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SUMMARY
Primates make decisions visually by shifting their view from one object to the next, comparing values
between objects, and choosing the best reward, even before acting. Here, we show that when monkeys
make value-guided choices, amygdala neurons encode their decisions in an abstract, purely internal repre-
sentation defined by themonkey’s current view but not by specific object or reward properties. Across amyg-
dala subdivisions, recorded activity patterns evolved gradually from an object-specific value code to a tran-
sient, object-independent code in which currently viewed and last-viewed objects competed to reflect the
emerging view-based choice. Using neural-network modeling, we identified a sequence of computations
by which amygdala neurons implemented view-based decision making and eventually recovered the chosen
object’s identity when the monkeys acted on their choice. These findings reveal a neural mechanism in the
amygdala that derives object choices from abstract, view-based computations, suggesting an efficient so-
lution for decision problems with many objects.
INTRODUCTION

To obtain rewards, primates make decisions visually. By shifting

their view from one object to the next, they assess each object’s

value, compare values between sequentially viewed objects,

and decide on the best option from a distance, even before

acting. A large body of evidence implicates the amygdala, a

cell complex in the medial temporal lobe, in the valuation of vi-

sual objects.1–4 Yet, the amygdala’s role in translating object val-

uations into behavioral choices is poorly understood.

Here, we investigate the activity of primate amygdala neurons

when monkeys make value-guided decisions between sequen-

tially viewed objects. Decision computations are thought to

involve winner-take-all competition between neurons encoding

choices for specific objects, mediated by recurrent, mutual-

inhibitory circuits.5–8 After the competition is resolved, decision

neurons exhibit categorical, ‘‘on-off’’ activity patterns to signal

whether a specific object is chosen (Figure 1A, neurons A and

B). However, primate view-based decisions pose computational

challenges for this scheme. Because primates evaluate objects

sequentially through successive fixations,9 decision making re-

quires a mechanism for comparing temporally separated value
Neuron 111, 1–14, De
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inputs. Further, thismechanismmust process varying choice op-

tions flexibly to account for the vast number of objects that pri-

mates encounter. Although the primate brain stores large

numbers of visual objects and their values,10–12 implementing

competition for all possible object pairs would require myriad

replications of object-specific decision circuits or highly flexible

rescaling to new option sets.6,8

To avoid combinatorial explosion and preserve wiring econ-

omy,13 one solution might be to compute decisions not with ob-

ject-specific neurons but with generalized, ‘‘view-based neu-

rons’’ that can signal choice for any object that is currently

viewed and attended to, irrespective of object identity (Figure 1A,

neuron C). Different from object-specific neurons, which res-

pond only to particular objects, view-based neurons would pro-

cess choice in reference to the animal’s current view, or focus of

attention, by responding flexibly to any currently viewed object.

From this perspective, decision making would involve value-

based competition between currently viewed and last-viewed

objects,14,15 encoded as abstract representations independent

of specific object features. Despite advances in understanding

neural decision processes,14,16–26 it is unclear whether the pri-

mate brain contains a view-based decision mechanism for
cember 6, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Conceptual framework for view-based decisions, choice task, and behavior

(A) View-based decisions involve comparing currently viewed and last-viewed objects. Conventional decision neurons signal choices for specific objects

(neurons A and B; ticks illustrate action potentials). View-based neuron C responds when the currently viewed object is chosen, irrespective of object identity (but

would not respond when the last-viewed object is chosen).

(B) Hypothesized information processing for view-based decisions.

(C) Task: monkeys choose between sequentially viewed options based on reward values. Inset: object value derives from slowly changing, uncued reward

probabilities and trial-specific, transiently cued magnitudes. 500-ms intervals separated both cues and choice period.

(D) Example session. Trial-by-trial record of choices and rewards (red/green bars), running average of monkey’s choices, and choice probability of the rein-

forcement-learning model. Long/short colored bars, rewarded/unrewarded choices for objects A (red) and B (green); black bars, trial-specific magnitudes for

object A (top) and object B (bottom); colored boxes, block-wise reward probabilities for objects A (top) and B (bottom).

(E) Logistic regression (Equation 4) of choices for the first-viewed object in animal A (***p < 0.001; *p < 0.05).

See also Figure S1.

ll
OPEN ACCESS Article

Please cite this article in press as: Grabenhorst et al., A view-based decision mechanism for rewards in the primate amygdala, Neuron (2023), https://
doi.org/10.1016/j.neuron.2023.08.024
rewards. It is also unknown how neural systems could transform

object values to view-based representations and subsequently

recover the chosen object’s identity, which is critical for guiding

behavioral choices (Figure 1B).

Neural encoding of view-based decisions as defined above

implies an abstract representation of choice that is independent

of specific properties of objects and rewards. Such abstract rep-

resentations confer computational advantages, including gener-

alization, emerge naturally in artificial neural networks trained on

different tasks27 and exist in different cortical areas.28,29 Howev-

er, it remains unclear whether abstract representations also un-

derlie value-guided decisions and whether they exist in subcor-

tical structures such as the amygdala.

We reasoned that the amygdala might be a suitable candidate

area for implementing value-guided decision processes using

abstract, view-based representations. The primate amygdala re-

ceives highly processed, object-level visual inputs30 and flexibly

associates themwith values.1,2,31Consistently, amygdala lesions

alter viewing preferences and reward-guided behaviors.32–34
2 Neuron 111, 1–14, December 6, 2023
Recent studies linked activity patterns in the rodent amygdala

to specific actions and behavioral states.35–38 In primates, amyg-

dala neurons have been directly implicated in decision mak-

ing.39–43Understanding the decisionmechanismbywhich amyg-

dala neurons link object valuations to behavior would have

important implications, given theamygdala’s role inmental health

disorders.44–47

RESULTS

Monkeys make view-based decisions for rewards
We devised a task in which monkeys chose between sequen-

tially viewed objects that differed in reward value (Figure 1C).

This view-based decision task allowed us to test whether amyg-

dala neurons encoded values and choices in a view-based rep-

resentation, different from object-based representations, which

might confer advantages for neural decision computations

(Figures 1A and 1B). Importantly, the animals could form a choice

for the currently viewed or last-viewed object covertly, before
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Figure 2. Distinct amygdala neurons encode object values and view-based values

(A) Amygdala neuron encoding value for a specific object. Peri-event time histogram sorted by value terciles. Raster display: ticks indicate impulses, and rows

indicate trials. Yellow area, analysis period.

(B) The neuron encoded value for object B but not object A, irrespective of viewing sequence.

(C) Linear regression of a neuron’s object-specific response on object values.

(D) A different neuron encoding view-based value, irrespective of object identity. Responses to the first and second objects were sorted separately according to

the values of the first and second objects.

(E) The neuron encoded value for objects A and B, irrespective of viewing sequence.

(F) Regression of neuron’s response on value.

(G) Categorizing neurons as object-value coding (black) or view-based value coding (orange) from the angle in the space of value-regression coefficients (N = 233;

analyzing first cue period).

(H) Population decoding of value from neurons encoding object value (black bars, N = 31 neurons encoding object A value but not object B value) or view-based

value (orange bars, N = 45 neurons) by training and testing the decoder on specific trial types (A1/A2: object A as first/second cue; B1/B2: object B as first/second

cue; Choice: choice for currently viewed vs. last-viewed cue). Gray lines, shuffled data.

(I) Measured eye positions during the saccade-choice period (‘‘free viewing’’) in two example trials.

(J) Free-viewing activity of object-value neurons (top) and view-based neurons (bottom) during successive fixations (mean ± SEM). Yellow areas, p < 0.005, t test.

(K) Population decoding of object value (averaged across objects) and view-based value (N = 233 neurons).

(L) Histologically reconstructed recording sites for value-coding neurons. dLA, dorsal lateral nucleus; vLA, ventral lateral nucleus; BL, basolateral nucleus; BM,

basomedial nucleus; CE, central nucleus.

(M) RSA. Top: templates define similarity patterns for each variable; numbers 1 to 4, low to high value levels (quartiles); A/B, responses to objects A/B. Bottom:

neural RSAmatrices for all neurons in dLA, vLA, andBL. Colors indicate correlation coefficient for condition pairs, calculated between population-activity vectors.

Condition-order was preserved across matrices.

(legend continued on next page)
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reporting it with a saccade. We initially tested neurons in the

simplest scenario, involving two choice objects per session (A

and B, presented in random viewing order), and later expanded

object and reward sets. Optimal performance required inte-

grating two value sources: tracking slowly varying object-reward

probabilities from past experience and combining them with

explicitly cued trial-specific magnitudes (Figure 1C, inset). To

encourage view-based decisions, we cued magnitudes tran-

siently during sequential viewing. (In additional tasks reported

below, value derived only from reward probability or from varied

reward types and magnitudes.) We used different colored frac-

tals and natural images in each session as choice objects to

engage amygdala neurons48 and distinguish view-based from

object-based neuronal representations.

Themonkeys successfully tracked object-reward probabilities

and combined themwith magnitudes whenmaking their choices

(Figures 1D and 1E). Mixed-effect logistic regression confirmed

that choices depended on probabilities and magnitudes of

both first- and second-viewed objects (Figures 1E; Equations

1, 2, 3, and 4). A reinforcement-learning model recovered the

reward-probability estimates that guided the monkeys’ choices

and confirmed that the monkeys approximated optimal learning

(Figure S1; Tables S1 and S2). Object-value estimates derived

from these models (Equation 4) integrated reward probabilities

and magnitudes and were used as regressors for the neuronal

analyses described below. The mean percentage of ‘‘correct’’

trials (without fixation breaks or other errors) was 64% ± 1% (an-

imal A, 108 sessions) and 78% ± 1% (animal B, 36 sessions).

Thus, the monkeys made reward-maximizing choices between

sequentially viewed objects by comparing their values.

Different amygdala neurons signal object value and
view-based value
We identified two types of value-coding neurons in amygdala

that seemed to play complementary roles in decision making.

‘‘Object-value neurons’’ encoded value selectively for specific

visual objects: a neuron would respond to its ‘‘preferred’’ (i.e.,

encoded) object—but not the alternative object—with a graded

signal that depended on the object’s current value, irrespective

of viewing sequence (Figures 2A–2C). By contrast, ‘‘view-based

neurons’’ were not object selective, as they responded to both

sequentially viewed objects by signaling the value of whichever

object was currently viewed (Figures 2D–2F). We used a multi-

ple-regression approach based on the angle of value regression

coefficients (Figure 2G) to identify neurons that encoded object

values (48 of 233 recorded neurons, 21%) and view-based

values (69 neurons, 30%, p < 0.05, t test on regression coeffi-

cients, Equations 5 and 6; Figure S2) at the first choice cue. Value

coefficients varied along a continuum (Figure 2G) but allowed for

clear separation of object-value and view-based value neurons

(Figure S2). Identification of both types of value-coding neurons

was robust across analysis approaches (53/80 object-value/

view-based value neurons identified at second choice cue; 42/
(N) Multiple regression of neuronal RSA on templates (*p < 0.005).

(O) NN value decoding (mean ± SEM; *p < 0.001, Wilcoxon test; N = 20 neurons

(P) Summary schematic.

See also Figures S2–S4.
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71 neurons when collapsing cue periods; 54/97 neurons when

estimating coefficients for both objects in one model; 45/64 neu-

rons when including a chosen-value covariate).

Amygdala population activity encoded both types of valuewith

high accuracy, quantified by a support-vector-machine (SVM)

classifier (Figure 2H, left; cross-validated performance;

p < 0.001, Wilcoxon test compared to shuffled data). However,

only view-based neurons enabled flexible value decoding for

different objects: a classifier trained on a particular object

correctly decoded the alternative object’s value only with data

fromview-based neurons but not fromobject-value neurons (Fig-

ure 2H,middle; decodingwith preselected object- or view-based

neurons; see Figure S2 for results with unselected neurons).

Moreover, only view-based neurons enabled accurate prediction

of the monkeys’ choices, whereas choice-prediction based on

object-specificneuronswasmuch lessaccurate (Figure2H, right;

Figure S2). Thus, although object-value neurons signaled object-

specific values as important decision inputs, they could not

directly encode value comparisons because they did not process

the value of the alternative object. By contrast, view-based neu-

rons processed values for both objects, implicating them in value

comparisons and decision making.

We confirmed the presence of object- and view-dependent

value signals by examining neuronal activity during the saccade-

choice period. In this period, both objects appeared simulta-

neously, and the animals freely looked back and forth between

them before indicating their choice, evidenced by measured eye

positions (Figure 2I). During consecutive fixations, both object-

specific and view-based value signals re-emerged: object-value

neurons signaled value only when the animal fixated the neuron’s

encoded object but not when fixating the alternative (Figure 2J,

top). Bycontrast, view-basedneuronssignaled the valueofwhich-

ever object the monkey currently fixated (Figure 2J, bottom).

Consistently, population activity during free viewing allowed for

accurate decoding of object values and view-based values (Fig-

ure 2K). Thus, activity recorded during passive and active sequen-

tial viewing showed that amygdala neurons signaled object values

and view-based values.

A transition between value codes across amygdala
nuclei
Although value neurons were prevalent in different amygdala sub-

divisions (Figures 2L; and S3), we found evidence for a topological

transition fromobject- toview-basedvaluecodes that followed the

amygdala’s internal connectivity.49 We identified this ‘‘object-to-

view transition’’ using representational similarity analysis (RSA),

which quantifies the similarity (i.e., correlation) of neuronal re-

sponses between different conditions (e.g., specific objects, value

levels) to characterize population codes.17,50

RSA revealed a primarily object-specific value code in thedorsal

part of the lateral nucleus (dLA), theamygdala’s sensory entry point

and storage site for stimulus-value associations.30,46 Specifically,

dLA activity discriminated values for specific objects (on-diagonal
per nucleus; analyzing first-cue period).
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block structure of the RSA matrix), but responses to different ob-

jects were unrelated (lack of off-diagonal block structure), indi-

catingobject-valuecoding (Figures2M,2N, left, andS4; regressors

included object identity, object value, view-based value; signifi-

cance based on permutation tests, see STAR Methods). By

contrast, in the basolateral nucleus (BL), a downstream structure

with distinct inputs,30 responses to different objects were related,

indicating view-based coding according to RSA. Specifically, the

BL population represented values of sequentially viewed objects

as anti-correlated activity patterns (off-diagonal matrix structure;

Figures 2M and 2N, right), indicative of value comparisons. The

ventral lateral nucleus (vLA), an intermediate structure, showed a

mixtureof object- andview-basedcodes (Figures2Mand2N,mid-

dle). Additional analysesconfirmed the robustnessofnucleus-spe-

cific findings (Figure S4). A biologically plausible nearest-neighbor

(NN) decoder revealed that the object-value code in dLA was

particularly accurate because it used well-separated activity pat-

terns to represent different value levels for specific objects (Fig-

ures 2O and S4).

Thus, value codes gradually transitioned across amygdala

subdivisions: an object-based code in dLA accurately tracked

values for specific objects and transitioned to a view-based

code in BL that could support decision making through value

comparisons (Figure 2P: identified value codes in different

nuclei; arrows indicate hypothesized information flow, requiring

confirmation in future studies). We next investigated how amyg-

dala neurons processed these values into choices.

An abstract, view-based choice signal in amygdala
neurons
To instruct actions, choices must ultimately refer to specific ob-

jects. Accordingly, neurons should encode the decision outcome

by signaling the chosen object’s identity. Many amygdala neurons

encoded such conventional object-choice signals, consistentwith

previous reports.39,41–43 However, we also observed earlier, tran-

sient choice signals that were not object based but that may

constitute precursors to object-choice signals. These signals en-

coded the monkey’s choice in an abstract, purely ‘‘internal’’ activ-

ity space referenced to the monkey’s current view but not to

externalobjects, rewards,or actions (Figure3).View-basedchoice

signals preceded object-choice signals, were insensitive to phys-

ical object and reward features, and carried signatures of decision

computation, as described next.

When the monkey viewed the second of the two sequentially

presented objects, the amygdala neuron in Figure 3A showed dif-

ferential activity thatdependedon theview-basedchoice themon-

keywasgoing tomakeonagiven trial. Specifically, theneuronwas

strongly activewhen themonkey chose the currently viewed, sec-

ond object, irrespective of its identity, but had reduced activity

when the monkey chose the previously viewed, first object. This

view-basedchoicesignaloccurredequally on trialswhen themon-

key choseobjectA (i.e.,whenAwas the secondobject) or objectB

(when Bwas second; Figure 3B), confirming that the choice signal

was view based but not linked to a particular object. Accordingly,

the neuron signaled view-based choice for currently viewed ob-

jects without signaling object choice (Figure 3C) or forthcoming

left-right action (Figure 3D). Multiple regression confirmed that

the neuronal response was only explained by view-based choice
(p = 2.0 3 10�14) but not by chosen object (p = 0.69), value (p =

0.15), action (p = 0.32), cued rewardmagnitude, or other variables

(Equations 7 and 8). Among 233 amygdala neurons, 60 neurons

(26%) encoded view-based choice with such activity patterns

(Figures 3E; Equation 7; 54 neurons when controlling for reward

magnitude; Equation8).Of these,33neurons showedhigheractiv-

ity when the second option was chosen, and 27 neurons showed

higher activity when the first option was chosen (p = 0.438, z

test). View-based choice signals occurred even on trials in which

the first- and second-viewed options were matched for reward

magnitude or value (Figure S5).

Amygdala neurons encoded view-based choice during the

second-cue period with high accuracy (97% and 99% correct

cross-validated SVM classification for 39 pre-selected neurons

and 233 unselected neurons, respectively), whereas object-

choice encoding in this early trial epoch was near chance (Fig-

ure 3F, left). We investigated whether the view-based choice

code generalized across object-viewing sequences by testing

the cross-condition generalization performance, a criterion for

an abstract, stimulus-independent representation.29 We trained

the classifier to decode view-based choice from one object-vie-

wing sequence (e.g., A then B) and tested performance on the

alternative sequence (B then A) not provided to the classifier dur-

ing training. Consistent with an abstract representation, classifi-

cation for view-based choice (but not object choice) generalized

across viewing sequences (Figure 3F, right).

The view-based choice signals described here are remarkable

because they could reflect an efficient decision mechanism

that processes abstract choice representations irrespective of

object features. Therefore, we next tested the independence of

view-based choice signals from physical object and reward

properties.

View-based choice signals are independent of physical
object and reward properties
In two control experiments,we varied the physical features of both

visual and rewardobjects. First,we testedneuronswith twosetsof

visual choice objects (see STARMethods; value derived only from

object-specific rewardprobabilities). Individual amygdala neurons

encoded view-based choice across object sets; i.e., a given

neuron signaled whether the monkey would choose the currently

viewed object, irrespective of which of four visual objects was

chosen (Figure 3G; 34/205 neurons, 17%; Equation 10). Second,

we introduced different physical rewards that elicited subjective

preferences (e.g., preferred apple juice vs. non-preferred lemon

juice), tested under changing cue-reward associations (Figure S6;

see STAR Methods; value derived from reward type and reward

magnitude). Individual amygdala neurons signaled view-based

choice irrespective of which specific reward was chosen or which

visual cue indicated the reward (Figure 3H; 17/72 neurons,

24%; Equation 11). In all three tasks, view-based choice signals

fulfilled the criterion of an abstract representation29: choice-de-

coding performance generalized across conditions, even when

classifierswere trained and testedondifferent object sets or phys-

ically different rewards (Figure S7). Thus, experimental tests

confirmed that view-based choice signals in amygdala neurons

were independent of visual object identity and physical reward

characteristics.
Neuron 111, 1–14, December 6, 2023 5
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Figure 3. A view-based decision process in amygdala neurons

(A) Amygdala neuron encoding view-based choice (i.e., choice for currently viewed vs. last-viewed object) during second cue.

(B–D) Activity of the same neuron sorted by object choice and viewing sequence (B), object choice (C), and action (saccade direction) (D).

(E) Population activity of view-based choice neurons (selected by sliding-window regression; mean ± SEM).

(F) Population choice decoding during second cue. Left: decoding view-based choice and object choice from all trials; right: cross-condition decoding using

different object-viewing sequences for decoder training and testing. Black/white, 39 pre-selected neurons encoding view-based choice during second cue; blue/

pale blue, 233 unselected neurons.

(G) Neuron encoding view-based choice in control experiment with four different visual objects.

(H) Neuron encoding view-based choice in control experiment with two different rewards (preferred apple vs. non-preferred lemon juice).

(I) Neuron encoding object choice during presentation of saccade targets.

(J) Population decoding of view-based choice (blue) and object choice (green) from all neurons (N = 233; mean ± SEM). Gray lines, shuffled data.

(K) RSA for object identity, view-based choice, object choice during first cue, second cue, targets. Top: templates (letters A/B in left panel indicate object identity;

letters A/B in middle and right panels indicate object choice); bottom: neuronal RSA matrices (N = 233 neurons).

(L) Choice decoding for value-difference terciles (N = 60 view-based choice neurons; mean ± SEM; p < 0.001, Wilcoxon test).

(M) Value-to-choice transition in the neuron shown in (A).

(N) Value-to-choice transitions in view-based choice neurons (mean ± SEM).

(O) Anti-correlated neuronal value coefficients between first and second cues indicate value comparison (N = 233).

(P) Recording sites of view-based choice neurons.

(Q) Decoding view-based choice during second-cue period for different decoding sample sizes (mean ± SEM). Inset: nucleus-specific decoding (N = 20 neurons

per nucleus; *p < 0.001, Wilcoxon test).

(R) Nucleus-specific RSA regression of view-based choice during second cue (*p < 0.005).

See also Figures S5–S9.
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View-based choice signals precede object-choice
signals
We also observed conventional object-choice signals; however,

these typically followed view-based choice signals. When the

saccade targets appeared, the neuron in Figure 3I signaled

whether the monkey would choose object B over object A (p =

1.0 3 10�16, Equation 7); it did not carry an earlier, view-based

choice signal (p = 0.53). Of 233 neurons, 94 neurons (40%)

explicitly encoded object choice, often without encoding view-

based choice (57/94 neurons). Population decoding showed a

clear transition from early view-based choice coding, which

peaked when the monkey viewed the second object, to subse-

quent object-choice coding when the choice targets appeared

(Figure 3J; value and choice neurons contributed to decoding).

This transition was also evident in the population representa-

tional similarity structure: population activity initially reflected

the first object’s identity (Figure 3K, left) before evolving into a

transient, view-based choice code during the second cue (Fig-

ure 3K, middle) and then transitioning to an object-based choice

code during target presentation (Figure 3K, right). These effects

were present in time-resolved RSA patterns and robust across

two animals and three experimental tasks (Figure S8). Object-

choice signals provided a useful control that our task did not

pre-determine view-based choice signals. Thus, transient

view-based choice signals preceded object-choice signals, sug-

gesting that decisions were initially computed in a view-based

representation.

Amygdala neurons encode a view-based decision
computation
View-based choice signals in amygdala reflected the critical,

well-conceptualized signatures of a decision computation.5,6

First, in formal decision models, the strength of the choice

signal—the decision output—increases for easier decisions

due to a clearly resolved winner-take-all competition.5 We

confirmed this pattern in view-based choice signals: neuronal

discrimination of the animal’s view-based choice increased

with decreasing decision difficulty, which is inversely related to

the value difference between options (Figure 3L; both view-

based value and choice neurons contributed to this decoding).

Second, decision neurons should reflect transitions from cod-

ing the evidence entering the decision process (i.e., the values) to

coding the binary choice.5,51 Following this principle, the binary

view-based choice signal of the neuron in Figure 3A was pre-

ceded by a graded value signal, indicated by an early peak in

the time-resolved partial-regression coefficient for value (Fig-

ures 3M; Equation 7). Such value-to-choice transitions occurred

in 34 of 60 view-based choice neurons (56.6%; Figure 3N) and in

control experiments extended to multiple visual and reward ob-

jects (Figure S9). By translating value inputs to choice outputs,

the activity patterns of these neurons matched the information

flow of computational decision models.5

Third, amygdala neurons directly encoded value comparisons

between currently viewed and last-viewed objects. Neuronal

value coefficients were anti-correlated between first- and sec-

ond-viewed objects, indicating that competing choice options

had opposing influences on neuronal activity (Figures 3O and

S9; Equation 9, controlled for value range and intrinsic value
anti-correlation; Figure S9). By contrast, neurons did not reflect

value comparisons based on object identity (Figure S9). Taken

together, these activity patterns were consistent with an under-

lying view-based decision computation in amygdala neurons.

Although we found view-based choice signals throughout

amygdala nuclei (Figure 3P), they were strongest in BL.

Choice-decoding accuracy generally increased asmore neurons

entered into the decoder (Figure 3Q), but BL neurons were the

most precise in discriminating view-based choices (Figure 3Q,

inset). Signatures of value comparison and cross-condition

generalization of choice decoding were also strongest in BL (Fig-

ure S9). Importantly, the view-based choice code in BL was

particularly distinct, accounting for up to 43% of explained vari-

ance in representational similarity structure compared to 15% in

the lateral nucleus (LA) (Figures 3R andS9). These results identify

BL as a key amygdala site for view-based decision computation.

A three-stage neural mechanism for view-based
decisions
Our data are consistent with the notion that the primate amyg-

dala encodes a view-based decision process (cf. Figure 1B).

To explain this process mechanistically, we designed a biologi-

cally plausible neural-network model that combined three well-

defined circuit computations to reproduce our recorded amyg-

dala signals (Figures 4A, 4B, and S10). As described next, the

model implements view-based decision making in three stages:

(1) mapping object- to view-based values via integral feedback

control; (2) computing abstract, view-based choice via winner-

take-all competition through mutual inhibition and attractor dy-

namics; and (3) mapping view-based choice to object choice

via expansion recoding.

The model’s first stage converts object-value inputs to view-

based values and stores them in short-term memory for value

comparison between sequential options. When viewing the first

object (A or B), object-value neurons (VA or VB) activate two pools

of oppositely tuned view-based value neurons (Figure 4B, V1,

negative value tuning; V2, positive value tuning) that encode

the first object’s value irrespective of object identity (Figure 4C,

gray arrows). Importantly, decision making between sequentially

viewed objects requires memory for the first object’s value. For

this purpose, view-based value neurons interact with recurrent

‘‘memory neurons’’ (M1, M2, Figures 4B and 4C, insets) that pro-

vide sustained inhibitory feedback proportional to the first ob-

ject’s value (‘‘integral feedback control’’52). Thus, after viewing

the first object, the M-to-V circuits maintain the object’s value

throughout the inter-stimulus interval, with higher (V1) or lower

(V2) activity for larger values, respectively (Figure 4C, green

arrows). When viewing the second object, the sustained M-to-

V inhibition modulates the response of the positively tuned V2

neurons, producing strong responses if the value input by the

second object overcomes the inhibition proportional to the first

object’s value (Figure 4C, magenta arrows). Conversely, the

negatively tuned V1 neurons respond strongly only if the second

value input is smaller than the first. This gating of the second-ob-

ject response by sustained inhibition allows view-based neurons

to provide comparison evidence for the two temporally sepa-

rated values to downstream decision neurons ( Figure S10).

Thus, the first model stage uses integral feedback control to
Neuron 111, 1–14, December 6, 2023 7
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Figure 4. Neural-network model for abstract, view-based decisions in amygdala

(A) Computations for view-based decision making informed by recorded amygdala neurons.

(B) Architecture of the biologically plausible model implementing view-based decision making. Circles indicate pools of functional neuron types. Blue/red,

excitatory/inhibitory connections.

(C) Model neurons encoding view-based value with positive (left) and negative (right) tuning. Inset: memory neurons implementing integral feedback control. In

these simulated trials, the first value was higher than the second, constant value.

(D) Model neurons encoding view-based choice across difficulties (i.e., value difference).

(E) Switchmechanism initiates decision computation. Attractor dynamics of view-based decision neurons depend on excitatory drive from switch neurons (‘‘S’’ in

B). Left: switchmodule with interconnected excitatory and inhibitory populations. Right: the system’s low-activity and high-activity branches coexist in a region of

bistability. State transitions depend on applied input. In the plotted bistability region, the system has two stable points (black) and one unstable point (yellow).

(F) The amygdala’s view-based code maximizes discriminability for view-based choice (gray arrow) but limits discriminability for object choice (orange arrow).

Data from two typical view-based amygdala neurons.

(G) Combination neurons signal object choice for specific object-viewing sequences, shown for trials in which object A was viewed second and chosen.

(H) Model neurons encoding object choice.

See also Figures S10–S13.
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transform object values to view-based values and prepare them

as decision inputs.

The second model stage performs the view-based decision

computation. Two distinct pools of decision neurons process

value input from the preceding stage’s V1 and V2 neurons (Fig-

ure 4C), predisposing them to encode choice for currently

viewed objects (C2) and last-viewed objects (C1), respectively

(Figure 4D). Based on the strength of the value inputs, the neu-

rons compete with each other via a winner-take-all process im-

plemented through mutual inhibition and recurrent excitation.5

This decision circuit amplifies differences between conflicting

value inputs until the ‘‘winning’’ neuronal pool enters a stable at-

tractor state that signals view-based choice and suppresses the

alternative pool. Similar to previous models,5,53 attractor dy-

namics produce choice signals that reflect decision difficulty,

with stronger signals resulting from clearly resolved competi-

tions (Figure 4D). Different from previous models, decision neu-

rons in our model do not encode choices for specific objects but

instead compute choices in an abstract, purely internal activity
8 Neuron 111, 1–14, December 6, 2023
space, referenced to the animal’s view rather than to sensory ob-

jects or planned actions. To prevent premature decision compu-

tation, competition is only initiated once the second object is

viewed, mediated by excitatory drive from bistable ‘‘switch neu-

rons’’ (S) that integrate consecutive object inputs (Figures 4B,

4E, and S11). Thus, the second model stage computes object-

independent, view-based choices through winner-take-all

competition by recurrence and mutual inhibition.

Choice signals ultimately serve to direct actions toward chosen

objects. However, view-based choice signals are referenced to

neither objects nor actions but instead mix information about

the chosen object and the object-viewing sequence. Importantly,

the view-based code provided by amygdala view-based choice

neurons is too compressed to enable a downstream neuron (or

other linear decoder) to read out the chosen object’s identity

directly (Figure 4F, cf. Figure 3F). Accordingly, view-based choice

signals must be mapped back to an explicit object-based repre-

sentation. For this purpose, in the final model stage, view-based

choice signals are projected onto an expanded space of



A

D E F G

CB

Figure 5. Amygdala neurons encode signatures of model computations

(A) Model neuron and recorded amygdala neuron from Figure 3A reverse value tuning from the first cue to delay, indicating integral feedback control. At the

second cue, neurons encode the chosen option more strongly for easy (saturated colors) than difficult (faint colors) decisions.

(B) Value-tuning reversal from first to second cue in recorded view-based choice neurons (N = 60). Inset: colored arrows indicate model-predicted value-co-

efficient changes. Top right: neurons encoding value-to-choice conversions. Bottom right: neurons encoding view-based choice but not value.

(C) View-based amygdala neurons (N = 60) enable accurate decoding of view-based choice, but not object choice, during second cue (left). Object choice can be

decoded for specific object-viewing sequences (middle), but not across viewing sequences (‘‘train A/B, test B/A’’). Recoding classification input by viewing

sequence recovers object-choice decoding (right, ‘‘train A/B, test B/A*’’).

(D) Amygdala neuron encoding model-predicted conjunction.

(E) Decoding model-predicted conjunctions (N = 233 neurons; mean ± SEM). Gray lines, shuffled data.

(F) Model extension to decision making between many objects.

(G) Model neuron encodes view-based choice for many objects. Solid/dotted lines, object chosen/not chosen.

See also Figure S14.
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intermediate ‘‘combination neurons’’ that help solve the mapping

from view-based to object-based choice signals (Figures 4B and

4G). These neurons (CA1, CA2, CB1, CB2) combine inputs about

view-based choice from the second stage with separate inputs

fromobject-sequence neurons (A12, B12) that signal the sequence

in which objects A and B had been viewed. We found object-

sequence signals in recorded amygdala neurons (Figure S12)

and modeled them using synaptic depression (see STAR Meth-

ods). Combination neurons thus serve as ‘‘expansion-recoding

devices’’54 that recover the necessary object information for

signaling view-based choice for specific objects. In a final step,

these signals converge onto conventional object-choice neurons

(CA, CB) that explicitly signal the choice for object A or object B, ir-

respective of viewing sequence (Figures 4B and 4H).

Amygdala neurons carry signatures of model
computations
Our model’s computations predicted specific activity patterns

that were confirmed by experimental data. One key prediction

derives from the operation of integral feedback control52 and at-

tractor-based competition.5,6 View-based neurons with positive

value tuning during the first cue (V2) should reverse their value

tuning during the delay period, because of sustained value-

dependent inhibition by M neurons, and evolve into a choice
signal whose strength reflects decision difficulty (Figure 5A,

left), consistent with winner-take-all competitive selection.

Remarkably, the view-based amygdala neuron from Figure 3A

showed precisely this pattern (Figure 5A, right), supporting the

operation of integral feedback control and attractor-based

competition in amygdala. The encoding of decision difficulty (Fig-

ure 3L), the timing of value-to-choice transitions (Figures 3M and

3N), and anti-correlated value coefficients between first and sec-

ond options (Figure 3O) confirmed these predictions across

amygdala neurons.

Importantly, the dynamic coding pattern by which neuronal

value tuning reversed from the first to the second option (Fig-

ure 5B) was consistent with integral feedback control,52 but

not with alternative mechanisms,53,55 with 80% of view-based

neurons (48/60 neurons) showing this consistent pattern (Z =

4.65, p = 3.3 3 10�6). Notably, value-tuning reversal was more

pronounced in neurons encoding value-to-choice transitions

(Figure 5B, top right) compared to pure view-based choice neu-

rons (Figure 5B, bottom right) and was evident in population ac-

tivity (Figure S10), in support of separate pools of view-based

value and choice neurons in our model (Figure 4B). Amygdala

value signals were phasic but varied in latency and duration,

thereby tiling the delay period between sequential objects and

enabling accurate value decoding (Figure S10). Consistently,
Neuron 111, 1–14, December 6, 2023 9
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modeled activation levels ofM neurons could vary while retaining

the network’s ability to compare sequential stimuli (Figure S13).

Neuronal data confirmed the necessity and feasibility of a re-

coding step to read out object choice from the view-based

code: across all trials, the amygdala’s view-based code enabled

accurate readout only for view-based choice, but not for object

choice (Figure 5C, left), indicating that neural activity was sepa-

rated along a view-based choice axis but compressed along the

object-choice axis (cf. Figure 4F). Object choice could be read

accurately when holding the object-viewing sequence constant

(Figure 5C, middle); however, when training and testing the

decoder on alternative viewing sequences, object choice was

systematically misclassified (Figure 5C, right). Object-choice in-

formation could be recovered when providing the decoder with

information about viewing sequence (Figure 5C, right), by recod-

ing classification labels according to viewing sequence (see

STAR Methods). Evidence for recoding was strongest in BL

compared to dLA and vLA (Figure S14). Our model suggests

that this recoding step involves expansion recoding onto combi-

nation neurons, supported as follows. Amygdala neurons en-

coded the model-predicted three-way conjunctions of viewing

sequence, view-based choice, and object choice (Figure 5D).

Specifically, of 60 neurons encoding view-based choice, 37

and 27 neurons also encoded viewing sequence and object

choice, respectively. A multi-class SVM decoder accurately

read these conjunctions from population activity (Figure 5E).

In summary, the neural-network model uses integral feedback

control to map object-specific values onto abstract, view-based

representations that implement a competitive decision process.

After view-based choice is computed, the chosen object’s iden-

tity is recovered via expansion recoding. Activity patterns of re-

corded amygdala neurons, includingmodel-predicted tuning dy-

namics, choice codes, and signal conjunctions, supported the

model’s key computations.

DISCUSSION

Primates make decisions visually by shifting their view from one

object to the next to compare the objects’ values and form an in-

ternal choice before acting. Our data suggest that amygdala

neurons support view-based decision making by deriving ab-

stract, view-based choices from object-specific values via a

sequence of well-defined neural-circuit computations. These

findings establish a role for the primate amygdala in decision

making that extends considerably beyond object valuation.

Different amygdala neurons signaled value selectively for spe-

cific objects or unselectively for whichever object the monkey

currently looked at. By commonly referencing values of different

objects to the monkey’s view, these latter view-based neurons

enabled an abstract decision computation that compared

currently viewed and last-viewed objects irrespective of their

identity. Individual neurons encoded this decision computation

through (1) opposing, dynamic value tuning for sequentially

viewed objects, consistent with integral feedback control52; (2)

signatures of winner-take-all competition5,6; and (3) value-to-

choice transitions, directly linking decision inputs and outputs.

This object-to-view transformation was computationally effi-

cient: it generalized across task contexts and allowed the
10 Neuron 111, 1–14, December 6, 2023
same neurons to signal choices for different objects, rewards,

and actions.

View-based choice signals in amygdala differ markedly from

known object-choice signals39,41–43: they predicted whether the

monkey would choose the currently viewed object irrespective

of object identity and forthcoming action, preceded conventional

object-choice signals, and were shown in control experiments to

be independent of physical object and reward features. These

properties also differ from action-specific choice signals in

sequential vibrotactile decision tasks.51 Notably, our task could,

in principle, be solved using a purely object-based code; indeed,

some neurons encoded values and choices for specific objects.

Thus, our finding that amygdala neurons encoded values and

choices independently of object features, before encodingobject

choice, was not pre-determined by task design. Moreover, view-

based choice signals were found across tasks with varying fea-

tures, such as whether value derived from reward probability,

magnitude, or type. Arousal or attention did not explain view-

based choice signals as neurons showed computationally well-

defined value-to-choice transitions and predicted choice on

value-matched trials. In being detached from sensorimotor con-

tingencies and generalizing across task conditions (Figures 3F–

3H), view-based choice signals fulfilled criteria for an abstract,

cognitive representation29,56 that could serve as an interface be-

tween valuation and action. Consistent with this notion, view-

based choice signals were transient: shortly before the animals

acted on their choice, neural activity reverted to an object-refer-

enced code that identified the chosen object.

To guide actions, neurons should signal the chosen object

unambiguously. Although amygdala neurons signaled view-

based choice with high accuracy, this view-based code was

too compressed for a linear decoder (e.g., a downstream neuron)

to read out the chosen object’s identity. Recovering object infor-

mation required a recoding step to increase the linear separa-

bility of neuronal object-choice patterns. Our model solved this

problem by expansion recoding onto combination neurons that

mixed information about view-based choice and object-viewing

sequence. This mechanism is supported by recorded model-

predicted combination neurons, mixed coding in amygdala,3,35

and the amygdala’s internal feedforward circuitry,49,57 which

could generate such mixed representations.

The identified abstract, view-based decision mechanism in

amygdala is computationally efficient. It solves the problem of

comparing many objects with few decision neurons and thus

avoids combinatorial explosion from replicating mutual-inhibi-

tory circuits for all pairwise object comparisons.While alternative

solutions to many-objects decision problems exist, including

fine-tuned inhibition or rescaling to new option sets,6,8 themech-

anism shown here is supported by our single-neuron data and

consistent with known amygdala inhibitory, recurrent and feed-

forward connections.49,57,58 Although our model introduces

complexities of mapping object to view-based values and re-

mapping view-based to object choices, these operations can

be implemented by common feedforward connectivity49,57 and

competitive networks.59 Importantly, our model can be readily

extended to process many objects (Figure 5F). Neuronal data

(Figure 3G) and simulations (Figure 5G) show that the proposed

mechanism flexibly processes values from multiple objects to
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compute view-based choice, provided full connectivity is spec-

ified in the first, object-to-view stage.

Previous attractor models implemented sequential decision

making with flexible control of mutual inhibition,53 integral feed-

back control,52 or synaptic facilitation.55 Among these variants,

only the mechanism by Miller and Wang,52 which we incorpo-

rated here, predicts value-tuning reversal between sequential

options, as observed in our data. Different from attractor models,

reservoir models that adjust network connectivity or readout also

produce delay activity that is heterogeneous, dynamical, and re-

verses tuning.60,61 An advantage of reservoir computing is that it

does not require precise connectivity tuning for integral feed-

back control or mutual inhibition. Future extensions of these

models could incorporate the expansion from view-based to ob-

ject-specific choice representations suggested here.

Our data indicate functional differences between primate amyg-

dalanuclei thatso far remainedelusive.3We found thatdLAneurons

carried a highly accurate, object-centric value code that transi-

tioned, via an intermediate stage in vLA, to a predominantly view-

based code in BL (Figures 2M–2P). dLA specialization for object

valuation aligns with this structure’s rich visual inputs,30 highly se-

lective object responses,48 and known function in associating stim-

uli with value.45,46 In our model, object values were converted to

view-based values through feedforward convergence and integral

feedback control (Figure 4B). This proposal is consistent with the

predominantly feedforwardprojections fromdLA toBL,49prefrontal

BL inputs30 that couldcontribute to integral feedbackcontrol,52 and

proposals that BL neurons elaborate cue-evoked LA responses.57

Remarkably, BL neurons predicted view-based choices much

more precisely than dLA and carried a stronger view-based choice

code (Figures 3Q and 3R). Thus, valuation and decision processes

maymapontopartlydistinct amygdala subdivisions,withBLacting

as theprimary site for decision computation. A caveat to these con-

clusions is thatwedid not examine the relative timing of information

processing across nuclei with simultaneous recordings.

In previous studies, neural decision processes involved either

object-centric or sequential reference frames.14,17–19,62 Our data

help reconcile these observations. We show that object- and

view-based signals serve complementary functions in decision

making and coexist in a single brain structure and even in single

neurons and that transitions between these reference frames

emerge from specific circuit computations. Our finding that view-

based choice signals preceded object-choice signals supports

proposals that view-based decision variables are not simply a cor-

ollary of attention but play a central role in the computation of eco-

nomic choice.14,15

Importantly, we do not suggest that the amygdala processes

decisions independently of other brain systems or that primates

exclusively use a view-based decision strategy. Decisionmaking

engages additional processes that involve other brain structures,

including the prefrontal cortex,9,16–24,63,64 which interacts with

the amygdala during decision making.31,34,65,66

A classical study identified primate amygdala neurons that

tracked values of visual stimuli in a Pavlovian context, which

included neurons that did not encode stimulus identity.2 Our re-

sults in a choice task suggest that such neurons are particularly

important for comparing values between sequentially viewed ob-

jects. View-based value signals differ from previously reported
option-specific and chosen-value signals19,39,41: although they

reflected subjective, economic value as in previous studies,

they did not reflect option identity or choice and were detected

in regressions that controlled for these variables.

How does the identified decision mechanism contribute to

amygdala function? As shown here, view-based representations

generalizeacross taskcontexts, similar tootherabstract represen-

tations.28,29 Accordingly, view-based choice signals could focus

different output functions on currently viewed rewards, including

amygdala-coordinatedmotivational states35,37,38 and primate so-

cial-gaze interactions.4,47,67 Our results predict that amygdala

damage should disrupt view-based valuations, whichmay explain

altered viewing preferences following amygdala lesions.32,33 In

generalizing across objects, rewards, and contexts, the amyg-

dala’s view-based mechanism also constitutes a vulnerability for

dysfunction that could help explain generalized reward-valuation

deficits in depression, in which the amygdala is implicated.68

In summary, our findings uncover a neuralmechanism in the pri-

mate amygdala that derives object choices from abstract, view-

based computations. By implementing value-guided competition

between sequentially viewed options, this mechanism seems

suited for primate-typical decision making through visual fixa-

tions.9,14,17,20 Our single-neuron data and neural-network model

using abstract representations could inform the designof adaptive

decision systems that efficiently solve many-objects choice prob-

lems, which challenge both biological and artificial intelligence.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rhesus macaques (Macaca mulatta) Centre for Macaques (CfM) N/A

Software and algorithms

MATLAB MathWorks http://mathworks.com

Plexon offline sorter Plexon http://plexon.com

Computational model This paper https://github.com/FGrabenhorst/

Grabenhorst_AmygdalaChoice_

Neuron2023/releases/tag/v1.0 (https://doi.

org/10.5281/zenodo.8268856)

Other

Microelectrodes FHC http://www.fh-co.com/

Double asymmetric head holder, Recording

chamber, Low-profile bone Screws

Gray Matter Research http://www.graymatter-research.com

NHP TV-front chair Crist Instruments http://www.cristinstrument.com

MO-90 manual micromanipulator

electrode drive

Narishige https://uk.narishige-group.com
RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents and resources should be directed to and will be fulfilled by the lead contact, Dr. Fabian

Grabenhorst (fabian.grabenhorst@psy.ox.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at GitHub: https://github.com/FGrabenhorst/Grabenhorst_AmygdalaChoice_Neuron2023/

releases/tag/v1.0 (https://doi.org/10.5281/zenodo.8268856) and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two adult male rhesusmonkeys (Macacamulatta) weighing 10.5 and 12.3 kg participated in the present experiments. The number of

animals used is typical for primate neurophysiology experiments. The animals were on a standard diet for laboratory macaques and

had free access to the standard diet before and after the experiments. During the experiments, the animals received their main liquid

intake in the laboratory. All animal procedures conformed to US National Institutes of Health Guidelines. The work has been regu-

lated, ethically reviewed and supervised by the following UK and University of Cambridge (UCam) institutions and individuals: UK

Home Office, implementing the Animals (Scientific Procedures) Act 1986, Amendment Regulations 2012, and represented by the

local UK Home Office Inspector; UK Animals in Science Committee; UCam Animal Welfare and Ethical Review Body (AWERB);

UK National Centre for Replacement, Refinement and Reduction of Animal Experiments (NC3Rs); UCam Biomedical Service

(UBS) Certificate Holder; UCam Welfare Officer; UCam Governance and Strategy Committee; UCam Named Veterinary Surgeon

(NVS); UCam Named Animal Care and Welfare Officer (NACWO).
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METHOD DETAILS

Neurophysiological recordings
We used experimental procedures for neurophysiological recordings from the amygdala in awake, behaving macaque monkeys as

described previously.39,42 A head holder and recording chamber (Gray Matter Research) were fixed to the skull under general anes-

thesia and aseptic conditions. We located the anatomical position of the amygdala from bone marks on coronal and sagittal radio-

graphs in reference to the stereotaxically implanted chamber.69 We recorded the activity of single amygdala neurons from extracel-

lular positions while the animals performed the task, using standard electrophysiological techniques including on-line visualization

and threshold discrimination of neuronal impulses on oscilloscopes. We aimed to record representative neuronal samples from

the lateral, basolateral, basomedial and centromedial amygdala. A stainless-steel tube (0.56 mm outer diameter) guided a single

tungsten microelectrode of 0.125 mm diameter and 1- to 5-MU impedance (FHC Inc.) through the dura and assured consistent tar-

geting of subcortical structures. We advanced the microelectrode vertically in the stereotaxic plane using a hydraulic micromanip-

ulator (MO-90; Narishige, Tokyo, Japan). Neuronal signals were amplified, bandpass filtered (300 Hz–3 kHz), and monitored online

with oscilloscopes. Somatodendritic discharges from single amygdala neurons were distinguished from background noise and other

neurons using a time threshold window discriminator (WD-95; Bak Instruments), which produced a 1.0-ms-long standard transistor-

transistor logic pulse for each neuronal impulse that helped in the online inspection of neuronal recordings. Behavioral data, digital

signals from the impulse window discriminator, and analogue eye position data were sampled at 2 kHz on a laboratory computer with

custom MATLAB (Mathworks Inc.) code. We recorded analogue impulse waveforms at 22 kHz with a custom recording system and

sorted them offline for data analysis, using cluster-cutting and principal component analysis (Offline sorter; Plexon), which provided

the database for the present manuscript. We used one electrode per session and recorded between 1 and 3 neurons per session

(monkey A: 1.41 ± 0.05; monkey B: 1.32 ± 0.08).

During recordings, we sampled activity from about 1,000 amygdala neurons and recorded and saved the activity of neurons that

appeared to respond to any task event during online inspection of several trials. Thus, we aimed to identify task-responsive neurons

but did not preselect neurons based on specific response characteristics. This procedure resulted in a database of 510 neurons (233

neurons in the main task, 205 neurons in the four-objects task, 72 neurons in the two-juices task), which we analyzed statistically.

Statements about the number of neurons showing specific effects are made with reference to these task-related neurons. The num-

ber of neurons is similar to those reported in previous studies on primate amygdala.

Reconstruction of neuronal recording sites
Following completion of all data collection, the animals received an overdose of pentobarbital sodium (90 mg/kg iv) and were

perfused with 4% paraformaldehyde in 0.1 M phosphate buffer through the left ventricle of the heart. We reconstructed the neuronal

recording positions from 50-mm-thick, stereotaxically oriented coronal brain sections stained with cresyl violet based on electrolytic

lesions (15–20 mA, 20–60 s,made in one animal) and lesions by cannulas that were placed to demarcate recording areas, by recording

coordinates for individual neurons noted during experiments, and in reference to other brain structures with known electrophysiolog-

ical signatures recorded during experiments (internal and external globus pallidus, substantia innominata).70 We assigned recorded

neurons to amygdala subnuclei with reference to a stereotaxic atlas71 at different anterior-posterior positions (the figures show lo-

cations of recorded neurons collapsed over anterior-posterior levels). In the main task, we recorded 93 neurons from the lateral

amygdala (52 dorsal, 41 ventral), 94 neurons from the basolateral amygdala, 17 neurons from the basomedial (also termed accessory

basal) amygdala and 29 neurons from the centromedial amygdala (Figure S3E). Neurons were not recorded simultaneously from

different nuclei. We assigned recorded neurons to dorsal and ventral portions of the lateral nucleus in reference to a previous paper.49

A neuron was classified as belonging to dLA or vLA if its recording position was consistent with the lateral nucleus, as determined by

reconstruction from histology and stereotaxic coordinates,71 and located either in its dorsal or ventral half, respectively in reference to

a previous study.49 We made no attempt to distinguish dorsal intermediate and ventral intermediate divisions of the lateral nucleus.

Main choice task
Two monkeys performed in a reward-based choice task with sequentially presented choice options under computer control (Fig-

ure 1C). Our goal was not to establish whether the animals used a general view-based behavioral strategy, but rather to study the

activity patterns of amygdala neurons during this task. The animal sat in a primate chair (Crist Instruments) with a horizontally

mounted touch screen for stimulus display placed in front of them (EloTouch 1522L 15’; Tyco). On each trial, the animal made a

choice between two sequentially presented options. Each option consisted of a visual ‘object’ (fractals, abstract images, photo-

graphs of natural objects such as flowers) presented in central position on the computer monitor overlaid by a small bar stimulus.

We used two visual objects in the main task. Different objects were associated with specific reward probabilities that varied across

the testing session without notification. Different bar heights cued different reward magnitudes chosen randomly on each trial. To

maximize reward, the animals were required to learn and track the (uncued) reward probabilities associated with the different objects

and combine these probability estimates with the trial-specific cued reward magnitudes for the different objects. Reward probabil-

ities varied in blocks of 15–40 trials and were pseudorandomly chosen for each object from the following set: 0, 0.15, 0.35, 0.5, 0.65,

0.75, 0.85, 1.0. Reward magnitudes varied randomly on each trial and were chosen from the following set: 0.25 mL, 0.4 mL, 0.65 mL.

The specific reward probabilities and magnitudes were chosen based on pre-testing to ensure that the animals maintained high
e2 Neuron 111, 1–14.e1–e14, December 6, 2023
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motivation during the task while at the same time providing sufficient variation in choices and modeled object values. Importantly,

reward magnitudes were only cued transiently, during sequential object presentation, but not in the period when the animals indi-

cated their choice with a saccade. This transient presentation of reward-magnitude cues was designed to encourage the animals

to make a decision during sequential object viewing, rather than in the later saccade period. A computer-controlled solenoid valve

delivered juice reward from a spout in front of the animal’s mouth. On each completed trial, the acting animal received one of two

outcomes: on ‘rewarded’ trials, a liquid reward corresponding to the cued reward amount in ml was delivered whereas on ‘non-re-

warded’ trials, a small reward of 0.05 mL was delivered. We found that a small reward instead of non-reward on ‘unrewarded’ trials

ensured that the animals maintained high motivation. During the periods of neurophysiological recordings and behavioral testing, the

animals received their main liquid intake during task performance, supplemented by additional liquid after the testing sessions if

required. The animals had free access to foods in their home cage.

Each trial started when the background color on the touch screen changed from black to gray. To initiate the trial, the monkey was

required to place his hand on an immobile, touch-sensitive key. Presentation of the gray background was followed by presentation of

an ocular fixation spot (1.3� visual angle). On each trial, the animal was then required to fixate this spot within 4� for 500ms. Following

500ms of central fixation, a first choice cue (‘object’) and overlaid bar stimulus appeared centrally for 500ms andwere followed, after

cue-offset, by a 500 ms inter-stimulus interval, which was then followed by a second choice cue and overlaid bar stimulus shown for

500ms followed by another 500ms inter-stimulus interval. The rewardmagnitude cue covered 18.75 percent of the underlying image.

The two objects could have the same reward magnitude on a given trial, as determined by random permutation. Animals A and B

performed 108 and 36 sessions, respectively. We used new objects in each session in each animal resulting in 108 image sets for

animal A and 36 image sets for animal B. Following sequential presentation of these individual choice objects and overlaid bar stimuli,

the two objects reappeared simultaneously on the left and right side of the monitor (determined pseudorandomly); importantly, the

magnitude-bar stimuli did not reappear. Thus, the separate presentation of the first and second reward-magnitude cue, and their

transient presentation during sequential viewing precluded simultaneous magnitude comparison. After 100 ms, the fixation spot dis-

appeared, indicating that the monkey was no longer required to fixate the spot and was allowed to make his choice by fixating the

object on the left or right for 500 ms. The monkey was allowed to freely look back and forth between the objects for 2,000 ms and in

that period could make a choice at any time by fixating the chosen object for 500 ms. Once the monkey’s choice was registered, the

unchosen object disappeared and after a delay of 500 ms, the chosen object also disappeared and a liquid reward was given de-

pending on the scheduled reward probability and magnitude for the chosen option. Reward delivery was followed by a trial-end

period of 1,000–2,000 ms which ended with extinction of the gray background. The next trial started after an inter-trial interval of

2,000–4,000 ms (drawn from a uniform random distribution). A recording session for a given neuron would typically last 150 trials.

Possible errors in performance included failure to make contact with the touch-sensitive key before the trial, key release before

saccade choice, failure to fixate a choice object for 500 ms during the choice period, failure to fixate the central fixation spot at trial

start or fixation break in the period between initial fixation and disappearance of fixation spot. Errors led to a brief time out (3,000 ms)

with a black background and then trial repetition. Task performance was typically interrupted after three consecutive errors. The an-

imals were required to fixate the fixation spot and the objects until the choice targets were presented in left-right arrangement. Fix-

ation was continually monitored by the task program during all of these periods and fixation breaks resulted in an error trial. The an-

imals were required to place their hand on a touch-sensitive key to initiate each trial and keep their hand in place on the key until trial

completion.

Task training of the animals progressed as follows. Following habituation to the laboratory environment and experimental set-up,

we trained themonkeys in successive steps to drink liquid reward from the spout, place their hands on a touch key and hold the touch

key for increasingly longer periods to receive reward, to view different visual conditioned stimuli that resulted in reward delivery, to

touch and choose between visual stimuli on a touch screen, to choose between visual stimuli based on fixed stimulus-associated

reward probability or cued reward magnitude, to choose between visual stimuli under conditions of varying reward probability or

magnitude, to choose between stimuli that varied in both reward probability and reward magnitude, to perform the task under

head-fixation, to perform the task under gradually increasing visual fixation requirements including saccade choices. We progressed

from task training to recording once the animals were implanted with recording chambers and when their performance had reached

an asymptotic level. These training periods, including development of the tasks, lasted approximately 24 and 18months for animals A

and B.

Stimuli and behavior were controlled using customMATLAB code (TheMathworks) and Psychophysics toolbox (version 3.0.8). The

laboratory was interfaced with data acquisition boards (NI 6225; National Instruments) installed on a PC running Microsoft Win-

dows 7.

Control task with four objects
We recorded amygdala neurons in a separate task with four different visual objects, organized in two object sets of two objects each

that changed across trial blocks. These data helped determine whether view-based choice signals would generalize over a larger

number of visual objects. Recordings were performed from the same twomonkeys as in themain task. The task structure was simpler

compared to the main task as reward value derived only from changing object-reward probabilities without additional reward magni-

tude information (no superimposed magnitude cues were used in this task). Moreover, the data were recorded in a social context in

which twomonkeys sat opposite to each other and took turns making choices for separate visual object sets.42 Object sets switched
Neuron 111, 1–14.e1–e14, December 6, 2023 e3



ll
OPEN ACCESS Article

Please cite this article in press as: Grabenhorst et al., A view-based decision mechanism for rewards in the primate amygdala, Neuron (2023), https://
doi.org/10.1016/j.neuron.2023.08.024
half-way through a given testing session, allowing us to analyze the recorded monkey’s neuronal data in relation to two object sets.

One object within a pair was associated with a reward probability of 0.85, whereas the other object was associated with a reward

probability of 0.15. Reward probabilities reversed between objects after blocks of typically 25–35 trials per animal. On each

completed trial, the acting animal received one of two outcomes: on ‘rewarded’ trials, a liquid reward of 0.8 mL was delivered

whereas on ‘non-rewarded’ trials, a small reward of 0.05mL was delivered. The observer animal did not receive any reward. A typical

recording of one neuron would consist of about 200 choice trials.

Each trial started when the touch-screen background color changed from black to gray. To initiate a trial, both monkeys were

required to place their hand on an immobile, touch-sensitive key (each animal had its own touch key). Following presentation of

the gray background, we presented an ocular fixation spot (1.3� visual angle). On each trial, the recorded animal was required to fixate

the spot within 4� for 500 ms. Following 500 ms of central fixation, a first choice cue appeared centrally for 350 ms and was followed,

after cue-offset, by a 350 ms inter-stimulus interval, which was then followed by a second choice cue shown for 350 ms and another

350 ms inter-stimulus interval. As in the main task, the two objects then reappeared simultaneously on the left and right side of the

monitor (determined pseudorandomly). After 100 ms the fixation spot disappeared, two blue rectangles appeared below the choice

objects and the acting animal was required to touch one of the object-associated blue rectangles within 1.5 s to make its choice. The

unchosen object then disappeared and after a delay of 500 ms, the chosen object also disappeared and a liquid reward was given to

the acting animal. Reward delivery was followed by a trial-end period of 1,000–2,000 ms which ended with extinction of the gray

background. The next trial started after an inter-trial interval of 2,000–4,000 ms (drawn from a uniform random distribution). The roles

of acting and non-observing animal reversed after every correct trial. Behavioral data and neuronal from this task were previously

reported in an investigation of the neuronal processing of the social aspects of the task42; here we re-analyzed the neuronal data

on the recorded monkeys’ trials to test for the presence of view-based choice neurons.

Control task with different reward types
Werecordedamygdalaneurons inacontrol taskwith twophysicallydifferent liquid rewards todistinguishneuronal codingof view-based

choice fromchoicesignals related todifferent reward types.Recordingswereperformed inoneof theanimals tested in themain task.The

design and trial structure of the ‘two-juices task’ was similar as for themain task except that value derived from the cued rewardmagni-

tude (as in themain task) and variations in reward type, but not fromchanging rewardprobabilities. Throughout a testing session, the two

distinct visual objectswere associatedwithdelivery of twodistinct physical liquid rewards. The liquid rewards includedwater anddiluted

fruit juices (blackcurrant, apple, orange, lemon, alphonso mango, pomegranate, peach). To dissociate effects related to visual objects

and rewards, associationsbetween visual objects and rewards typically changed twice in each recording session. In the first 60 trials of a

session, themonkeywould choose between objects A and B that predicted different rewards, e.g., apple juice and lemon juice, respec-

tively. Theobject-rewardassociationwould then reversewithoutnotificationand for thenext60 trials, themonkeywouldchoosebetween

objectsAandB thatnowpredicted lemonandapple juice, respectively. Inseparate trainingsessionswithout rewardmagnitudevariation,

we found that themonkeyadapted typically in less than three trials tochanges inobject-rewardassociationbyswitchinghis choices from

one visual object to the alternative object to track the preferred reward. The trial structure was the same as in the main task, except that

presentation of each option lasted for 350 ms (rather than 500ms as in the main task), followed by a 350 ms inter-stimulus interval. The

monkey indicated his choice by a saccade to the preferred object. As in the main task, reward magnitudes were only transiently cued

during sequential option presentation but not during the saccade choice period.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
Reinforcement learning model

To describe the animals’ behavior in the main task, and to derive trial-by-trial measures of object values for neuronal analysis, we

fitted reinforcement-learning (RL) models to the animals’ choices. The best-fitting model (‘Reversal RL’, see Table S1) accounted

for the reversal-learning nature of the task by updating both the value of the chosen and unchosen option on each trial, as done

in previous studies with reward-reversal learning tasks.42,72 Object values in this model were updated as follows (Equation 1):

Vt+1
A = Vt

A +a
�
Rt � Vt

A

�
(Equation 1)
Vt+1
B = Vt

B +a
��Rt � Vt

B

�
with Vt

A as the expected value of object A on trial t, Rt as reward (coded as 0 or 1 for small and large reward, respectively), Rt � Vt
A as

prediction error between reward Rt and expected value Vt
A on trial t, a as free-parameter learning rate and Vt+1

A as the updated ex-

pected object value for the next trial, and corresponding variables for the alternative object B. Note that the prediction error for object

B, �Rt � Vt
B , involved updating the value for object B in the opposite direction as for object A. This model is a variant of standard

reinforcement learning as it updates additionally the value of the unchosen option. The object choice on each trial was determined by

the softmax rule73 (Equation 2):
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PðAÞ =
1�

1+exp
�� b

�
Vt
A � Vt

B

��� (Equation 2)

with PðAÞ as choice probability for object A and b as the free-parameter inverse temperature, which reflects the degree of stochas-

ticity in the animal’s choices.

We estimated the model’s free parameters by fitting the model to the trial-by-trial record of choices and rewards within each ses-

sion, separately for each session and separately for the two animals. Model fitting was performed using a maximum likelihood pro-

cedure with the Nelder–Mead search algorithm (implemented by the MATLAB function ‘fminsearch’).

We compared several alternative reinforcement-learning models with the results of the model comparison shown in Table S1. The

additional models tested include: (1) a basic reinforcement-learning model formulated as above but without updating the value of the

unchosen option (‘Basic RL’ in Table S1), (2) a model formulated as the basic model but using two separate learning rates for re-

warded and unrewarded trials (‘Basic Model, two learning rates’), a model formulated as our main model (Equation 2) but with sepa-

rate learning rates for rewarded and unrewarded trials (‘Reversal RL, two learning rates’), a Pearce-Hall model in which the learning

rate depended on the unsigned reward prediction error (‘Pearce-Hall), a model formulated as our main model (Equation 2) but with a

learning rate that depended on the unsigned reward prediction error (‘Pearce-Hall, reversal learning’), a Pearce-Hall model using

separate learning rates for rewarded and unrewarded trials (‘Pearce-Hall, reversal learning, two learning rates’). The best-fitting

model was identified using Akaike Information Criterion and Bayesian Information Criterion (Table S1).

For the optimality analysis in Figures S1G andS1H, we simulated the reversal-learningmodel (Equation 1) by systematically varying

the learning rate and inverse temperature free parameters, and included free parameters that determined the weight assigned to

model-derived probability estimates and cued reward magnitudes. Simulations were performed using the block-wise object-reward

probabilities used in each experimental session. The simulation was repeated 100 times for each experimental session and each

combination of the free parameters. The learning rate was varied between values of 0 and 1 with a step size of 0.01; the inverse tem-

perature was varied between values of 0 and 5 with a step size of 0.05. This procedure resulted in a distribution of rewardmagnitudes

that the reinforcement learner obtained across simulated trials for each combination of free parameter values (Figure S1G, shown for

simulations with equal probability andmagnitudeweighting). For Figures S1H, we performed the above simulations withoutmodeling

the effect of reward magnitudes.

Mixed-effects multinomial logistic regression

Weusedmixed-effectsmultinomial logistic regression analysis (fitglme function, MATLAB) tomodel the animals’ trial-by-trial choices

across testing sessions. Specifically, we modeled choices for the first- or second-presented option separately for each animal and

specified the categorical session number (Session) as the group variable to account for session-by-session variations (random ef-

fects). We adopted the global model in which we estimated both the main effects and random effects of all the relevant regressors.

The response variable was the dichotomous first (FirstChosen = 1) or second (FirstChosen = 0) trial-by-trial choice, collected from

Sk sessions inmonkey k (Sk ˛N;k = 1;2). In the framework of generalized linear mixedmodels with logit function as the link function,

the logistic regression model can be specified as follows:

logit
�
pL
ij

�
= log

�
pðFirstChosenij = 1Þ

pðSecondChosenij = 0Þ
�

= x0
ijb + z0ijui + εij; εij � Normal

�
0; s2

�

wherepL
ij denotes the probability of choosing the first option in the j th trial of session i (j = 1;2;.; Ti ˛N;Ti = the total number of trials

in session i); xij is a vector of trial-by-trial predictors (fixed-effect regressors; see below) and zij is vector of trial-by-trial predictors

nested in xij, and the effects of these predictors vary across sessions (random-effect regressors). The model estimated the coeffi-

cients of fixed-effect regressors, b, and the session-wise variations of the random-effect regressors, ui. The estimated first-second

choice responses, pL
ij , were derived by reverse logit function conditional on the session-wise random effects (ui), and the session-

wise regression coefficients (hi ) were derived from the fixed-effect coefficients (b) and the session-wise calibration terms (ui).

pL
ij = PðFirstChosen = 1juiÞ =

exp
�
x0
ijb+z

0
ijui

�

1+exp
�
x0
ijb+z

0
ijui

� ˛ ½0;1�;hi = b+ui

In the main model (Table S2), we included the following regressors. Importantly, we specified the categorical session number (Ses-

sion) as the group variable to address session-wise variations of nutrient sensitivities as follows (Equation 3),

logitðFirstChosenÞ = b0 + b1 3FirstLeft (Equation 3)
+ b2 3 FirstRM + b3 3 SecondRM + b4 3 FirstProb + b5 3SecondProb j Session
where FirstLeft indicatedwhether the first optionwas subsequently shown on the left during the saccade-choice period (1, if the first op-

tion was shown left; 0 if the first option was shown right), FirstRM indicated the trial-specific rewardmagnitude associated with the first

option;SecondRM indicated the trial-specific rewardmagnitude associatedwith the second option, and FirstProb � SecondProb indi-

cated the difference in reward probability between the first and second option.
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The mixed-effect model defined above served to quantify the statistical significance of the different variables in a comprehensive

manner using the full dataset across all sessions.

To define object values in individual sessions as regressors for neuronal analysis, we used the following model (Equation 4) that we

fit to data in individual sessions,

logitðObjectA ChosenÞ = b0 + b1 3ObjectA First (Equation 4)
+ b2 3 ðObjectA RM � ObjectB RMÞ+ b3 3 ðObjectA Prob � ObjectB ProbÞ
whereObjectA Chosen indicated whether object A (rather than object B) was chosen on a given trial,ObjectA First indicated whether

object A was shown left on a given trial,ObjectA RM andObjectB RM indicated the reward magnitudes for object A and B on a given

trial, and ObjectA Prob and ObjectB Prob indicate the reward probabilities on a given trial. Results from this model are shown in

Table S2, based onmeans (±SEM) and t test statistics across sessions.We used the regression coefficients b2 and b3 from thismodel

to define object value as follows (Equation 5).

Object value = b2 3RM+ b3 3Prob (Equation 5)

This definition accounted for any animal-specific and session-specific weighting of reward magnitude and probability that

occurred in a given testing session. Object values derived from this equation were used as session-specific value-regressors in

all neuronal analyses, except where otherwise noted (e.g., in cases in which we used only the reward-magnitude value component

as regressor for specific purposes).

Eye data processing

We monitored the animals’ eye positions using an infrared eye tracking system at 125 Hz (ETL200; ISCAN) placed next to the

touchscreen. Before each recording session, we calibrated the eye tracker during a fixation task with a moving fixation spot that

the animal had to follow. During recordings, accuracy of calibration of the eye tracker was regularly checked and if necessary recali-

brated. Themonkey’s headwas slightly tilted forward (�10�) for a better view of the touchscreen.We assessed eye position in a plane

in front of the monkey’s eyes, followed by a transformation to the horizontal touchscreen plane.42 We then determined whether and

when a fixation occurred. We defined a fixation when eye velocity was below 25% of its statistical standard deviation for more than

60 ms. For analysis of fixations in specific task-related time windows, we excluded fixations that occurred within the first 100 ms of

stimulus onset to remove anticipatory fixations. We selected fixations that met the above criteria.

Neuronal data analysis

We counted neuronal impulses for each neuron on correct trials in fixed time windows relative to different task events focusing on the

following non-overlapping task epochs: 500 ms after fixation spot before cues (Fixation), 500 ms after onset of first cue (i.e., first

choice object), 500 ms after offset of first cue, 500 ms after onset of second cue, 500 ms after offset of second cue, 500 ms after

onset of choice targets. We did not observe systematic differences in activity patterns between animals in preliminary analyses;

therefore, we pooled data from both animals for subsequent analyses.

Our analysis strategy was as follows. We used fixed-window and sliding-window linear and multi-linear regression analyses to

identify neuronal responses related to specific variables. For fixed-window analyses, we first identified task-related object-evoked

responses by comparing activity during object presentation (first and second cue period) to a baseline control period (before appear-

ance of fixation spot) using the Wilcoxon test (p < 0.005, Bonferroni-corrected for multiple comparisons). A neuronal response was

classified as task-related if it was significantly different from activity in the control period (the pre-fixation period on each trial of the

main task). We used a multiple linear regression model to test whether neuronal activities were significantly related to specific task

variables (p < 0.05, t test on regression coefficient) while including other relevant variables as covariates. We also used sliding-win-

dow multiple regression analyses with a 200-ms window that we moved in steps of 20 ms across each trial (without pre-selecting

task-related responses). Sliding-window analyses tested for dynamic coding of different task-related variables over time within trials

and also confirmed that our results did not depend on the pre-selection of task-related responses or definition of fixed analysis win-

dows. To determine statistical significance of sliding-regression coefficients, we used a permutation-based approach as follows. For

each neuron, we performed the sliding-window regression 1,000 times using trial-shuffled data and determined a false positive rate

by counting the number of consecutive sliding-windows in which a regression was significant with p < 0.05. We found that less than

5% of neurons with trial-shuffled data showedmore than nine consecutive significant analysis windows. Accordingly, we classified a

sliding-window analysis as significant if a neuron showed a significant (p < 0.05) effect for more than nine consecutive 20-ms win-

dows. Statistical significance of regression coefficients was determined using t test; all tests performed were two-sided. Additional

population decoding, described below, examined independence of our findings from pre-selection of task-related responses and

served to assess information about specific task variables contained in the neuronal population.

We performed our regression analysis in the framework of the general linear model (GLM) implemented with the MATLAB function

(glmfit). Neuronal responses were tested with the following regression models:

GLM 1 (Equation 6): This GLM served to identify value-coding neurons and distinguish object-value from view-based value signals.

It also served to derive regression coefficients for Figures 2G and 5B. To distinguish different types of value signals, we adapted a

method of classification of neuronal value responses based on the angle of regression coefficients.74,75 This classification method is
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‘axis-invariant’ as it is independent of the axis choice for the regression model, i.e., whether themodel includes separate variables for

both object values or view-based values.74 For the main analysis reported in Figure 2G, we calculated neuronal activity in a 500-ms

fixed window after onset of the first choice object. This analysis constituted a strict test of neuronal value coding in the absence of

value comparison (which could only commence once the second object had been viewed).

y = b0 + b1 ðObject valueÞ+ ε (Equation 6)

with y as the neuronal activity in response to the presentation of a specific choice object (at first-viewed object), Object value as the

value of the viewed object (A or B), calculated using Equation 5. Standardized regression coefficients (betas) obtained from this

model were used for Figure 2G and defined as xi(si/sy), xi being the raw slope coefficient for regressor i, and si and sy the standard

deviations of independent variable i and the dependent variable, respectively. We report also the results from regressions that com-

bined neuronal responses for both objects at the first cue, examined neuronal responses at the second cue, collapsed across first

and second cue periods, and a model that included a chosen-value covariate. The identification of object-value and view-based

value neurons was robust across these different analysis approaches.

Using this method, a neuronal response was categorized as value-related if it showed a significant overall model fit (p < 0.05, F

test). For responses with significant model fit, we plotted the magnitude of the beta coefficients (standardized slopes) of the two ob-

ject-value regressors on an x-y plane. We followed a previous study74 and divided the coefficient space into eight equally spaced

segments of 45� to categorize neuronal responses based on the polar angle in this space of regression coefficients (Figure 2G).

We categorized responses as coding object value if their coefficients fell in the segments pointing toward 0� or 180� (object value
A) or toward 90� or 270� (object value B), indicating a relationship to only one of the two values. We categorized responses as coding

view-based value if their coefficients fell in the segments pointing toward 135� or 315� or in the segments pointing toward 45� or 225�,
indicating a relationship to both object values. The joint presence of both object-value and view-based value neurons was also

confirmed with a separate stepwise regression approach (Figure S2).

For the analysis of neuronal activity during the saccade-choice period (Figure 2J), we fitted the above model (Equation 6) to

neuronal activity in 300-ms windows aligned to the onset of a fixation of one of the two choice objects. We analyzed fixations in

the period from the onset of object-choice targets until 500 ms after target offset. We selected fixations that fell into a region of in-

terest for the left or right object. For Figure 2J, we calculated neuronal activity in a 600-ms window starting 100 ms before onset of

fixation to 500ms after fixation onset in pre-selected neurons that encoded view-based value (N = 61) or object-A value (N = 32) from

Equation 6 and plotted the time course of z-normalized neuronal activity aligned to the onset of first, and second fixations, split by

value (median split).

GLM 2 (Equation 7): This GLM served to identify neurons encoding view-based choice, while controlling for other variables. It also

served to derive partial-R2 values (coefficients of partial determination) from for Figures 3M, 3N, 5D, S9A, S9B, and S10H.

y = b0 + b1 ðViewChoiceÞ+ b2 ðObjectChoiceÞ+ b3 ðObjectViewÞ (Equation 7)
+ b4 ðFirstValueÞ+ b5 ðSecondValueÞ+ b6 ðChosenValueÞ
+ b7 ðObjectALeftÞ+ b8 ðLeftChosenÞ+ ε

with y as the neuronal activity in a 200-ms sliding window, aligned to the onset of the first choice cue and moved in 20-ms steps from

500 ms before the onset of the first cue until 500 ms after the onset of the choice targets, ViewChoice as view-based choice, defined

as choice for the first-viewed or second-viewed object on a given trial (coded as 1 and 0, respectively),ObjectChoice as the choice for

object A or object B on a given trial (coded as 1 and 0, respectively), ObjectView as the viewing order for objects A and B on a given

trial (coded as 1 for A-then-B and 0 for B-then-A), FirstValue as the value for the first-viewed object on a given trial (derived fromEqua-

tion 6),SecondValue as the value for the second-viewed object on a given trial (derived fromEquation 6),ChosenValue as the value for

the chosen object on a given trial,ObjectALeft as the left-right cue position for object A (coded as 0 for right and 1 left), LeftChosen as

the left-right choice (coded as 0 for right chosen and 1 for left chosen).

GLM 3 (Equation 8): This GLM served to identify neurons encoding view-based choice, while controlling for reward probability and

reward magnitude (instead of the integrated values).

y = b0 + b1 ðViewChoiceÞ+ b2 ðObjectChoiceÞ+ b3 ðObjectViewÞ
+ b4 ðFirstProbÞ+ b5 ðSecondProbÞ+ b6 ðFirstMagÞ+ b7 ðSecondMagÞ
+ b8 ðChosenProbÞ+ b9 ðChosenMagÞ+ b10 ðObjectALeftÞ
+ b11 ðLeftChosenÞ+ ε

(Equation 8)

with FirstProb and SecondProb as the probability as the reward probability of the first-viewed and second-viewed object on a given

trial (derived from Equation 1), respectively; FirstMag and SecondMag as the cued rewardmagnitude of the first-viewed and second-

viewed object on a given trial, respectively; andChosenProb andChosenMag as the probability andmagnitude for the chosen object

on a given trial, respectively.
Neuron 111, 1–14.e1–e14, December 6, 2023 e7



ll
OPEN ACCESS Article

Please cite this article in press as: Grabenhorst et al., A view-based decision mechanism for rewards in the primate amygdala, Neuron (2023), https://
doi.org/10.1016/j.neuron.2023.08.024
GLM 4 (Equation 9): This GLM served to derive value-regression coefficients for the analyses shown in Figures 3O, 5B, S9C, S9F,

S9I, S9J, S9M, and S9O.

y = b0 + b1 ðValueÞ (Equation 9)

with y as neuronal activity in a 500-ms fixed window after onset of the first or second choice cue and Value as the value of the first or

second viewed choice option. Importantly, as the analysis examines relationships between value regression coefficients, we used

only the reward-magnitude component of the value of each choice object, to remove any intrinsic anti-correlation between values

derived from the reinforcement-learning model. Because the reward magnitudes between the first and second choice option

were uncorrelated in each session (see Figure S9), the analysis was not biased toward detecting a positive or negative relationship

between value coefficients.

GLM 5 (Equation 10): This GLM served to identify neurons encoding view-based choice in the four-objects choice task, while con-

trolling for other variables. It also served to derive partial-R2 values for Figures S9G and S9H.

y = b0 + b1 ðViewChoiceÞ
+ b2 ðObjectAChoice � ObjectBChoiceÞ+ b3 ðObjectCChoice � ObjectDChoiceÞ
+ b4 ðObjectAView � ObjectBViewÞ+ b5 ðObjectCView � ObjectDViewÞ
+ b6 ðFirstValueÞ+ b7 ðSecondValueÞ+ b8 ðChosenValueÞ+ ε

(Equation 10)

withObjectAChoice � ObjectBChoice indicating choice for object A or object B in the trial block in which these objects were shown

(coded as 1 for object A chosen, �1 for object B chosen, and 0 otherwise), ObjectCChoice � ObjectDChoice indicating choice for

object C or object D in the trial block in which these objects were shown (coded as 1 for object C chosen,�1 for object D chosen, and

0 otherwise), ObjectAView � ObjectBView indicating whether object A or object B was shown first or second in the trial block in

which these objects were shown (coded as 1 for object A first, �1 for object B first, and 0 otherwise),

ObjectCView � ObjectDView indicating whether object C or object D was shown first in the trial block in which these objects

were shown (coded as 1 for object C first, �1 for object D first, and 0 otherwise), and all other regressors as specified in GLM 2.

We omitted regressors for cue position and left-right choice to reduce the number of variables in the model and because these re-

gressors were not relevant to the main task periods analyzed with this model; including these regressors did not alter the number of

identified view-based choice neurons.

GLM 6 (Equation 11): This GLM served to identify neurons encoding view-based choice in the two-juices choice task, while con-

trolling for other variables. It also served to derive partial-R2 values for Figures S9D and S9E.

y = b0 + b1 ðViewChoiceÞ+ b2 ðObjectAChoiceÞ+ b3 ðJuiceAChoiceÞ
+ b4 ðObjectAViewÞ+ b5 ðJuiceAfirstÞ+ b6 ðFirstValueÞ
+ b7 ðSecondValueÞ+ b8 ðChosenValueÞ+ b9 ðObjectALeftÞ
+ b10 ðLeftChosenÞ+ ε

(Equation 11)

with JuiceAChoice as choice for juice A (coded as 1 for juice A choice and 0 for juice B choice), JuiceAFirst indicating trials on which

juice A was shown first (coded as 1 for juice A first and 0 for juice B first), FirstValue and SecondValue as the value of the first and

second option defined by the cued reward magnitude, respectively, and all other definitions as in GLM2.

Normalization of population activity

To normalize activity from different amygdala neurons, we subtracted from the impulse rate in a given task period the mean impulse

rate of the pre-fixation control period and divided by the standard deviation of the control period (Z score normalization). We also

distinguished neurons that showed positive relationships or negative relationships with a given variable, based on the sign of the

regression coefficient, and sign-corrected responses with a negative relationship. Normalized data were used for Figures 2J, 3E,

S10E, and S12B, and all decoding and RSA analyses.

Normalization of regression coefficients

Standardized regression coefficients were defined as xi(si/sy), xi being the raw slope coefficient for regressor i, and si and sy the stan-

dard deviations of independent variable i and the dependent variable, respectively. Standardized regression coefficients were used

for Figures 2G and 3O, 5B, S9C, S9F, S9I, S9J, S9M, and S9O.

Population decoding

Weused a SVMclassifier to quantify information about task-related variables contained in neuronal population activity in defined task

periods, following previous neurophysiological studies.42,75,76 The SVM classifier was trained to find a linear hyperplane that best

separated patterns of neuronal population activity defined by a given grouping variable (e.g., high vs. low value, choice for currently

viewed vs. last-viewed object, choice for object A vs. object B); the different levels of a given grouping variable are referred to as

‘groups’ in the following text. We also used a NN classifier, which assigned each trial to the group of its nearest single-trial neighbor

in a space defined by the distribution of impulse rates for different levels of the grouping variable using the Euclidean distance. The

NN classifier in particular can be described as biologically plausible, in the sense that a downstream neuron could perform a similar

classification by comparing the input on a given trial, provided by a neuronal population-activity vector, with a stored synaptic-weight

vector. Both classifiers performed qualitatively similar but SVM decoding was typically more accurate.
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To prepare data for decoding, we aggregated z-normalized trial-by-trial impulse rates of the separately recorded amygdala neu-

rons from specific task periods into pseudo-populations. We used all recorded neurons that met inclusion criteria for a minimum trial

number, without pre-selecting for coding a specific variable. Depending on the variable used for decoding, we only included neurons

in the decoding analyses that had aminimum number of 5, 10 or 15 trials per group for which decoding was performed; we confirmed

that results were robust to changes in this minimum trial number. We created two n bymmatrices with n columns determined by the

number of neurons andm rows determined by the number of trials. We defined two matrices, one for each group for which decoding

was performed, using the following different groupings. For object-value decoding, we defined separate groups for low and high ob-

ject value, determined for each neuron by calculating value terciles. (We obtained very similar results by repeating the decoding an-

alyses based on median-split.) For choice decoding, we defined two separate groups depending on either the view-based choice

(currently viewed or last-viewed chosen) or object choice (A or B) on each trial. Accordingly, each cell in a matrix contained the

normalized impulse rate from a single neuron on a single trial measured for a given group. Because neurons were not simultaneously

recorded, we randomlymatched up trials from different neurons for the same group in thematrix used for decoding, and repeated the

decoding analysis with different random trial matching (‘within-group trial matching’) 150 times for SVM and 500 times for NN. We

found these numbers of repetitions produced stable classification results and confirmed robustness with respect to changes in

this number. (Our approach likely provides a lower bound for decoding performance because it does not account for potential con-

tributions from cross-correlations between neurons; investigation of cross-correlations would require data from simultaneously re-

corded neurons.)

We quantified decoding accuracy as the percentage of correctly classified trials, averaged over all decoding analyses for different

randomwithin-group trial matchings. We used a leave-one-out cross-validation procedure: a classifier was trained to learn the map-

ping from impulse rates to groups on all trials except one test trial; this remaining trial was then used for testing the classifier and the

procedure repeated until all trials had been tested. We obtained similar results when splitting data into 80% training trials and 20%

test trials. We used a rank-sum test to compare the classification performance against performance obtained from data in which the

group labels were randomly shuffled 1,000 times. We implemented SVM decoding in MATLAB (Mathworks, Natick, MA) using the

svmtrain and svmclassify functions with a linear kernel and the default sequential minimal optimization method for finding the sepa-

rating hyperplane. The NN decoding was implemented in MATLAB with custom code. Statistical significance was determined by

comparing vectors of percentage correct decoding accuracy between real data and randomly shuffled data (in which group labels

had been shuffled) using the rank-sum test.

For cross-decoding analyses shown in Figures 2H, 3F, 5C, S7, S9P, and S14, we trained the classifier on data recorded in one

particular experimental condition (e.g., object-viewing sequence A-then-B) and tested the classification performance on data re-

corded in a different condition (e.g., B-then-A). We previously used a similar approach in a social task, to test whether amygdala neu-

rons encoded task-related variables in a common reference frame across self and other.42 Here, we used the same approach to

investigate common reference frames for value and choice signals across objects and rewards. For the rightmost plot in Figure 2H

we trained the classifier to decode value during the first-cue period and then tested the classifier performance to decode choice (for

the currently viewed vs. last viewed cue) during the second-cue period. For Figure 2H,we performed decoding onN = 31 neurons that

individually encoded value for object A (black bars) and on N = 45 neurons that individually encoded view-based value (orange bars).

To investigate how decoding accuracy depended on the number of neurons in the decoding sample in Figure 3Q, we randomly

selected a given number of neurons at each step (without replacement) and then determined the percentage correct classification.

We repeated this procedure 100 for each tested population size. We performed decoding for randomly shuffled data (shuffled group

assignment without replacement) with 1,000 iterations to test whether decoding on real data differed significantly from chance.

For Figure 2K, we used SVM-decoding of value from neuronal activity during the free-viewing (saccade-choice) period. Decoding

was performed across all 233 recorded amygdala neurons without pre-selection for value-coding.

For Figure 2O, we used the NN classifier to examine coding across amygdala nuclei. We computed Euclidean distances between

single-trial activity vectors and mean activity vectors for different value-levels. We focused on the task period when the first object

was presented, as this period likely allowed a ‘pure’ readout of valuation activity irrespective of value comparisons, which required

knowledge of the later-occurring second-object rewardmagnitude.We preselected the 20 neuronswith highest value-coding in each

nucleus, based on their regression coefficients (Equation 6). We then proceeded as for the decoding analyses described above,

except that decoding was not based on Euclidean distances between single-trial vectors but on Euclidean distances between a sin-

gle-trial test vector and the mean activity vectors for the two alternative groups, calculated from all trials except the test trial. Fig-

ure S4F shows the Euclidean distances between low- and high-value groups averaged across the 20 neurons with highest value co-

efficients in each nucleus.

For Figures 3L, S7I, and S7J, we used SVM-decoding of view-based choice for different groups of trials, organized according to

decision difficulty. Decision difficulty was defined as the absolute (unsigned) value difference between the first- and second-viewed

choice option; three groups of trials were produced by splitting trials according to terciles of this decision difficulty measure.

For Figure 5C, middle panel, we decoded object choice from trial groups that were separated according to object-viewing

sequence (A/B, B/A), thus holding the viewing sequence constant. For Figure 5C, right panel, we trained the classifier to decode

object choice from one object-viewing sequence and tested decoding from the alternative viewing sequence (e.g., ‘Train A/B, Test

B/A’). For the rightmost bar in Figure 5C, we repeated this cross-decoding procedure but recoded (i.e., inverted) the group labels

for the decoding set dependent on the object-viewing sequence. Specifically, when training the decoder on object-viewing sequence
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A/B, ‘object-A choice’ trials were labeled as ‘group 1’ and ‘object-B choice’ trials were labeled as ‘group 2’; this labeling was

reversed for viewing sequence B/A. Thus, based on the viewing sequence the decoder would classify the same input pattern differ-

ently. The same approach was used in Figure S14. We note that this analysis illustrates the need and feasibility for an additional pro-

cessing step in order to readout object choice from the view-based code but it does not indicate how this processing step would be

implemented neuronally. Our model suggests expansion recoding as the mechanism to map view-based choice to object-choice,

i.e., to explicitly encode view-based choice separately for different viewing sequences, which is supported by data in Figures 5D

and 5E.

For Figure 5E, we used a multi-class SVM classifier using the MATLAB function fitcecoc. We grouped trials according to the

conjunction of object-viewing sequence (A-then-B, or B-then-A) and view-based choice, and then trained the classifier to discrim-

inate the four groups of trials.

Representational similarity analysis

We used RSA17,77 to examine how activity across the population of recorded neurons in the amygdala and its subdivisions repre-

sented task-related variables as quantified by pairwise correlations between condition-specific neuronal population activity vectors.

The RSA approach is a useful analytical tool to examine, for a given task period, which of several task-related variables are encoded

particularly strongly at population level, which can differ in principle from the encoding at single-neuron level. For example, although a

variable such as view-based choice may be strongly encoded by some individual neurons, this does not necessarily imply strong

encoding at population level. Conversely, strong encoding of a given variable at both single-neuron and population level would pro-

vide robust evidence that the variable plays an important role in understanding the processing in the studied brain area.

To conduct the RSA analysis, we first calculated, for each recorded neuron, the mean activity related to a specific task event or

condition (e.g., activity related to choices for currently viewed and last-viewed objects, activity related to viewing object A or object

B, activity related to low and high value levels for object A, etc.). For RSA analyses related to value, we split trials in each session into

four equally populated groups (value quartiles). We normalized these condition-specific activities in the same way as for the popu-

lation decoding analyses described above. For different RSA analyses, we calculated activities in 500-ms fixed time windows (e.g.,

defined in relation to stimulus presentation) and in 200-ms sliding windows, aligned to a specific task event, that weremoved in steps

of 20ms across the trial. Specifically, for the value-based RSAwe used 500-ms fixed time windows, collapsed over the first and sec-

ond object-viewing period. For the choice-based RSA, we used both 500-ms fixed time windows and 200-ms sliding windows,

aligned to the onset of the first stimulus and, separately, to target onset. Thus, for a given time window, we calculated the mean ac-

tivity for given neuron and condition. This procedure generated a condition-by-neuron matrix for a given time window that we then

normalized (by removing the mean and dividing by the standard deviation) and used to calculate pairwise Pearson correlation co-

efficients between conditions across neurons. These matrices of correlation coefficients between conditions are displayed as co-

lor-scaled images in Figures 2M, 3K, S4A, S4G, and S8. Row- and column-ordering of conditions was preserved between all RSA

matrix displays within a given figure.

To interpret the neuronal RSA matrices and evaluate statistical significance of encoding of particular task-related variables, we

generated RSA templates17 that captured the representational similarity structure related to specific variables (as described in detail

below). For statistical analysis, we performed multiple regression using these templates as regressors to explain a given neuronal

RSA matrix. To do so, we concatenated all cells of the neuronal RSA matrix into a vector and regressed this vector on a regressor

matrix defined by the concatenated RSA templates.17 Statistical significance of coefficients for these RSA regressors was deter-

mined using non-parametric permutation tests by shuffling the condition matrix and repeating the regression on the neuronal RSA

matrix 10,000 times and then determining the critical t-value corresponding to p < 0.001 across the 10,000 shuffled regressions. Simi-

larly, to test whether a particular neuronal RSA coefficient was significantly larger than another coefficient (Figures 2N, S4B–S4E, and

S4H), we computed differences in t-values for these regressors based on the shuffled data and determined a critical t-value differ-

ence from the shuffled regressions. We confirmed that the results remained statistically significant when we repeated these analyses

using only the unique values from the RSA matrices.

For the value-basedRSA (Figure 2M), we defined the following RSA templates: an identitymatrix to account for the unity correlation

between a condition and itself (diagonal of correlation matrix); an object-specific matrix that took the value of 1 for condition pairs

involving the same object and 0 otherwise (this template modeled neuronal responses to particular objects, A or B); a view-based

value matrix that modeled four different mean-centered value levels (coded as �2.25, �0.75, 0.75, 2.25) and the pairwise similarity

between value levels modeled as the pairwise product of these values, following a previous paper17; an object-value matrix defined

by the product of the object-identity matrix and the view-based value matrix, thus modeling value similarity only within the same ob-

ject. (The results from this value-based RSA analysis were robust when we reformulated the value template to treat adjacent value

levels as equally similar regardless of their position on the value scale (e.g., the similarity between value levels 1 and 2 is the same as

between value levels 2 and 3) and include uniform similarity for equal value levels.17 The conditions used to calculate neuronal RSA

matrices were defined similarly to these templates, with the four conditions for different value levels resulting from organizing trials

according to object-value quartiles. Importantly, when regressing the neuronal RSAmatrices on templates, we included both the ob-

ject-specific value template and the view-based value template (as defined above) as regressors in the same model, so that object-

value and view-based value regressors competed to explain variance in the neuronal RSA matrix; the coefficients for these regres-

sors estimated in this way are shown in Figure 2M.
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For the choice-based RSA, we defined the following RSA templates: an identity matrix as defined above; an object-specific matrix

as defined above; an object-choicematrix that took the value of 1 for condition pairs commonly referring to choice for the same object

and 0 for choice for different objects; a view-based choice matrix that took the value of 1 for condition pairs commonly referring to

choice for the first-viewed object and 0 for choice for the second-viewed object; a left-choice matrix that took the value of 1 for con-

dition pairs commonly referring to choice for the left-shown object and 0 for choice for the right-shown object.

For Figures 3R and S8D–S8G, we calculated the partial R2 for particular variables of the template-based RSA regressions, which

indicate the proportion of explained variance of the neuronal RSA matrix that is attributed to a particular variable.

Biologically plausible neuronal network model of decision-making
Transition from object-based value to view-based value

We built a firing rate computational model, composed of different neural populations, to understand the mechanisms underlying the

observed neuronal activity dynamics. We first studied a neural network that has been shown to implement sequential comparisons

between stimuli. This network contains neural populations that respond to object values in a state-dependent way, making the

response to the second stimulus dependent on the value of the first stimulus.52 Specifically, the network is composed of value-com-

parison (V ) neural populations that receive stimulus-dependent input and are coupled toworking-memory (M) neural populations that

integrate their inputs and send inhibitory feedback to the V neural populations. The firing-rate dynamics of each neural population are

given by the following coupled differential equations:

t
dVi

dt
= � Vi � wVMfVðMiÞ+ IV ;iðtÞ; (Equation 12)
t
dMi

dt
= � Mi +wMVfMðViÞ + wMMfMðMiÞ; (Equation 13)

where i = f1;2g and t is a time constant. IV ;1 and IV ;2 are stimulus-dependent inputs to neural populationsV1 andV2, respectively, taking

valuesequal to IV ;1 = 1 � VX and IV ;2 = VX , whereVX is the valueof the presentedobject during stimulus presentation (X = AorB;VX ˛
½0;1�). Thus, V1 and V2 are negatively and positively tuned to the object’s value, respectively. fV and fM are input-output linear-threshold

functions, i.e., fMðuÞ = k½u�+. The populationMi excites itself and inhibits populationVi with connection strengths equal towMM andwVM,

respectively.Mi neural populations are perfect integrators, i.e., wMM = 1 for k = 1 (orwMM = 1=k, otherwise); they integrate the inputs

from neurons Vi. Thus, after transient activation of Vi due to the first stimulus, Mi inhibits Vi with a strength that is proportional to IV ;i,

even after the stimulus removal. Due to this sustained inhibition, the response of the positively tuned V2 neurons to the second stimulus

is largerwhen the valueof the secondobject is larger than the first object’s value (FigureS10B, bottom; seealsoFiguresS13CandS13D).

Conversely, the responseof the negatively tunedV1 neurons to the second stimulus is largerwhen the value of the secondobject is lower

than the first object’s value (Figure S10B, top; see also Figures S13B andS13D). In conclusion, the responses of V1 and V2 to the second

stimulus are state-dependent, i.e., theydependon the level of inhibitionprovidedbyneuronsMi,which in turnmakes themhistory-depen-

dent. The activity levels of the different neural populations depend on the connectivity betweenMi and Vi (see Figure S13E). A key pre-

diction of thismodel is reverse tuning during delay activity, an effect that we observed in the data (Figures 5A and 5B). The activation of V

neurons provide biased inputs to a decision-making network described in the following.

View-based decision-making

We next built a neural network that can implement a decision based on the evidence provided by the V neurons. This network is

composed of two coupled neural populations, C1 and C2, that interact through self-excitation and mutual inhibition. The firing

rate of each neural population are given by:

t
dC1

dt
= � C1 + s1ðw+C1 � w�C2 + wV1 + I0Þ; (Equation 14)
t
dC2

dt
= � C2 + s2ðw+C2 � w�C1 + wV2 + I0Þ; (Equation 15)

wherew+ is the strength of the self-excitation,w� is the strength of the mutual inhibition,w scales the inputs from V neurons, and s is

a sigmoid input-output function, siðuÞ = ½1+e� u=ai �� 1, with a1 = a2 = 1 determining the gain of the sigmoid function. I0 represents

background input to both neural populations. Depending on this background input: for low I0, the network settles into a non-

competing stable fixed point; for sufficiently large I0, two attractors emerge producing winner-take-all competition between the

two neural populations (Figures S11A–S11D). In this last regime, the inputs from V neurons bias the competition toward one of

the two attractors. Thus, by controlling the background input, decision-making can be switched on and off.

To switch on the competition between neural populations C1 and C2 during the presentation of the second stimulus, we modeled

the dynamics of I0 through a bistable network. This network is composed of excitatory (E) and inhibitory (I) populations, with firing-rate

dynamics given by:
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t
drE
dt

= � rE + sEðwEErE � wEIrI + IE + wFbÞ; (Equation 16)
t
drI
dt

= � rI + sIðwIErE � wIIrI + IIÞ; (Equation 17)
tF
dwF

dt
= k1ð1 � wFÞ+ k2rEwF ; (Equation 18)

wherewXY represent the connection strength from population Y to population X, and IE and II are constant inputs to E and I neurons,

respectively. To produce bistability, the input-output function of the I population has a lower gain than the one of the E population:

aE = 1 and aI = 3. Depending on the input b to the E population, the network transits from a low-activity state to a high-activity state

(Figures S11E–S11H). The decision-making module described above is switched on by setting I0ðtÞ = rEðtÞ. Short-term synaptic

facilitation78 modulates the strength (wF ) of the input b (Equation 17) and ensures that decision-making is switched on during the pre-

sentation of the second stimulus. The constant k1=tF is the rate of synaptic recovery and the term k2rEwF represents multiplicative

synaptic facilitation. The input b corresponds to the activity of object-selective neurons (Figure S12A, left), which firing-rates are

noted neurons rA and rB, i.e., b = wbðrA + rBÞ.
In classical attractor models of decision-making, this ‘switch’ is modeled as an external input to both competing neural popula-

tions, representing a modulation from a different brain area that is not explicitly modeled.5,79,80 Here, instead of an external input,

we used the above bistable network that accumulates the activity of other neural population of the model and automatically triggers

competition. However, replacing the bistable network by an external input would not change the results.We note that our aimwas not

to present amodel that provides a strong quantitative fit to neurophysiological data, as the field still lacksmuch critical data regarding

primate amygdala neurons. For example, the density of recurrent collaterals in different subnuclei remains an important open ques-

tion that would affect the efficacy of the decision and memory neurons.

We further note that we focused our analyses on the model’s key computations that explained the view-based decision process

and translation to object-choice signals. We do not suggest that all model components are necessarily directly implemented in local

amygdala circuits; for example, the memory and switch mechanisms constitute ‘ancillary’ processes that may involve inputs from

other structures. We further note that the particular strength of value coding during the memory period is not a critical model predic-

tion, as this varies with the coupling strength between the M and V. The crucial parameter to sustain memory is the self-coupling of

populationM,which allows the feedback inhibition to the V population to depend on the first stimulus to implement value-comparison

between sequentially viewed stimuli (Figure S13). Thus, model parameters can be chosen to change the activation level of M pop-

ulations while retaining the network’s ability to compare sequential stimuli.

Object-sequence neurons

We found neurons in the amygdala that combined information about object identity and viewing sequence. These neurons have

larger activation during the second stimulus’ presentation if object A was presented first (A 1st neuron type, A1) or if object A was

presented second (A 2nd neuron type, A2; Figure S12A, right). Note that "A 2nd neurons" could be also called "B 1st neurons".

We modeled the dynamics of A1 and B1 neurons using short-term synaptic depression.78 The neurons receive inputs from object-

selective neurons. The dynamics are given by:

t
drA
dt

= � rA + IA; (Equation 19)
t
drB
dt

= � rB + IB; (Equation 20)
t
dA1

dt
= � A1 +wArA + rB; (Equation 21)
t
dB1

dt
= � B1 + rA +wBrB; (Equation 22)
ts
dwA

dt
= k1ð1 � wAÞ � k3A1wA; (Equation 23)
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ts
dwB

dt
= k1ð1 � wBÞ � k3B1wB; (Equation 24)

where IA and IB are inputs signaling objects A and B (i.e., IX = 1 during presentation of stimulus X and IX = 0 otherwise), respectively;

k1=ts is the rate of synaptic recovery and the terms � k3A1wA and � k3BwB represent depression of synapses wA and wB, respec-

tively. Symmetric equations can be written for neuron types A2 and B2. We choose the synaptic time constant ts to be slow, so that if

object B was presented first, the synapse wA would be depressed by the arrival of the second stimulus (A), thus reducing the

response of A1 during the second stimulus. Conversely, if object A was presented first, the synapse wA would not be affected by

the second stimulus (B), thus the response of A1would be larger than in the previous case. The dynamics of A1, A2, B1, andB2 neurons

are presented in Figure S10. The activities of object-sequence neurons are inputs to combination neurons that we describe below.

Expansion recoding and object-based decision-making

Four types of combination neurons combine inputs from object-sequence neurons (A1, A2, B1, and B2 neurons) and view-based

choice neurons (C1 and C2 neurons) to signal object choice for specific object-viewing sequences. We found experimental evidence

of this type of neurons, especially in the BL (Figures 5D and S14). The dynamics of combination neurons are given as:

t
dCA1

dt
= � CA1 + fðA1 + C1Þ; (Equation 25)
t
dCA2

dt
= � CA2 + fðA2 + C2Þ; (Equation 26)
t
dCB1

dt
= � CB1 + fðB1 + C1Þ; (Equation 27)
t
dCB2

dt
= � CB2 + fðB2 + C2Þ; (Equation 28)

where the input-output function f is a linear-threshold function. Finally, the sums sA = CA1 +CA2 and sB = CB1 +CB2 provide inputs to

a winner-take-all network that chooses the object with higher value:

t
dCA

dt
= � CA + s1ðw+CA � w�CB + wcsA + I1Þ; (Equation 29)
t
dCB

dt
= � CB + s2ðw+CB � w�CA + wcsB + I1Þ; (Equation 30)

where I1 is a constant background input. Neurons CA and CB explicitly signal the choice for object A or object B, irrespective of

viewing sequence. We simulated the full model in the presence of additive uncorrelated Gaussian noise (with amplitude h) injected

to Equations 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 25, 26, 27, 28, 29, and 30.

Model parameters:wMM = 1,wMV = wVM = 0:6;w+ = 2:5,w� = 2,w = 0:1;wEE = 16,wEI = 9,wIE = 10,wII = 7,wb = 0:2;

wc = 0:5; IE = � 3, II = � 1; I1 = � 1:6; k1 = 0:015, k2 = 1:1, k3 = 0:22; fV ðuÞ = ½u�+, fMðuÞ = 0:23 ½u�+, fðuÞ = ½u � 1:35�+,
s1ðuÞ = s2ðuÞ = sEðuÞ = ½1+e� u�� 1, sIðuÞ = ½1+e� u=3�� 1; t = 10 ms, tF = 500 ms, ts = 1 s; h = 0:025. We note that we make no

strongassumptionsabouthow thesemodel parameters areset up initially.Here,we tuned theseparameters tomatch thekeyamygdala

neuron types recorded in theexperiment and to examine their signal dynamics.Weexplore in theDiscussion how the describedcircuits

may emerge in self-organizing networks, without precise tuning or fixed-point dynamics.

Consideration of alternative model architectures

We explored variations to the architecture of the computational model shown in Figure 4B as briefly summarized here.

First, we considered the classical attractor-based decision circuit operating with mutual inhibition and recurrent excitation.5 As this

classical model does not contain a mechanism to bridge the delay between sequentially applied stimuli, we applied the stimuli simul-

taneously. As expected, themodel successfully selected the option with the higher value input; however, because each population of

object-specific value neurons projected only to one population of decision neurons (e.g., VA/CA and VB/CB), the model could not

solve decision-making for additional objects without introducing additional object-specific decision circuits (e.g., VA/CA and

Vc/CC).

Second, we consideredmodel variationswithout the switchmodule. Depending on the background input I1 to view-based decision

neurons (C1, C2), the model without switch module would either engage in continual, premature decision-making when the value
Neuron 111, 1–14.e1–e14, December 6, 2023 e13



ll
OPEN ACCESS Article

Please cite this article in press as: Grabenhorst et al., A view-based decision mechanism for rewards in the primate amygdala, Neuron (2023), https://
doi.org/10.1016/j.neuron.2023.08.024
input of the first option was applied, without settling into a stable state, or it would not engage in any decision-making due the lack of

excitatory drive (Figure S11I). Thus, the proposed switch mechanism is useful in enabling the network to start the decision compu-

tation only once all choice options have been viewed and to prevent premature decision-making.

Third, we considered models without abstract view-based neurons. To do so, we removed the cross-connections from object-

value neurons to view-based neurons (cf. Figure 4B), so that VA would project to V1 but not V2, and vice versa for VB. Removing these

connections effectively turned the abstract view-based neurons into object-specific neurons. We found that this network always

selected the second option, as each population of view-based neurons now only responded to one object (A or B, shown first or sec-

ond), which removed the integral-feedback control mechanism and thus responses to the second object no longer depended on the

value of the first object. As a consequence, the value signal of the second option always out-competed thememory trace of the value

of the first option.

Fourth, to allow for fair competition between first and second object, we modified the model without abstract view-based neurons

bymaking both V1 and V2 positively tuned to value, by giving a positive sign to the synaptic weightWMC frommemory neuronsM1 and

M2 to V1 and V2, and by setting the weights WMC to a relatively weak value of 0.8. Similar to our main model, this model variant

correctly selected between the competing, sequentially viewed first and second object and produced choice signals that depended

on the absolute value difference between objects. However, as with the classical attractor-based decision circuit for simultaneously

applied options (see our first point above), it could not solve decision-making for additional objects without introducing an additional

object-specific decision circuit. Thus, abstract view-based neurons serve the useful function of enabling a decision circuit to select

flexibly among varying pairs of choice objects (solving the ‘many-objects problem’).
e14 Neuron 111, 1–14.e1–e14, December 6, 2023


	NEURON16554_proof.pdf
	A view-based decision mechanism for rewards in the primate amygdala
	Introduction
	Results
	Monkeys make view-based decisions for rewards
	Different amygdala neurons signal object value and view-based value
	A transition between value codes across amygdala nuclei
	An abstract, view-based choice signal in amygdala neurons
	View-based choice signals are independent of physical object and reward properties
	View-based choice signals precede object-choice signals
	Amygdala neurons encode a view-based decision computation
	A three-stage neural mechanism for view-based decisions
	Amygdala neurons carry signatures of model computations

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Neurophysiological recordings
	Reconstruction of neuronal recording sites
	Main choice task
	Control task with four objects
	Control task with different reward types

	Quantification and statistical analysis
	Behavioral data analysis
	Reinforcement learning model
	Mixed-effects multinomial logistic regression
	Eye data processing
	Neuronal data analysis
	Normalization of population activity
	Normalization of regression coefficients
	Population decoding
	Representational similarity analysis

	Biologically plausible neuronal network model of decision-making
	Transition from object-based value to view-based value
	View-based decision-making
	Object-sequence neurons
	Expansion recoding and object-based decision-making
	Consideration of alternative model architectures






