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Exact multistability and dissipative time crystals in
interacting fermionic lattices
Hadiseh Alaeian1 & Berislav Buča 2,3✉

The existence of multistability in quantum systems beyond the mean-field approximation

remains an intensely debated open question. Quantum fluctuations are finite-size corrections

to the mean-field as the full exact solution is unobtainable and they usually destroy the

multistability present on the mean-field level. Here, by identifying and using exact modulated

dynamical symmetries in a driven-dissipative fermionic chain we exactly prove multistability

in the presence of quantum fluctuations. Further, unlike common cases in our model, rather

than destroying multistability, the quantum fluctuations themselves exhibit multistability,

which is absent on the mean-field level for our systems. Moreover, the studied model

acquires additional thermodynamic dynamical symmetries that imply persistent periodic

oscillations, constituting the first case of a boundary time crystal,to the best of our knowl-

edge, a genuine extended many-body quantum system with the previous cases being only in

emergent single- or few-body models. The model can be made into a dissipative time crystal

in the limit of large dissipation (i.e. the persistent oscillations are stabilized by the dissipation)

making it both a boundary and dissipative time crystal.
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Multistability in driven-dissipative models usually means
the presence of two possible stationary states of the
system that can be distinguished by local observable

measurements. Although on the level of the mean-field approx-
imation or for classical systems it can be easily established whe-
ther or not it exists1,2, its actual existence, in particular in low-
dimensional strongly interacting systems remains quite con-
troversial with both theoretical and experimental works reporting
differing conclusions3–26. The existing approaches usually rely on
sophisticated theoretical techniques for including perturbations of
finite-size corrections to the mean-field or large scale efficient
numerical simulations such as t-DMRG10 or projected entangled
pair states (PEPS)21. The general lore in the literature is that the
lower dimension, the more likely it is that the full quantum
fluctuations (finite-system size corrections) will destroy the
multistability and restore the generic unique stationary state of
the model27–30. However, in general, the question remains
unsettled in any dimension (see e.g., ref. 21 for an advanced
numerical study in two dimensions). Therefore, exact results on
this controversial problem are desirable.

There are two recently introduced concepts, dissipative time
crystals31–46, which are systems that have persistent oscillations
induced by the dissipation, and boundary time crystals47–51,
which have persistent oscillations in the thermodynamic limit,
only (cf. discrete, driven versions of time crystals under
dissipation52–58 and other non-stationary phenomena beyond
observables59–74). As the oscillations in our model are persistent
in the thermodynamic limit, the model can be understood as a
boundary time pseudo-crystal, with pseudo- implying that the
oscillations amplitude decays with the system size for initial states
with low entanglement, similar to long-range order in a pseudo-
condensate75. Furthermore, as the open system has sustainable
oscillations stabilized by very strong dissipation, i.e., quantum
Zeno regime, the model is a dissipative time crystal, as well.

Here, we report an exactly solvable model describing a broad
class of driven-dissipative and interacting fermionic chains that
shows quantum multistablity related to the strong symmetries of
the Liouvillian. In general, the strong symmetries are not neces-
sary for the existence of multistability (as degenerate stationary
states may emerge in the thermodynamic limit only without a
strong symmetry), nor are they sufficient since all of the degen-
erate stationary states implied by the strong symmetries may have
the same expectation values for local observables. More generally,
multistability is taken to be an effect not due to any manifest
symmetry. However, in our case emergent strong symmetries do
guarantee multistability in local observables. In contrast to other
potentially bistable models27, here, rather than being detrimental,
quantum fluctuations are essential for the multistability. Further,
we show that for certain types of jump operators the Liouvillian
has dynamical symmetries that lead to sustainable oscillations in
the non-equilibrium long-time behavior of the system, a phe-
nomenon known as dissipative time crystal. Our approach is
based on identifying a novel modulated76 spectrum generating
algebra (SGA)77, which is non-local and fermionic. Since stan-
dard dynamical symmetries31 are extensive and local SGA78,79

and the SGA here is extensive and semi-local in spin, we call it a
semi-local dynamical symmetry80. This dynamical symmetry,
being fermionic, cannot be relegated to a non-Abelian symmetry,
unlike previously known cases based on closed algebras settling
the question of whether such operator relations are possible81.
Later, for sake of simplicity, we specialize the general dissipative-
driven fermionic model to a quadratic model and show that these
models have an infinite set of emergent (thermodynamic) super-
extensive raising operators that we call super-extensive dynamical
symmetries. We provide evidence that the total effect of all these
operators is that the model displays very slow finite-size decay

due to the presence of strong symmetries82, which guarantee
degenerate stationary states (null space of Liouvillian). These have
attracted lots of interest recently due to their utility for quantum
information storage 83–96. Moreover, as this behavior is robust to
a wide-class of perturbations and occurs in the thermodynamic
limit any for generic parameter values, it also constitutes the first
example of a boundary time crystal, to the best of our knowledge,
in an short-range interacting model. We also derive an analytical
lower bound for the decay of such behaviors when the dynamical
symmetry is not exact. Finally, we support our theoretical find-
ings using a phase space approach to numerically calculate the
Liouvillain spectrum as well as the correlation functions dynamics
of the open quantum system dynamics highlighting the emer-
gence of the dissipative time crystalline and the quantum multi-
stabiliy as well as the scaling with the system size.

Results and discussion
The model. Consider the following interacting Kitaev chain
model97,

H ¼� 1
2
∑
N

i¼1
wcyi ciþ1 þ Δciciþ1

� �
þ H:c:þ μ∑

i
ni

þ V ∑
j
ðcj þ cyj Þðcjþ1 þ cyjþ1Þðcjþ2 þ cyjþ2Þðcjþ3 þ cyjþ3Þ;

ð1Þ

with cyj and cj being the (Dirac) fermionic creation and annihi-
lation operator, w is the hopping amplitude, Δ is the p-wave
pairing correlation, μ is the on-site chemical potential, and V is a
novel interacting (beyond-quadratic in general) term we use to
model the stronly interaction Majorana fermions, physically
originated from electron-electron interactions98. The number
operators are nj ¼ cyj cj and the chain is subject to the periodic
boundary condition, i.e., cN+1= c1. We note that complex values
of coupling coefficients can be physically realized with e.g., con-
stant phase gradients99 or laser coupling as recently employed in
the simulation of a bosonic ladder100.

This model is commonly mapped onto a spin-1/2 transverse field
Ising model atV= 0101. Note that the model we consider here is not
mappable to integrable XYZ spin chains or noninteracting models
in contrast to other interesting results102,103.

As will be apparent shortly, it is convenient to define Majorana
fermion operators as,

γ2j�1 ¼ cj þ cyj γ2j ¼ iðcj � cyj Þ: ð2Þ
These fulfill the following anti-commutation relations,

fγj; γmg ¼ 2δjm: ð3Þ
Furthermore, here we will study a dissipative case with an

incoherent Markovian driving modeled by a Lindblad master
equation,

dρ
dt

¼ L̂½ρ�; ð4Þ

where L̂ is a quantum Liouvillian of the form

L̂½ρ� ¼ �i½H; ρ� þ∑
μ

2LμρL
y
μ � fLyμLμ; ρg

� �
; ð5Þ

and the Lindblad jump operators are local Majorana dissipation, as
incoherent local single-fermion drive and dissipation of the form
Lj;1 ¼

ffiffiffi
Γ

p ðcyj þ cjÞ ¼
ffiffiffi
Γ

p
γ2j�1, j= 1,…N. The quadratic version of

this model (V= 0) has been previously studied for its topological
properties104. We will also consider a special type of dissipative
pairing as Lj;2 ¼

ffiffi
ε

p ðcj þ cyj Þðcjþ1 þ cyjþ1Þ ¼
ffiffi
ε

p
γ2j�1γ2jþ1 which

can be engineered with Pauli blocking105.
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It is useful to define a vector space of operators with the
standard Hilbert-Schmidt inner product, as hhAjBii ¼ trðAyBÞ,
with a corresponding norm that we will use.

In order to solve the dynamics of ρ(t) it is useful to diagonalize
L̂. Define λk to be the eigenvalues of L̂ and ρk, σk to be the
corresponding right and left eigenoperators, respectively,

L̂½ρk� ¼ λkρk; L̂
y½σk� ¼ λ�kσk;

hhσkjρk0 ii ¼ δk;k0 :
ð6Þ

Due to the semi-group properties of the Lindblad master equation
all the eigenoperators are either stable or decaying, i.e., Re(λk) ≤ 0.
Further, they always appear in complex conjugate pairs as
fλk; λ�kg. Since the jump operators Lμ are Hermitian in our model,
the Lindblad equation is unital, and the identity matrix is always a
non-equilibrium steady state (NESS), i.e., ρ0 ¼ 1.

We are interested in the dynamics of observables O(t) when we
initalize the system in ρ(0). Formally, the solution can be written
as

hOðtÞi ¼ ∑
k
etλkhhOjρkiihhσkjρð0Þii: ð7Þ

Purely imaginary eigenvalues are therefore necessary but not
sufficient for persistent oscillations in physical observables due to
possibly vanishing overlap of local observables with right
eigenoperator, or the zero overlap of the initial state with left
eigenoperators, or the presence of dense and incommensurate
purely imaginary eigevalues λk in the Liouvillian spectrum.

Emergent dynamical symmetries in the thermodynamic limit.
The origin of dynamical symmetries can be understood by
studying the quadratic version of the model in (1) in the non-
interacting limit, i.e., H0=H(V= 0). The model is then the
standard Kitaev Hamiltonian that in the thermodynamic limit
can be diagonalized with a Fourier transform followed by a
Bogoliubov transformation. We obtain (up to an irrelevant shift),

H0 ¼ ∑
k
Ek d

yðkÞdðkÞ; ð8Þ
with the lowering operators of,

dðkÞ ¼ ukcðkÞ þ vkc
yð�kÞ;

cðkÞ ¼ e�iπ4ffiffiffiffi
N

p ∑
N

j¼1
e�ikjcj:

ð9Þ

Here, c(k) is the Fourier transform of the fermion annihilation
operator at momentum k and d(k) is its Bogoliubov transfor-
mation where the (not-normalized) coefficients are defined as

uk ¼ � iΔ sinðkÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek � w cosðkÞ � μ

p
ffiffiffi
2

p
Δ sinðkÞ
�� �� ffiffiffiffiffi

Ek

p ;

vk ¼
iðEk þ w cosðkÞ þ μÞ

Δ sinðkÞ uk;

ð10Þ

and the energy is,

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ sinðkÞ
�� ��2 þ ðw cosðkÞ þ μÞ2

q
: ð11Þ

The momentum is restricted to the first Brillouin zone k ¼ 2π
N m,

m ¼ � N
2 þ 1; ¼ ; N2 � 1; N2 .

If for some κ, uκ=− vκ, we have up to a multiplicative
constant,

dκ ¼ ∑
N

j¼1
e�iκjγ2j: ð12Þ

Solving uk=− vk using (10) for purely imaginary Δ gives
κ ¼ cos�1ð� μ

wÞ, which is a real momentum for μ
�� ��< wj j,

coinciding with the topological phase of the Kitaev chain. Using
(3) it is clear that even Majorana fermions γ2j commute with any
product of an even number of odd Majorana fermions γ2j−1. That
means the interaction term of the Hamiltonian in (1) commutes
with dκ from which it directly follows that,

½H; dκ� ¼ �Eκdκ; ð13Þ

where Eκ ¼ Δ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

w2

q����
����.

Thus dκ is a modulated fermionic dynamical symmetry of the
model. They are essentially similar to Goldstonemodes, except they
exist at finite frequency and momentum. The dynamical symmetry
implies that observables with non-zero overlap with it can
persistently oscillate at frequency Eκ81. Note that there are special
values of parameters for which the dynamical symmetries exist for
finite systems, e.g., for μ= 0, κ= π/2 is always a solution for
mod(N, 4)= 0. For more general μ,w (with ∣μ∣ < ∣w∣); however, the
dynamical symmetries exist only in the thermodynamic limit as for
finite systems there is no solution for κ for general μ,w. In other
words, these dynamical symmetries are emergent for systems that
are large enough to have a continuum of momenta k in the 1st B.Z.
Hence, they are thermodynamically emergent symmetries.

Now consider the case Γ= 0. Since the jump operators Lj,2 are as
sums of products of odd Majorana fermions one has [Lj,2, dκ]= 0.
Therefore, S≔ dκ is an emergent strong dynamical symmetry of the
open quantum system with dissipators Lj,2 in the thermodynamic
limit31,106,107, which implies that operators Snρ1ðSyÞm are
eigenoperators of L̂ with purely imaginary eigenvalues i(n−m)
Eκ. Here, n,m= 0, ± 1 as S2 ¼ 1. Note that S is local in the fermion
basis in the sense of being a sum of local densities.

Here, the eigenstate dephasing108 is not possible because the
purely imaginary eigenspectrum is equally spaced. In order to
qualify as a boundary time crystal the system must, in addition to
the previous conditions, have persistent oscillations in local
observables47. This is the case because S is local and has non-zero
overlap with local observables meaning that the expectation
values of a local observable (by (7)),

lim
t!1

hOðtÞi ¼ tr½O ∑
n;m

eiðn�mÞEκcn;mS
nρ1ðSyÞm�; ð14Þ

will be finite and persistently time-periodic in the thermodynamic
limit. This is clearest when considering the example O= γ2j with
the asymptotic state ρðtÞ ¼ 1þ eiEκtSþ e�iEκtSy.

This therefore constitutes, an exact example of a boundary time
crystal in an extended many-body system with local interactions.
Besides, we conjecture that the model is a dissipative time crystal
as well (persistent oscillations induced by dissipation) because the
closed model likely has oscillations that dephase due to the
multitude of incommensurate eigenvalues108. We will discuss
robustness of the boundary time crystal state in the next section.

Semi-local dynamical symmetries and stability of the dynamics.
We will now consider the case when Γ ≠ 0 and in order to sim-
plify the following discussion we will assume without loss of
generality that the parameters of the model are such that the
dynamical symmetry exists for some finite values of N, e.g., at
μ= 0 as discussed in the previous subsection.

Let us define mj ¼ 1
21� nj and the parity operator

Pj;k ¼
Qk

q¼j mq. We now note some useful identities. The
Hamiltonian is parity-symmetric, i.e., [H, P1,N]= 0, and the
Lindblad jump operators are parity-antisymmetric, i.e.,
{Lμ,1, P1,N}= 0 and furthermore satisfy {Lμ,1, dκ}= 0. From this
it follows directly that [H, P1,Ndκ]=− EκP1,Ndκ and
[Lμ,1, P1,Ndκ]= 0 hence, A0 ¼ P1;Ndκ is a non-local strong
spectrum generating algebra.
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Remark 1: As a side note we will show that this operator leads to
a semi-local dynamics symmetry whenmapped to the spin systems.

Here, for reasons that will become apparent, we consider the
standard Wigner-Jordan mapping109,

~Pj;k ¼
Qk

x¼j σ
z
x;

cj ¼ ~P1;j�1σ
�
j :

ð15Þ

Following the mapping in (15), operator A0 gets transformed to a
semi-local dynamical symmetry in the spin basis, i.e., its densities
commute only with operators on one side of the chain with the
following form,

~A
0 ¼ ∑

N

j¼1
expði π

2
jÞσxj ~Pjþ1;N : ð16Þ

Such semi-local symmetry operators have been studied recently in
the context of generalized hydrodynamic corrections in quadratic
and integrable models where their existence was associated with
the topological nature of the models80. Topology likely plays a
role in our model as it is intimately related to the Kitaev chain.
These new kinds of dynamical symmetries should be distin-
guished from both local extensive78,110–112 and strictly local
ones113–115. We emphasize, that in the model studied here there
is no obvious transformation that would allow mapping this
semi-local dynamical symmetry into a semi-local non-Abelian
symmetry while preserving the spatial locality of H.

The operators A0 and ðA0Þy satisfy fermionic anti-commutation
relations fA0; ðA0Þyg ¼ 1 and they are nilpotent ðA0Þ2 ¼ 0.

The existence of A0 immediately implies the existence of a
super-extensive (quadratic) charge Q ¼ ðA0ÞyA0 for which it can
be easily shown that trðQ2Þ=2N / N2 by observing that the
expression has only finite trace for those term in the doubled sum
when local densities are on the same site. For example, for μ= 0,
in the Majorana basis it may be written as,

Q ¼ i ∑
N

j¼1
ij�1γ2j

� �
∑
N=2

j¼1
ð�1Þjγ4j

 !
: ð17Þ

This Hermitian operator defines a symmetry S= eiQ as [H, S]= 0.
We remark that for the closed system (Γ= ϵ= 0), the existence of
Q and its growth with system size immediately implies that the
memory of the initial state decays as 1/N2 in local observables O
with trðQOÞ≠ 0 as quantified by e.g., infinite temperature auto-
correlation functions 〈O(t)O〉 via the Mazur bound116.

For the open system, S is a strong symmetry82,117, which in
turn implies that the non-equilibrium stationary state λ0= 0 is
degenerate. There, ρ00 ¼ 1� ðA0ðA0ÞyÞ is the other eigenoperator
of the Liouvillian null space for λ0= 0 where we define
1 :¼ 1=ð2Ntr½ðA0ðA0ÞyÞ�Þ, in order for it to be Hilbert-Schmidt
orthogonal to the left null space eigenmode ω0 ¼ 1, i.e.,
trðρ00Þ ¼ 0. It is worth reminding that due to unitality of the
Liouvillian, one NESS is always ρ0 ¼ 1=2N1.

Furthermore, based on the properties of A0, ρ1 ¼ ðA0Þy, ρ�1 ¼
A0 are the bi-orthogonal eigenmodes corresponding to the purely
imaginary eigenvalues of λ±1= iEκ. Due to unitality the left and
right eigenmodes are each others conjugate transposes, i.e., σ�1 ¼
N ðρ± 1Þy up to a normalization constant N .

It is obvious that the presence of purely imaginary eigenvalues
is not visible in any local observable O because A0 is non-local as
it does not contain any local terms hence, ρ±1 do not have
Hilbert-Schmidt overlap with such observables.

The multistability situation is different however, as ρ00 has a
non-zero overlap with a local observable O (without loss of
generality tr(O)= 0). In order to estimate its multistability, we
first note that a general stationary state must be density matrix

and hence a convex combination of the two stationary states
ρ1 ¼ ρ0 ¼ ρ0 þ cρ00 such that ρ∞ is positive semi-definite.

Because ∣∣ρ0∣∣2= 1/2N, jjρ00jj2 / N2=2N and the eigenvalues of
ρ00 sum into 0 by construction, c∝ 1/N. However, since for local
observables trðOρ00Þ / N0 we have for the expectation values,

hOðt ! 1Þi / hhOjcρ00ii / 1=N; ð18Þ
which gives a lower bound on the ∣〈O(t→∞)〉∣. We note that this
is only a lower bound because many eigenvalues have vanishing
real part in the limit of N→∞ and hence the actual expectation
values can decay slower with N. Thus the model is bistable only
for the finite-sized chains where quantum fluctuations are
important. This is unlike typical mean-field multistability
scenarios occurring in the thermodynamic limit (i.e., N→∞)
where quantum fluctuations do not play a role.

Expanding for small ε=O(1/N) around k= κ ± ε we have
½Lμ; P1;Ndκ± ε� ¼ OðεÞ (by Taylor series expansion) and, likewise,
[H, dκ±ε]=− Eκdκ+O(ε). As ε∝ 1/N, this implies that the dis-
sipative gap (the real part of the eigenvalues of the Liouvillian) closes
as∝ 1/N into the same purely imaginary eigenvalues. They are hence
metastable118–120. We will confirm this in the next section with a
concrete example. The closing of the Liouvillian gap is associated with
an algebraic temporal relaxation of the dynamics, but as we will see in
the next section, it can also lead to larger quantum fluctuations (i.e.,
slower decay of multistability with N). Therefore, these additional
dynamical symmetry lead to a different behavior than the standard
power-law decay of multistability and oscillations that are usually
studied for Liouvillian gaps closing121–123.

It is important to note that, even though A2
κ ¼ 0, Aκ+εAκ ≠ 0

and thus these operators do have overlap with local operators
(this follows from P2

1;N ¼ 1), leading to boundary pseudo-time
crystal behavior in local observables as will be shown in the
numerical results subsection.

The dynamical symmetries are responsible for both the boundary
(pseudo-)crystal and the multistability. As long as the dynamical
symmetries we discovered are present these phenomena will be as well.
The semi-local dynamical symmetries are completely non-
perturbatively stable to all perturbations that are odd in the Majorana
fermions i.e., Dx ¼ ∑jx

ð1Þ
j γ2j�1 þ xð2Þj;k γ2j�1γ2k�1 ¼ for arbitrary

parameter set x. Namely, lets introduce an arbitrary such perturbation
H→H+Dx, Lk,μ→ Lk,μ+Dk,y. We will still have ½H;A0� ¼ EkκA

0

and ½Lk;μ;A0� ¼ ½Lyk;μ;A0� ¼ 0 and A0 remains a strong dynamical
symmetry. What if the perturbation W is even in the Majorana
fermions i.e., H→H+ sW, Lk,μ→ Lk,μ+ sW? In that case the purely
imaginary are stable at least to the second order in the small parameter
s according to the results of ref. 106. Hence, an degree of sub-leading
stability remains.

Moreover, according to the results of ref. 106 if we can engineer ϵ
to be large a quantum Zeno dynamics will emerge. More specifically,
the purely imaginary eigenvalues will be stable up to corrections 1/ϵ2

that we can engineer to be small. In other words, the dissipation will
stabilize the oscillations to any perturbations. This renders the
system a dissipative time crystal in the sense of dissipation inducing
persistent oscillations in the our many-body system31.

Numerical results. In this section, for sake of simplicity, we will
focus on the quadratic model, noting that the general conclusion,
according to the discussion in the previous sections, holds for the
interacting models, as well.

Besides, as the open system with Lμ,2 jump operators leads to
an exact time-periodic behavior as discussed here we merely focus
on Lμ,1 dissipators to show the finite-size scaling.

To check the existence of the pure imaginary eigenvalues λk and find
the multiplicity of the null space, we employ the third quantization
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method for calculating the Liouvillian spectrum for N-fermion chains
where mod ðN; 4Þ ¼ 0 subject to the periodic boundary conditions, as
described in the model subsection. As the conserved dynamics is
quadratic and the jump operators are linear in fermionic basis the
Liouville super-operator (L) can be diagonalized in terms of 2N normal
master modes acting on the Fock states of density operators124. The
eigenvalues of the super-operator (λk) can be obtained directly from the
spectrum of the shape matrix, aka rapidities (βi) as

λ
v! ¼�2 ∑

2N

i¼1
βivi; ð19Þ

where v! is a 2N-long binary string. An alternative approach, also
finding a closing spectral gap in related models, can be found in125.

The whole Liouvillian spectrum can be exactly calculated by
considering all v! within (1, 4N). Due to the linear growth of the
shape matrix with N, in opposed to an exponential one, one can
obtain detailed information about L without being limited to
small N chains hence, an equal treatment of the finite-sized
systems and larger one approaching the thermodynamic limit (cf.
the methods section further details).

Figure 1a–c shows the Liouvillian spectrum (λk) of noninter-
acting Kitaev model in (1) for μ= 0, w= 1, Δ= i at different
chain lengths of N= 4, 12, and 100, respectively. For cases (b)
and (c) the spetrum is zoomed in close to the imaginary axis to
highlight the slowly decaying eigenvalues. The red dots show the
pure imaginary eigenvalues at λ±= ± 2i, and the green dot
corresponds to the degenerate NESS at λ0= 0.

To examine the multistability and the long-time behavior of
the system we study the two-point correlations and their time
evolution. As the whole dynamics, including both the conserva-
tive and the dissipative part, is quadratic the state is Gaussian
hence its first and second moments (two-point correlation
functions) are sufficient to describe the system, fully. Using the
Heisenberg picture we can derive the following equations of
motion for the two-point correlation functions

d
dt

hcmcni ¼i
�
whcmþ1cni þ whcmcnþ1i þ w�hcm�1cni þ w�hcmcn�1i

þ 2μhcmcni � Δ�hcncymþ1i þ Δ�hcncym�1i
�

þ i Δ�hcmcynþ1i � Δ�hcmcyn�1i
� �

þ 2∑
k
γk hcki þ hcyki
� �

hcmiδnk � hcniδmk

� 	� �
;

ð20Þ

d
dt

hcymcni ¼i
�
� whcym�1cni þ whcymcnþ1i � w�hcymþ1cni þ w�hcymcn�1i

þ Δhcm�1cni � Δhcmþ1cni
�
þ i �Δ�hcymcyn�1i þ Δ�hcynþ1c

y
mi

� �
þ 2∑

k
γk hcniδmk � hcymiδnk
� 	 hcki þ hcyki

� �� �
:

ð21Þ

As can be seen, correlations make a closed set of coupled nonlinear
equations that can be numerically solved knowing the initial states.

The time evolution of a local two-point correlation (ĥc1ĉ2i) of
such chains is presented in Fig. 2 showcasing the emergence of
both non-stationary steady states, aka dissipative time crystal, and
the multistability, manifested by two distinct values at long-time
limit. Since the long-time solutions in the bistable region depend
on the initial state (cf. (7)), the equations of motion as in (20) and
(21) are evolved for randomized initial states, two of them shown
as red and blue lines in each panel.

To examine the scaling of the local observable with the system
size (N) in Fig. 3 we plot the long-time value of jĥc1ĉ2ij as a
function of the chain length.

The dots show the results of the numerical calculations when the
initial correlations are chosen to be ĥcnĉmi ¼ 1þ i and ĥcnĉyni ¼ 0,
i.e., having one particle on each site. As can be seen the correlation
for smaller system sizes follows a power-law behavior decaying asN
−1 (red line in Fig. 3) consistent with the lower bound prediction of
the semi-local dynamical symmetries and stability of the dynamics
subsection. For longer chains, i.e., larger N, more semi-local
dynamical symmetries (semi-local finite-frequency Goldstone
modes) start emerging and the decay with N slows down,
consistent with the results of the emergent dynamical symmetric
in the thermodynamic limit subsection. More specifically,

hOðt ! 1Þi ¼ ∑
k
etðiωkþOð1=NÞÞhhOjρkiihhσkjρð0Þii: ð22Þ

with ωk 2 R and the complex decay rate goes down as Oð1=NÞ).
This implies both multistability and the persistent oscillations.

Conclusions
In this paper we have shown that for large classes of driven
strongly interacting models there exist spectrum generating
algebras that are semi-local in the spin basis, which we therefore
named semi-local dynamical symmetries. They generically are
manifest in the thermodynamic limit only. Physically, they cor-
respond to particle excitations that are invisible to the interaction.
They also imply non-local (quadratic) conservation laws, which
are promoted to strong symmetries when the system is subjected
to pair dephasing. Being quadratic, these operators directly imply
memory of the initial condition, i.e., degenerate stationary states
and multistability that decays with system size. This means that,
unlike previously studied cases of multistability, here the multi-
stability is present in the quantum fluctuations and in the finite-
size systems (beyond mean-field) rather than being destroyed by
them. Our work implies that genuine (fully exact) multistability
for quantum many-body systems requires emergent symmetry
structure in the thermodynamic limit, even though a manifest one
is not necessarily present for the finite-size system.

The system in the thermodynamic limit obtains further
emergent dynamical symmetries, which are finite-frequency and

Fig. 1 Liouvillian gap closure and the signature of the non-stationary phase. Liouvillian spectrum of noninteracting Kitaev chain for different chain length
a N= 4, b N= 12, and c N= 100 subject to periodic boundary conditions. In all cases the chemical potential, hopping amplitude, and pairing potential are
μ= 0,w= 1,Δ= i, respectively. The red and green dots show the pure imaginary and zero eigenvalues, respectively.
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finite-momentum quasi-particles dressing the original dyna-
mical symmetry excitations. Therefore, we call these emergent
dynamical symmetries semi-local finite-frequency and finite-
momentum Goldstone modes. For the dissipative system they
imply strong symmetries. These Goldstone modes imply that, as
we approach the thermodynamic limit, decay times of oscilla-
tions in the local observables diverge, but their amplitude goes
to zero at least for initial states that have low-enough entan-
glement. Hence the system is a boundary time time crystal
according to the thermodynamic requirements of ref. 47.
However, the oscillations are clean and periodic both for the
isolated (closed Lμ= 0) and dissipative system, therefore our
system is not a dissipative time pseudo-time crystal in the sense
of the dissipative time crystals introduced in ref. 31, which
would imply that dissipation is the one inducing periodic
oscillations absent for the isolated system.

To the best of our knowledge, this is the first exact and fully
non-perturbative result on the long-debated problem of multi-
stability and multistability in driven-dissipative many-body
quantum systems. Although we studied pairing fermionic models,
the approach of thermodynamically emergent dynamical sym-
metries implying quasi-particles that are invisible to certain kinds
of interactions is general and can be applied to both bosonic and
spin systems. Our work provides an approach for proving pre-
sence of multistability in more general and widely studied
quantum optical setups.

In future works, we plan to apply our approach to many-body
spin and bosonic systems where multistability and persistent
oscillations have been experimentally observed in the thermo-
dynamic limit. Exploring the underlying connection between
emergent collective behaviors and topology in such systems with
quantum synchronization106,126–128 are other interesting direc-
tions of the future studies.

Methods
Shape matrix, rapidities, and Liouvillian spectrum. As described in ref. 124 the
two parts of the super-operator, i.e., the conserved dynamics L̂H and the non-
unitary parts L̂D has the following forms

LH ¼ �i4∑
j;k
ĉyj Hjkĉk; ð23Þ

and

Lþ
D ¼ 2 ∑

2N

j;k¼1
∑
N

μ¼1
lμj l

�
μk 2ĉyj ĉ

y
k � ĉyj ĉk � ĉyk ĉj

� �
; ð24Þ

where ĉi; ĉ
y
i are the super-operator (a-fermion) annihilation and creation operators

in the operator Fock space, respectively. Here, we focus on the Kþ , i.e., the even
sup-space, only.

We define the 4N × 1-vector of a-fermionic operators as

Ĉ ¼

ĉ1
� � �
ĉ2N
ĉy1
� � �
ĉy2N :

0
BBBBBBBB@

1
CCCCCCCCA

ð25Þ

With this definition we can write the Liouville super-operator L̂þ ¼ L̂H þ L̂þ
D as

L̂þ ¼ Ĉ
y
LþĈ ¼ Ĉ

y L11 L12
0 L22

� �
Ĉ; ð26Þ

To write the non-unitary parts easier, we define a matrix with entries Mjk ¼
∑N

μ¼1 lμjl
�
μk hence, M=M† is a Hermitian matrix.

Using these definitions we have

Ljk11 ¼ �i2Hjk �Mjk �Mkj ¼ �i2Hjk �Mjk �M0
jk;

Ljk12 ¼ 4Mjk;

Ljk22 ¼ i2Hkj þMkj þMjk ¼ �i2Hjk þM0
jk þMjk:

ð27Þ

Considering the antisymmetric properties of H, it becomes apparent that
L11 ¼ �Ly22. Therefore, we have

L̂þ ¼ Ĉ
y �Ly22 L12

0 L22

 !
Ĉ: ð28Þ

The shape matrixA defined in124 is simply a rotation of this matrix hence, the eigenvalues
of A and L+ are the same. If ηi, i∈ {1, 2,⋯ , 2N} are the eigenvalues of L22 then the
eigenvalues of L+ appear in pairs as ðηi;�η�i Þ. Also from the form of L22 it is clear that the
eigenvalues appear in complex conjugate pairs as ðγi; γ�i Þ; i 2 f1; 2; � � � ;Ng. Finally, one
can conclude that the spectrum of the shape matrix A appear in quadruple of
(ξ, ξ*,− ξ,− ξ*). The rapidities are defined as the subset of the eigenvalues with positive

Fig. 2 Multistability and non-stationary behavior vs. the system size. Time evolution of the first and the second site correlation (jhĉ1 ĉ2ij) showcasing the
multistability for two randomized initial states and the oscillatory behavior for various chain length of a N= 4, b N= 12, and c N= 100 subject to the
periodic boundary condition. Blue and red lines correspond to two different randomized initial conditions.

Fig. 3 Observable scaling with the system size. Local observable scaling
vs. the chain length N when the initial correlation in all cases is the same as
two-site correlation of hĉnĉmi ¼ 1þ i and initial occupation of hĉynĉni ¼ 1.
The dots are the results of the moments equations of motion integration,
the dashed line is guide to the eye, and the red line is N−1 scaling for
comparison.
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real parts from which the full spectrum of Lþ can be obtained using (19). From this
spectrum it becomes evident if there are any kernels, corresponding to multistability, or
pure imaginary eigenvalues, corresponding to a non-stationary NESS.

Dispersion of a chain with periodic boundary conditions. Let’s consider an N-
long chain with periodic boundary conditions (PBC), i.e., cm+N= cm. One can use
the following Fourier transformation to find the spectral form

~cðkÞ ¼ 1ffiffiffiffi
N

p ∑
m
e�imkcm ; cm ¼ 1ffiffiffiffi

N
p ∑

k
eimk~cðkÞ: ð29Þ

It is straightforward to see that the anti-commutator relations of the Fourier series
has the following form

f~cðkÞ;~cðk0Þg ¼ 0 ; f~cðkÞ;~cyðk0Þg ¼ δmnδðk� k0Þ: ð30Þ
Replacing each term by its Fourier transform, we get the following spectral form

~HðkÞ ¼ ∑
k
�2jwj cosðkþ ϕwÞ~cyðkÞ~cðkÞ �

μ

2
~cyðkÞ~cðkÞ � ~cðkÞ~cyðkÞ� 	

ð31Þ

þΔe�ik~cðkÞ~cð�kÞ þ Δ�e�ik~cyðkÞ~cyð�kÞ ð32Þ

¼ ~cyðkÞ~cð�kÞ� 	 �jwj cosðkþ ϕwÞ � μ
2 iΔ� sin k

�iΔ sin k jwj cosð�kþ ϕwÞ þ μ
2

 !
~cðkÞ

~cyð�kÞ

� �
:

ð33Þ
The choice of this spinor is useful since we can readily write the Fourier

transform of Majorana fermions as a direct rotation

~woðkÞ
~weðkÞ

� �
¼ 1 1

i �i

� �
~cðkÞ

~cyð�kÞ

� �
; ð34Þ

where the o, e-superscripts refer to the odd and even Majorana fermions.
Substituting this back into the spectral Hamiltonian we can re-write it in terms

of the Majorana fermions as

Hw ¼ 1
2

jwj sinϕw sin kþ ImðΔÞ sin k i jwj cos ϕw cos kþ μ
2

� 	� ReðΔÞ sin k
�i jwj cosϕw cos kþ μ

2

� 	� ReðΔÞ sin k jwj sin ϕw sin k� ImðΔÞ sin k

 !
ð35Þ

If the jump operators are identical for all fermionic sites as Lj ¼
ffiffiffi
g

p
cj þ δcyj
� �

,

then M will read as follows

M ¼ g
4

j1þ δj2 i 1� jδj2� 	� 2ImðδÞ
�i 1� jδj2� 	� 2ImðδÞ j1� δj2

 !
ð36Þ

Finally, we can use (27) to determine the rapidities from the eigenvalues of
L22 ¼ �i2HþMþM0 . This leads to the following dispersion relation for rapidies
as β(k)

βðkÞ ¼ g
4

j1þ δj2 þ j1� δj2� 	� ijwj sin ϕw sin kþ ±
1
2

ffiffiffiffi
Λ

p
; ð37Þ

where

Λ ¼ i4g j1þ δj2 � j1� δj2� 	
ImðΔÞ sin k� 4 jwj cos ϕw cos kþ

μ

2

� �2
� 16jΔj2sin2k ð38Þ

þi16gReðΔÞImðδÞ sin kþ g2

4
j1þ δj4 þ j1� δj4� 	� g2

2
j1� δ2j2 þ 4g2ImðδÞ2: ð39Þ
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