

CENTRE FOR RESEARCH INTO ENERGY DEMAND SOLUTIONS

Policy & governance

### Why don't governments' pay more attention to energy demand?

Investigating systemic reasons for the supply/ demand asymmetry in energy policy



Yekatherina Bobrova Nick Eyre Tina Fawcett Colin Nolden

Environmental Change Institute Oxford University Centre for the Environment University of Oxford

### **George Papachristos**

Dept. of Innovation Science Eindhoven University The Netherlands







## **Systemic problem**

Four main elements of **dynamic complexity**: accumulations, rates of change, feedback processes, nonlinear relations.

Even if system purposes and elements are different, the interconnection of elements (structure) might be similar enough to make transferable insights possible.

Meadows, D.H., 2008. Thinking in systems: a primer. White River Junction: Chelsea Green Publishing.

Rapoport, A., 1968. Foreword, in: Buckley, W. (Ed.), Modern Systems Research for the Bahavioural Scientist. Aldine Publishing Company, Chicago.

Sterman, J.D., 2002. All models are wrong: reflections on becoming a systems scientist. *System Dynamics Review* 18, 501–531.



## Socio-technical system

Three ontological dimensions:

- Actors
- Rules
- Material reality
- Geels, F.W., 2004. From sectoral systems of innovation to socio-technical systems. *Research Policy* 33, 897–920
- Geels, F.W., Bruno Turnheim, 2022. *The great reconfiguration: a socio-technical analysis of low-carbon transitions in UK electricity, heat, and mobility systems.* Cambridge University Press, Cambridge.
- **Figure 1.** Three ontological dimensions of socio-technical systems (based on Geels 2004, p.903 and Geels and Turnheim, 2022, p.9)



# Reasoning by analogy

**Isomorphism** – mapping that preserves structure (relations among elements)

- Langley, A., 1999. Strategies for theorizing from process data. The Academy of Management Review 24, 691–710.
- Peirce, C.S., 1903. Sundry logical conceptions, in: Houser, N., Kloesel, C. (Eds.), The Essential Peirce: Selected Philosophical Writings. Volume 2 (1893–1914). Indiana University Press, 1998, Bloomington, pp. 267–289.
- Peirce, C.S., 1878. Deduction, induction, and hypothesis, in: Houser, N., Kloesel, C. (Eds.), The Essential Peirce: Selected Philosophical Writings. Volume 1 (1867–1893). Indiana University Press, 1998, Bloomington, pp. 133–144.
- Tsoukas, H., 1991. The missing link: a transformational view of metaphors in organizational science. The Academy of Management Review 16, 566–585.



Figure 2. Reasoning by analogy (based on Tsoukas, 1991)

## Meta-narrative systematic review

Learning from other social systems that exhibit similar asymmetry, e.g., asymmetry in healthcare between curing illness and investing in preventive healthcare.

- Gough, D., 2013. Meta-narrative and realist reviews: guidance, rules, publication standards and quality appraisal. BMC Med 11, 22.
- Gough, D., Oliver, S., Thomas, J., 2017. An introduction to systematic reviews, 2nd ed. SAGE, Los Angeles
- Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., Kyriakidou, O., Peacock, R., 2005. Storylines of research in diffusion of innovation: a meta-narrative approach to systematic review. Soc Sci Med 61, 417–430.
- Kuhn, T.S., 1962. The structure of scientific revolutions. University of Chicago Press, Chicago.
- Wong, G., Greenhalgh, T., Westhorp, G., Buckingham, J., Pawson, R., 2013. RAMESES publication standards: meta-narrative reviews. BMC Med 11, 20.



#### Figure 3. Meta-narrative steps

## **Systems in the review**



| Socio-technical systems         | Research scope for asymmetry | Demand/supply symmetry terminology                                      |  |
|---------------------------------|------------------------------|-------------------------------------------------------------------------|--|
| 1. Energy system                | Production and use of energy | Demand vs supply                                                        |  |
| 2. Water system                 | Supply and use of water      | Demand vs supply                                                        |  |
| 3. Food system                  | Production and use of food   | Demand vs supply                                                        |  |
| 4. Transportation system        | Transport control            | Demand management vs 'predict and provide'                              |  |
| 5. Industrial production system | Pollution control            | Integrated vs reactive control; wholistic vs end-<br>of-pipe regulation |  |
| 6. Material production system   | Waste control                | Waste reduction vs waste management                                     |  |
| 7. Healthcare system            | Population health            | Prevention vs cure                                                      |  |
| 8 Management system             | Organisation management      | Investment vs operation; improvement vs production                      |  |
| o. Management system            | Infrastructure management    | Proactive vs reactive maintenance; preventing<br>vs correcting defects  |  |



## **Hierarchy of solution strategies**

| Energy system |                            | Energy system           | Industrial and material production<br>systems |                | Health system         |
|---------------|----------------------------|-------------------------|-----------------------------------------------|----------------|-----------------------|
| Energy        | Carbon                     | Food waste              | Biodiversity                                  | Material waste | Healthcare            |
| Avoid         | Wasted energy<br>avoidance | Prevention              | Avoid                                         | Prevent        | Primary<br>prevention |
| Shift         |                            |                         |                                               | Reduce         | Secondary prevention  |
| Improve       | Efficient conversion       | Redistribution          | Minimise                                      | Reuse          |                       |
| Renewables    | Renewable<br>energy        | Animal feed/<br>compost | Restore                                       | Recycle        |                       |
|               | Offset                     | Energy recovery         | Offset                                        | Recovery       | Tertiary prevention   |
|               |                            | Disposal                |                                               | Landfill       |                       |

### **Insights and further** steps

- 1. We can see policy asymmetry in other social systems (and can hopefully learn from them).
- 2. Identifying structural reasons for asymmetry is difficult. However, some preliminary insights are drawn.
- 3. A new systemic conceptual lens for the problem of demand/supply asymmetry in energy system and its policies



# Thank you for listening

Yekatherina Bobrova yekatherina.bobrova@ouce.ox.ac.uk

Environmental *Change* Institute Oxford University Centre for the Environment University of Oxford, South Parks Road Oxford, OX1 3QY, United Kingdom

### creds.ac.uk



twitter.com/CREDS\_UK

Iinkedin.com/company/credsuk/

