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1. Introduction 30 

The incorporation of steel-concrete composite elements in a structure is nowadays 31 

regarded as established design and construction practice. Nevertheless, the investigations 32 

conducted on the conditions under which such practice is more cost-effective than other 33 

alternatives are rather limited. The use of composite elements is typically seen as an alternative 34 

to the use of pure steel elements. The use of each of these two types of elements is associated 35 

with certain advantages and disadvantages. Therefore, it is essential to comparatively assess 36 

structures incorporating either type of elements. 37 

The purpose of this work is to assess multi-storey composite buildings with steel-concrete 38 

composite columns with respect to their cost effectiveness and seismic resistance capability. 39 

The assessments performed include comparisons with pure steel buildings. To ensure that all 40 

assessments and comparisons are made in an objective manner, the structures considered are 41 

designed in a way that optimal usage of the available materials and cross-sectional geometries 42 

is achieved. Thus, the designs attained do not depend on a designer’s capabilities, experience 43 

and subjectivity, but are the outcome of an objective automatic design optimization procedure. 44 

Structural optimization is a powerful computational tool which assists engineers in 45 

efficiently searching for cost-effective designs within extensive solution spaces. The existing 46 

literature includes several design optimization applications for pure steel structures (e.g. [1]-47 

[12]). Design optimization applications for structures with steel-concrete composite columns 48 

have appeared primarily in recent years ([13]-[20]). The comparisons between pure steel and 49 

composite buildings presented in the above publications cover a narrow spectrum of design 50 

cases. Thus, although some information and optimization results are provided in the relevant 51 

available literature, additional assessments are needed for a more comprehensive comparison 52 

between the alternatives of pure steel and composite columns in optimally designed multi-53 

storey buildings. 54 

In the present paper, structural optimization is applied for the seismic design of composite 55 

buildings, in which the steel-concrete columns consist of steel members with standard I-shaped 56 

sections (HEB) fully encased in concrete. Moreover, buildings with pure steel columns are 57 

optimally designed using standard HEB sections. Steel beams with standard I-shaped sections 58 

(IPE) and (optional) steel bracings with standard L-shaped sections are considered for all 59 

design cases (using either composite or pure steel columns). All buildings assessed are required 60 

to satisfy the provisions of Eurocode 4 for the steel-concrete composite members and Eurocode 61 
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3 for the pure steel members. Seismic actions are taken into account through lateral deflection 62 

constraints evaluated using nonlinear static pushover analyses. Moreover, the fundamental 63 

periods of the optimally designed buildings are determined and assessed. All structural analyses 64 

required during any optimization run are performed with the software OpenSEES [21], which 65 

is automatically invoked by a discrete Evolution Strategies optimization algorithm. The seismic 66 

design optimization framework utilized in the present work is described in detail in [20]. 67 

Extensive assessments and comparisons are made herein for composite and pure steel 68 

buildings. Optimal structural designs are identified for a variety of seismic intensities, for a 69 

number of building heights and plan configurations, etc. The optimization results allow for an 70 

objective comparison of various designs in terms of required materials cost and achieved 71 

capacity to withstand earthquake actions and provide insight into the relative cost-effectiveness 72 

of the composite and pure steel design approaches. 73 

2. Structural design optimization 74 

Standardized steel sections are used for all structural elements (composite or pure steel) 75 

in this work. Hence the search space consists only of discrete design options, which renders 76 

the investigation performed a discrete optimization problem. The procedure developed in [20] 77 

is adjusted and applied herein. In particular, an Evolution Strategies algorithm is employed, 78 

which is a population-based evolutionary optimization method. At each ES-generation, this 79 

algorithm uses recombination and mutation operations to manipulate a population of μ parent 80 

design vectors and produce a population of λ offspring design vectors. Then, a new parent 81 

population for the next ES-generation is formed by selecting μ vectors from the set of λ 82 

offspring vectors. This iterative procedure is terminated when no actual improvement is 83 

observed in the objective function value for a number of ES-generations. The main features of 84 

the adjusted ES implementation utilized in the present paper are described in the remainder of 85 

this section. 86 

2.1. Objective function, design variables and constraints 87 

The objective function employed in this work is an implicit measure of the total materials 88 

cost of the main structural elements (columns, beams and bracings) in the building frame 89 

considered. Specifically, the objective to be minimized by the optimization procedure is the 90 

total equivalent steel mass 
tot
sM  (tonnes of steel) of all structural material quantities used: 91 

CS
tot
s VCRMM +=

. (1) 92 
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In the above equation, MS and VC are the total steel mass (t) and concrete volume (m3), 93 

respectively, used in the structure. The Cost Ratio CR enables the conversion of the total 94 

concrete volume in the structure to equivalent steel mass and is defined as the total unit cost 95 

for concrete (€/m3) over the total unit cost for steel (€/t). For Cyprus, CR is estimated as 0.012 96 

t/m3 [20], which corresponds to relatively cheap concrete (locally produced) and expensive 97 

steel (imported). To derive this CR-value, both material and labour costs were taken into 98 

account, as well as features and details required to install the respective structural members 99 

[20]. As CR is a ratio, its value is practically insensitive to uniform market price variations. 100 

The material mass needed for structural elements/parts that are not explicitly included in the 101 

analysed frame model and are typically designed separately (slabs, secondary beams, 102 

foundation, etc.) is not taken into account in the objective function (1). 103 

The design variables of the optimization procedure are associated with the steel section 104 

geometries of the main frame elements and take values from the following 3 properly sorted 105 

discrete databases: (a) HE 100 B to HE 1000 B for columns, (b) IPE 80 to IPE 600 for beams 106 

and (c) L 90×90×7 to L 250×250×28 for bracings. For the steel-concrete columns, the same 107 

basic configuration is always used for the concrete and its reinforcement encasing the HEB-108 

sections, therefore no additional design variables are required beyond the ones controlling the 109 

steel cores; section dimensions and details are provided in [20]. It is also mentioned that the 110 

database with L-shaped sections includes a ‘zero’ option (no bracing section), which actually 111 

offers the optimizer the choice to deactivate bracings in a structure. Thus, in general, the 112 

optimal solution identified may be a braced or unbraced frame. Note that the steel HEB-113 

sections have a common orientation across all columns of a pure steel or composite frame: their 114 

major axes are parallel to the global horizontal y-axis of the building. Therefore, the bracings’ 115 

sections are determined based mainly on the building’s stiffness needs in the y-direction. A 116 

final issue linked with the handling of design variables is the potential incompatibility of 117 

member sections at beam-column connections. Hence, when the column web height is too 118 

small to accommodate the flanges of the beams at a connection along y-direction, we are forced 119 

to override the optimizer’s choice and adopt an increased column section. 120 

As regards the implemented constraints, these are associated with the design 121 

requirements imposed by relevant standards and guidelines. Hence, with the aid of linear static 122 

analysis results, composite column members are designed according to provisions of Eurocode 123 

4 [22], while pure steel column and beam members are designed according to provisions of 124 

Eurocode 3 [23]. Moreover, as regards seismic system resistance, the output of nonlinear 125 
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pushover analyses is used to assess whether a structure: (a) can safely reach a pre-specified 126 

target displacement at the roof level (see section 3 for details) and (b) has interstorey drifts 127 

within acceptable limits (≤4% of the storey height for composite frames, ≤5% of the storey 128 

height for pure steel frames [24]). Steel bracings are not checked with respect to provisions of 129 

Eurocode 3; their sections are identified based on the lateral deflection constraints for adequate 130 

seismic performance of the structural system. 131 

A structural design that violates any of the aforementioned constraints on structural 132 

member capacities and system resistance under seismic action is deemed infeasible. Such a 133 

design is penalized by adding to the objective function (1) a penalty term, which is equal to the 134 

total mass of the heaviest design possible for the database options available. Thus, infeasible 135 

designs are not immediately eliminated by the optimizer, but are exploited during the new 136 

design generation process to potentially contribute any favourable design feature they possess. 137 

2.2. Structural modelling and analyses 138 

The composite and pure steel frame structures assessed in the present work are 139 

numerically modelled and analysed using OpenSEES [21]. To properly simulate the stress-140 

strain behaviour of structural materials, the following models in OpenSEES are employed: 141 

• ‘Steel01’. This material type is utilized to model all structural steel members, i.e. the steel 142 

cores of composite columns, the pure steel columns, the beams and the bracings. It is 143 

implemented with a yield stress of 235MPa and an elasticity modulus of 210GPa. As 144 

regards hardening, the post-yielding stiffness is 5‰ of the initial one. 145 

• ‘Concrete01’. This material type is employed for all concrete regions of the composite 146 

columns. It is implemented with cracking and crushing strains of 2‰ and 3.5‰, 147 

respectively. For the confined concrete area surrounded by the reinforcement, the 148 

compressive strength is set to 20MPa (no tensile strength is assumed). For the unconfined 149 

concrete area (external cover of 2.5cm), a reduced compressive strength is assumed, which 150 

is 20% lower than that of confined concrete. 151 

• ‘ReinforcingSteel’. This material type is used for the longitudinal and transversal 152 

reinforcement bars of the composite columns. A yield stress of 434MPa, an ultimate stress 153 

of 521MPa, a yield strain of 2.5‰ and an ultimate strain of 20% are defined. 154 

All structural members are represented in any building frame using fiber section elements. 155 

Columns and beams are modelled using ‘nonlinearBeamColumn’ elements of OpenSEES. 156 
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Bracings are modelled as ‘truss’ elements [21]. Each member section is divided into a sufficient 157 

number of fibers to adequately capture the development of plastic regions and hinges. 158 

Slabs and secondary beams are not explicitly included in the structural model; their 159 

contribution is simulated by including their weight in the structure’s dead loads and considering 160 

a rigid diaphragm at each slab level. The connections at the base of each column are modelled 161 

as fixed supports. Beam-column connections in x-direction are assumed to be moment-162 

restrained, while beams in y-direction are simply supported. 163 

For each of the assessed buildings, five analyses are performed: (a) a force-controlled 164 

linear static analysis under gravitational loads, (b) two eigenvalue analyses (one for each 165 

horizontal direction) and (c) two displacement-controlled non-linear static pushover analyses 166 

(one for each horizontal direction). In the linear static analysis, the combined vertical loads are 167 

gradually applied on the beams of the building. If the analysis finishes successfully, the 168 

structural members are assessed with respect to the individual capacity criteria defined in 169 

Eurocode 3 [23] for steel members and Eurocode 4 [22] for composite steel-concrete members. 170 

Although designs that fail in any of the aforementioned criteria are considered infeasible, their 171 

performance under horizontal loads is still evaluated. A penalty is added to the objective 172 

function of such designs and are not discarded from the population of designs processed by the 173 

optimizer. Designs with failures in multiple criteria receive a higher penalization. 174 

3. Adjustment of seismic demands 175 

The seismic structural performance is determined by displacement-controlled nonlinear 176 

pushover analyses up to a targeted top displacement Δtarget according to the provisions of 177 

ASCE/SEI 41-06 [24] and FEMA 440 [25]. The magnitude of the required displacement 178 

depends on various problem-related variables: type of soil, seismic hazard of the area, expected 179 

load distribution, etc. This requirement is increased for structures of high economical value or 180 

importance to the public safety. The same applies when more demanding design codes are used. 181 

Thus, to generalize the results of an investigation, a variety of targeted displacements needs to 182 

be examined for each problem case considered. 183 

The approach followed in this work to control the seismic capacity of the building 184 

designed is by directly adjusting the targeted top displacement used to perform the pushover 185 

analysis. This is achieved by introducing the displacement modification factor δ in the 186 

calculation of the targeted top displacement: 187 
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where C0, C1, C2 and C3 are coefficients defined in [25] and Te is the effective fundamental 189 

period defined in the same document. The expression given in [25] for the targeted top 190 

displacement is Eq. (2) with δ=1. 191 

As ett arg

~
  is directly related to the design earthquake through the spectral response 192 

acceleration (Sa), a more severe seismic excitation, i.e. one with increased Sa, would cause 193 

larger displacements to the assessed building. Hence, δ actually corresponds to the ratio of the 194 

spectral response acceleration considered for the design over the spectral response acceleration 195 

Sa10/50 corresponding to the Earthquake Hazard Level with probability of exceedance 10% at 196 

50 years, which is typically used for ordinary residential buildings. 197 

FEMA-356 [26] provides an equation to adjust the mapped response acceleration 198 

parameters to other probabilities of exceedance: 199 

𝑆𝑖 = 𝑆𝑖,10/50 ⋅ (
𝑃𝑅

475
)
𝑛

 (3) 200 

where n is a site-dependent coefficient, which takes into consideration the soil type and seismic 201 

hazard of the area [26] and PEY is the probability of exceedance in time Y (years) for the desired 202 

earthquake hazard level. Dividing this equation by Si,10/50, a function to calculate the 203 

displacement modification coefficient δ for a given return period and vice versa is obtained: 204 

n
R

n

R P
P

 =







= 475

475
 (4) 205 

This equation includes coefficient n, so for any location there is an earthquake with some return 206 

period for which the structure is required to reach δ times the targeted top displacement that 207 

corresponds to an earthquake with 10% probability of exceedance in 50 years. Fig. 1 shows the 208 

return period for the design earthquake corresponding to different values of coefficient δ. 209 

 
Fig. 1. Return period of the design earthquake corresponding to various values of factor δ (the dashed line 

defines the 2475-year limit for the 2% probability of exceedance in 50 years). 
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While high values of δ, such as 3.0 or 4.0, might seem excessive, only in a few cases do 210 

such values correspond to seismic excitations with a probability less than the minimum values 211 

already used in FEMA-356, i.e. 2% in 50 years (see shaded cells in Table 1). It is of particular 212 

interest to note that, for values up to δ = 2.0, the considered design earthquakes have 213 

probabilities of exceedance >2% for any n-value (Table 1). 214 

Table 1. Probability of exceedance (PEY) in 50 years. 215 

Site-

dependent 

coefficient 

n 

Displacement modification factor (δ) 

0.50 0.70 1.00 1.25 1.50 1.75 2.00 2.50 3.00 4.00 

0.50 34.37% 19.34% 10.00% 6.52% 4.58% 3.38% 2.60% 1.68% 1.17% 0.66% 

0.56 30.44% 18.05% 10.00% 6.83% 4.98% 3.81% 3.01% 2.03% 1.47% 0.89% 

0.60 28.41% 17.37% 10.00% 7.00% 5.22% 4.06% 3.27% 2.26% 1.68% 1.04% 

0.93 19.90% 14.32% 10.00% 7.95% 6.59% 5.61% 4.88% 3.86% 3.18% 2.35% 

0.98 19.23% 14.06% 10.00% 8.05% 6.73% 5.78% 5.06% 4.05% 3.38% 2.53% 

1.06 18.33% 13.71% 10.00% 8.18% 6.93% 6.02% 5.33% 4.34% 3.67% 2.81% 

The disadvantage of using the probability of exceedance or the return period of an 216 

earthquake is that these two properties depend on the characteristics of the site. Using δ, one 217 

can assess structures constructed in areas with different site characteristics on the basis of their 218 

performance at their own locations. According to FEMA-440, structures designed for δ=1 219 

possess the required ductility to sustain an earthquake, the magnitude of which has probability 220 

10% of being exceeded in a time period of 50 years. In the analyses performed in this work, 221 

the site characteristics of a single location only have been used and, therefore, the used values 222 

of δ correspond to various intensities of an excitation from the same source in all assessed 223 

problem cases. Therefore, values δ>1 imply higher ductility demands or higher structural 224 

significance. By introducing factor δ, the comparison of structural designs with different 225 

characteristics is possible, as it is performed on the basis of an adjusted targeted top 226 

displacement, which serves as an indicator of their capacity. 227 

4. Fundamental period formulas 228 

ASCE/SEI 41-06 [24] and Eurocode 8 [27] provide approximate formulas to calculate 229 

the fundamental period of steel moment resisting frames using only their total height. In 230 

particular, ASCE/SEI 41-06 suggests its calculation through: 231 

8.0035.0 HT = , (5) 232 

where H is the building height in feet, while Eurocode 8 defines it as: 233 

430850 /H.T = . (6) 234 

The alternative formula for buildings up to 12 storeys and storey height at least 10ft is: 235 
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nT = 1.0 , (7) 236 

where n is the number of storeys of the building. 237 

Goel and Chopra [28] performed an investigation of approximate formulas for various 238 

types of buildings and found that the code formulas significantly underestimate the 239 

fundamental periods of steel MRFs. Hence, they proposed alternative formulas to calculate 240 

empirically the fundamental period for this building type corresponding to a lower limit: 241 

8.0028.0 HT = , (8) 242 

where H is the building height in feet, and to an upper limit: 243 

800450 .H.T = . (9) 244 

The above approximate formulas are frequently applied to estimate the fundamental 245 

period of steel buildings in the design phase. Similar recommendations for steel-concrete 246 

composite buildings are not proposed; however, high-period designs need to be avoided. To 247 

investigate the effect approximate fundamental period calculations may have on building 248 

designs, all aforementioned formulas were used to set fundamental period equality constraints. 249 

Hence, the intended fundamental period for each assessed building height was calculated 250 

separately using Eqs (5)-(9). Then, the maximum attainable δ-value was determined for the 251 

building having fundamental period equal to each of the approximations from Eqs (5)-(9) and 252 

the corresponding cost-outcome was illustrated on the graphs presenting optimization results 253 

in the next section. 254 

5. Optimization Results 255 

5.1. Reference Building (6-storeys, 5×5 bays) 256 

The building selected as a reference for the numerical investigation of the present work 257 

is a 6-storey space frame of square floor plan with 5 bays in each horizontal direction (Fig. 258 

2(a)). Bracings are (optionally) installed at the middle bay of each of the 4 external sides of the 259 

building. The bay width along both x- and y-directions is 5.5m, while the height of each storey 260 

is 3.5m, resulting in a total building height of 21m. This is assumed to be a residential building, 261 

which implies a characteristic live load value of q=2kN/m2 at each floor. The building is 262 

optimized separately with pure steel columns and composite steel-concrete columns, in order 263 

to assess the cost-effectiveness of each of these configurations. 264 

Fig. 2 illustrates the 6 member groups defined for the reference building. Columns are 265 

organized into 4 groups according to their position in the floor plan: (1) corner, (2) peripheral 266 

in x-direction, (3) peripheral in y-direction and (4) internal. A single group (5) contains all 267 
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beams, while the last group (6) contains all bracings of the structure. One discrete design 268 

variable is assigned to each member group taking values from the respective database (HEB 269 

for columns, IPE for beams and L for bracings). For medium-rise and high-rise buildings, 270 

increasing the number of column-groups to allow for different sections along the building 271 

height could lead to more cost-effective designs (see e.g. [20]). However, such a finer design 272 

variable configuration is not applied herein, because this would substantially enlarge the 273 

available design space and increase the computational time required for its effective search. 274 

To facilitate the discussion in the sequel of the present work, structural designs are 275 

codified using the format: ‘Column type - Number of storeys - Number of bays in each direction 276 

- Value of δ (Optional additional characteristics)’. The options for Column type are ‘C’ for 277 

composite or ‘S’ for pure steel columns. For example, the reference building with composite 278 

columns designed for δ=2 is designated as C-6-5-2. If this is assumed to be an office building 279 

with pure steel columns, then it is designated as S-6-5-2(q=5kN/m2). 280 

             

Fig. 2. Section grouping applied to: (a) the reference building C-6-5-δ, (b) C-6-3-δ and (c) C-4-5-δ (top slabs 

removed for visualization purposes). 

A total of 22 optimization runs were carried out for the reference building: 10 runs were 281 

performed for each of column types ‘C’ and ‘S’ with δ-values ranging from 0.5 to 4, while one 282 

more run for each column type was conducted for gravitational loads only (δ=0). Fig. 3 presents 283 

the total equivalent steel mass and the fundamental period of the optimized designs identified 284 

as a function of the δ-value specified. Clearly, higher δ-values (i.e. increased seismic resistance 285 

demands) induce the need for larger amounts of structural material in the building, therefore 286 

monotonic increase in both curves C-6-5-δ and S-6-5-δ (designs of reference building for 287 

various δ-values) is observed. 288 
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Fig. 3. Total equivalent steel mass versus δ for C/S-6-5-δ (reference building) 

(the values illustrated next to each point are the corresponding maximum fundamental periods) 

For each of these two curves, an upper and a lower total mass bound can be determined. 289 

The upper bound is defined as the total mass of a building designed using the largest available 290 

section for each structural member. As the same HEB-database is utilized for both composite 291 

and pure steel columns, the difference in the respective upper total mass bounds results from 292 

the presence of concrete in the case of composite columns. On the other hand, the lower total 293 

mass bound corresponds to the case of δ=0 (only gravitational loads applied to the structure). 294 

In that case, the beams’ section is actually dictated by the required bending moment capacity, 295 

which is directly related to the beam length (bay width) and the applied gravitational loads. 296 

The resulting beam section specifies then the minimum acceptable column section, because, in 297 

order to be able to connect the two members, the space available between the column flanges 298 

(column web height) must exceed the width of the beam flange. 299 

It is worth mentioning that optimized designs for δ=0 have a considerable seismic 300 

resistance capacity, which actually suffices for significant values of δ, although δ=0 means that 301 

the structure is not explicitly designed to withstand seismic loads. In particular, one can notice 302 

in Fig. 3 that the same optimized design is used for C-6-5-0, C-6-5-0.5 and C-6-5-0.7. 303 

Respectively, for pure steel columns, this applies to S-6-5-0 and S-6-5-0.5, while the cost for 304 

δ-values up to 1 is not significantly increased and is still lower than the minimum cost of the 305 

corresponding steel-concrete composite designs. 306 

What is also of particular interest is the intersection point of the cost-versus-δ curves, as 307 

it defines the level of horizontal displacement requirement, beyond which buildings with steel-308 

concrete composite columns are more economical than with pure steel ones. As the calculated 309 

optimal points of the curves depend on the optimization problem’s configuration, when its 310 
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parameters are changed (e.g. by varying the number of bays or storeys), the intersection point 311 

may shift to any direction, increasing or decreasing the benefit gained from the one philosophy 312 

over the other. Therefore, 3 extra sets of optimization runs described in the following 313 

subsections were performed. In any case, it is evident from the results in this section that 314 

buildings with pure steel columns are more economical for lower δ-values, while composite 315 

columns should be preferred for higher δ-values, with the curves’ intersection point signifying 316 

the change of preference between the two column types. 317 

Any building examined in this section is simulated using a three-dimensional frame 318 

model with the fundamental period depending on the direction of vibration. Hence, the values 319 

given next to the points of the graph of Fig. 3 (as well as in corresponding graphs in the next 320 

subsections) are the maximum fundamental periods of each optimal design, which are 321 

calculated for displacement parallel to the column sections’ major axis, i.e. considering their 322 

stiffness about the minor axis. The dashed lines illustrate the cost-level of the designs attained 323 

when fundamental period values are imposed using equality constraints based on the 324 

approximation formulas of section 4; arrows are used to indicate cases yielding costs outside 325 

the relevant axis range. All formulas of section 4 take into account only the total height or the 326 

number of storeys of the building; the fundamental period values obtained for all cases 327 

considered in this section are provided in Table 2. 328 

Table 2. Fundamental periods (s) calculated based on the formulas of section 4. 329 

Number of 

storeys 

Total Height Fundamental Period Calculation Formula 

(m) (ft) 
0.1n 

(Eq. 7) 

Goel & Chopra 

minimum (Eq. 8) 

EN 1998 

(Eq. 6)  

ASCE/SEI 

41-06 (Eq. 5) 

Goel & Chopra 

maximum (Eq. 9) 

2 7.00 22.97 0.2 0.34 0.37 0.43 0.55 

4 14.00 45.93 0.4 0.60 0.62 0.75 0.96 

6 21.00 68.90 0.6 0.83 0.83 1.03 1.33 

It can be noticed in Fig. 3 that, for both pure steel and composite columns, increased 330 

seismic demands lead to designs with lower fundamental periods, reducing the targeted top 331 

displacement the buildings are required to reach. The variation in the calculated periods is 332 

significantly larger for the pure steel buildings. Optimized composite designs, even when 333 

designed for gravitational loads only, have an increased stiffness due to the columns’ concrete, 334 

resulting in lower fundamental periods. For this design approach, the Goel & Chopra maximum 335 

period approximation is lower than the defined feasible designs and the ‘0.1n’ approximation 336 

significantly higher. Since the designs illustrated are optimized ones, their fundamental periods 337 

are the largest possible values of a feasible design for each level of seismic demand. Therefore, 338 
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the Goel & Chopra maximum limit would not alter the optimization results of the composite 339 

buildings; for the pure steel building it would only affect the designs below δ≈0.5. 340 

5.2. The effect of increased seismic mass (q=5kN/m2) 341 

The second set of optimization runs aims to investigate the effect of the total seismic 342 

mass on the designs obtained. For this purpose, a change in the intended use from residential 343 

building (q=2kN/m²) to office building (q=5kN/m²) is considered. Such a change results in 344 

increased applied loads on the building and, consequently, in larger total mass per storey. 345 

Therefore, higher stiffness per storey is required to achieve adequate structural performance 346 

under seismic loads. The actual aim of this change is to reduce the effect of the constraints 347 

related to the evaluation of the candidate designs’ individual members with respect to the 348 

capacity criteria defined in Eurocodes 3 and 4. Instead, an increased effect of the structural 349 

system performance on the determination of the optimized design in each case is expected.  350 

 
Fig. 4. Total equivalent steel mass versus δ for C/S-6-5-δ(q=5kN/m2)  

(the values illustrated next to each point are the corresponding maximum fundamental periods) 

The new 22 optimization runs performed to investigate the effect of increased storey 351 

masses yielded the curves C-6-5-δ(q=5kN/m2) and S-6-5-δ(q=5kN/m2) of Fig. 4. A comparison 352 

with Fig. 3 shows that the increase in total structural cost of the new optimized designs is 353 

similar for both pure steel and composite columns. The value of δ at the intersection point of 354 

the two curves in Fig. 4 is not altered significantly compared to the reference curves of Fig. 3, 355 

as the curves illustrated in Fig. 4 are roughly parallel to the respective ones in Fig. 3. Therefore, 356 

although an increase in the total seismic mass of the structure results in larger member sections, 357 

the relative cost-effectiveness of pure steel and composite design approaches does not seem to 358 

be affected. However, it is sometimes affected by the utilized discrete section databases, since 359 
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the selection of a larger section for a higher δ-value results in certain cases in an abrupt increase 360 

of the total cost. Another effect of the discrete section availability is that, while for composite 361 

column sections the optimization algorithm managed to determine building designs with δ-362 

value up to 4, for pure steel sections it was unable to find feasible designs for δ-values higher 363 

than about 2 (larger sections are needed, which are not available in the database).As regards 364 

the fundamental periods of the optimized designs, it can be noticed that the increase of the total 365 

seismic mass affects differently the pure steel and composite design approaches. For the steel-366 

concrete composite approach, seismic demands corresponding to δ-values up to 1.25 lead to 367 

higher fundamental periods for increased seismic mass compared to the ones for the reference 368 

building; for higher δ-values, fundamental periods for increased seismic mass are significantly 369 

lower. For the pure steel buildings, all optimized designs for increased seismic mass are 370 

characterized by lower fundamental periods compared to the ones for the reference building. 371 

Finally, Goel & Chopra maximum approximations are too low and therefore not applicable. 372 

5.3. The effect of plan configuration (3×3, 7×7 and 9×9 bays) 373 

In engineering practice, when increased stiffness requirements are induced to the design 374 

of a steel building, they are usually met by either installing steel bracings in a number of 375 

predefined bays of the structure or by selecting stronger columns (when the structure is 376 

designed as a moment resisting frame). In reinforced concrete buildings, even though shear 377 

walls provide a significant resistance to horizontal loads, the columns’ stiffness contribution is 378 

significant as well. One would generally expect a composite building with concrete-encased 379 

steel columns to exhibit a favourable performance, as it can combine concepts both from steel 380 

and reinforced concrete buildings. 381 

The focus in this subsection is on investigating the overall stiffness of the optimized 382 

building and the way it is attained. In general, moment resisting frames are structures with high 383 

fundamental period and, therefore, the required ductility demands are high. However, the more 384 

bracings are installed in the building, the more is this requirement reduced and the building’s 385 

behaviour shifts toward that of a ‘profoundly’ braced frame, in which the columns’ sections 386 

are mainly determined by gravitational loads. Therefore, the way the overall stiffness of a 387 

structural system is to be attained is directly linked to a more stiff or flexible design to be 388 

determined due to the system’s structural members configuration, i.e. its topology. 389 

Following the above discussion, a third set of optimization runs is performed, in which 3 390 

additional buildings with different numbers of bays per direction are simulated: a 3×3-bay 391 
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(C/S-6-3-δ) (Fig. 2(b)), a 7×7-bay (C/S-6-7-δ) and a 9×9-bay building (C/S-6-9-δ). All these 392 

buildings have the same basic geometric characteristics as the reference building: 6 storeys, 393 

5.5m bay span and 3.5m storey height. Furthermore, bracings are installed at the middle bays 394 

of all external sides of each building. The main difference between the examined buildings, 395 

including the reference 5×5-bay building, is the contribution of the bracings to the total stiffness 396 

of each storey. As the number of bays per direction increases, extra columns are added, while 397 

the total mass per storey increases significantly as well. However, the number of bracings 398 

remains the same in all buildings, as they are only installed in the middle bays and, therefore, 399 

the ratio of the stiffness contributed by the bracings to the total storey stiffness of each building 400 

cannot the same. Thus, a 3×3-bay building with 8 bracing members and 16 columns at each 401 

storey behaves basically as a braced frame. On the other hand, in a 9×9-bay building with 100 402 

columns per storey, the contribution of bracings is of reduced significance and its structural 403 

performance is basically that of a moment resisting frame, rather than that of a braced frame. 404 

Indeed, the bracings’ contribution to the total storey stiffness is reduced from about 75% down 405 

to less than 10% as the number of bays is increased from 3×3 to 9×9. 406 

A total number of 66 optimization runs were carried out to optimize pure steel and 407 

composite buildings for the same range of δ-values as in the case of the reference building; the 408 

results are depicted in Figs. 5-7. In Fig. 5 (3×3 bays), it can be noticed that roughly the same 409 

cost is retained for a relatively wide range of low horizontal displacement capacity 410 

requirements δ. This is an expected outcome, because, when the contribution of bracings to the 411 

total stiffness is increased, the proportion of horizontal loads they receive is increased as well; 412 

therefore, for low δ-values, small column sections suffice, as these are mainly defined due to 413 

the gravitational loads. In the case of the 7×7-bay and 9×9-bay buildings (Figs. 6 and 7), the 414 

corresponding δ-range retaining a constant cost is much shorter. 415 

The general tendency of the curves obtained in Figs. 5-7 is not changed compared to that 416 

of the reference building. However, the intersection point of the pair of curves in each figure 417 

is shifted. For the 3×3-bay building, the intersection point is at δ≈1.8, increasing the range of 418 

values for which pure steel columns can provide more cost-effective solutions than composite 419 

columns. On the other hand, the two curves intersect at lower δ-values for the 7×7-bay and 420 

9×9-bay buildings: at δ≈0.8 and δ≈0.55, respectively. The decisive difference between the 4 421 

plan configurations of the buildings examined is the increase in the number of columns as the 422 

number of bays per direction increases while the number of bracings per storey remains the 423 

same. Hence, bracings seem to have a more critical effect to pure steel design than to steel-424 
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concrete composite design. For larger numbers of columns, the bracings’ effect is reduced, 425 

while the total concrete area in the steel-concrete composite columns is increased significantly. 426 

It is also interesting to note the less steep curves corresponding to composite design in Figs. 3-427 

7, which implies that the composite design adapts better to varying column numbers, without 428 

abrupt increases of the total structural cost as δ is increased. Hence, the reinforced concrete 429 

encasing the steel section in larger numbers of steel-concrete composite columns appears to 430 

substitute effectively the proportion, by which the contribution of bracings to the total stiffness 431 

is reduced, rendering composite design more suitable for moment resisting frames than pure 432 

steel design. 433 

Another important aspect is that, when optimizing using pure steel members, the largest 434 

available column and bracing sections in  the respective databases need to  be utilized to reach 435 

 
Fig. 5. Total equivalent steel mass versus δ for C/S-6-3-δ 

(the values illustrated next to each point are the corresponding maximum fundamental periods) 

 
Fig. 6. Total equivalent steel mass versus δ for C/S-6-7-δ 

(the values illustrated next to each point are the corresponding maximum fundamental periods) 
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Fig. 7. Total equivalent steel mass versus δ for C/S-6-9-δ 

(the values illustrated next to each point are the corresponding maximum fundamental periods) 

δ-values up to 2.0 for the 7×7-bay and 9×9-bay buildings, 2.5 for the reference building and 436 

3.0 for the 3×3-bay building. Using steel-concrete composite columns, feasible solutions can 437 

be determined for δ-values up to 4.0 for all numbers of bays investigated. This outcome is 438 

indicative of the significant role of concrete in providing lateral stiffness to a composite 439 

building. Nevertheless, buildings designed with very high seismic resistance demands (δ→4), 440 

especially the ones with low overall area over height ratio (e.g. 3×3-bay building), need to be 441 

carefully assessed, as certain columns or column parts may be in tension instead of compression. 442 

Composite columns in that state have lost the contribution of concrete in the part of the section 443 

that is under tension and can safely count only on their steel cores to receive tensile stresses. 444 

As regards the fundamental periods of the optimized designs, the same general tendency 445 

is exhibited by both pure steel and composite approaches: for larger number of bays, the 446 

proportional stiffness contribution of bracings is reduced, which leads to overall more flexible 447 

designs with higher fundamental periods. Buildings with large numbers of bays are able to 448 

meet the specified seismic performance criteria thanks to their high overall area over height 449 

ratio. This effect is more pronounced in the cases of the pure steel design approach, for which 450 

the approximation formulas of section 4 yield more restrictive fundamental period bounds, as 451 

can be verified from Figs. 3 and 5-7. 452 

5.4. The effect of building height (2 and 4 storeys) 453 

In this final set of optimization runs, 2 more buildings are simulated, a 4-storey (C/S-4-454 

5-δ) (Fig. 2(c)) and a 2-storey building (C/S-2-5-δ), both of which have an identical element 455 

configuration as the reference building, so their only geometrical difference is the number of 456 



18 

storeys. The new buildings have a lower height to area ratio and, consequently, increased 457 

inherent structural stiffness. Forty-four optimization runs were performed for this investigation, 458 

the results of which are presented in Figs. 8 and 9. 459 

 
Fig. 8. Total equivalent steel mass versus δ for C/S-4-5-δ 

(the values illustrated next to each point are the corresponding maximum fundamental periods) 

 
Fig. 9. Total equivalent steel mass versus δ for C/S-2-5-δ 

(the values illustrated next to each point are the corresponding maximum fundamental periods) 

The effect of the number of storeys on the shape of the total-mass-versus-δ curves seems 460 

to be similar to that of the number of bays. For the 2-storey building, the pair of curves in Fig. 461 

9 intersect at a much lower δ-value (around 0.5) than for the 6-storey reference building, 462 

indicating that composite designs are more favourable for low-rise buildings. Apparently, due 463 

to the inherent lateral stiffness of the 2-storey building, the induced need for additional stiffness 464 

is relatively low and is inexpensively satisfied by the encasing concrete in composite columns 465 

(more costly steel bracings are not required as in the pure steel building). In the case of the 4-466 
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storey building, the two curves in Fig. 8 are relatively close for δ-values lower than 2.0. In the 467 

case of the 2-storey building, the distance between the two curves is larger. This highlights the 468 

favourable cost-effectiveness of steel-concrete composite designs over pure steel designs for 469 

low-rise buildings. The fundamental periods of the optimized designs seem to be analogous to 470 

those of the designs defined for the reference building. Similar trends with Fig. 3 are also 471 

observed regarding the fundamental period values obtained from the approximate formulas of 472 

section 4. 473 

6. Concluding remarks 474 

In this work, a total number of 154 structural optimization runs were performed to 475 

comparatively assess buildings with pure steel and steel-concrete composite columns with 476 

respect to their total material cost for a variety of horizontal displacement capacity demands. 477 

The optimization procedure employed enabled a fair comparison between these two design 478 

approaches, as the assessment of optimized designs ensures that each approach has been 479 

applied as effectively as possible to meet structural performance requirements with the least 480 

feasible cost of materials. The displacement modification factor δ introduced in this work to 481 

adjust ductility demands facilitated the assessments performed. 482 

The total mass versus horizontal displacement requirement curves presented herein show 483 

that the relation between cost and capacity tends to be roughly linear for structures with 484 

concrete-encased composite columns. On the other hand, for pure steel designs, the observed 485 

behaviour tends to be roughly bilinear, with an abrupt gradient change in the linear relation 486 

occurring at certain value of factor δ. In general, steel-concrete composite designs were found 487 

to be more favourable than pure steel designs for higher seismic demands. In such cases, more 488 

cost-effective structural solutions are attained by partially replacing the contribution of steel 489 

using concrete, which is a significantly less expensive material. 490 

The level of seismic demand, beyond which buildings with steel-concrete composite 491 

columns are more economical than with pure steel ones, is denoted by the intersection point of 492 

the pair of cost-versus-δ curves for composite and pure steel design approaches. The δ-value 493 

of the intersection point seems to depend mainly on the overall stiffness of the structural system 494 

considered. In fact, the intersection point tends to be at a lower δ-value for a structural system 495 

with a higher inherent stiffness, i.e. with a higher plan area to height ratio. 496 

The composite design approach seems to adapt better to increasing seismic demands, 497 

since there is no need to alter the design philosophy of the optimum solution. The relation 498 
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between the minimum cost and the horizontal displacement demand is practically linear, which 499 

implies that increased stiffness is achieved by a global increase of all member sections in the 500 

structure. On the other hand, the pure steel design approach seems to favour the bracings’ 501 

contribution to the total stiffness, in order to cope with increasing seismic demands. Thus, the 502 

utilization firstly of all available bracing sections and then the increase in the columns’ sections 503 

appears to be the most cost-effective approach for pure steel buildings. Hence, there is a change 504 

of design philosophy when the largest available bracing section is not sufficient anymore as 505 

the seismic demand is increased, therefore the relation between the minimum cost and the 506 

horizontal displacement demand is bilinear. It is evident that optimized buildings using pure 507 

steel design belong more to the category of braced frames, while optimized buildings with 508 

steel-concrete composite columns are primarily moment resisting frames. 509 

A single cost ratio of concrete price over steel price was used throughout this work to 510 

convert concrete volume to equivalent steel mass. This ratio may vary in different regions, for 511 

dynamically changing global/local market conditions and for different applications. Such cost 512 

variations can have an effect on the presented design optimization results. An investigation of 513 

this effect is provided in [15], which reveals that, for typical cost ratios expected in the market, 514 

the essential features of the optimal design identified in each case are not significantly changed 515 

due to the cost variations, although the final objective function value may exhibit significant 516 

variations. In the present study, the optimality of each design approach seems to be more 517 

critically affected by the slope of the cost-versus-δ curve. Hence, a modification of the cost 518 

ratio is expected to shift the curves of the buildings with steel-concrete composite columns, 519 

with the corresponding slopes, however, being much less affected. 520 

In the performed optimization runs, fundamental periods were determined using 521 

eigenvalue analyses. A maximum allowable limit for periods was not explicitly set in the 522 

optimization procedure, although any optimized design detected was assessed with respect to 523 

its maximum fundamental period. Application of such a constraint using approximate formulas 524 

defined by design codes or other sources might result in a considerable increase of the total 525 

cost [29], leading to significant overstrength of the optimally designed buildings. Nevertheless, 526 

such a consideration is important for the design of a building. Imposing an appropriate 527 

constraint will prevent the optimization algorithm from determining optimized designs with 528 

undesirable high periods.   529 
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