurally modified version of these topologies with enhanced noise-filtering capabil-

ities. In addition, using E.coli as a model organism, we investigate natural and synthetic

networks which can potentially work efficiently as signal differentiators. Notably, one of

our differentiator modules bears resemblance to networks involved in the RpoS-mediated

stress response and the RpoH-mediated heat shock response in E.coli. Our results aim not

only to expand our understanding of cell behaviour but also to pave the way for designing

reliable synthetic differentiator modules inside the cell for a variety of applications. Exam-

ples include development of speed biosensors as well as realization of biological regulation

schemes based on derivative feedback control.

In Chapter 4 we turn our focus to Proportional-Integral-Derivative (PID) control which

is the predominant type of feedback control in modern industrial control applications. More

specifically, we design an advanced PID controller via biochemical reactions equipped with

set point weights and filtered derivative action. It involves an antithetic integrator, thus,

achieving Robust Perfect Adaptation (RPA) by eliminating the steady-state error. In paral-

lel, its derivative action, realized by the motifs developed in Chapter 3, considers the rate

of change in the control error and takes an anticipatory action to amend the manipulated

variable. It can therefore diminish overshoot and expedite the convergence to steady state.

Moreover, the aforementioned parts in conjunction with a birth-death process generate pro-

portional action with respect to the control error, providing a simple correction to the ma-

nipulated variable which can accelerate the system’s response. Our PID controller yields

enhanced dynamic performance, reduces stochasticity, and is able to overcome common

obstacles such as adverse fluctuations of the control signal owning to sudden changes of

the set point or the presence of high-frequency noise. It is also characterized by significant
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tunability, as all of its features can be independently adjusted as desired. Our control feed-

back scheme constitutes a convenient solution for tight regulation of biological processes

where both transient and steady-state behaviour is of interest. Finally, our architecture com-

prises unimolecular and bimolecular reactions governed by mass action kinetics, making it

well-suited for in vitro experimental implementations – for instance, it could be effectively

compiled into a strand displacement DNA-based device. However, embedding this circuit

into a cell might present considerable challenges – for example, its intricate structure would

impose a significant burden on the host organism.

In Chapter 5 we delve into the problem of regulating biomolecular systems with mul-

tiple outputs. In the general case, the outputs affect each other due to coupling (internal)

interactions while all can be subject to disturbances from the external environment. Such

biomolecular systems provide several capabilities as well as challenges that are not present

in the classical single-input single output approaches on which the recent research efforts

in this area have concentrated. In particular, we introduce regulatory architectures for pro-

cesses with two outputs of interest that are able to robustly manipulate the ratio/product of

the latter, a linear combination of them, and each of them independently. Our architectures

utilize integral feedback action within either centralized or decentralized control schemes,

expanding upon the previously described SISO antithetic controller. Their behaviour is

thoroughly analyzed via mathematical analysis and simulations with particular emphasis

on structural stability. We also highlight their experimental feasibility both in vivo, con-

sidering E.coli as a model organism, and in vitro via molecular programming. Note that

the challenges and limitations discussed with regard to the former are also relevant to other

types of organisms, such as yeast or mammalian cells. The regulation strategies introduced

in that chapter signify the inaugural research attempt to manipulate multi-output biologi-

cal processes with coupling interactions where both the network to be controlled and the

controller are embedded in the same biological context. Although our results focus on

two-output processes, we demonstrate that our regulation strategies are scalable and can
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be easily adapted to more complex processes with a higher number of outputs. The es-

tablishment of such multi-output control concepts holds great importance for building the

next generation of bio-devices capable of performing sophisticated tasks. Furthermore, our

architectures can potentially provide useful insights into the functioning of natural feed-

back topologies, considering that most of the cellular networks can be viewed as MIMO

systems.

There are numerous compelling future research paths, some of which are currently

underway, that can build upon the work presented in this thesis. The most important of

these directions are outlined below:

• Multi-output PID control : A natural extension of our work is the design of PID

controllers for multi-output biological processes. To accomplish this, we can inte-

grate the control schemes developed in Chapter 5 with ideas in Chapters 4, 6 as well

as other relevant concepts in the literature [23, 87, 17]. One of the main hurdles

here is to design efficient regulatory architectures capable of handling potential cou-

pling interactions between inputs/outputs while keeping the corresponding structural

complexity at a realistic level.

• Non-local analysis : The mathematical analysis presented herein centers on the lo-

cal behaviour of the systems under consideration which, in most cases, are nonlinear.

Thus, we often study the properties of the systems, such as stability, in the vicinity

of their nominal operation point through the use of linear perturbation analysis. This

approach is favoured due to the plethora of design and analysis methods available

for linear systems. Nevertheless, the behaviour of a nonlinear system when operat-

ing away from its nominal operation point may deviate significantly from the results

obtained via the above approach. It is therefore of particular interest to expand our

analysis in order to include large signal analysis as well [43, 12, 57, 80]. In instances

where the behaviour of systems away from its equilibria falls short of our perfor-

mance standards, it is imperative to investigate performance-enhancing techniques,
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such as structural modifications or tuning strategies.

• Biological stochasticity : The dynamics of the biological systems in this thesis are

analyzed through deterministic modelling based on Ordinary Differential Equations

(ODEs). Chapter 4 constitutes an exception where, additionally, the standard de-

viation with respect to the output of the closed-loop system under consideration is

estimated by using Van Kampen’s Linear Noise Approximation (LNA) of the Chem-

ical Master Equation (CME) [84]. In general, stochastic fluctuations are inevitable

in biomolecular environments and can play a crucial role when these environments

are characterized by small volumes and molecular counts [39, 22]. Thus, there is a

need to systematically study the behaviour of the systems introduced herein using

stochastic methods. The latter include Monte Carlo simulations such as Gillespie’s

stochastic simulation algorithm (SSA) [29], stochastic differential equation approxi-

mations such as LNA, and others.

• Experimental validation : One of the most impactful extensions of our work is the

in vivo and/or in vitro experimental testing of the proposed architectures. We believe

that this will pave the way for our architectures to fulfill their potential by enabling

their practical utilization in biotechnology, biomedicine, and other related areas. It is

noteworthy that, in recent years, the development of hybrid in vivo-in silico platforms

has significantly accelerated the experimental evaluation of biomolecular topologies

in cell populations or single cells. It is possible for such platforms to implement

part of the topology under investigation in a computer while the rest corresponds to a

process within cells [48, 47]. Interestingly, such hybrid approaches can yield valuable

insights and guidance for fully in vivo realizations. Finally, using our theoretical

models to obtain realistic predictions and optimally design experiments with respect

to different biological environments might require introducing appropriate structural

modifications and adopting suitable methods of parameter estimation and sensitivity
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analysis [39, 51].

• Multicellular control : An alternative approach to implementing our biomolecular

control systems is to distribute their constituent parts responsible for sensing, actu-

ation, and computation across different interacting cellular populations [24, 58, 74].

This is particularly convenient for biomolecular designs with high structural com-

plexity whose in vivo implementation in a single-cell embedded fashion can result

in excessive metabolic burden. For example, this approach might be advantageous

in the implementation of our single- or multi-output PID strategies. Multicellular

feedback control can generally offer considerable modularity and tuning flexibility

in regulating cellular behaviour within microbial consortia.

• Different control objectives : Our biomolecular control schemes along with other

similar research efforts in the literature focus on constant-in-time disturbance rejec-

tion (concerning the output species) which is achieved via output feedback control.

However, time-varying disturbances presenting themselves, for instance, as oscilla-

tory signals, are ubiquitous in biological environments. Adapting systems capable

of mitigating such disturbances would therefore be of particular interest [33]. An-

other open problem worth exploring is the development of more advanced regulatory

topologies realizing non-linear control concepts based, for example, on state feed-

back control, which are commonly employed in technological applications. This

remains an immense challenge due to several distinct peculiarities in terms of the

structure and function of biomolecular networks which are absent in the aforemen-

tioned applications [18].
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